Robust and Optimal Control Designed for Autonomous Surface Vessel Prototypes
Preview & Downloads
Chronological data
Date of first publication2023-01-25
Date of publication in PubData 2024-11-11
Language of the resource
English
Publisher
Other contributors
Abstract
It is well known that activities in running water or wind and waves expose the Autonomous Surface Vessels (ASVs) to considerable challenges. Under these conditions, it is essential to develop a robust control system that can meet the requirements and ensure the safe and accurate execution of missions. In this context, this paper presents a new topology for controller design based on a combination of the Successive Loop Closure (SLC) method and optimal control. This topology enables the design of robust autopilots based on the Proportional-Integral-Derivative (PID) controller. The controllers are tuned from the solution of the optimal control problem, which aims to minimize the effects of model uncertainties. To verify the effectiveness of the proposed controller, a numerical case study of a natural ASV with 3 Degree of Freedom (DoF) is investigated. The results show that the methodology enabled the tuning of a PID controller capable of dealing with different parametric uncertainties, demonstrating robustness and applicability for different prototype scenarios.
Keywords
Autonomous Surface Vehicle; PID Controller; Robust Control Design; Successive Loop Closure
Faculty / department
Notes
This publication was funded by the German Research Foundation (DFG).