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A B S T R A C T

In the last decades, there has been an increase in the number of successful machine learning
models that have served as a key to identifying and using linkages within the process-structure–
property-performance chain for vastly different problems in the domains of materials mechanics.
The consideration of physical laws in data-driven modelling has recently been shown to enable
enhanced prediction performance and generalization while requiring less data than either
physics-based or data-driven modelling approaches independently. In this contribution, we
introduce a simulation-assisted machine learning framework applied to the solid-state layer
deposition technique friction surfacing, suitable for solid-state additive manufacturing as well
as repair or coating applications. The objective of the present study is to use machine learning
algorithms to predict and analyse the influence of process parameters and environmental
variables, i.e. substrate and backing material properties, on process behaviour and deposit
geometry. The effects of maximum process temperatures supplied by a numerical heat transfer
model on the predictions of the targets are given special attention. Numerous different machine
learning algorithms are implemented, optimized and evaluated to take advantage of their
varied capabilities and to choose the optimal one for each target and the provided data.
Furthermore, the input feature dependence for each prediction target is evaluated using game-
theory related Shapley Additive Explanation values. The experimental data set consists of two
separate experimental design spaces, one for varying process parameters and the other for
varying substrate and backing material properties, which allowed to keep the experimental
effort to a minimum. The aim was to also represent the cross parameter space between the
two independent spaces in the predictive model, which was accomplished and resulted in an
approximately 44 % reduction in the number of experiments when compared to carrying out
an experimental design that included both spaces.

. Introduction

Friction surfacing (FS) is a solid-state layer deposition technique that is applicable for various similar and dissimilar metallic
aterial combinations [1]. The technique is based on friction and plastic deformation of a consumable material that is deposited

nto a substrate [2]. The FS principle is applicable not only as coating technology but also shows potential for repair applications [3]
r solid-state additive manufacturing [4]. The FS deposited material presents a homogeneous fine grained and recrystallized
icrostructure [5], where the heat input to the subjacent structure is low compared to fusion-based layer deposition processes
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Nomenclature

Acronyms (selection)

𝑴𝑨𝑻 Substrate & backing plate material properties 𝑐𝑏, 𝑐𝑠, 𝑘𝑏, 𝑘𝑠, 𝑡𝑏, 𝑡𝑠
𝑷𝑷 Process parameters 𝐹 , 𝑅𝑆, 𝑇𝑆

Data set features

𝒜 𝑷𝑷 , 𝑴𝑨𝑻 , 𝑡, 𝑤, 𝑣𝑐𝑟, 𝑀
ℬ train: 𝑷𝑷 , 𝑴𝑨𝑻 , 𝑡, 𝑤, 𝑣𝑐𝑟, 𝑀 ; test: 𝑷𝑷 , 𝑴𝑨𝑻 , 𝑡, 𝑤̂, 𝑣̂𝑐𝑟, 𝑀̂
𝒞 𝑷𝑷 , 𝑴𝑨𝑻 , 𝑡, 𝑤̂, 𝑣̂𝑐𝑟, 𝑀̂
𝒟 𝑷𝑷 , 𝑴𝑨𝑻 , 𝑇𝑚𝑎𝑥
ℰ 𝑷𝑷 , 𝑴𝑨𝑻 , 𝑇̂𝑚𝑎𝑥
ℱ 𝑷𝑷 , 𝑴𝑨𝑻 , 𝑇𝑚𝑎𝑥, 𝑣𝑐𝑟, 𝑀

Symbols

𝑎𝑙,𝑢 Layer output function
𝛼 Learning rate
𝛼𝑖 Lagrange multiplier
𝛼𝑟𝑖𝑑𝑔𝑒 Scaling factor of penalty term for ridge regression
𝐵 Number of decision trees contained in a random forest
𝑏 Bias term
𝐶 Regularization constant
𝑐𝑏 Specific heat capacity of backing plate
𝑐𝑠 Specific heat capacity of substrate
𝐷 Number of features
𝜖 Penalty-free tube width around model function
𝐹 Force
𝑔 Activation function
𝛾 Scaling parameter of radial basis function
𝐾 Complete feature set
𝑘 Total number of layers
𝜅 Kernel function
𝑘𝑏 Thermal conductivity of backing plate
𝑘𝑠 Thermal conductivity of substrate
𝐿 Total number of regions
𝑙 Region number
𝑀 Torque
M̂ Predicted torque
𝑀𝑡𝑟𝑒𝑒 Maximum number of trees
𝑁 Number of samples
𝑛 Layer number
𝑃 Number of simplified features
𝜙0 Predicted mean of all training samples
𝜙𝑖 Shapley value
𝐑 Set of all regions
𝑅𝑆 Rotational speed
𝑆 Feature subset
𝑠 Threshold value
𝑡 Thickness of deposit layer
𝑡 Predicted thickness of deposit layer
𝑡𝑏 Thickness of backing plate
2
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𝑡𝑙𝑖𝑛 Linear approximation of 𝑡
𝑇𝑚𝑎𝑥 Maximum temperature from numerical model
𝑇̂𝑚𝑎𝑥 Machine learning predicted maximum temperature
𝑡𝑠 Thickness of substrate
𝑇𝑆 Travel speed
𝑢 Number of neurons
𝑣𝑐𝑟 Feed rate
𝑣̂𝑐𝑟 Predicted feed rate
𝑣𝑐𝑟,𝑙𝑖𝑛 Linear approximation of 𝑣𝑐𝑟
𝐖 Weight matrix
𝑤 Width of deposit layer
𝑤̂ Predicted width of deposit layer
𝐰 Weight vector
𝑤𝑙𝑖𝑛 Linear approximation of 𝑤
𝑥 Input
𝐱 Input vector
𝑥′ Simplified input
𝜉 Slack variable of soft margin
𝑥𝑆 Input feature value in subset 𝑆
𝑦 Output
𝑦̂ Predicted output
𝐳 Layer arguments
𝑧′ Simplified feature representation in subset 𝑆

because the layer deposition is executed below the materials’ melting temperature. The three main FS process parameters are
rotational speed (RS), axial force (F) and travel speed (TS), which have to be adapted according to the materials [6]. Being a
discontinuous process, the layer dimensions are mainly limited by the dimensions of the used stud material; however, the choice
of process parameters as well as substrate and backing plate materials affect the deposit geometry, commonly defined by layer
thickness and width. Moreover, the process temperature of FS was found to be in direct relation with the deposit geometry [7,8].
For instance, previous studies found that the substrate thickness [8] and cooling during the layer deposition [9] affect deposit
geometry. Generally, a fundamental understanding is necessary to exploit the potential of FS, e.g. to foresee process behaviour and
layer dimensions based on selected materials and process parameters.

Process simulation via numerical models cannot only minimize experimental effort but also allow insights that are inaccessible
uring experiments. Nevertheless, the number of available models is scarce, which might be related to several challenges that
emain for modelling the FS process [1], e.g. unknown asymmetric material flow, varying thermo-mechanical material properties
r unknown and varying friction coefficient. There are some studies that showed reasonable agreements between experiments
nd simulations of the temperatures during consumable stud plasticizing [10] or layer deposition [11,12]. In further numerical
pproaches [13,14], temperature and strain rate distributions for the deposit were simulated. One main problem for modelling
he deposited layer is the mutual dependence of process temperatures and deposited layer geometry, i.e. temperatures depend on
he deposited layer geometry and vice versa. Thus, the knowledge gap on the geometric dimensions cannot be closed unless the
xperiment has already been performed. Sound physics-based models for the prediction of FS layer geometry, for example, are
issing. Overall, there are complex relationships among different phenomena occurring during solid-state layer deposition via FS:
rocess parameters and material composition govern material flow behaviour and process temperatures, which, in turn, define
he resulting deposit in terms of geometry, microstructure and mechanical properties. Most of these complex relations are not yet
ecrypted.

In this context, machine learning (ML) tools represent key enablers to identify and utilize these relations, i.e. to describe the
mportance of parameters and to predict process behaviour as well as resulting material structures and properties. ML is a new
aradigm in programming as opposed to classical programming. In classical programming, the rules for computing input data into
esired outputs are pre-defined by human input. For ML, in contrast, the inputs and outputs are given whereas the rules are generated
y the ML-algorithm. Consequently, when these rules are applied to new data, new and original answers can be produced [15].

The applications of ML to the fields of materials mechanics have recently been reviewed by Bock et al. [16], where various
xamples are discussed, in particular how linkages along the process-structure–property-performance chain can be discovered
nd exploited through the use of ML. In addition, a recent review on the employment of ML in additive manufacturing (AM) is
resented by Meng et al. [17]. For instance, for wire-arc AM (WAAM), Xiong et al. [18] used artificial neural networks (ANNs)
hat outperformed their benchmark 2nd-order linear regression model with respect to achieving a lower prediction error. Wacker at
3
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al. [19] also used ANNs to predict the geometry and distortion of multiple layers manufactured via WAAM. When Deng et al. [20]
compared linear regression, ANNs and extreme gradient boosted (XGB) forests to predict bead geometries, they selected XGB as
the best performing model. In addition, Oh [21] built a predictive model via support vector regression (SVR) for a similar task,
whereas Barrionuevo et al. [22] predicted the bead geometry for WAAM via a Gaussian process regression model that outperformed
their XGB and ANN predictive models. The response surface methodology (RSM) based on Designs of Experiments (DoE) and
analysis of variance (ANOVA) was utilized in studies about wire-based and powder-based direct laser deposition to correlate process
parameters such as laser power, scanning velocity and powder/wire feed rate with geometrical properties such as thickness, width
and penetration depth into the substrate. Models were based on multiple linear regression of 1st-order [23–25], and 2nd-order linear
regression [26]; however, other authors used ANNs [27–29], which shows that it cannot be determined in advance, which ML model
will produce the lowest prediction errors, as this strongly depends on the specific problem and conditions at hand.

For FS, Vitanov and co-workers [30,31] developed a decision support for the selection of process parameters, where the process
parameters are related to coating thickness, width and bond strength via a 2nd-order linear regression model [32]. Sugandhi
et al. [33] also developed a 2nd-order linear regression model based on empirical observations to map relationships between
process parameters and layer thickness as well as width. For other solid-state materials processing techniques such as cold spraying,
which can also be used for AM (cold spray AM), Ikeuchi et al. [34] predicted the deposit geometry via ANNs to obtain complete
track profiles based on the process parameters. For Friction Stir Welding (FSW), another solid-state process, studies also focused
on DoE-based RSM in companion with ANOVA, again yielding linear regression models in dependence of process parameters for
the prediction of mechanical properties [35,36]. In a similar context, Lakshminarayanan and Balasubramanian [37] compared 2nd-
order linear regression with ANNs for the prediction of mechanical properties for FSW joints and concluded that ANNs exhibited
superior prediction performance in their case. ANNs were also used to predict process state variables of FSW such as maximum
temperature [38,39] and torque [38], among others. In short, ML regression models of different complexity are showing best
prediction performances, depending on the complexity of the relationships to be mapped and the available data.

In addition to using process parameter inputs, domain-specific physical information about the process behaviour can be used
to enhance prediction performance. For example, physical information about the energy occurring during the process of Friction
Riveting was additionally used to predict the UTS of produced joints depending on process parameters via RFR [40]. In a similar
domain knowledge-informed approach, Ikeuchi et al. [41] modified their initial approach [34] for the prediction of the deposit cross-
section shape produced by cold spray AM, with the input from a Gaussian function model that represents the fundamental shape,
to increase data-efficiency of the predictive ANN. Furthermore, so-called hybrid modelling was proposed by Chinesta et al. [42],
where physics-based and data-driven modelling techniques are combined in a way that the former provides fundamental physical
relationships that show discrepancies to the target solution; therefore, is corrected and enhanced by the latter to reach the target
solution. This approach has shown superior prediction performances in comparison to exclusive use of either physics-based or
data-driven modelling for various problems related to mechanical material behaviour [43–45], especially when data is scarce.

In this study, a number of different ML algorithms are used to predict FS process behaviour and deposit geometry based on
input features consisting of two input spaces: process parameters (PP) as well as substrate and backing material properties (MAT).
PP consist of F, RS, and TS, while MAT contain thermal conductivity (𝑘𝑠, 𝑘𝑏), specific heat (𝑐𝑠, 𝑐𝑏), and thickness (𝑡𝑠, 𝑡𝑏), for substrates
and backing plates, respectively. The target process behaviour variables are maximum temperature 𝑇𝑚𝑎𝑥 as well as the mechanical
behaviour, which is implicitly represented by feed rate 𝑣𝑐𝑟 and torque 𝑀 , whereas the target geometry variables are deposit thickness
𝑡 and width 𝑤. Except for 𝑇𝑚𝑎𝑥, all feature and target values are determined experimentally via two separate designs of experiments
(DoE), each with three factors and three levels, to generate samples for training, validation and testing of the ML models. Only 𝑇𝑚𝑎𝑥 is
obtained from a previously developed physics-based numerical heat transfer model [12] for the corresponding depositions. For each
prediction target, different ML regression algorithms is trained, where the respective hyperparameters of all models are optimized
and the model with the best prediction performance selected for final predictions and evaluation. The employed ML algorithms
were: 1st-, 2nd-, 3rd-order linear regression (LR1, LR2, LR3), 1st-, 2nd-, 3rd-order ridge regression (RR1, RR2, RR3), random forest
regression (RFR), extreme gradient boosting (XGB) forests, support vector regression (SVR), and artificial neural networks (ANNs).
Besides the effects of different additional features for the prediction of each target, the particular contribution by each feature to the
prediction of the best performing model is evaluated via Shapley Additive Explanation (SHAP) values as introduced by Lundberg
and Lee [46], which has been successfully applied in other studies [47,48]. The aim is to reduce the number of experiments as well
as to exploit physics-based and data-driven modelling; i.e. utilize established knowledge as well as perform and interpret predictions
of process behaviour and deposit geometry variables. To the knowledge of the authors, this has not yet been achieved for FS.

2. Methods, materials and data workflow

In this section, the FS process and DoEs for data acquisition of the targets depending on variations of PP and MAT are introduced.
The experimentally validated finite element heat transfer model by Kallien and Klusemann [12] is exploited for data mining the
corresponding 𝑇𝑚𝑎𝑥. The complete data sets can be found in Appendix D. Since training data is scarce, the predictive models are
aimed to be as simple as possible by keeping the number of internal model parameters and features to a minimum. Consequently,
the inclusion of additional features such as 𝑇𝑚𝑎𝑥, feed rate 𝑣𝑐𝑟 and torque 𝑀 in the input space has been evaluated to find the best
performing model for the prediction of each target. The techniques used for supervised ML regression are shortly reviewed as well
as measures to evaluate prediction performances and to select the best models are presented. Ultimately, the model interpretation
4
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Fig. 1. Schematic of the FS process during plasticizing phase (a) and deposition phase (b) [49], where the rotating stud material is fixed in x-/y-direction and
the substrate is moved by the underlying table into negative x-direction. In (c), exemplary process records for FS process performed at 8 kN, 25 1/s and 4 mm/s
for F, RS, TS, respectively, of AA5083 over AA7050 are shown.

2.1. Friction surfacing process principle and experimental setup

The solid-state layer deposition via FS always follows the same principle and the process can be divided in two phases. During
the plasticizing phase (i), the consumable stud material experiences a rotational speed and an axial force. As a result, the stud
is pressed onto the substrate and frictional heat occurs at the materials’ interface. The tip of the consumable stud deforms and
plasticizes, Fig. 1(a). The deposition phase (ii) is initiated by superimposing a relative translational movement, which enables the
deposition of the plasticized stud material onto the substrate as a layer, Fig. 1(b). The process ends with the retraction of the
remaining stud when the desired length is achieved.

The experiments were performed using a custom-designed friction welding machine (RAS, Henry Loitz Robotik, Germany), which
allows maximum rotational speed of 100 1/s, maximum force of 60 kN and maximum torque of 200 N m. All depositions were
performed at room temperature and force-controlled. The deposition path was programmed via computer numerical control (CNC),
where the pre-programmed length was 100 mm. AA5083 H112 consumable stud material (20 mm diameter, 125 mm length) was
deposited over different aluminium substrates (300 mm length, 130 mm width, 8 to 12 mm thickness) for the present study. A
backing plate was used between substrate and machine table, where the effects of backing materials (AA7050, Ti–6Al–4V and Steel
GL-A36) as well as substrate materials (AA2050, AA5083 and AA7050) and substrate thickness (8 mm, 10 mm, 12 mm) were subject
of investigation. The records of the welding equipment, i.e. forces, displacement, rotational speed and torque, are used for analysis
of the process behaviour. An example is given in Fig. 1(c). For the force-controlled deposition processes, the stud consumption rate
𝑣𝑐𝑟 defined by the average velocity in axial force direction and average toque 𝑀 during deposition phase are in particular interest
for the following process analysis. The deposited layers were cut at half of the deposition path, embedded and prepared following
common grinding and polishing practices. The cross sections were analysed in terms of deposit thickness and width as implemented
by Kallien et al. [8] using an optical light microscope (VHX-6000, Keyence, Germany).

2.2. Experimental data acquisition

The experimental acquisition of data was achieved according to pre-defined variations of PP and MAT, which were varied
individually via two DoEs based on Box–Behnken with three factors and three levels for each factor, leading to a total of 30 training
samples, including six centre point replicas out of three for each space. A combined Box–Behnken DoE consisting of both spaces
simultaneously would have had six factors with three levels each, amounting to a total number of 54 required samples, including
five centre point replicas. In this comparison, the amount of experimental samples is reduced by approximately 44% through this
approach. Data sets referred to as training, validation and test sets in the respective separate variations of PP and MAT variables
are combined into three global training, validation and test sets, respectively.
5
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Table 1
Process parameter space: High, mid and low levels of factors: 𝐹 , 𝑅𝑆 and 𝑇𝑆.

Factor 𝐹 [kN] 𝑅𝑆 [ 1
s ] 𝑇𝑆 [ mm

s ]

High level 10 25 8
Mid level 8 20 6
Low level 6 15 4

Table 2
Substrate and backing material space [52–56]: High, mid and low levels of factors: 𝑘𝑆 , 𝑘𝐵 and
𝑡𝑆 .

Factor 𝑘𝑆 [ W
mK ] 𝑘𝐵 [ W

mK ] 𝑡𝑆 [mm]

High level 157 157 12
Mid level 117 49.6 10
Low level 75 6.7 8

Fig. 2. Parameter spaces spanned with their three respective variables that are each assigned to different value levels in training, validation, test and test2 data
sets. In (a), process parameter variation of force 𝐹 in kN, rotation speed 𝑅𝑆 in s−1 and travel speed 𝑇𝑆 in mm s−1. (b) Material parameter variation in terms
of thermal conductivity of the substrate 𝑘𝑆 in W/(mK), thickness of the substrate 𝑡𝑆 in mm and the thermal conductivity of the backing plate 𝑘𝐵 in W/(mK).

2.2.1. Variation space of PP
In the first series of experiments, the 𝑷𝑷 = [𝑅𝑆, 𝑇𝑆, 𝐹 ] are varied using an AA7050 T7451 substrate (10 mm thickness) and an

AA7050 T7451 backing plate (8 mm thickness). A process window for FS of AA5083 H112 onto AA7050 substrates, where feasible
combinations of process and material parameters are determined, was published by Kallien et al. [8]. Each parameter is varied to
three different equidistant values, i.e. to high, mid and low values that correspond to normalized values [1,0,−1], respectively, see
Table 1. As shown in Fig. 2(a), the 13 samples contained in this DoE represent the edge centres and the centre point of a cube
spanned by the three parameters and were used as the training data set for the predictive models. For the validation set, the cube’s
6 facial centre points were used to account for the same value ranges but different combinations of parameters. To obtain a suitable
test set whereupon the generalization of the models can be evaluated, six additional random samples within the parameter space
were randomly created via latin hypercube sampling [50] as implemented in the surrogate modelling toolbox (SMT) [51] as part of
the pyDOE library package.

2.2.2. Variation space of MAT
In the second series of experiments, systematic variation of 𝑴𝑨𝑻 = [𝑘𝑏, 𝑘𝑠, 𝑡𝑠] has been performed, where three properties

are altered in a similar way than 𝑷𝑷 with three levels each. To evaluate the effect on deposit geometry from a variation among
𝑴𝑨𝑻 , which has principally been shown in [8], substrate thermal conductivity 𝑘𝑆 , backing plate thermal conductivity 𝑘𝐵 and
substrate thickness 𝑡𝑆 were varied according to values listed in Table 2, keeping the process parameters constant at 8 kN, 20 1/s
and 6 mm/s. As shown in Fig. 2(b), the data sets used for training, validation and testing consist of 13, 8 and 6 samples, respectively.
To reach the given thermal material properties, substrate materials were varied from AA2050 over AA5083 to AA7050 with thermal
conductivities 𝑘𝑆 ranging in values from low to high levels, respectively. The backing material was altered by using titanium Ti–
6Al–4V, steel GL-A36, and aluminium alloy AA7050 that also posses thermal conductivities ranging within values from low to high
levels, respectively. The thickness of the substrate 𝑡𝑆 was also changed, ranging from low to high levels. The thickness of the backing
plate 𝑡𝐵 was aimed to be constant at 10.0 mm, which was the case for AA7050 and GL-A36 but amounted to 10.2 mm for Ti–6Al–4V.
Due to the specific materials used for substrates and backing plates and their corresponding thermal conductivities, the factor levels
could not be strictly defined as equidistant to each other; thus, are not according to Box–Behnken.
6
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2.2.3. Ultimate test space of PP and MAT
Generalization of all predictive models is tested and evaluated based on a test2 set where 𝑷𝑷 and 𝑴𝑨𝑻 variables have been

aried simultaneously, unlike samples in training, validation and test sets. This test2 data set serves as a benchmark to justify the
ata reduction approach introduced earlier. For that, 12 samples were randomly selected out of the six-factor DoE with 54 samples
hat was avoided to be acquired completely for training. Those samples are used for ultimate predictions with all trained models to
valuate prediction performance and assess the generalization ability of the utilized ML models.

.2.4. Heat transfer modelling via Finite Element Method
As experimental temperature measurements, e.g. via thermocouple, incur significant experimental effort and provide only a

imited resolution, the finite element heat transfer model presented by Kallien and Klusemann [12], which was validated with
S experimental temperature data, was used in this study to obtain FS process temperatures. Process temperature allows valuable
nsights into the FS process and was found to affect the deposited layer geometry as already discussed. However, the approach
f the simulation requires knowledge about the deposition geometry and feed rate in advance, which reasons the aim to predict
hose via ML. Initially, the model was used to calculate the process temperatures for the performed FS layer depositions with values
btained by experiments. The obtained maximum process temperature is used as an additional input for the predictions via ML,
hereupon its impact on prediction performance as well as its importance as a feature for the prediction of process behaviour and
eposit geometry is assessed.

.2.5. Data-mining of heat transfer model
To further exploit the relationships contained in the heat transfer model introduced in the previous Section 2.2.4 and to be able

o build a surrogate model via ML, data-mining is performed. For that, the additional value combinations of model input variables
, 𝑤 and 𝑣𝑐𝑟 are required to be physically feasible; thus, additional samples are augmented by using linear approximations of those
ariables depending on 𝑇𝑚𝑎𝑥, which were established in [8] based on experiments. Accordingly, the approximation of the thickness
is computed as

𝑡𝑙𝑖𝑛(𝑇𝑚𝑎𝑥) = −0.0111 ⋅ 𝑇𝑚𝑎𝑥 + 6.2799, (1)

he width 𝑤 as

𝑤̂𝑙𝑖𝑛(𝑇𝑚𝑎𝑥) = 0.0121 ⋅ 𝑇𝑚𝑎𝑥 + 13.519, (2)

nd the feed rate 𝑣𝑐𝑟 through

𝑣̂𝑐𝑟,𝑙𝑖𝑛(𝑇𝑚𝑎𝑥) = −0.0032 ⋅ 𝑇𝑚𝑎𝑥 + 𝑏. (3)

he values of the bias i.e. the intercept 𝑏 for predicting the feed rate 𝑣̂𝑐𝑟,𝑙𝑖𝑛(𝑇𝑚𝑎𝑥) were adjusted to experimental data points related to
𝐹 being either 6 kN, 8 kN or 10 kN, leading to constant 𝑏 values 2.6358, 3.2051 or 3.777, respectively1. Note that since Eqs. (1)–(3)
depend only on maximum process temperature 𝑇𝑚𝑎𝑥, more significant prediction errors in comparison to the experimental (exp.)
errors are expected, especially when variables are changed that are not considered by these approximations, i.e. anything else besides
temperature, such as process parameters as well as substrate and backing material properties. Overall, due to the simplicity of this
model, high precision cannot be expected; however, moderate accuracy is achieved, particularly in comparison to the alternative
of random value guessing. The prediction errors for 𝑡, 𝑤, and 𝑣𝑐𝑟 achieved with Eqs. (1)–(3) on the data sets used in this study are
listed in Table A.1 in Appendix A. Physical data augmentation was achieved by the variation of 𝑇𝑚𝑎𝑥 with a Δ of ±60 ◦C in 20 ◦C
steps starting from each sample in training and validation sets to use the resulting values of 𝑡𝑙𝑖𝑛, 𝑤̂𝑙𝑖𝑛 and 𝑣̂𝑐𝑟,𝑙𝑖𝑛 from Eqs. (1)–(3) as
inputs 𝑡, 𝑤 and 𝑣𝑐𝑟 for the heat transfer model and compute the related 𝑇𝑚𝑎𝑥 numerically. It is investigated whether an increase in
the number of training and validation samples, to 140 and 75, respectively, based on this physical data augmentation can enhance
the ML prediction performance of 𝑇𝑚𝑎𝑥. Note that the implementation of this data augmentation via the exploitation of the FE-model
in companion with Eqs. (1)–(3) is not required for deployment of the ML models built with these enriched data sets.

2.3. Variation of feature space for each target

A fundamental chain of relations among physical quantities of interest shown in Fig. 3, where 𝑷𝑷 and 𝑴𝑨𝑻 variables lead to a
certain 𝑇𝑚𝑎𝑥, 𝑣𝑐𝑟 and 𝑀 , which then altogether lead to specific deposit geometry variables t and w. For the prediction of each output
target along this chain, step-wise prediction of those quantities is performed where previously predicted physical quantities are
used as features for the prediction of the following target outputs, as illustrated in Fig. 4, which represents the proposed prediction
framework of this study. First, the prediction of 𝑇𝑚𝑎𝑥 is achieved by building a surrogate model of the heat transfer FE model
introduced in Section 2.2.4 via ML; similar inputs needed for the FE model are also required for the ML model. Because of this, 𝑣𝑐𝑟,
𝑀 , 𝑡 and 𝑤 need to be predicted first just based on 𝑷𝑷 and 𝑴𝑨𝑻 as input features in order to be available as additional features
besides 𝑷𝑷 and 𝑴𝑨𝑻 variables for the prediction of 𝑇𝑚𝑎𝑥, see Fig. 4(a). Second, the usage of 𝑇𝑚𝑎𝑥 as additional feature to 𝑷𝑷 and
𝑴𝑨𝑻 variables for the prediction of 𝑣𝑐𝑟 and 𝑀 is evaluated. And third, it is assessed whether using 𝑇𝑚𝑎𝑥, 𝑣𝑐𝑟 and 𝑀 as additional
features besides 𝑷𝑷 and 𝑴𝑨𝑻 variables leads to enhanced prediction performance for 𝑡 and 𝑤, respectively.

1 Physical SI-units are omitted in Eqs. (1)–(3) for simplicity.
7
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Fig. 3. Schematic of fundamental relationships: Process parameters as well as material properties of substrate and backing plate lead to a certain process
behaviour, which altogether determine the resulting deposit geometry. Lines in black denote true variable values that are initially available, whereas lines in
blue denote variable values that need to be predicted. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 4. Chain of different prediction targets and their respective utilization as input features to approximate maximum temperature 𝑇𝑚𝑎𝑥, process behaviour and
ultimately the deposit geometry. Blue lines indicate predicted variable values, e.g. in the top case for the prediction of 𝑇𝑚𝑎𝑥, the variables representing process
ehaviour and deposit geometry are required as input besides the variables that represent process parameters and material properties; thus, they need to be
redicted first to be available. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Additionally, once additional features have been shown to be beneficial for the prediction performance, the corresponding true
alues need to be replaced by their predictions since they are unknown in a real use-case application. In this regard, 𝑇𝑚𝑎𝑥, 𝑣𝑐𝑟, 𝑀 ,
and 𝑤 represent true values of features, whereas 𝑇̂𝑚𝑎𝑥, 𝑣̂𝑐𝑟, 𝑀̂ , 𝑡 and 𝑤̂ embody predicted values. It is investigated if utilizing true
r predicted feature values in the training and validation sets results in better predictions since the test set only contains predicted
alues. For the prediction of 𝑇𝑚𝑎𝑥, it is also evaluated whether data-mining of the heat transfer model, as explained in Section 2.2.5,
eads to improved prediction performance via ML. An overview of all feature sets with their respective names that are used in this
tudy is provided in Table 3.
8
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Table 3
Input feature sets consisting of different input variables used for training, validation and testing (unless indicated
otherwise) to find best predictive models. All feature values represent true values except for 𝑡, 𝑤̂, 𝑣̂𝑐𝑟 , 𝑀̂, 𝑇̂𝑚𝑎𝑥,
which denote predicted values, respectively.

Space Inputs variables

𝑷𝑷 𝐹 , 𝑅𝑆, 𝑇𝑆
𝑴𝑨𝑻 𝑘𝑠, 𝑐𝑠, 𝑡𝑠, 𝑘𝑏, 𝑐𝑏, 𝑡𝑏
(–) 𝑷𝑷 , 𝑴𝑨𝑻
𝒜 𝑷𝑷 , 𝑴𝑨𝑻 , 𝑡, 𝑤, 𝑣𝑐𝑟, 𝑀
ℬ train: 𝑷𝑷 , 𝑴𝑨𝑻 , 𝑡, 𝑤, 𝑣𝑐𝑟, 𝑀

test : 𝑷𝑷 , 𝑴𝑨𝑻 , t̂, ŵ, v̂cr , M̂
𝒞 𝑷𝑷 , 𝑴𝑨𝑻 , 𝑡, 𝑤̂, 𝑣̂cr , 𝑀̂
𝒟 𝑷𝑷 , 𝑴𝑨𝑻 , 𝑇𝑚𝑎𝑥
ℰ 𝑷𝑷 , 𝑴𝑨𝑻 , 𝑇̂𝑚𝑎𝑥
ℱ 𝑷𝑷 , 𝑴𝑨𝑻 , 𝑇𝑚𝑎𝑥, 𝑣𝑐𝑟, 𝑀

2.4. Predictive model building via machine learning regression

In this study, supervised ML is used to perform regression analyses where the output is known and represents a continuous
alue [57]. To attain good predictive models for the target outputs (𝑇𝑚𝑎𝑥, 𝑣𝑐𝑟, 𝑀 , 𝑡 and 𝑤), a number of ML models with different

‘learning’ concepts and properties, ranging from simple to comparatively complex algorithms in terms of the number of model
parameters, are evaluated based on their prediction performance on training, validation and test data sets. The Python-based 𝑠𝑐𝑖𝑘𝑖𝑡-
𝑙𝑒𝑎𝑟𝑛 [58] library was used for the implementation of LR, RR, RFR and SVR, whereas for the xgboost [59] library was used for XGB
and the Keras [60] library with the Tensorflow [61] backend for ANNs. Each of the employed algorithms is briefly explained in the
following, where a sample collection is denoted as (𝐱𝑖, 𝑦𝑖)𝑁𝑖=1 with 𝑁 number of samples, the input feature vector 𝐱𝑖 of dimension 𝐷
and the true output 𝑦𝑖 of a sample 𝑖 in the range [1,… , 𝑁] depends on every feature 𝑥(𝑗)𝑖 with 𝑗 in the range [1,… , 𝐷], unless stated
otherwise.

2.4.1. Linear regression
Via LR, a predictive model can be built out of a linear combination of input features. The model is built as follows:

𝑓lin(𝐱) = 𝐰𝐱 + 𝑏, (4)

where 𝑓lin is parameterized by a weight vector 𝐰 of 𝐷 dimensions and a bias term 𝑏. The model is used in the form 𝑦 ← 𝑓lin(𝐱) to
redict an unknown 𝑦 for given 𝐱, to determine the optimal values 𝐰∗ and 𝑏∗ of Eq. (4) via minimization of the squared error loss
unction:

min 1
𝑁

𝑁
∑

𝑖=1

[

𝑓lin(𝐱𝑖) − 𝑦𝑖
]2 . (5)

For 2nd and 3rd order linear regression, the input features are combined using a polynomial of the respective order, while the
weights remain linear. However, the significant increase in the number of features by using polynomials can easily surpass the
number of training samples provided, which then can prevent sufficient training.

2.4.2. Ridge regression
RR is also known as L2 regularization and similar to linear regression except that overfitting can be prevented because the cost

function (Eq. (5)), the sum of squared errors, is minimized with the addition of a penalty term via:

min 1
𝑁

𝑁
∑

𝑖=1

[

𝑓lin(𝐱𝑖) − 𝑦𝑖
]2 + 𝛼𝑟𝑖𝑑𝑔𝑒𝐰2, (6)

where 𝛼𝑟𝑖𝑑𝑔𝑒 represents the hyperparameter to be optimized during tuning as its particular value scales the penalty term. The weights
in RR can also be of 2nd and 3rd polynomial order. In this work, optimal values of 𝛼 were determined via grid search in the range
0,20] in 0.01 steps with leave-one-out cross-validation (LOOCV) on the training set.

.4.3. Random forest regression
An RFR is an ensemble method where a model consists of numerous decision tree regression (DTR) models and returns the

veraged value of all predictions from the constituting trees. DTR models partition the input space recursively into discrete and
on-overlapping regions, wherein a local model is defined for each region, which can be represented with one leaf. The particular
hoice of leaf that defines the prediction output for a given input depends on a hierarchical structure of nodes representing
ecision rules where values are differentiated by being above or below a threshold value 𝑠. The regions can be described through
𝑙(𝑗, 𝑠) = {𝐱𝑖|𝑥

(𝑗)
𝑖 ≤ 𝑠} and 𝑅𝑙+1(𝑗, 𝑠) = {𝐱𝑖|𝑥

(𝑗)
𝑖 > 𝑠} with 𝑙 as region number. The predictive function is given by:
9

𝑓𝑡𝑟𝑒𝑒(𝐱𝑖 ∈ 𝑅𝑙) = mean(𝑦𝑖|𝐱𝑖 ∈ 𝑅𝑙) =∶ 𝑦̂𝑖 (7)
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where 𝐱 = [𝑥1, 𝑥2,… , 𝑥𝑗 ], 𝐑 = [𝑅1, 𝑅2,… , 𝑅𝐿] with 𝐿 as total number of regions and 𝑦̂𝑖 as the average of the target variables
ontained in region 𝑅𝑙 [57]. The regions are defined through the minimization of the residual sum of squares:

min
𝐿
∑

𝑙=1

∑

𝑖∈𝑅𝑙

[𝑦𝑖 − 𝑦̂𝑅𝑙
]2. (8)

o prevent overfitting, regularization can be performed, for example by restricting the maximum depth of a tree or the minimum
egion size.

In RFR, each DTR is build based on a different randomly selected subset of input features and random sample subsets from the
raining data set, respectively. Those distinct random feature selections are used to split each node of each DTR during training,
hich can reduce the effect of artefacts such as noise, outliers, and under- and overfitting. In particular, a RFR prediction for a
iven sample 𝐱 is computed by the averaged predictions of 𝐵 number of decision trees contained in the forest as follows:

𝑦 ← 𝑓RFR(𝐱) =
1
𝐵

𝐵
∑

𝑏=1
𝑓tree(𝐱), (9)

where 𝑓tree is the 𝐵’th predictive decision tree model. During training, the generalization error of a forest is aimed to converge
to a lower limit with increasing number of trees and depends on the prediction performance of individual trees. Ultimately, RFR
can yield a predictor where only a few hyperparameters need to be determined (number of maximum trees and the size of the
random feature subsets that are considered at each split). The particular procedure for hyperparameter optimization in this work
was achieved via a grid search with LOOCV on the training set through the maximum number of trees, ranging from 1 to 400,
whereas the maximum number of input features equals the number of relevant features for the respective target.

2.4.4. Extreme gradient boosted forests
A gradient boosted forest is another ensemble method where, in contrast to RFR, additional trees that are added to the model,

partly compensate the errors made by previous trees until the maximum number of trees is reached [62]. For that, sample targets
in the training set are replaced by residuals in the form:

𝑦̂𝑖 ← 𝑦𝑖 − 𝑓 (𝐱𝑖) (10)

where 𝑦̂𝑖 is the residual based on the input 𝐱𝑖. Once all samples in the training set are modified with residuals, it is used to build
a new DTR model 𝑓1 that is then part of the boosting model through 𝑓 = 𝑓0 + 𝛼𝑓1 with 𝛼 as the learning rate and 𝑓0 as the initial
DTR in the ensemble. Then, the residuals in the training set are updated again and the model redefined via 𝑓 = 𝑓0 + 𝛼𝑓1 + 𝛼𝑓2;
consequently, the model form reaches:

𝑓 = 𝑓0 + 𝛼𝑓1 +⋯ + 𝛼𝑓𝑀𝑡𝑟𝑒𝑒
(11)

where 𝑀𝑡𝑟𝑒𝑒 is the maximum number of trees. Extreme gradient boosted (XGB) forests represent a significant upgrade from
gradient boosting because in XGB, Newton–Raphson optimization with a second order Taylor approximation is used in the loss
function [63], as opposed to gradient descent in gradient boosting. In combination with a regularization function, increased
prediction precision and enhanced computational efficiency can be achieved. Since XGB is a highly regularized variant of gradient
boosting, a comparatively high number of hyperparameters need to be optimized during tuning, where grid or random search have
been shown to be unsuitable; therefore, replaced by Bayesian optimization, in particular with Hyperopt [64].

2.4.5. Support vector regression
The SVR algorithm performs a non-linear mapping of input feature vectors into a higher dimensional space (via the so-called

kernel trick), where a description of all data points via a linear function becomes possible [65]. Starting out from the original feature
space, predictions are computed similarly to Eq. (4), except that 𝐰 =

∑

𝑖 𝛼𝑖𝐱𝑖 is used and the inner product 𝐱𝑇𝑖 𝐱 is replaced by a
ernelized solution 𝜅(𝐱𝑖, 𝐱) to yield predictions with:

𝑦 ← 𝑓SVR(𝐱) = 𝑏 +
𝑁
∑

𝑖=1
𝛼𝑖𝜅(𝐱𝑖, 𝐱), (12)

here 𝛼𝑖 is a Lagrange multiplier and 𝜅 represents a kernel function such as a radial basis, linear, or polynomial function, among
thers. During training, the objective function

𝐽 = 𝐶
𝑁
∑

𝑖=1
[𝜉+𝑖 + 𝜉−𝑖 ] +

1
2
‖𝐰‖2 (13)

ith the regularization constant 𝐶 is minimized through the adjustment of weight vector 𝐰 with the following constraints:

𝑦𝑖 ≤ 𝑓SVR(𝐱𝑖) + 𝜖 + 𝜉+𝑖 (14)

𝑦𝑖 ≥ 𝑓SVR(𝐱𝑖) − 𝜖 − 𝜉−𝑖 , (15)

here an 𝜖-tube around the prediction function represents an error margin below of which errors are not penalized; thus, for each
raining output 𝑦 , a quantitative representation on the degree of being outside the 𝜖-tube is given. In addition to those constraints,
10
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positivity constraints 𝜉+𝑖 ≥ 0 and 𝜉−𝑖 ≥ 0 for points outside the 𝜖-tube as well as 0 ≤ 𝛼𝑖 ≤ 𝐶 are satisfied [66,67]. Consequently,
predictions only depend on a subset of the training data which are the so-called support vectors [62].

In this work, SVR was implemented with a radial basis function as a kernel, 𝜖 was kept at 0.1, 𝛾 adjusted according to the scale
technique within the 𝑠𝑐𝑖𝑘𝑖𝑡-𝑙𝑒𝑎𝑟𝑛 library and the optimal value of 𝐶 determined via grid search with LOOCV on the training set
within a logarithmic spaced range of [−1,3] with 1000 increments.

2.4.6. Neural network regression
ANNs can be used to map any non-linear function between provided inputs and outputs [68]. The core concept of a perceptron

was to imitate neural cell behaviour in the nervous system of the human brain [69]. Combining multiple perceptrons into one or
more layers of neurons represent the architectural basis for feed forward neural networks, where each neuron in each layer computes
an output via an inherent non-linear activation function and the input provided from the previous layer. Neurons are connected
between layers via weight-edges. When all neurons from one layer are connected via edges to all neurons of the following layer
and this applies to the complete network, one obtains a fully-connected or dense neural network. The signal is processed forward
from inputs through the network to outputs in unidirection, progressively transforming the input signal into the output signal. The
overall function of an ANN with 𝑘 number of layers can be expressed through:

𝑦 = 𝑓NN(𝐱) = 𝑓𝑘(...(𝒇 2(𝒇 1))), (16)

where the output 𝑦 depends on inputs 𝐱 = [𝑥1, 𝑥2,… , 𝑥𝐷]𝑇 of size 𝐷. The outer function 𝑓𝑘 of 𝑘 number of layers represents a scalar
function. The nested function 𝑓NN(𝐱) consists of individual layer functions [𝒇 1,𝒇 2,… ,𝒇𝑘−1, 𝑓𝑘], where the vector functions for layer
𝑛 are defined as follows:

𝒇 𝑛(𝐳) = 𝒈𝑛(𝐖𝑛𝐳 + 𝐛𝑛), (17)

with activation function 𝒈𝑛, weight matrix 𝐖𝑛, bias weight 𝐛𝑛 and layer arguments 𝐳. For the individual number of nodes 𝑢 per
layer, the respective output of 𝒇 𝑛(𝐳) can be represented by the vector [𝑔𝑛(𝑎𝑛,1), 𝑔𝑛(𝑎𝑛,2),… , 𝑔𝑛(𝑎𝑛,𝑢)]𝑇 , with 𝑎𝑛,𝑢 = 𝐰𝑛,𝑢𝐳 + 𝑏𝑛,𝑢 and the
scalar activation function 𝑔𝑛.

During training of ANNs, back propagating error minimization via gradient descent is performed, where the error caused by
the discrepancy between current network output and true output is minimized by gradually modifying the individual weights of
connecting edges between neurons; thus, altering the behaviour of those neurons. In particular, the mean-squared-error loss function
is defined as:

𝐄 ∶= argmin


1
𝑁

𝑁
∑

𝑖=1

[

𝑦(𝑖) − 𝑓NN
(

𝐱(𝑖);
)]2 , (18)

with 𝑦(𝑖) as the true output, 𝑓NN
(

𝐱(𝑖);
)

as the predicted value and the network weights  = {𝐖1,𝐖2,… ,𝐖𝑛+1}.
The weights are initially set to random values and the step size per weight update during gradient descent is determined by

the learning rate. In this work, an adaptive learning rate was implemented via the Adam optimizer [70]. For determination of the
optimal number of neurons 𝑢 and number of layers 𝑛, the Keras tuner tool [71] was used to execute a random search in ranges
of [1, 𝐷] and [1, 3] for 𝑢 and 𝑛, respectively, with 100 randomly selected combinations and three executions per variation, as the
same model could reach a different local minimum depending on the particular random weight initialization. Hyperparameters that
remained constant were the Adam optimizer, a sigmoid activation function on hidden layers, and a linear activation function on
output layer. In addition, input and output values were normalized to ranges [−1,1] and [1,5], respectively. The batch size was set
to one and the MSE was used as loss function. To avoid overfitting on the training data, a maximum of 5000 epochs is set together
with the 𝑒𝑎𝑟𝑙𝑦𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 criterion, which is met when the prediction performance, i.e. the MSE loss on the validation data set (outside
the training data set), no longer improves during training, even if the error on the training set continues to decrease; thus, training
is terminated and the last best model used for further deployment.

2.5. Model performance evaluation and best model selection

All trained models are evaluated based on three prediction performance measures: maximum absolute values of the relative error
𝑒𝑟𝑟, MSE and determination coefficient R2. The absolute value of the relative error 𝑒𝑟𝑟 is given by:

𝑒𝑟𝑟 ∶=
|

|

|

|

𝑦𝑖 − 𝑦̂𝑖
𝑦𝑖

|

|

|

|

, (19)

with true values 𝑦𝑖 and predicted values 𝑦̂𝑖, where {𝑖 ∈ R ∶ 1 ≤ 𝑁}. The determination coefficient 𝑅2 is defined as

𝑅2 = 1 −
∑𝑁

𝑖=1
[

𝑦𝑖 − 𝑦̂𝑖
]2

∑𝑁
𝑖=1

[

𝑦𝑖 − 𝑦̄
]2

, (20)

here 𝑦̄ represents the mean of the true values. And the MSE is determined via:

𝑀𝑆𝐸 = 1
𝑁
∑

[

𝑦𝑖 − 𝑦̂𝑖
]2 . (21)
11
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To obtain models with optimal and similar prediction performance on both training and validation sets, i.e. to prevent overfitting
nd underfitting; thus, achieve good generalization, the best model with the lowest maximum of the relative error on the validation
et, where the score on the training set is similar, is selected for further data processing and to evaluate the ability to generalize on
he test sets.

.6. Explanation of feature dependence via Shapley Additive Explanation Values

In general, there is a trade-off in machine learning between model interpretability and model complexity. The higher the
omplexity in the given input data and underlying patterns, the higher is the required number of model parameters that leads
o increased model complexity, which, in turn, obstruct any direct approach to explain the model’s decision making process.
xplainability refers to the human ability to understand the importance of individual features and the quantitative dependence
etween relevant features that lead to a model prediction. Additive feature contribution methods are based on an approximation of
omplex models by a simpler and explainable model to obtain interpretable decisions and are applicable to a vast range of different
achine learning techniques. In this work, SHAP values [46] are used to explain the decisions made by the predictive models.
hese explanations are then related to human observations reported in literature to allow further understanding of the FS process.
he approach is based on the game theory concept of Shapley values [72], where reproducing the predicted outcomes through the
odel represents the rules of a game and the model’s features act as the players. SHAP values quantify the contribution of each

eature to the model predictions, similar to evaluating each player’s contribution to a game, where one prediction is equivalent to
ne game.

The importance of an individual feature is computed based on its mean marginal contribution, which is calculated by considering
he differences between results produced by including and by excluding that feature among all possible combination of features.
hat way, interaction effects between features are considered. Since the permutation of all features would require computational
osts that are currently considered unfeasible, SHAP values are based on approximations with significantly reduced number of
amples. Essentially, SHAP values are summed up over all samples for each feature and features with large absolute SHAP values
re important.

In particular, the approximation of the original model 𝑓 is used to yield a simpler explanation model 𝑔 that can be interpreted.
or that, the input 𝑥 is simplified to 𝑥′ via a mapping function 𝑥 = ℎ𝑥(𝑥′) where it is ensured that 𝑔(𝑧′) ≈ 𝑓 (ℎ𝑥(𝑧′)) when 𝑥′ ≈ 𝑧′.
hen, the approximation of any model in the form of an explanatory model can be achieved via:

𝑔(𝑧′) = 𝜙0 +
𝑃
∑

𝑗=1
𝜙𝑗𝑧

′
𝑗 (22)

here 𝑧′ ∈ {0, 1} is the simplified feature, being either 0 or 1 when the related feature is excluded or included, respectively, 𝑃 the
umber of simplified features, 𝜙𝑗 ∈ R represents the Shapley values, i.e. the attribution value of each feature, and the constant 𝜙0
onsists of the predicted mean value of all training samples. The estimation of the Shapley value 𝜙𝑖 for feature 𝑖 is achieved by
omputing the weighted average of all possible differences with:

𝜙𝑖 =
∑

𝑆⊆𝐾⧵{𝑖}
|𝑆|!(|𝐾| − |𝑆| − 1)![𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆 (𝑥𝑆 )]

1
|𝐾|!

, (23)

here 𝐾 is the set of all features, 𝑆 ⊆ 𝐾 all feature subsets, 𝑥𝑆 the input feature values in subset 𝑆 and ! the factorial. Essentially,
he effect of a feature on the models prediction, i.e. the feature importance, is computed by training one model 𝑓𝑆∪{𝑖} where that
eature was included and another model 𝑓𝑆 where it was excluded. The computation of SHAP values not only depends on the
omputation of Shapley values but also on the nature of the original model to be interpreted, since modifications in the specific
omputation are made. For more details, the reader is referred to [46]. In principal, there are different 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟𝑠 available such
s linear, tree, kernel and deep 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟𝑠 that were used here in accordance to the nature of the model to be interpreted. In this
ork, the approximation of SHAP values has been executed via the SHAP library proposed by Lundberg et al. [73]. It is essential

o point out that SHAP values only allow for interpretations of the predictive models and should not be used for the inference of
ausal relationships.

. Results & discussion

In this section, prediction performance measures of the best selected models for each target are presented and discussed
hyperparameters and all performance measures can be found in Appendix B). Predicted and true values are compared and model
xplanations provided for two sets of targets: the process behaviour variables 𝑇𝑚𝑎𝑥, 𝑣𝑐𝑟 and 𝑀 , as well as the deposit geometry
ariables 𝑡 and 𝑤. Performance measures of all trained models where upon the best models were selected can be found in Appendix C.
verall, the prediction of each target is based on different relationships towards the inputs; therefore, the best selected model can
ary in complexity to represent those relations to the best degree. It will be assessed, whether this approach is suitable for the given
se case.
12
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Fig. 5. Predicted maximum temperature 𝑇̂𝑚𝑎𝑥 based on feature space (–), where 𝑡, 𝑤, 𝑣𝑐𝑟 and 𝑀 are not additional features, (𝒜 ) with true values of 𝑡, 𝑤, 𝑣𝑐𝑟
nd 𝑀 , which are not available for real application; thus, need to predicted based on 𝑷𝑷 and 𝑴𝑨𝑻 features for test predictions in (ℬ) and for training and
esting in (𝒞 ), respectively. Results based on original data sets (a) and with exploitation of numerical heat transfer model via physics-based data augmentation
b).

.1. Prediction of process behaviour

.1.1. Maximum temperature
For the prediction of 𝑇𝑚𝑎𝑥, the influence of different sets of features is evaluated. Those feature sets are denoted with (–), (𝒜 ),

ℬ) and (𝒞 ), as described in Section 2.3 and listed in Table 3. In this context, using true values of the variables 𝑣𝑐𝑟, 𝑀 , 𝑡 and 𝑤
n feature set (𝒜 ), serves as a reference benchmark to evaluate how far the prediction errors can be reduced when the truth is
sed as input. Nevertheless, for a real use-case application, these true variables are unknown and inavailable for model deployment;
hus, the models where true values are used for evaluation cannot be selected as best models. However, those models can be used
urther, evaluated and deployed when predicted values (of 𝑣𝑐𝑟, 𝑀 , 𝑡 and 𝑤) based on the input space (–), consisting of 𝑷𝑷 and
𝑨𝑻 variations, are used as input, which is equivalent to feature set ℬ. Consequently, true values of input variables 𝑣𝑐𝑟, 𝑀 , 𝑡 and
in feature set (𝒜 ) are replaced by their best available predictions 𝑣̂𝑐𝑟, 𝑀̂ , 𝑡 and 𝑤̂ for 𝑇̂𝑚𝑎𝑥(ℬ) in Fig. 5(a), whereby the errors are

ncreased by 0.8%, 5.7%, 4.2% and 4.0% on the training, validation, test and test2 (cross space) data sets, respectively. However,
sing predicted variables also for training in feature set 𝒞 leads to overfitting as the training error is close to zero, whereas the
rrors on validation, test and test2 sets range from 11.5% to 14.7%, respectively, see 𝑇̂𝑚𝑎𝑥(𝒞 ) in Fig. 5(a). In general, the usage of
𝑐𝑟, 𝑀 , 𝑡 and 𝑤 as features for the prediction of 𝑇𝑚𝑎𝑥 is beneficial with respect to an enhanced prediction performance, even when
oise is added to those variables by replacing their values with their predicted equivalents that contain errors.

For the exploitation of the numerical heat transfer model, the variables 𝑣𝑐𝑟, 𝑀 , 𝑡 and 𝑤 are required inputs as described in
ection 2.2.5. The usage of the corresponding additional samples in training and validation data sets enabled predictions with errors
hown in Fig. 5(b). The lowest error on the validation set can be observed on 𝑇̂𝑚𝑎𝑥(𝒜 ), which is slightly increased by replacing true
ith predicted variables after training in 𝑇̂𝑚𝑎𝑥(ℬ). Using predicted values also for training in 𝑇̂𝑚𝑎𝑥(𝒞 ) leads to overfitting on the

raining set and relatively poor generalization, i.e. high errors on test and test2 sets, which is similar to observations for 𝑇̂𝑚𝑎𝑥(𝒞 )
redictions without numerical samples in training and validation data sets, see Fig. 5(a). As a result, the predictive model for 𝑇̂𝑚𝑎𝑥(ℬ)
ased on numerically enriched training and validation sets was selected as best model, which is an ANN that shows similar error on
raining and validation sets. The comparison of true and predicted values, see Fig. 6(a), exhibits good agreement on the training,
alidation and test data sets as well as on the test2 (cross-space) data set where variables in both 𝑷𝑷 and 𝑴𝑨𝑻 spaces were varied
imultaneously, indicating good generalization. Further improvement of the prediction performance could be limited due to the
implifications contained in the heat transfer models as well as in Eqs. (1)–(3), respectively.

The feature dependence of the ANN used to compute 𝑇̂𝑚𝑎𝑥 is shown in Fig. 6(b). The highest impact is attributed to the thickness
, where low values of 𝑡 correlate to high values of 𝑇̂𝑚𝑎𝑥 and vice versa, which is in agreement with experimental observations [8].
he 2nd and 4th most important impacts are achieved by the thermal conductivity of the backing plate 𝑘𝑏 and the substrate 𝑘𝑠,
espectively, where low values of 𝑘𝑏 and 𝑘𝑠 correspond to high values of 𝑇̂𝑚𝑎𝑥, possibly caused by the reduced heat flow. Furthermore,
igh values of specific heat capacities 𝑐𝑏 and 𝑐𝑠, ranked as 6th and 10th most important feature, respectively, correlate to high
alues of 𝑇̂𝑚𝑎𝑥, likely to be caused by the related heat accumulation. For the feed rate 𝑣𝑐𝑟, ranked as the 3rd most important feature,
igh values also correlate with high values of 𝑇̂𝑚𝑎𝑥 that facilitates deformation and flow of stud material, which can be enforced
y increased force F and rotation speed RS that both relate to high values of 𝑇̂𝑚𝑎𝑥, which is also in agreement with experimental
esults [7,8]. The first process parameter 𝑇𝑆 is ranked as the 5th most significant feature, where high values of 𝑇𝑆 correlate with low
alues of 𝑇̂𝑚𝑎𝑥, as a faster travel speed leads to a shorter duration of the process and lower process temperatures are reached compared
o a slower travel speed. The impacts of the variables 𝑐𝑠, 𝑡𝑠, 𝑡𝑏 and w based on the SHAP values are only minor, in comparison to the
mpact of the other variables. For 𝑤, this weaker impact on 𝑇̂𝑚𝑎𝑥 is also in agreement with experimental measurements performed by
allien et al. [8], where correlations between 𝑤 and 𝑇𝑚𝑎𝑥 as well as 𝑡 and 𝑇𝑚𝑎𝑥 have been approximated linearly and the correlation
f 𝑤 to 𝑇𝑚𝑎𝑥 was also weak in comparison to the correlation between 𝑡 and 𝑇𝑚𝑎𝑥. Overall, the feature dependence appears to be
13
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Fig. 6. Predicted and true values of 𝑇𝑚𝑎𝑥 enriched with additional samples generated via physics-based data-mining (a) and the corresponding feature dependence
of the ANN regression model based on SHAP values (b).

a qualitative assessment of important features that influence 𝑇̂𝑚𝑎𝑥 during FS. In particular, the impacts of 𝑡, 𝑘𝑏, 𝑣𝑐𝑟 and 𝑘𝑠 on 𝑇̂𝑚𝑎𝑥
outperforming the importance of process parameters 𝑇𝑆, 𝐹 and 𝑅𝑆 can enhance the understanding of the FS process. Nevertheless,
the feature dependence is based on correlations made by predictive models showing acceptable prediction performance and they
do not represent causal relationships.

3.1.2. Feed rate
In search of the best predictive model for the feed rate 𝑣𝑐𝑟, the effect of using 𝑇𝑚𝑎𝑥 as additional input feature, next to the

features contained in 𝑷𝑷 and 𝑴𝑨𝑻 , is investigated with feature set (𝒟 ). It can be observed that 𝑇𝑚𝑎𝑥 as additional feature leads to
a lower error in comparison to excluding it from the input space, see Fig. 7(a). For feature set (–) the errors amount to 6.9%, 17.3%,
19.7% and 7.5% on training, validation, test and test2 sets, respectively. This indicates overfitting to the training samples and poor
generalization on validation and test sets. Furthermore, when using 𝑇𝑚𝑎𝑥 as feature, the replacement of the FE-computed true values
of 𝑇𝑚𝑎𝑥 by predicted values 𝑇̂𝑚𝑎𝑥 in feature set (ℰ) only leads to a minor error increase on training, validation, test and test2 (cross
space) data sets by 1.1%, 1.6%, 0.9% and 2.9%, leading to absolute maximum errors of 8.8%, 9.2%, 10.4% and 15.4%, respectively.
Considering the experimental error for 𝑣𝑐𝑟 of 3.5%, the agreement between the true and predicted values of 𝑣𝑐𝑟 is acceptable. The
benefit of using feature set ℰ is that the need of computationally expensive FE results is circumvented by obtaining those values
through ML predictions that exhibit higher efficiency.

The feature dependence of this ridge regression model to compute 𝑣̂𝑐𝑟, see Fig. 8(b), reveals that 𝑇̂𝑚𝑎𝑥 is the most influential
feature, where high values of 𝑇̂𝑚𝑎𝑥 correlate with high values of 𝑣̂𝑐𝑟, which was also shown in Fig. 6(a) and discussed in the previous
Section 3.1.1, indicating that high temperature facilitates materials deformation and flow [6,8]. There is a strong influence by the
substrate and backing material properties 𝑘𝑠, 𝑘𝑏 and 𝑐𝑏, which are ranked 2nd, 3rd and 4th most important features, respectively. In
particular, high values of 𝑘𝑠 and 𝑘𝑏 correspond to high values of 𝑣̂𝑐𝑟, whereas high values of 𝑐𝑏 correlate to low 𝑣̂𝑐𝑟 values. In other
words, increased thermal conductivity and decreased specific heat can enable low process temperatures, which, in turn, facilitate
materials deformation and flow resulting in larger feed rates. Minor impacts on high values of 𝑣̂𝑐𝑟 are also given by high values of 𝑡𝑠
and 𝑡𝑏. The process parameters 𝑅𝑆, 𝑇𝑆 and 𝐹 are ranked 5th, 6th and 7th most important features, respectively, where high values
of 𝑅𝑆 relate to low values of 𝑣̂𝑐𝑟, whereas high values of 𝑇𝑆 and high values of 𝐹 correlate with high values of 𝑣̂𝑐𝑟, which agrees
with [1,30]. Intuitively, one could think that 𝐹 has a higher impact on 𝑣̂𝑐𝑟 than it does here, but such a small contribution of 𝐹 to 𝑣̂𝑐𝑟
was also shown within the numerical simulations in [74]. The almost negligible impact of 𝑐𝑠 on 𝑣̂𝑐𝑟 can be attributed to the rather
simple ridge regression prediction model where the simplicity in the mapping between features and target might be in disagreement
with the more complex physical reality that may be insufficiently represented in the scarce data sets; thus, by the model. In addition,
the effect of changes in 𝑐𝑠 could have been represented indirectly through considering 𝑘𝑠 since values of both variables are only
changed simultaneously due to the chosen materials. Overall, the predictive model for the feed rate 𝑣̂𝑐𝑟 is useful with its acceptable
prediction errors and its feature dependence that reinforces the high impact of 𝑇𝑚𝑎𝑥 as well as the thermal properties of substrate
and backing materials.

3.1.3. Torque
For the prediction of the torque 𝑀 , using 𝑇𝑚𝑎𝑥 as additional feature in feature set (𝒟 ) does not lead to any improvement of

prediction performance in comparison to excluding it as feature in (–), see Fig. 7(b). One reason for this can be the comparatively
simple linear regression model that was selected as best predictor in both cases, where the addition of 𝑇𝑚𝑎𝑥 as a 10th feature was
ranked the least important feature by the model and did not provide any more useful information for a linear approximation. For this
14
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Fig. 7. Prediction errors on training, validation, test and test2 data sets for the predicted feed rate 𝑣̂𝑐𝑟 in (a) with (–), i.e. without 𝑇𝑚𝑎𝑥, with (𝒟 ) that includes
𝑇𝑚𝑎𝑥 and with (ℰ) that contains 𝑇̂𝑚𝑎𝑥 as additional feature as well as for the predicted torque 𝑀̂ in (b) with (–), i.e. without 𝑇𝑚𝑎𝑥 and with (𝒟 ) that includes
𝑇𝑚𝑎𝑥 as additional feature.

Fig. 8. Predicted and true values for 𝑣𝑐𝑟(ℰ ) where the predicted maximum temperature 𝑇̂𝑚𝑎𝑥 is an additional feature besides 𝑷𝑷 and 𝑴𝑨𝑻 variables (a) and
the corresponding feature dependence of the ridge regression model based on SHAP values (b).

reason, there was no need to replace 𝑇𝑚𝑎𝑥 with 𝑇̂𝑚𝑎𝑥, since there would have been no further improvement in prediction performance.
The agreement between true and predicted values is acceptable since the errors on training, validation and test data sets are very
similar in a range between 7.9% and 9.9%, see Fig. 9(a), and the experimental error amounts to 5.8%. In addition, the error on the
test2 data set amounts to 10%, exhibiting similar and acceptable generalization.

The feature dependence of the predictive model to compute 𝑀̂ in Fig. 9(b) shows that 𝑅𝑆 and 𝐹 are most important features,
where low values of 𝑅𝑆 and high values of 𝐹 correlate to high values of 𝑀̂ . Additionally, high values of 𝑇𝑆 correspond to high
values of 𝑀̂ . Furthermore, high values of material properties 𝑘𝑠 and 𝑘𝑏 correspond to high values of 𝑀̂ , whereas the impact of other
𝑴𝑨𝑻 properties on 𝑀̂ appears to be negligible. This minor variation of 𝑀 is in agreement with the experimental measurements of
𝑀 in the 𝑴𝑨𝑻 space DoE where values remained within the range between 28.2 N m and 31.2 N m for all 𝑴𝑨𝑻 variable variations,
which supports the less significant influence of 𝑴𝑨𝑻 features on 𝑀 . Overall, the linear regression model can be used for predictions
of 𝑀 despite its high simplicity because it represents fundamental relationships with acceptable prediction performance and provides
useful feature interpretations.

3.2. Prediction of deposit geometry

3.2.1. Thickness
For the prediction of the deposit thickness 𝑡, the lowest error on the validation set was achieved based on inputs (−) that neither

contained 𝑇𝑚𝑎𝑥, 𝑣𝑐𝑟 nor 𝑀 as features, see Fig. 10. Thus, for the best predictive model to compute 𝑡, an ANN in this case, the 𝑇𝑚𝑎𝑥
included in (𝒟 ) as feature was not beneficial for its performance despite the high correlation between 𝑇̂ and 𝑡 that was identified
15
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Fig. 9. Predicted and true values for 𝑀(−) where only 𝑷𝑷 and 𝑴𝑨𝑻 variables were used as features (a) and the corresponding feature dependence of the
linear regression model based on SHAP values (b).

Fig. 10. Prediction errors on training, validation, test and test2 data sets for the predicted thickness 𝑡 without 𝑇𝑚𝑎𝑥 in (−), with 𝑇𝑚𝑎𝑥 in (𝒟 ) and with 𝑇𝑚𝑎𝑥, 𝑣𝑐𝑟
and M in (ℱ ) as additional features, respectively.

by the model in Section 3.1.1 for the prediction of 𝑇𝑚𝑎𝑥. Likewise, the further addition of 𝑣𝑐𝑟 and 𝑀 as features in (ℱ ) did not improve
the prediction performance either. A possible explanation for this could lie in the scarcity of the data whereupon a model with
increased complexity, i.e. more internal parameters, due to the increased number of features, can only insufficiently map relevant
relationships to achieve satisfactory predictions. Essentially, the ANN predictor for 𝑡(−) achieves very good agreement between
predicted and true values on the training, validation and test sets, as the errors amount to 3.9%, 6.2% and 12.7%, respectively,
which is below an experimental error of 15.4%. This is accompanied with an acceptable generalization since the predictive error
on the cross space test2 set amounts to 19.8%, see Fig. 11(a).

According to the feature dependence shown in Fig. 11(b), 𝑘𝑠 is considered most important, where high values relate to high
values of 𝑡. This is similar to the feature dependence of 𝑣𝑐𝑟, where 𝑘𝑠 was ranked 2nd most important feature, see Fig. 8(b), as the
corresponding increased material flow can contribute to high values of 𝑡. Moreover, this is supported by an additional dependence
of high values of 𝑡 on low values of 𝑅𝑆, which is also the case for high values of 𝑣𝑐𝑟. Ranked 2nd and 3rd most important features
are process parameters 𝑅𝑆 and 𝑇𝑆, with low values corresponding to high values of 𝑡, respectively. This is also true for 𝐹 , whose
importance rank is second last out of 9 features. Those relations between 𝑡 and process parameters is in agreement with several
experimental studies [1,8,30–32]. For the other substrate and backing material properties, high values of 𝑘𝑏 as well as high values
of 𝑡𝑏 and 𝑡𝑠 correlate to high values of 𝑡, whereas low values of 𝑐𝑏 and 𝑐𝑠 are associated with high values of 𝑡. These impacts
of properties indirectly correspond to lower temperatures, which is in agreement with [1,8] and the feature dependence of the
predictive model that computes 𝑇̂𝑚𝑎𝑥 in Section 3.1.1, see Fig. 6(b). In general, there is a significant impact by thermal material
properties of substrate and backing plate on specific values of 𝑡, besides the influence of the process parameters.

3.2.2. Width
The best models selected for the prediction of the deposit width w are compared in Fig. 12. It can be observed that using only

features based on 𝑷𝑷 and 𝑴𝑨𝑻 variables in (−) is most beneficial for prediction performances with respect to reaching low values
of maximum relative errors on the validation set, in comparison to considering 𝑇 in (𝒟 ) or 𝑇̂ together with 𝑣 and 𝑀 in
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Fig. 11. Predicted and true values for 𝑡(−) where only 𝑷𝑷 and 𝑴𝑨𝑻 variables comprised the input features (a) and the corresponding feature dependence of
the ANN regression model based on SHAP values (b).

Fig. 12. Prediction errors on training, validation, test and test2 data sets for the predicted width 𝑤̂ without 𝑇𝑚𝑎𝑥 in (−), with 𝑇𝑚𝑎𝑥 in (𝒟 ) and with 𝑇𝑚𝑎𝑥, 𝑣𝑐𝑟
and 𝑀 in (ℱ ) as additional features, respectively.

(ℱ ), respectively. This is similar to the results for computing 𝑡 and can also be explained by the higher number of features leading
to increased model complexity, i.e. internal parameters that need to be adjusted, where the scarce data only enables insufficient
training. The predicted values of the best selected ridge regression model are compared against the true values in Fig. 13, where
errors amount to 2.6%, 3.4%, 4.2% on training, validation and test data sets as well as to 4.3% on the generalization test2 data
set. Those predictions are in very good agreement with experimental measurements considering the greater experimental maximum
relative error obtained from the three replicas that amounts to 6.2%.

The feature dependence of the ridge regression model, see Fig. 13(b), shows that 𝑘𝑠 is the most important feature, similar to
predictions of 𝑡; however, while low values of 𝑘𝑠 relate to low values of 𝑡, they correspond to high values of 𝑤̂, here. Similar inverse
relations can be observed for the other material properties 𝑡𝑏, 𝑘𝑏, 𝑐𝑠 and 𝑡𝑠, which are ranked as 3rd, 4th, 8th and least (9th) most
important features, respectively, where low values agree with high values of 𝑡. This could indicate that those variables facilitate
rather low temperature, which is in agreement with [8]. The process parameter 𝑅𝑆 is 2nd most important feature for predictions of
𝑤, again with low values of 𝑅𝑆 correlating with high values of 𝑤̂, which is in parallel to predictions of 𝑡. 𝐹 and 𝑇𝑆 are ranked 5th
and 6th most important features, respectively, where high values of 𝐹 and low values of 𝑇𝑆 relate to high values of ŵ, respectively,
which is in agreement with [8,31,32]. Overall, the comparatively simple ridge regression model for the prediction of 𝑤 achieves
prediction error below the experimental error and provides qualitative assessments of feature impacts, reconfirming the important
relations of process temperatures and temperature-related properties of substrate and backing plate materials besides the influence
of process parameters; therefore, this model can also serve as additional building block to enable further understanding of the FS
process.

3.2.3. Final remarks
The heat-transfer model was successfully exploited to circumvent any need to perform experimental temperature measurements.

The computational costs required by the numerical FE model were saved by the building a surrogate model via ML. Even though,
𝑇 as feature was only beneficial for the prediction of 𝑣 , the indirect influence of the temperature via thermal conductivity of
17
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Fig. 13. Predicted and true values for 𝑤(−) where only 𝑷𝑷 and 𝑴𝑨𝑻 variables comprised the input features (a) and the corresponding feature dependence of
the ridge regression model based on SHAP values (b).

substrate 𝑘𝑠 and backing plate 𝑘𝑏 is clearly shown as they rank among the top four most important features for the prediction of 𝑣𝑐𝑟,
𝑀 , 𝑡 and 𝑤, respectively. In particular for similar and opposite control of 𝑡 and 𝑤, the influences of 𝑷𝑷 and 𝑴𝑨𝑻 variables should
be tailored according to their parallel and contrasting feature dependencies. For 𝑷𝑷 , low values of 𝑅𝑆 and 𝑇𝑆 increase both 𝑡 and
𝑤 values, whereas high values of 𝐹 correlate to decreased 𝑡 but increased 𝑤. For 𝑴𝑨𝑻 , 𝑘𝑠, 𝑘𝑏, 𝑡𝑠, 𝑡𝑏 and 𝑐𝑏 are controversial with
high values correlating with increased 𝑡 but decreased 𝑤, respectively, because all enable increased process temperatures.

4. Conclusion

In this study, the identification and utilization of impacts from process parameters as well as substrate and backing material
properties on the resulting process behaviour and deposit geometry for FS has been achieved. The prediction of 𝑇𝑚𝑎𝑥 is in good
agreement with target values obtained from the FE heat transfer model. In this regard, the physical data-mining of the FE model was
successfully used to increase prediction performance in comparison to excluding this data. Due to the defined inputs of this FE model,
the features consisting of the feed rate 𝑣𝑐𝑟 and torque 𝑀 as well as deposit geometries 𝑡 and 𝑤 are also required and first need to be
predicted for a sufficient prediction of 𝑇𝑚𝑎𝑥 via ML. In general, the predictions of all targets 𝑇𝑚𝑎𝑥, 𝑣𝑐𝑟, 𝑀 , 𝑡 and 𝑤 showed acceptable
agreement with their true solution despite the highly scarce amount of available data and the inherent experimental scatter. All ML
models are trained on data where process parameters are varied while substrate and backing material properties are kept constant
and vice versa but also exhibit acceptable generalization on the cross-space where both are varied simultaneously. Based on those ML
models, explanations via feature importance and dependence were largely found to be in agreement with experimental observations
in literature but also provide insights that can enable further understanding of the FS process. On the one hand, the use of 𝑇𝑚𝑎𝑥
as additional feature led to a decrease in prediction errors only for the prediction of 𝑣𝑐𝑟 and not for the prediction of 𝑀 , 𝑡 and 𝑤,
respectively, despite the known impact of 𝑇𝑚𝑎𝑥 on those targets. In this regard, the scarce data available for training could have
limited the increased model complexity required to sufficiently map relevant relationships with the increased number of features. On
the other hand, an indirect influence of 𝑇𝑚𝑎𝑥 was identified and utilized by attributing high importance to the thermal conductivity
of the substrate 𝑘𝑠 and backing plate 𝑘𝑏 for the predictive models of 𝑣𝑐𝑟, 𝑀 , 𝑡 and 𝑤 as well as for the prediction of 𝑇𝑚𝑎𝑥 itself, as
they rank among the top four most important features (out of a total of 9 to 12 features) for the prediction of 𝑇𝑚𝑎𝑥, 𝑣𝑐𝑟 and 𝑀 ,
as well as the most important feature for 𝑡 and 𝑤, respectively. Ultimately, this qualitative assessment of feature dependence on
process behaviour and deposit geometry targets can serve as additional key to unlock further understanding of the FS process.
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ppendix A

The prediction performance achieved for thickness 𝑡𝑙𝑖𝑛(𝑇𝑚𝑎𝑥), width 𝑤𝑙𝑖𝑛(𝑇𝑚𝑎𝑥) and feed rate 𝑣𝑐𝑟,𝑙𝑖𝑛(𝑇𝑚𝑎𝑥) via the linear approxi-
mations stated in Eqs. (1), (2) and (3), respectively, are listed in Table A.1.

Table A.1
Mean absolute error (MAE) achieved via Eqs. (1), (2) and (3) for thickness 𝑡, width 𝑤 and feed rate 𝑣𝑐𝑟,
respectively, on training, validation, test and test2 data sets. The experimental (exp.) error is based on three
replica samples, i.e. the centre points of the Designs of Experiments (DoE).

MAE 𝑡𝑙𝑖𝑛 [mm] 𝑤𝑙𝑖𝑛 [mm] 𝑣𝑐𝑟,𝑙𝑖𝑛 [mm/s]

Training 0.47 1.01 0.26
Validation 0.33 0.58 0.10
Test 0.34 0.74 0.21
Test2 0.51 1.00 0.15
exp. error 0.27 1.06 0.06

Appendix B

The hyperparameters of the best models selected for the prediction of 𝑇𝑚𝑎𝑥, 𝑣𝑐𝑟, 𝑀 , 𝑡 and 𝑤 are provided below, respectively.

aximum temperature 𝑇𝑚𝑎𝑥

The employed ANN consists of an input layer with 13 neurons (according to the number of features), one hidden layer with 14
eurons and one neuron on the output layer, yielding a total number of 393 trainable model parameters. Prediction performance
easures of this model are listed in Table B.1.

Table B.1
Performance measures on training, validation, test and test2 sets: Determination coefficient (R2), mean absolute
error (MAE) and the maximum of the relative error (𝑒𝑟𝑟). of the best model (ANN) to predict 𝑇𝑚𝑎𝑥.

ANN → 𝑇𝑚𝑎𝑥 R2 [–] MAE [◦C] Maximum 𝑒𝑟𝑟
[%]

Training 0.993874 5.630336 5.079982
Validation 0.984805 7.234900 10.042205
Test 0.903396 13.569292 11.846732
Test2 0.864374 16.419428 10.179453

Feed rate 𝑣𝑐𝑟

The 1st-order ridge regression model with an 𝛼 = 8.93 to yield 𝑣̂𝑐𝑟 is described with:

𝑣̂𝑐𝑟 = 5.22664062 ⋅ 10−2 ⋅ 𝐹 − 4.17564606 ⋅ 10−2 ⋅ 𝑅𝑆 + 8.50486799 ⋅ 10−2 ⋅ 𝑇𝑆

+ 8.40810129 ⋅ 10−3 ⋅ 𝑘𝑠 − 1.35502479 ⋅ 10−10 ⋅ 𝑐𝑠 + 4.1297693 ⋅ 10−2 ⋅ 𝑡𝑠
+ 3.56202548 ⋅ 10−3 ⋅ 𝑘𝑏 − 8.43630798 ⋅ 10−10 ⋅ 𝑐𝑏 + 1.38157328 ⋅ 10−2 ⋅ 𝑡𝑏
+ 5.09642138 ⋅ 10−3 ⋅ 𝑇𝑚𝑎𝑥
− 1.65124793

(B.1)

The prediction performance measures of the models described by Eq. (B.1) above are listed in Table B.2 below.
Table B.2
Performance measures on training, validation, test and test2 sets: Determination coefficient (R2), mean absolute
error (MAE) and the maximum of the relative error (𝑒𝑟𝑟). of the best model (RR) to predict 𝑣𝑐𝑟.

RR → 𝑣𝑐𝑟 R2 [–] MAE [◦C] Maximum 𝑒𝑟𝑟
[%]

Training 0.936734 0.066619 8.807957
Validation 0.834654 0.092736 9.165473
Test 0.927930 0.058686 10.419877
Test2 0.828632 0.102524 15.354523
19
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Torque 𝑀

The 1st-order linear regression model that yields 𝑀̂ is described via:

𝑀̂ = 1.304375 ⋅ 𝐹 − 1.215 ⋅ 𝑅𝑆 + 8.64375 ⋅ 10−1 ⋅ 𝑇𝑆 + 2.16567448 ⋅ 10−2 ⋅ 𝑘𝑠
+ 6.10763765 ⋅ 10−9 ⋅ 𝑐𝑠 + 1.725 ⋅ 10−1 ⋅ 𝑡𝑠 + 9.7565104 ⋅ 10−3 ⋅ 𝑘𝑏
− 8.16240131 ⋅ 10−10 ⋅ 𝑐𝑏 + 4.56909341 ⋅ 10−1 ⋅ 𝑡𝑏 + 23.88753081.

(B.2)

The prediction performance measures of the models described by Eq. (B.2) above are listed in Table B.3 below.

Table B.3
Performance measures on training, validation, test and test2 sets: Determination coefficient (R2), mean absolute
error (MAE) and the maximum of the relative error (𝑒𝑟𝑟). of the best model (RR) to predict 𝑀 .

LR → 𝑀 R2 [–] MAE [◦C] Maximum 𝑒𝑟𝑟 [%]

Training 0.948422 0.673526 7.854310
Validation 0.814933 0.968677 9.157729
Test 0.693845 1.100085 9.905198
Test2 0.882765 1.413958 9.985394

Thickness t

The employed ANN consists of an input layer with 9 neurons (according to the number of features), two hidden layers with 10
nd 9 neurons, respectively, as well as one neuron on the output layer, yielding a total number of 299 trainable model parameters.
he prediction performance measures of this model are listed in Table B.4 below.

Table B.4
Performance measures on training, validation, test and test2 sets: Determination coefficient (R2), mean absolute
error (MAE) and the maximum of the relative error (𝑒𝑟𝑟). of the best model (RR) to predict 𝑡.

ANN → 𝑡 R2 [–] MAE [◦C] Maximum 𝑒𝑟𝑟
[%]

Training 0.991774 0.032971 3.856503
Validation 0.954308 0.070950 6.176544
Test 0.867477 0.093444 12.690104
Test2 0.688787 0.132149 19.808895

Width 𝑤

The 1st-order ridge regression model with 𝛼 = 0.61 to yield 𝑤̂ is described with:

𝑤̂ = 3.10334253 ⋅ 10−1 ⋅ 𝐹 − 3.06066497 ⋅ 10−1 ⋅ 𝑅𝑆 − 2.58816314 ⋅ 10−1 ⋅ 𝑇𝑆

− 1.70556367 ⋅ 10−2 ⋅ 𝑘𝑠 − 4.32295718 ⋅ 10−9 ⋅ 𝑐𝑠 − 7.03092837 ⋅ 10−2 ⋅ 𝑡𝑠
− 4.37306152 ⋅ 10−3 ⋅ 𝑘𝑏 + 8.03448114 ⋅ 10−10 ⋅ 𝑐𝑏 − 4.06880347 ⋅ 10−1 ⋅ 𝑡𝑏
+ 33.59430335

(B.3)

The prediction performance measures of the models described by Eq. (B.3) above are listed in Table B.5 below.

Table B.5
Performance measures on training, validation, test and test2 sets: Determination coefficient (R2), mean absolute
error (MAE) and the maximum of the relative error (𝑒𝑟𝑟). of the best model (RR) to predict 𝑤.

RR → 𝑤 R2 [–] MAE [◦C] Maximum 𝑒𝑟𝑟 [%]

Training 0.943655 0.209642 3.406364
Validation 0.860429 0.280106 2.564726
Test 0.567643 0.238336 4.209272
Test2 0.855633 0.439249 4.270765

Appendix C

Performance measures (maximum of relative error 𝑒𝑟𝑟) of all predictive models used for best model selection. One target per
able; thus, values for 𝑇𝑚𝑎𝑥 based on DoE data sets are listed in Table C.1 and for 𝑇𝑚𝑎𝑥 based on data enriched via physics-based
ata-mining in Table C.2. Relative errors for 𝑣𝑐𝑟 can be found in Table C.3, for 𝑀 in Table C.4, for 𝑡 in Table C.5 and for 𝑤 in
20
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Table C.1
Maximum of relative error 𝑒𝑟𝑟 for all models to predict 𝑇𝑚𝑎𝑥 based on the original DoE data sets without sample enrichment through physics-based data-mining

𝑇̂𝑚𝑎𝑥(−) 𝑇̂𝑚𝑎𝑥(𝒜 ) 𝑇̂𝑚𝑎𝑥(ℬ) 𝑇̂𝑚𝑎𝑥(𝒞 )

train val test train val test train val test train val test

LR1 9.1 15.1 4.0 4.4 3.9 3.5 3.3 12.3 17.8 3.3 12.3 17.8
LR2 4.5 9.1 9.5 0.0 5.1 5.4 0.0 11.5 12.1 0.0 11.5 12.1
LR3 0.0 10.5 11.8 0.0 5.8 5.6 0.0 10.7 12.5 0.0 10.7 12.5
RR 9.1 15.1 4.0 4.4 3.9 3.5 5.9 11.8 9.5 3.5 12.6 16.0
RR2 55.5 23.5 34.8 52.4 25.2 32.5 52.0 24.6 31.7 51.9 24.6 31.6
RR3 55.5 23.5 34.8 52.4 24.5 33.4 52.2 24.1 32.8 53.9 23.6 33.5
RFR 10.7 13.2 28.3 15.8 22.3 24.8 16.1 14.1 26.5 11.0 14.0 25.9
XGB 0.3 10.6 25.1 6.8 6.4 19.6 13.9 15.2 19.0 0.6 4.4 24.1
SVR 14.7 16.9 8.5 3.1 13.2 8.0 4.3 18.6 12.1 3.1 18.3 12.1
ANN 56.5 31.4 53.7 2.5 6.5 6.4 3.3 12.2 10.6 3.8 11.4 14.3

Table C.2
Maximum of relative error 𝑒𝑟𝑟 for all models to predict 𝑇𝑚𝑎𝑥 based on the inclusion of additional samples generated via
physics-based data-mining, where values above 1000% have been replaced by infinity ∞.

𝑇̂𝑚𝑎𝑥(𝒜 ) 𝑇̂𝑚𝑎𝑥(ℬ) 𝑇̂𝑚𝑎𝑥(𝒞 )

train val test train val test train val test

LR1 25.4 6.4 11.7 25.2 12.8 12.1 25.2 12.8 12.1
LR2 3.6 ∞ ∞ 3.2 ∞ ∞ 3.2 ∞ ∞
LR3 0.6 ∞ ∞ 0.6 ∞ ∞ 0.6 ∞ ∞
RR 25.0 6.6 13.0 25.0 10.9 10.4 24.7 11.9 10.8
RR2 16.7 8.2 11.8 16.7 9.8 8.5 20.6 13.0 12.6
RR3 72.8 45.5 36.8 72.8 45.5 36.4 63.6 37.7 31.6
RFR 30.5 21.2 13.2 32.0 11.7 21.5 19.4 16.6 16.7
XGB 1.4 6.7 20.3 13.9 14.6 16.7 1.0 6.3 15.1
SVR 4.1 18.2 9.2 5.5 19.8 11.0 4.1 19.6 10.7
ANN 4.0 4.5 5.5 5.1 10.0 11.8 5.9 10.4 9.5

Table C.3
Maximum of relative error 𝑒𝑟𝑟 for all models to predict 𝑣𝑐𝑟 based on 𝑷𝑷 and 𝑴𝑨𝑻 variables as features as well as with true
values 𝑇𝑚𝑎𝑥 and predicted values 𝑇̂𝑚𝑎𝑥.

𝑣̂𝑐𝑟(−) 𝑣̂𝑐𝑟(𝑇𝑚𝑎𝑥) 𝑣̂𝑐𝑟(𝑇̂𝑚𝑎𝑥)

train val test train val test train val test

LR1 16.1 16.2 7.1 9.7 7.6 7.4 9.5 13.5 5.1
LR2 16.1 16.2 7.1 6.0 18.1 9.1 6.1 16.8 7.1
LR3 16.1 16.2 7.1 6.1 29.9 18.3 6.1 24.4 14.6
RR 15.4 16.2 7.1 7.7 7.6 9.5 7.6 11.1 8.5
RR2 50.7 27.7 41.1 26.6 15.3 20.9 27.4 18.0 24.2
RR3 50.8 27.7 41.2 26.3 15.3 20.8 27.5 17.8 24.5
RFR 6.9 17.3 19.7 18.0 16.4 13.9 18.0 17.3 11.6
XGB 25.4 4.8 25.4 6.7 11.6 25.0 9.7 11.6 31.5
SVR 2.7 23.6 8.5 2.7 19.9 9.6 2.7 22.9 9.7
ANN 6.0 15.1 10.3 2.3 14.9 10.3 2.8 17.6 9.5

Table C.4
Maximum of relative error 𝑒𝑟𝑟 for all models to predict 𝑀 based on 𝑷𝑷 and 𝑴𝑨𝑻 variables as features as well as with true
values 𝑇𝑚𝑎𝑥.

𝑀̂(−) 𝑀̂(𝑇𝑚𝑎𝑥)

train val test train val test

LR1 7.9 9.2 9.9 7.9 9.5 10.0
LR2 7.9 9.2 9.9 8.9 12.7 11.1
LR3 7.9 9.2 9.9 9.0 12.7 13.5
RR 12.2 7.7 10.6 11.2 5.0 11.1
RR2 32.4 20.0 23.3 34.3 19.5 23.2
RR3 32.4 20.0 23.3 34.2 19.5 23.1
RFR 9.0 11.0 19.4 8.5 13.5 19.8
XGB 14.7 5.2 22.7 11.6 4.9 20.2
SVR 1.7 13.2 12.7 1.7 12.5 13.0
ANN 1.8 11.3 12.5 2.3 7.3 12.9
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Table C.5
Maximum of relative error 𝑒𝑟𝑟 for all models to predict 𝑡 based on 𝑷𝑷 and 𝑴𝑨𝑻 variables as features as well as with true
values 𝑇𝑚𝑎𝑥 and with true values 𝑇𝑚𝑎𝑥, 𝑣𝑐𝑟 and 𝑀 .

𝑡(−) 𝑡(𝑇𝑚𝑎𝑥) 𝑡(𝑇𝑚𝑎𝑥 , 𝑣𝑐𝑟 ,𝑀)

train val test train val test train val test

LR1 12.9 17.8 8.1 9.8 14.3 7.0 7.4 16.0 10.7
LR2 12.9 17.8 8.1 10.5 7.6 9.4 7.1 43.3 13.4
LR3 12.9 17.8 8.1 10.4 27.7 31.6 7.1 17.4 28.6
RR 13.0 18.1 8.0 11.5 16.3 7.5 7.2 15.5 10.4
RR2 47.1 41.8 35.1 44.5 35.6 30.1 29.0 24.2 19.3
RR3 47.1 41.8 35.1 44.3 35.6 30.0 31.5 26.3 21.3
RFR 21.6 17.5 14.9 11.7 18.5 18.7 16.5 14.8 11.8
XGB 5.4 9.0 18.4 3.9 9.3 21.9 10.2 11.3 12.8
SVR 3.2 16.5 10.0 3.8 16.1 9.6 3.2 19.8 9.2
ANN 3.9 6.2 12.7 1.5 7.1 6.4 1.2 5.5 7.1

Table C.6
Maximum of relative error 𝑒𝑟𝑟 for all models to predict 𝑤 based on 𝑷𝑷 and 𝑴𝑨𝑻 variables as features as well as with true
values 𝑇𝑚𝑎𝑥 and with true values 𝑇𝑚𝑎𝑥, 𝑣𝑐𝑟 and 𝑀 .

𝑤̂(−) 𝑤̂(𝑇𝑚𝑎𝑥) 𝑤̂(𝑇𝑚𝑎𝑥 , 𝑣𝑐𝑟 ,𝑀)

train val test train val test train val test

LR1 3.4 2.5 4.3 2.3 3.4 3.8 2.4 3.1 3.9
LR2 3.4 4.4 4.3 1.7 4.4 6.7 1.9 21.5 6.8
LR3 3.4 3.2 4.3 1.7 5.3 3.9 1.9 8.1 12.5
RR 3.4 2.6 4.2 2.4 3.3 3.7 2.4 3.2 3.7
RR2 16.5 6.8 7.8 16.0 7.4 8.4 6.7 6.1 4.5
RR3 16.4 6.7 7.8 16.0 7.5 8.4 6.4 6.4 4.1
RFR 3.8 3.8 6.0 3.8 3.7 9.6 4.1 4.3 2.3
XGB 0.7 3.1 6.8 1.9 2.3 5.2 2.1 1.4 5.2
SVR 0.7 3.8 5.8 0.7 3.5 5.4 4.3 3.5 4.3
ANN 1.5 2.5 5.0 0.4 2.5 4.6 7.0 2.8 3.7

Appendix D

Below, the data sets used for training, validation and testing with variations of 𝑷𝑷 as well as 𝑴𝑨𝑻 variables are listed below.
he global training, validation and test data sets consisted of local one originating from respective 𝑷𝑷 and 𝑴𝑨𝑻 variable variations.
or 𝑷𝑷 variables, local train, validation and test sets can be found in Tables D.1–D.3, respectively. For 𝑴𝑨𝑻 variables, local train,
alidation and test sets can be found in Tables D.4–D.6, respectively. The test2 (cross-space) set used for ultimate evaluation of
odel generalization is listed in Table D.7.

Table D.1
Train set of 𝑷𝑷 variation.

Sample 𝐹 𝑅𝑆 𝑇𝑆 𝑘𝑠 𝑐𝑠 𝑡𝑠 𝑘𝑏 𝑐𝑏 𝑡𝑏 𝑇𝑚𝑎𝑥
[kN] [ 1

s ] [ mm
s ] [ N

s K ] [ mm2

s2 K ]⋅107 [mm] [ N
s K ] [ mm2

s2 K ]⋅107 [mm] [◦C]

1 8.0 20.0 6.0 157 86 10 157 86 8 377.53
2 8.0 25.0 4.0 157 86 10 157 86 8 417.36
3 6.0 15.0 6.0 157 86 10 157 86 8 221.32
4 8.0 15.0 4.0 157 86 10 157 86 8 342.91
5 10.0 20.0 8.0 157 86 10 157 86 8 383.28
6 6.0 20.0 4.0 157 86 10 157 86 8 282.91
7 8.0 15.0 8.0 157 86 10 157 86 8 292.55
8 10.0 20.0 4.0 157 86 10 157 86 8 451.14
9 8.0 25.0 8.0 157 86 10 157 86 8 375.14

10 10.0 25.0 6.0 157 86 10 157 86 8 425.69
11 10.0 15.0 6.0 157 86 10 157 86 8 370.85
12 6.0 20.0 8.0 157 86 10 157 86 8 227.41
13 6.0 25.0 6.0 157 86 10 157 86 8 292.94
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Table D.2
Validation set of 𝑷𝑷 variation.

Sample 𝐹 𝑅𝑆 𝑇𝑆 𝑘𝑠 𝑐𝑠 𝑡𝑠 𝑘𝑏 𝑐𝑏 𝑡𝑏 𝑇𝑚𝑎𝑥
[kN] [ 1

s ] [ mm
s ] [ N

s K ] [ mm2

s2 K ]⋅107 [mm] [ N
s K ] [ mm2

s2 K ]⋅107 [mm] [◦C]

1 8.0 25.0 6.0 157 86 10 157 86 8 420.51
2 8.0 15.0 6.0 157 86 10 157 86 8 317.45
3 8.0 20.0 8.0 157 86 10 157 86 8 363.38
4 8.0 20.0 4.0 157 86 10 157 86 8 436.19
5 10.0 20.0 6.0 157 86 10 157 86 8 449.73
6 6.0 20.0 6.0 157 86 10 157 86 8 294.57

Table D.3
Test set of 𝑷𝑷 variation.

Sample 𝐹 𝑅𝑆 𝑇𝑆 𝑘𝑠 𝑐𝑠 𝑡𝑠 𝑘𝑏 𝑐𝑏 𝑡𝑏 𝑇𝑚𝑎𝑥
[kN] [ 1

s ] [ mm
s ] [ N

s K ] [ mm2

s2 K ]⋅107 [mm] [ N
s K ] [ mm2

s2 K ]⋅107 [mm] [◦C]

1 9.7 24.2 7.0 157 86 10 157 86 8 408.32
2 8.3 22.5 5.7 157 86 10 157 86 8 387.96
3 7.0 20.8 4.3 157 86 10 157 86 8 347.66
4 9.0 17.5 6.3 157 86 10 157 86 8 346.78
5 7.7 19.2 7.7 157 86 10 157 86 8 302.54
6 6.3 15.8 5.0 157 86 10 157 86 8 255.30

Table D.4
Train set of 𝑴𝑨𝑻 variation.

Sample 𝐹 𝑅𝑆 𝑇𝑆 𝑘𝑠 𝑐𝑠 𝑡𝑠 𝑘𝑏 𝑐𝑏 𝑡𝑏 𝑇𝑚𝑎𝑥
[kN] [ 1

s ] [ mm
s ] [ N

s K ] [ mm2

s2 K ]⋅107 [mm] [ N
s K ] [ mm2

s2 K ]⋅107 [mm] [◦C]

1 8 20 6 117 90 10 49.6 47.3 10.0 416.75
2 8 20 6 157 86 10 6.7 52 10.2 380.07
3 8 20 6 75 90.23 8 49.6 47.3 10.0 464.26
4 8 20 6 75 90.23 10 6.7 52 10.2 478.99
5 8 20 6 117 90 12 157.0 86 10.0 403.01
6 8 20 6 117 90 8 6.7 52 10.2 458.48
7 8 20 6 75 90.23 10 157.0 86 10.0 460.01
8 8 20 6 117 90 12 6.7 52 10.2 417.13
9 8 20 6 157 86 10 157.0 86 10.0 360.05

10 8 20 6 157 86 12 49.6 47.3 10.0 352.69
11 8 20 6 75 90.23 12 49.6 47.3 10.0 442.91
12 8 20 6 117 90 8 157.0 86 10.0 406.53
13 8 20 6 157 86 8 49.6 47.3 10.0 385.59

Table D.5
Validation set of 𝑴𝑨𝑻 variation.

Sample 𝐹 𝑅𝑆 𝑇𝑆 𝑘𝑠 𝑐𝑠 𝑡𝑠 𝑘𝑏 𝑐𝑏 𝑡𝑏 𝑇𝑚𝑎𝑥
[kN] [ 1

s ] [ mm
s ] [ N

s K ] [ mm2

s2 K ]⋅107 [mm] [ N
s K ] [ mm2

s2 K ]⋅107 [mm] [◦C]

1 8 20 6 75 90.23 8 6.7 52 10.2 497.25
2 8 20 6 75 90.23 8 157.0 86 10.0 451.19
3 8 20 6 75 90.23 12 6.7 52 10.2 470.90
4 8 20 6 75 90.23 12 157.0 86 10.0 456.98
5 8 20 6 157 86 8 6.7 52 10.2 423.32
6 8 20 6 157 86 8 157.0 86 10.0 377.74
7 8 20 6 157 86 12 6.7 52 10.2 388.85
8 8 20 6 157 86 12 157.0 86 10.0 363.05

Table D.6
Test set of 𝑴𝑨𝑻 variation.

Sample 𝐹 𝑅𝑆 𝑇𝑆 𝑘𝑠 𝑐𝑠 𝑡𝑠 𝑘𝑏 𝑐𝑏 𝑡𝑏 𝑇𝑚𝑎𝑥
[kN] [ 1

s ] [ mm
s ] [ N

s K ] [ mm2

s2 K ]⋅107 [mm] [ N
s K ] [ mm2

s2 K ]⋅107 [mm] [◦C]

1 8 20 6 117 90 10 6.7 52 10.2 434.71
2 8 20 6 117 90 10 157.0 86 10.0 413.46
3 8 20 6 75 90.23 10 49.6 47.3 10.0 459.19
4 8 20 6 157 86 10 49.6 47.3 10.0 374.62
5 8 20 6 117 90 8 49.6 47.3 10.0 417.34
6 8 20 6 117 90 12 49.6 47.3 10.0 405.02
23
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Table D.7
Test set 2 of 𝑷𝑷 and 𝑴𝑨𝑻 variation.

Sample 𝐹 𝑅𝑆 𝑇𝑆 𝑘𝑠 𝑐𝑠 𝑡𝑠 𝑘𝑏 𝑐𝑏 𝑡𝑏 𝑇𝑚𝑎𝑥
[kN] [ 1

s ] [ mm
s ] [ N

s K ] [ mm2

s2 K ]⋅107 [mm] [ N
s K ] [ mm2

s2 K ]⋅107 [mm] [◦C]

1 8 15 6 75 90.23 10 157.0 86 10.0 411.43
2 10 20 4 117 90 10 157.0 86 10.0 485.19
3 10 20 8 117 90 10 157.0 86 10.0 438.54
4 8 15 8 75 90.23 10 49.6 47.3 10.0 406.66
5 10 20 6 75 90.23 8 49.6 47.3 10.0 508.17
6 10 15 6 117 90 12 49.6 47.3 10.0 409.42
7 8 25 4 157 86 10 49.6 47.3 10.0 437.21
8 10 20 6 157 86 12 49.6 47.3 10.0 405.51
9 6 20 6 157 86 8 49.6 47.3 10.0 291.62

10 10 20 4 117 90 10 6.7 52 10.2 511.98
11 8 20 8 117 90 8 6.7 52 10.2 432.59
12 8 15 6 157 86 10 6.7 52 10.2 357.71
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