Please use this identifier to cite or link to this item:
https://doi.org/10.48548/pubdata-137
Resource type | Journal Article |
Title(s) | Fatigue crack propagation in AA5083 structures additively manufactured via multi-layer friction surfacing |
DOI | 10.48548/pubdata-137 |
Handle | 20.500.14123/156 |
Creator | Kallien, Zina 0009-0003-5133-0624 (Helmholtz-Zentrum Hereon 03qjp1d79) Knothe-Horstmann, Christian 0000-0001-9148-2882 (Helmholtz-Zentrum Hereon 03qjp1d79) Klusemann, Benjamin 0000-0002-8516-5087 142865192 (Institut für Produktionstechnik und -systeme (IPTS), Leuphana Universität Lüneburg 02w2y2t16) |
Abstract | Multi-layer friction surfacing (MLFS) is a layer deposition technique that allows building structures from metals in solid state. As approach for additive manufacturing, the re-heating during subsequent deposition processes is significantly lower compared to fusion-based techniques. Available research work presents promising properties of MLFS structures from aluminum alloys, reporting no significant directional dependency in terms of tensile strength. The present study focuses on the fatigue crack propagation behavior and the role of layer-to-substrate (LTS) as well as layer-to-layer (LTL) interfaces. Compact tension specimens were extracted in different orientations from the MLFS stacks built from AA5083. The crack propagation parallel and perpendicular to the LTL interfaces as well as from the substrate material across LTS interface into the MLFS deposited material was investigated. The results show that LTL interfaces play no significant role for the crack propagation, i.e. specimens with LTL interfaces perpendicular and parallel to the crack presented no significant differences in terms of their fatigue crack propagation behavior. The specimens where the crack propagated from the substrate material across the LTS interface into the MLFS deposited material showed higher fatigue life than the specimens with crack propagation in the MLFS deposited material only. Crack retardation can be observed as long as the crack propagates within the substrate material, which is associated with compressive residual stresses introduced in the substrate during the layer deposition process. |
Language | English |
Keywords | Multi-Layer Friction Surfacing; Additive Manufacturing; Solid State Layer Deposition; Fatigue Crack Propagation; Aluminum |
Year of publication in PubData | 2024 |
Publishing type | Parallel publication |
Publication version | Published version |
Date issued | 2023-06-07 |
Creation context | Research |
Published by | Medien- und Informationszentrum, Leuphana Universität Lüneburg |
Related resources |
Information regarding first publication
Field | Value |
---|---|
Resource type | Journal |
Title of the resource type | Additive Manufacturing Letters |
Identifier | DOI: 10.1016/j.addlet.2023.100154 |
Publication year | 2023 |
Volume | 6 |
Number | 100154 |
Number type | Article |
Publisher | Elsevier |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
kallien_2023_fatigue_crack_propagation_in_aa5083_structures.pdf License: open-access | 2.87 MB | Adobe PDF | View/Open |
Items in PubData are protected by copyright, with all rights reserved, unless otherwise indicated.
Views
Item Export Bar
Access statistics
Page view(s): 53
Download(s): 11