Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14123/1743
Original TitleSupplementary Material for the Paper "The Promise and Challenges of Computer Mouse Trajectories in DMHIs - A Feasibility Study on Pre-Treatment Dropout Predictions"
Handle20.500.14123/1743
Kinds of DataPrograms and Applications
Context Materials / Supporting information
Resource TypeDataset
CreatorZantvoort, Kirsten  0000-0001-9876-054X (Institut für Wirtschaftsinformatik (IIS), Leuphana Universität Lüneburg  02w2y2t16)
Matthiesen, Jennifer  0000-0003-0344-9682 (Institut für Wirtschaftsinformatik (IIS), Leuphana Universität Lüneburg  02w2y2t16)
Bjurner, Pontus  0000-0002-4967-9128 (Karolinska Institutet  056d84691)
Bendix, Marie  0000-0001-8901-166X (Karolinska Institutet  056d84691)
Funk, Burkhardt  0000-0001-5855-2666 (Institut für Wirtschaftsinformatik (IIS), Leuphana Universität Lüneburg  02w2y2t16)
Kaldo, Viktor  0000-0002-6443-5279 (Karolinska Institutet  056d84691)
Description of the DatasetEmpirical evidence suggests that how one moves their mouse holds information on motivation and attention, both valuable aspects otherwise difficult to measure at scale. Further, mouse trajectories can already be collected on pre-treatment questionnaires, making them a promising candidate for early predictions informing treatment allocation. Therefore, this study investigates how to gather and process mouse trajectory data on questionnaires in Digital Mental Health Interventions (DMHI). As a feasibility study, the researchers collected mouse trajectory data from 183 patients filling out a pre-intervention depression questionnaire.
MethodsDescription
Programming / Script-based data collection
KeywordsData Science; Computermaus; Nutzerverhalten; Prognose; Digitale Gesundheit; Mentale Gesundheit; Intervention; Motivation; Aufmerksamkeit; Algorithmus; Data Science; Computer Mouse; User Behavior; Prediction; Digital Health; Mental Health; Intervention; Motivation; Attention; Algorithm
Thematic ClassificationNutzerverhalten
Published byMedien- und Informationszentrum, Leuphana Universität Lüneburg
Superordinate Data Collection Supplementary Material PhD Kirsten Zantvoort
Related Resources Relations of the dataset

Items in PubData are protected by copyright, with all rights reserved, unless otherwise indicated.

Citation formats