Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
https://doi.org/10.48548/pubdata-1469
Ressourcentyp | Zeitschriftenartikel |
Titel | Automated invoice processing: Machine learning-based information extraction for long tail suppliers |
DOI | 10.48548/pubdata-1469 |
Handle | 20.500.14123/1539 |
Autor*in | Krieger, Felix 0000-0002-6360-8115 Drews, Paul 0000-0002-9845-5024 Funk, Burkhardt 0000-0001-5855-2666 |
Abstract | Automation of incoming invoices processing promises to yield vast efficiency improvements in accounting. Until a universal adoption of fully electronic invoice exchange formats has been achieved, machine learning can help bridge the adoption gaps in electronic invoicing by extracting structured information from unstructured invoice formats. Machine learning especially helps the processing of invoices of suppliers who only send invoices infrequently, as the models are able to capture the semantic and visual cues of invoices and generalize them to previously unknown invoice layouts. Since the population of invoices in many companies is skewed toward a few frequent suppliers and their layouts, this research examines the effects of training data taken from such populations on the predictive quality of different machine-learning approaches for the extraction of information from invoices. Comparing the different approaches, we find that they are affected to varying degrees by skewed layout populations: The accuracy gap between in-sample and out-of-sample layouts is much higher in the Chargrid and random forest models than in the LayoutLM transformer model, which also exhibits the best overall predictive quality. To arrive at this finding, we designed and implemented a research pipeline that pays special attention to the distribution of layouts in the splitting of data and the evaluation of the models. |
Sprache | Englisch |
Schlagwörter | Layout-rich Documents; Document Analysis; Natural Language Processing |
Jahr der Veröffentlichung in PubData | 2024 |
Art der Veröffentlichung | Zweitveröffentlichung |
Publikationsversion | Veröffentlichte Version |
Datum der Erstveröffentlichung | 2023-10-12 |
Entstehungskontext | Forschung |
Anmerkungen | This publication was funded by the German Research Foundation (DFG). |
Veröffentlicht durch | Medien- und Informationszentrum, Leuphana Universität Lüneburg |
Zugehörige Ressourcen |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
Krieger_Automated_invoice_processing_Machine_learning-based_information_extraction_for_long_tail_suppliers.pdf Lizenz: open-access | 1.99 MB | Adobe PDF | Öffnen/Anzeigen |
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.
Ansichten
Datensatz Exporte
Zugriffsstatistik
Seitenaufruf(e): 10
Download(s): 31