Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://doi.org/10.48548/pubdata-1429
Langanzeige der Metadaten
ElementWert
RessourcentypZeitschriftenartikel
TitelFirst automatic size measurements for the separation of dwarf birch and tree birch pollen in MIS 6 to MIS 1 records from Northern Germany
DOI10.48548/pubdata-1429
Handle20.500.14123/1498
Autor*inTheuerkauf, Martin  0000-0002-4033-3040
Nehring, Elias
Gillert, Alexander  1331357764
Bodien, Philipp Morten
Hein, Michael  0000-0002-5500-4020
Urban, Brigitte  0000-0003-0071-3388
AbstractDuring past glacial periods, the land cover of Northern Eurasia and North America repeatedly shifted between open steppe tundra and boreal/temperate forest. Tracking these changes and estimating the coverage of open versus forested vegetation in past glacial and interglacial landscapes is notoriously difficult because the characteristic dwarf birches of the tundra and the tree birches of the boreal and temperate forests produce similar pollen grains that are difficult to distinguish in the pollen record. One objective approach to separating dwarf birch pollen from tree birch pollen is to use grain size statistics. However, the required grain size measurements are time-consuming and, therefore, rarely produced. Here, we present an approach to automatic size measurement based on image recognition with convolutional neural networks and machine learning. It includes three main steps. First, the TOFSI algorithm is applied to detect and classify pollen, including birch pollen, in lake sediment samples. Second, a Resnet-18 neural network is applied to select the birch pollen suitable for measurement. Third, semantic segmentation is applied to detect the outline and the area and mean width of each detected birch pollen grain. Test applications with two pollen records from Northern Germany, one covering the Lateglacial-Early Holocene transition and the other covering the Mid to Late Pleistocene transition, show that the new technical approach is well suited to measure the area and mean width of birch pollen rapidly (>1000 per hour) and with high accuracy. Our new network-based tool facilitates more regular size measurements of birch pollen. Expanded analysis of modern birch pollen will help to better understand size variations in birch pollen between birch species and in response to environmental factors as well as differential sample preparation. Analysis of fossil samples will allow better quantification of dwarf birch versus tree birch in past environments.
SpracheEnglisch
SchlagwörterPollen; Automatic Recognition; Convolutional Neural Networks; Dwarf Birch; Holocene; Machine Learning; Tree Birch
Jahr der Veröffentlichung in PubData2024
Art der VeröffentlichungZweitveröffentlichung
PublikationsversionVeröffentlichte Version
Datum der Erstveröffentlichung2024-06-14
EntstehungskontextForschung
Fakultät / AbteilungFakultät Nachhaltigkeit
AnmerkungenThis publication was funded by the German Research Foundation (DFG).
Verfügbar ab / seit2024-11-08T07:16:53Z
Archivierende Einrichtung Medien- und Informationszentrum (Leuphana Universität Lüneburg  02w2y2t16)
Veröffentlicht durchMedien- und Informationszentrum, Leuphana Universität Lüneburg
  Informationen zur Erstveröffentlichung
ElementWert
RessourcentypZeitschrift
Titel des RessourcentypsEcology and Evolution
IdentifierDOI: 10.1002/ece3.11510
Publikationsjahr2024
Band14
Heft6
Nummere11510
NummerntypArtikel
VerlagsortJohn Wiley & Sons
  Zugehörige Ressourcen
Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 

Theuerkauf_First_automatic_size_measurements_for_the_separation_of_dwarf_birch_and_tree_birch_pollen.pdf
MD5: 1b5507df299c9be55a96e993cb2784ae
Lizenz: 
open-access


7.16 MB

Adobe PDF
Öffnen/Anzeigen

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.

Ansichten
Zitationsformate
Datensatz Exporte
Zugriffsstatistik

Seitenaufruf(e): 9

Download(s): 1