Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://doi.org/10.48548/pubdata-893
RessourcentypMasterarbeit
TitelModeling the decreasing intervention effect in digital health: a computational model to predict the response for a walking intervention
DOI10.48548/pubdata-893
Handle20.500.14123/932
Autor*inGotzian, Lisa  0009-0004-0148-7380
StudiengangManagement & Data Science
Gutachter*inFunk, Burkhardt  0000-0001-5855-2666  105142156X
Hekler, Eric  0000-0002-7434-0775
AbstractIn past digital health interventions, an issue has been that participants drop out over time which is referred to as the "law of attrition" (Eysenbach, 2005). Based on this, the study proposes that though initially, participants respond to the intervention, there is a hypothesized second diminishing effect of an intervention. However, the study suggests that on top, there is a third effect. Independent of the individual notification or nudge, people could build the knowledge, skills and practice needed to independently engage in the behavior themselves (schraefel and Hekler, 2020). Using behavioral theory and inspired by prior animal computational models of behavior, the thesis proposes a dynamical computational model to allow for a separation of intervention and internalization. It is targeted towards the specific case of the HeartSteps intervention that could not explain a diminishing immediate effect of the intervention, second hypothesized effect, while a person’s overall steps remained constant, third effect (Klasnja et al., 2019). The study incorporates a habituation mechanism from learning theory that can account for the immediate diminishing effect. At the same time, a reinforcement mechanism allows participants to internalize the message and engage in behavior independently. The simulation shows the importance of a participant’s responsiveness to the intervention and a sufficient recovery period after each notification. To estimate the model, the study uses data from the HeartSteps intervention (Klasnja et al., 2019; Liao et al., 2020), a just-in-time adaptive intervention that sent two to five walking suggestions per day. The study runs a Bayesian estimation with Stan in R. Additional validation tests are needed to estimate the accuracy of the model for different individuals. It could however serve as a template for future just-intime adaptive interventions due to its generic structure. In addition, this model is of high practical relevance as its derived dynamics can be used to improve future walking suggestions and ultimately optimize notification-based digital health interventions.
SpracheEnglisch
Datum der Disputation2020-10-08
Jahr der Veröffentlichung in PubData2023
Art der VeröffentlichungErstveröffentlichung
Datum der Erstveröffentlichung2023-09-19
EntstehungskontextStudium
AnmerkungenMaster Thesis im Major: Management & Data Science
Grad-verleihende InstitutionLeuphana Universität Lüneburg
Veröffentlicht durchMedien- und Informationszentrum, Leuphana Universität Lüneburg
Dateien zu dieser Ressource:
Datei GrößeFormat 

Master_2023_Gotzian_Modeling.pdf
MD5: ac2d38356cc54d086e62bf408b1aa632
Lizenz:  Nutzung nach Urheberrecht
open-access

8.26 MB

Adobe PDF
Öffnen/Anzeigen

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.

Ansichten
Zitationsformate
Datensatz Exporte
Zugriffsstatistik

Seitenaufruf(e): 36

Download(s): 19