Please use this identifier to cite or link to this item:
https://doi.org/10.48548/pubdata-638
Full metadata record
Field | Value |
---|---|
Resource type | Dissertation |
Title(s) | Towards Sustainable Landscape Development: Case Study of Using Remote Sensing as an Unconventional Tool for Environmental Observation |
Alternative title(s) | Auf dem Weg zu einer nachhaltigen Landschaftsentwicklung: Fallstudie zum Einsatz der Fernerkundung als unkonventionelles Werkzeug zur Umweltbeobachtung |
DOI | 10.48548/pubdata-638 |
Handle | 20.500.14123/673 |
Creator | Farghaly, Dalia Mostafa Amer 1231574259 |
Referee | Urban, Brigitte 1051421802 Sörgel, Uwe 12495491X von Wehrden, Henrik 0000-0003-2087-5552 142263834 |
Advisor | Urban, Brigitte 1051421802 |
Abstract | Sustainable landscape development is the main goal of decision makers worldwide. Achieving this goal in the long term leads to achieving social, economic and environmental sustainability. Remote sensing has been playing an essential role in monitoring remote areas. This study has employed part of the role of remote sensing in supporting the direction of decision makers towards sustainable landscape development. The study has focused on some of the main elements affecting sustainable environment: land uses, specifically agricultural land uses, water quality, forests, and water hazards such as floods. Three research programs were undertaken to investigate the role of Terrasar-x imagery, as a source of remote sensing data, in monitoring the environment and achieving the previous stated elements. The investigation was intended to investigate the effectiveness of TSX imagery in identifying the cropping pattern of selected study areas by employing a pixel-based supervised maximum likelihood classifier, as published in Paper I, assessment of the efficiency of using TSX imagery in determining land use and the flood risk maps by applying an object-based decision tree classifier as published in Paper II, and determination of the potential of inferential statistics tests such as the two samples Z-test and multivariate analysis, for example Factor Analysis, for identifying the kind of forest canopy, based on the backscattering coefficient of TSX imagery of forest plots, as presented in Paper III. Papers I and II covered two pilot areas in the Lower Saxonian Elbe Valley Biosphere Reserve “das Biosphärenreservat "Niedersächsische Elbtalaue" around Walmsburger Werder and Wehninger Werder. Paper III focused on the Fuhrberger Feld water protection area near Hanover in Germany. The inputs for this research were mainly SAR Imagery and the ground truth data collected from field surveys, in addition to databases, geo-databases and maps. The study presented in Paper I used two filters to decrease speckle noise namely De-Grandi as multi-temporal speckle filter, and Lee as an adaptive filter. A multi-temporal classification method was used to identify the different crops using a pixel-based maximum likelihood classifier. The classification accuracy was assessed based on the external user accuracy for each crop, the external producer accuracy for each crop, the Kappa index and the external total accuracy for the entire classification. Three cropping pattern maps were produced namely the cropping pattern map of Wehninger Werder in 2011 and the cropping pattern maps of Walmsburger Werder in 2010 and in 2011. The study showed that image filtering was essential for enhancing the accuracy of crop classification. The multi-temporal filter De-Grandi enhanced the producer accuracy by about 10% compared to the Lee filter. Furthermore, gathering and utilizing large ground truth data greatly enhanced the accuracy of the classification. The research verified that using sequence images covering the growing season usually improved the classification results. The results exposed the effect of the polarization and demonstrate that the majority of the classifications produced according to the crop calendar had higher total producer accuracy than using all acquisitions. The study demonstrated undertaken in Paper II applied the decision tree object-based classifier in determining the major land uses and the inundation extent areas in 2011 and 2013 using the Lee-filtered imagery. Based on the maps produced for the land uses and inundation areas, the hazard areas due to the floods in 2011 and 2013 were identified. The study illustrated that 95% of the inundated area was classified correctly, that 90% of vegetated lands were accurately determined, and around 80% of the forest and the residential areas were correctly recognized. The research undertaken in Paper III statistically analyzed the backscattering coefficient of the Lee-filtered TSX in some forest plots by the Factor Analysis and two sample Z-test. The study showed that Factor analysis tools succeeded in differentiating between the coniferous forest and the deciduous forest and mixed forest, but failed to discriminate between the deciduous and the mixed forest. On one hand, only one factor was extracted for each sample plot of the coniferous forest with approximately equal loadings during the whole acquisition period from March 2008 to January 2009. On the other hand, two factors were extracted for each deciduous or mixed forest sample plot, where one factor had high loadings during the leaf-on period from May to October, and the other one had high loadings during the leaf-off period from November to April. Furthermore, the research revealed that the two sample Z-test enabled not only differentiation between the deciduous and the mixed forest against the coniferous forest, but also discrimination between deciduous forest and the mixed forest. Statistically significant differences were observed between the mean backscatter values of the HH-polarized acquisitions for the deciduous forest and the mixed forest during the leaf-off period, but no statistically significant difference was found during the leaf-on period. Moreover, plot samples for the deciduous forest had slightly higher mean backscattering coefficients than those for the mixed forest during the leaf-off period. Nachhaltige Landschaftsentwicklung ist das Hauptziel von Entscheidungsträgern weltweit. Das Erreichen dieses Ziels führt langfristig zum Erreichen sozialer, wirtschaftlicher und ökologischer Nachhaltigkeit. Die Fernerkundung spielt dabei eine wesentliche Rolle bei der Überwachung abgelegener Gebiete. Diese Studie beschäftigt sich mit der Rolle der Fernerkundung bei der Unterstützung von Entscheidungsträgern in Richtung einer nachhaltigen Landschaftsentwicklung. Die Studie hat sich hierbei auf einige der Hauptelemente konzentriert, die eine nachhaltige Umwelt beeinflussen: Landnutzung, insbesondere landwirtschaftliche Landnutzung, Wasserqualität, Wälder und Wassergefahren wie Überschwemmungen. Drei Forschungsprogramme wurden durchgeführt, um die Rolle von Terrasar-x-Bildern als Quelle von Fernerkundungsdaten bei der Überwachung der Umwelt und der Erreichung der zuvor genannten Elemente zu untersuchen. Die Untersuchung sollte die Effektivität von TSX-Bildern bei der Identifizierung des Anbaumusters ausgewählter Untersuchungsgebiete durch die Anwendung eines pixelbasierten überwachten Maximum-Likelihood-Klassifikators untersuchen (Paper I), die Effizienz der Verwendung von TSX-Bildern bei der Bestimmung der Landnutzung und der Hochwasserrisikokarten durch die Anwendung eines objektbasierten Entscheidungsbaum-Klassifikators bewerten (Paper II), und das Potential von inferenzstatistischen Tests wie dem Zwei-Stichproben-Z-Test und der multivariaten Analyse, z.B. der Faktorenanalyse, zur Identifizierung der Art des Walddaches, basierend auf dem Rückstreukoeffizienten von TSX-Bildern von Waldparzellen bestimmen (Paper III). Die Papiere I und II behandelten zwei Pilotgebiete im Biosphärenreservat "Niedersächsische Elbtalaue" um den Walmsburger Werder und den Wehninger Werder. Beitrag III befasste sich mit dem Wasserschutzgebiet Fuhrberger Feld bei Hannover in Deutschland. Der Input für diese Untersuchung waren hauptsächlich SAR-Bilder und die durch Feldbegehungen gesammelten Ground-Truth-Daten, zusätzlich zu Datenbanken, Geodatenbanken und Karten. Die in Paper I vorgestellte Studie verwendete zwei Filter zur Verringerung des Speckle-Rauschens, nämlich De-Grandi als multitemporalen Speckle-Filter und Lee als adaptiven Filter. Eine multitemporale Klassifizierungsmethode wurde verwendet, um die verschiedenen Pflanzen mithilfe eines pixelbasierten Maximum-Likelihood-Klassifikators zu identifizieren. Die Klassifizierungsgenauigkeit wurde anhand der externen Anwendergenauigkeit für jede Kultur, der externen Erzeugergenauigkeit für jede Kultur, dem Kappa-Index und der externen Gesamtgenauigkeit für die gesamte Klassifizierung bewertet. Es wurden drei Anbaumusterkarten erstellt, nämlich die Anbaumusterkarte des Wehninger Werders im Jahr 2011 und die Anbaumusterkarten des Walmsburger Werders im Jahr 2010 und im Jahr 2011. Die Studie hat gezeigt, dass die Bildfilterung für die Verbesserung der Genauigkeit der Ernteklassifikation von entscheidender Bedeutung ist. Der multitemporale Filter De-Grandi verbesserte die Genauigkeit der Erzeuger im Vergleich zum Lee-Filter um etwa 10%. Darüber hinaus wurde die Genauigkeit der Klassifizierung durch das Sammeln und die Verwendung großer Bodenwahrheitsdaten erheblich verbessert. Die Untersuchung bestätigte, dass die Verwendung von Sequenzbildern, die die Wachstumssaison abdecken, in der Regel die Klassifizierungsergebnisse verbessert. Die Ergebnisse zeigten den Effekt der Polarisation und außerdem, dass die Mehrheit der Klassifizierungen, die nach dem Erntekalender erstellt wurden, eine höhere Gesamtproduktionsgenauigkeit hatten als die Verwendung aller Erfassungen. Die in Paper II durchgeführte Studie wendete den objektbasierten Entscheidungsbaum-Klassifikator bei der Bestimmung der wichtigsten Landnutzungen und der Überschwemmungsgebiete in den Jahren 2011 und 2013 unter Verwendung des Lee-gefilterten Bildmaterials an. Basierend auf den Karten, die für die Landnutzungen und Überschwemmungsgebiete erstellt wurden, wurden die Gefahrenbereiche aufgrund der Überschwemmungen in den Jahren 2011 und 2013 identifiziert. Die Studie zeigte, dass 95% der überschwemmten Flächen korrekt klassifiziert wurden, dass 90% der bewachsenen Flächen genau bestimmt wurden und dass etwa 80% der Wald- und Wohngebiete korrekt erkannt wurden. Die in Paper III durchgeführte Untersuchung analysierte den Rückstreukoeffizienten des Lee-gefilterten TSX in einigen Waldparzellen statistisch mit Hilfe der Faktorenanalyse und des Zwei-Stichproben-Z-Tests. Die Studie zeigte, dass es mit den Instrumenten der Faktorenanalyse gelang, zwischen dem Nadelwald und dem Laubwald und Mischwald zu unterscheiden, aber nicht zwischen dem Laub- und dem Mischwald zu unterscheiden. Einerseits wurde nur ein Faktor für jede Probeparzelle des Nadelwaldes mit ungefähr gleichen Ladungen während des gesamten Erfassungszeitraums von März 2008 bis Januar 2009 extrahiert. Andererseits wurden für jede Probeparzelle des Laub- bzw. Mischwaldes zwei Faktoren extrahiert, wobei ein Faktor hohe Ladungen während der Belaubungsperiode von Mai bis Oktober und der andere Faktor hohe Ladungen während der Entlaubungsperiode von November bis April aufwies. Darüber hinaus ergab die Untersuchung, dass der Zwei-Stichproben-Z-Test nicht nur eine Differenzierung zwischen Laub- und Mischwald gegenüber dem Nadelwald ermöglichte, sondern auch eine Unterscheidung zwischen Laub- und Mischwald. Es wurden statistisch signifikante Unterschiede zwischen den mittleren Rückstreuwerten der HH-polarisierten Erfassungen für den Laubwald und den Mischwald während der Entlaubungsperiode beobachtet, aber kein statistisch signifikanter Unterschied wurde während der Belaubungsperiode gefunden. Außerdem hatten die Parzellenproben für den Laubwald während der Entlaubungsperiode etwas höhere mittlere Rückstreukoeffizienten als die für den Mischwald. |
Language | English |
DDC | 554 :: Geowissenschaften Europas |
Date of defense | 2020-07-20 |
Year of publication in PubData | 2021 |
Publishing type | First publication |
Date issued | 2021-04-16 |
Creation context | Research |
Faculty / department | Fakultät Nachhaltigkeit / Institut für Ökologie (IE) |
Alternative Idenfier(s) | urn:nbn:de:gbv:luen4-opus4-11350 |
Notes | Das Rahmenpapier der kumulativen Dissertation enthält drei Beiträge |
Date of Availability | 2024-05-30T13:40:50Z |
Archiving Facility | Medien- und Informationszentrum (Leuphana Universität Lüneburg 02w2y2t16) |
Granting Institution | Leuphana Universität Lüneburg |
Published by | Medien- und Informationszentrum, Leuphana Universität Lüneburg |
Related Resources
Files in This Item:
File | Size | Format | |
---|---|---|---|
Diss_2021_Farghaly_Dalia_Towards.pdf License: Nutzung nach Urheberrecht open-access | 21.97 MB | Adobe PDF | View/Open |
Items in PubData are protected by copyright, with all rights reserved, unless otherwise indicated.
Views
Item Export Bar
Access statistics
Page view(s): 155
Download(s): 4