Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14123/1743
Full metadata record
Field | Value |
---|---|
Original Title | Supplementary Material for the Paper "The Promise and Challenges of Computer Mouse Trajectories in DMHIs - A Feasibility Study on Pre-Treatment Dropout Predictions" |
Handle | 20.500.14123/1743 |
Kinds of Data | Programs and Applications Context Materials / Supporting information |
Resource Type | Dataset |
Creator | Zantvoort, Kirsten 0000-0001-9876-054X (Institut für Wirtschaftsinformatik (IIS), Leuphana Universität Lüneburg 02w2y2t16) Matthiesen, Jennifer 0000-0003-0344-9682 (Institut für Wirtschaftsinformatik (IIS), Leuphana Universität Lüneburg 02w2y2t16) Bjurner, Pontus 0000-0002-4967-9128 (Karolinska Institutet 056d84691) Bendix, Marie 0000-0001-8901-166X (Karolinska Institutet 056d84691) Funk, Burkhardt 0000-0001-5855-2666 (Institut für Wirtschaftsinformatik (IIS), Leuphana Universität Lüneburg 02w2y2t16) Kaldo, Viktor 0000-0002-6443-5279 (Karolinska Institutet 056d84691) |
Description of the Dataset | Empirical evidence suggests that how one moves their mouse holds information on motivation and attention, both valuable aspects otherwise difficult to measure at scale. Further, mouse trajectories can already be collected on pre-treatment questionnaires, making them a promising candidate for early predictions informing treatment allocation. Therefore, this study investigates how to gather and process mouse trajectory data on questionnaires in Digital Mental Health Interventions (DMHI). As a feasibility study, the researchers collected mouse trajectory data from 183 patients filling out a pre-intervention depression questionnaire. |
Methods | Description Programming / Script-based data collection |
Keywords | Data Science; Computermaus; Nutzerverhalten; Prognose; Digitale Gesundheit; Mentale Gesundheit; Intervention; Motivation; Aufmerksamkeit; Algorithmus; Data Science; Computer Mouse; User Behavior; Prediction; Digital Health; Mental Health; Intervention; Motivation; Attention; Algorithm |
Thematic Classification | Nutzerverhalten |
Language of the Resource | English |
Date of Availability | 2025-01-23T08:50:41Z |
Date of issue | 2025-01-23 |
Archiving Facility | Medien- und Informationszentrum (Leuphana Universität Lüneburg 02w2y2t16) |
Published by | Medien- und Informationszentrum, Leuphana Universität Lüneburg |
Related Resources
Superordinate Data Collection: Supplementary Material PhD Kirsten Zantvoort
Field | Value |
---|---|
Participating Researchers | Zantvoort, Kirsten 0000-0001-9876-054X (Institut für Wirtschaftsinformatik (IIS), Leuphana Universität Lüneburg 02w2y2t16) |
Items in PubData are protected by copyright, with all rights reserved, unless otherwise indicated.