Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://doi.org/10.48548/pubdata-634
Langanzeige der Metadaten
ElementWert
RessourcentypDissertation
TitelComputerized assistance in online mental health treatment
DOI10.48548/pubdata-634
Handle20.500.14123/669
Autor*inBecker, Dennis  1228992681
Gutachter*inFunk, Burkhardt  0000-0001-5855-2666  105142156X
Hoogendoorn, Mark  1174019808
Niemeyer, Peter  1051421551
Betreuer*inFunk, Burkhardt  0000-0001-5855-2666  105142156X
AbstractThe wide accessibility of the Internet and web-based programs enable an increased volume of online interventions for mental health treatment. In contrast to traditional face-to-face therapy, online treatment has the potential to overcome some of the barriers such as improved geographical accessibility, individual time planning, and reduced costs. The availability of clients' treatment data fuels research to analyze the collected data to obtain a better understanding of the relationship among symptoms in mental disorders and derive outcome and symptom predictions. This research leads to predictive models that can be integrated into the online treatment process to assist clinicians and clients. This dissertation discusses different aspects of the development of predictive modeling in online treatment: Categorization of predictive models, data analyses for predictive purposes, and model evaluation. Specifically, the categorization of predictive models and barriers against the uptake of mental health treatment are discussed in the first part of this dissertation. Data analysis and predictive modeling are emphasized in the second part by presenting methods for inference and prediction of mood as well as the prediction of treatment outcome and costs. Prediction of future and current mood can be beneficial in many aspects. Inference of users' mood levels based on unobtrusive measures or diary data can provide crucial information for intervention scheduling. Prediction of future mood can be used to assess clients' response to the treatment and expected treatment outcome. Prediction of the expected treatment costs and outcomes for different treatment types allows simultaneous optimization of these objectives and to increase the cost-effectiveness of the treatment. In the third part, a systematic predictive model evaluation incorporating simulation analyses is demonstrated and a method for model parameter estimation for computationally limited devices is presented. This dissertation aims to overcome the current challenges of predictive model development and its use in online treatment. The development of predictive models for varies data collected in online treatment is demonstrated and how these models can be applied in practice. The derived results contribute to computer science and mental health research with client individual data analysis, the development ofpredictive models, and their statistical evaluation.

Die weite Verfügbarkeit von webbasierten Anwendungsprogrammen ermöglicht einen einfacheren Zugang zu online-basierten psychologischen Behandlungen. Im Gegensatz zu klinischer Behandlung von psychischen Erkrankungen kann eine online-basierte und unterstützende Therapie die geografische Verfügbarkeit erhöhen, ermöglicht eine individuelle Zeiteinteilung der Behandlung und kann Behandlungskosten reduzieren. Das unmittelbare digitale Erfassen von Patientendaten und Symptomen ermöglicht eine unverzügliche Auswertung und Analyse der Daten um ein tieferes Verständnis zwischen Symptomen einer Erkrankung und der Vorhersage des möglichen Krankheitsverlaufs. Bestandteil dieser Forschung ist das Entwickeln von Vorhersagemodellen, die in die Online-Behandlung integriert werden können, um sowohl den behandelnden Therapeuten als auch den Patienten zu unterstützen. Diese Dissertation untersucht verschiedene Aspekte der Entwicklung von Vorhersagemodellen in der Online-Behandlung: Kategorisierung von Vorhersagemodellen, Datenanalysen für die Vorhersage des Symptomverlaufs, und Evaluation von Vorhersagemodellen. Insbesondere die Kategorisierung von Vorhersagemodellen und Hindernisse für die Verwendung von solchen werden im ersten Teil der Dissertation evaluiert. Im zweiten Teil werden Datenanalyse und die Entwicklung von Vorhersagemodellen zum Ermitteln der Behandlungskosten und des Krankheitsverlaufs behandelt. Das Ermitteln und Vorhersagen von Symptomen kann Behandlung ermitteln, die Vorhersage von Behandlungserfolg und Kosten können eine gesteigerte Kosteneffizienz ermöglichen. Im dritten Teil wird das Evaluieren eines Vorhersagemodells unter der Verwendung von Behandlungsdaten und einer Simulationsanalyse untersucht, sowie ein Verfahren zur Bestimmung von Modellparametern auf Mobilgeräten vorgestellt. Diese Dissertation zielt darauf ab, die aktuellen Herausforderungen der Vorhersagemodellentwicklung und deren Verwendung in der Online-Behandlung von psychischen Erkrankungen zu analysieren. Des Weiteren werden die technische Entwicklung von Vorhersagemodellen und deren mögliche Anwendung in der Praxis behandelt.
SpracheEnglisch
DDC158 :: Angewandte Psychologie
Datum der Disputation2020-12-18
Jahr der Veröffentlichung in PubData2021
Art der VeröffentlichungErstveröffentlichung
Datum der Erstveröffentlichung2021-03-10
EntstehungskontextForschung
Fakultät / AbteilungFakultät Wirtschaftswissenschaften
Alternative(r) Identifierurn:nbn:de:gbv:luen4-opus4-11263
AnmerkungenDas Rahmenpapier der kumulativen Dissertation enthält sieben Beiträge.
Verfügbar ab / seit2024-05-30T13:40:23Z
Archivierende Einrichtung Medien- und Informationszentrum (Leuphana Universität Lüneburg  02w2y2t16)
Grad-verleihende InstitutionLeuphana Universität Lüneburg
Veröffentlicht durchMedien- und Informationszentrum, Leuphana Universität Lüneburg
  Zugehörige Ressourcen
Dateien zu dieser Ressource:
Datei GrößeFormat 

Diss_2021_Becker_Dennis_Computerized.pdf
MD5: abcbcc4c4e36546628d770daed856eb2
Lizenz:  Nutzung nach Urheberrecht
open-access

4.61 MB

Adobe PDF
Öffnen/Anzeigen

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.

Ansichten
Zitationsformate
Datensatz Exporte
Zugriffsstatistik

Seitenaufruf(e): 36

Download(s): 3