Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14123/1741
Original TitleSupplementary Material for the Paper "Finding the Best Match - A Case Study on the (Text-)Feature and Model Choice in Digital Mental Health Interventions"
Handle20.500.14123/1741
Kinds of DataContext Materials / Supporting information
Resource TypeDataset
CreatorZantvoort, Kirsten  0000-0001-9876-054X (Institut für Wirtschaftsinformatik (IIS), Leuphana Universität Lüneburg  02w2y2t16)
Scharfenberger, Jonas (Institut für Wirtschaftsinformatik (IIS), Leuphana Universität Lüneburg  02w2y2t16)
Boß, Leif  0000-0001-9012-0839 (Institute of Sustainability Psychology (ISP), Leuphana Universität Lüneburg  02w2y2t16)
Lehr, Dirk  0000-0002-5560-3605 (Institute of Sustainability Psychology (ISP), Leuphana Universität Lüneburg  02w2y2t16)
Funk, Burkhardt  0000-0001-5855-2666 (Institut für Wirtschaftsinformatik (IIS), Leuphana Universität Lüneburg  02w2y2t16)
Description of the DatasetThis document serves as supplement for the paper "Finding the Best Match – A Case Study on the (Text-)Feature and Model Choice in Digital Mental Health Interventions". The researchers analyzed nearly 16.000 open-text answers from 849 German-speaking users in a Digital Mental Health Intervention (DMHI) for stress. The archived document represents a short overview of the data.
MethodsSummary
Aggregation
Description
KeywordsMaschinelles Lernen; Natural Language Processing; Digitale Gesundheit; Mentale Gesundheit; Intervention; Gesundheitsdaten; Stress; Machine Learning; Natural Language Processing; Digital Health; Mental Health; Intervention; Health Data; Stress
Thematic ClassificationDigital Health
NotesThe supplementary material is available for download. Please visit the article linked below to gain access. You will find the document in the chapter "Supplementary information".
Published byMedien- und Informationszentrum, Leuphana Universität Lüneburg
Superordinate Data Collection Supplementary Material PhD Kirsten Zantvoort
Related Resources Relations of the dataset

Items in PubData are protected by copyright, with all rights reserved, unless otherwise indicated.

Citation formats