Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://doi.org/10.48548/pubdata-131
Langanzeige der Metadaten
ElementWert
RessourcentypZeitschriftenartikel
TitelData-driven and physics-based modelling of process behaviour and deposit geometry for friction surfacing
DOI10.48548/pubdata-131
Handle20.500.14123/150
Autor*inBock, Frederic E.  0000-0002-6541-2036 (Helmholtz-Zentrum Hereon  03qjp1d79)
Kallien, Zina  0009-0003-5133-0624 (Helmholtz-Zentrum Hereon  03qjp1d79)
Huber, Norbert  0000-0002-4252-9207 (Helmholtz-Zentrum Hereon  03qjp1d79)
Klusemann, Benjamin  0000-0002-8516-5087  142865192 (Institut für Produktionstechnik und -systeme (IPTS), Leuphana Universität Lüneburg  02w2y2t16)
AbstractIn the last decades, there has been an increase in the number of successful machine learning models that have served as a key to identifying and using linkages within the process-structure–property-performance chain for vastly different problems in the domains of materials mechanics. The consideration of physical laws in data-driven modelling has recently been shown to enable enhanced prediction performance and generalization while requiring less data than either physics-based or data-driven modelling approaches independently. In this contribution, we introduce a simulation-assisted machine learning framework applied to the solid-state layer deposition technique friction surfacing, suitable for solid-state additive manufacturing as well as repair or coating applications. The objective of the present study is to use machine learning algorithms to predict and analyse the influence of process parameters and environmental variables, i.e. substrate and backing material properties, on process behaviour and deposit geometry. The effects of maximum process temperatures supplied by a numerical heat transfer model on the predictions of the targets are given special attention. Numerous different machine learning algorithms are implemented, optimized and evaluated to take advantage of their varied capabilities and to choose the optimal one for each target and the provided data. Furthermore, the input feature dependence for each prediction target is evaluated using game-theory related Shapley Additive Explanation values. The experimental data set consists of two separate experimental design spaces, one for varying process parameters and the other for varying substrate and backing material properties, which allowed to keep the experimental effort to a minimum. The aim was to also represent the cross parameter space between the two independent spaces in the predictive model, which was accomplished and resulted in an approximately 44 % reduction in the number of experiments when compared to carrying out an experimental design that included both spaces.
SpracheEnglisch
SchlagwörterMachine Learning; Feature Selection; Numerical Modelling; Heat Transfer
DDC620 :: Ingenieurwissenschaften und zugeordnete Tätigkeiten
Jahr der Veröffentlichung in PubData2024
Art der VeröffentlichungZweitveröffentlichung
PublikationsversionVeröffentlichte Version
Datum der Erstveröffentlichung2023-09-30
EntstehungskontextForschung
Fakultät / AbteilungFakultät Management und Technologie
Gefördert / finanziert vonEuropean Research Council
Förderer-IDTyp: ROR
Wert: 0472cxd90
Zugehöriges ProjektMA.D.AM
Förderkennzeichen / Projekt-ID101001567
Verfügbar ab / seit2024-01-22T12:53:40Z
Archivierende Einrichtung Medien- und Informationszentrum (Leuphana Universität Lüneburg  02w2y2t16)
Veröffentlicht durchMedien- und Informationszentrum, Leuphana Universität Lüneburg
  Informationen zur Erstveröffentlichung
ElementWert
RessourcentypZeitschrift
Titel des RessourcentypsComputer Methods in Applied Mechanics and Engineering
IdentifierDOI: 10.1016/j.cma.2023.116453
Publikationsjahr2024
Band418
Nummer116453
NummerntypArtikel
Verlag / AnbieterElsevier
  Zugehörige Ressourcen
Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 

bock_2024_data-driven_and_physics-based_modelling_of_process_behaviour.pdf
MD5: fb1c9df03a642f80bf57cb40a14011e9
Lizenz: 
open-access


1.95 MB

Adobe PDF
Öffnen/Anzeigen

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.

Ansichten
Zitationsformate
Datensatz Exporte
Zugriffsstatistik

Seitenaufruf(e): 99

Download(s): 25