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Abstract

The computational analysis and the optimization of transport and mixing pro-
cesses in fluid flows are of ongoing scientific interest. Transfer operator methods
are powerful tools for the study of these processes in dynamical systems. The
focus in this context has been mostly on closed dynamical systems and the main
applications have been geophysical flows. In this thesis, we consider transport
and mixing in closed flow systems and in open flow systems that mimic technical
mixing devices.

Via transfer operator methods, we study the coherent behavior in closed exam-
ple systems including a turbulent Rayleigh-Bénard convection flow and consider
the finite-time mixing of two fluids. We extend the transfer operator framework
to specific open flows. In particular, we study time-periodic open flow systems
with constant inflow and outflow of fluid particles and consider several example
systems. In this case, the transfer operator is represented by a transition ma-
trix of a time-homogeneous absorbing Markov chain restricted to finite transient
states. The chaotic saddle and its stable and unstable manifolds organize the
transport processes in open systems. We extract these structures directly from
leading eigenvectors of the transition matrix. For a constant source of two flu-
ids in different colors, the mass distribution in the mixer and its outlet region
converges to an invariant mixing pattern. In parameter studies, we quantify the
degree of mixing of the resulting patterns by several mixing measures.

More recently, network-based methods that construct graphs on trajectories
of fluid particles have been developed to study coherent behavior in fluid flow.
We use a method based on diffusion maps to extract organizing structures in
open example systems directly from trajectories of fluid particles and extend this
method to describe the mixing of two types of fluids.
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Zusammenfassung

Die computergestützte Analyse und Optimierung von Transport- und Misch-
prozessen in Fluidströmungen ist von anhaltendem wissenschaftlichem Interesse.
Leistungsfähige Werkzeuge für die Untersuchung dieser Prozesse in dynamischen
Systemen sind Transferoperator-Methoden. Hierbei lag der Fokus bisher wei-
testgehend auf geschlossenen dynamischen Systemen und die wesentlichen An-
wendungen waren geophysikalische Strömungen. In dieser Arbeit betrachten wir
Transport- und Mischprozesse in geschlossenen Strömungssystemen und in offe-
nen Strömungssystemen, die technische Mischvorrichtungen nachahmen.

Mit Hilfe von Transferoperator-Methoden untersuchen wir das kohärente Ver-
halten in geschlossenen Beispielsystemen, einschließlich einer zweidimensiona-
len turbulenten Rayleigh-Bénard-Konvektionsströmung, und betrachten das Mi-
schen von zwei Fluiden in endlicher Zeit. Wir erweitern das Transferoperator-
Framework für spezielle offene Systeme. Insbesondere untersuchen wir zeitperi-
odische offene Systeme mit konstantem Zu- und Abfluss von Fluidteilchen und
betrachten verschiedene Beispielsysteme. Der Transferoperator wird in diesem
Fall durch eine Übergangsmatrix einer zeithomogenen absorbierenden Markov-
kette approximiert, die auf endlich viele transiente Zustände beschränkt ist. Der
chaotische Sattel und seine stabile und instabile Mannigfaltigkeiten organisie-
ren die Transportprozesse in offenen Systemen. Wir extrahieren diese Strukturen
direkt aus führenden Eigenvektoren der Übergangsmatrix. Für eine konstante
Quelle von zwei verschiedenfarbigen Fluiden konvergiert die Massenverteilung
im Mischer und seiner Auslassregion zu einem invarianten Mischungsmuster. In
Parameterstudien bestimmen wir die Mischgüte der resultierenden Muster mit
verschiedenen Mischmaßen.

In jüngerer Zeit wurden netzwerkbasierte Methoden entwickelt, die Graphen
auf den Trajektorien von Fluidteilchen konstruieren, um das kohärente Verhal-
ten in Fluidströmungen zu untersuchen. Wir verwenden eine auf Diffusion Maps
basierende Methode, um organisierende Strukturen in offenen Beispielsystemen
direkt aus den Trajektorien von Fluidteilchen zu extrahieren, und erweitern diese
Methode, um das Mischen von zwei Arten von Fluiden zu beschreiben.
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Chapter 1.

Introduction

Transport and mixing processes in fluid flows can be observed in a wide variety of
natural and industrial systems, such as the global ocean and chemical reactors.
The interest of research ranges from modeling and analysis to optimization of
the underlying processes. This includes the understanding and identification of
different fluid regimes in the dynamics, in a wider sense for example the evolution
of oil or garbage patches in the ocean [1–3], and the enhancing of mixing in
industrial devices, such as stirred-tank reactors or microfluidic devices [4–6].

When we ignore molecular diffusion, the advection of fluid particles can be
presented by a deterministic dynamical system. Idealized fluid particles follow
passively trajectories that are solutions of

ẋ = u(x, t),

where u is a velocity field, x (∈ R3 or R2) is the position of the particle and t
is the time. If we consider the transport on a two dimensional domain X ⊂ R2

and the flow is incompressible, the velocity field u = (u1, u2) can be derived of a
stream function Ψ : X × R→ X as

u1 =
∂Ψ

∂x2
, u2 = − ∂Ψ

∂x1
.

In case the underlying velocity field u is time-dependent, the motion of the fluid
particles is in general chaotic. The concept of chaotic advection was introduced
by Aref [4] more than three decades ago. Since then, the dynamical systems
perspective on advection in fluid flow has inspired a multitude of scientific works
(see [7] for a review).

When we observe the advection of a scalar (representing for example a blob of
dye) in a closed chaotic flow, small scale structures are created by repeated actions
of stretching and folding. By taking now into account molecular diffusion, which
by itself is a very slow process, the small scale structures are then blended further
to homogeneity. In this way, chaotic advection can also be used to enhance the
mixing in microfluidic devices, where the Reynolds number is small and mixing
by turbulence is not possible [7, 8, p. 13].

Coherent structures act as organizers of the transport and mixing processes.
Over the last two decades, a number of different Lagrangian based approaches
have been proposed to detect coherent behavior in fluid flow (see [9, 10] for a
review and comparison).
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Geometric approaches aim to detect Lagrangian coherent structures (LCSs),
which are robust material lines in 2D and material surfaces in 3D that form
transport barriers and organize the remaining trajectory patterns. The concepts
are based on the construction of the Cauchy-Green strain tensor field. Ridges in
the derived finite-time Lyapunov exponent (FTLE) field [11] indicate hyperbolic
(repelling and attracting) LCSs (see [12] for further developments).

The main focus in this thesis will be probabilistic transfer operator approaches
within a set-oriented numerical framework that aim to detect maximally co-
herent regions that minimally mix with the surrounding phase space. Dellnitz
and Hohmann developed a set-oriented framework for the approximation of a
global attractor in a dynamical system [13]. Based on these ideas, Dellnitz and
Junge [14, 15] developed a transfer operator method for the approximation of
spatially fixed regions in phase space with low escape probability – so-called
almost-invariant sets – and components of invariant sets that are almost cyclically
permuted – so-called almost-cyclic sets (see also in [16,17] for further extensions).

The methods are based on the Perron-Frobenius operator, which evolves den-
sities. In a closed setting, this transfer operator is a Markov operator with spec-
trum in the unit circle. The Ulam approximation [18] of the transfer operator
generates a transition matrix of a finite-state Markov chain. An eigenvector with
unit eigenvalue corresponds to a stationary distribution. Under some assump-
tions, any initial distribution converges to this stationary distribution. The rate
of mixing is then determined by the second largest eigenvalue, which controls
the exponential rate at which an initial distribution approaches the stationary
distribution. Eigenvectors corresponding to real eigenvalues close to one contain
information about almost-invariant sets [15].

Froyland et al. [19,20] extended the transfer operator framework to the identifi-
cation of time-asymptotic and finite-time coherent sets, mobile regions that min-
imally mix with the surrounding region (see also [21,22]). Subdominant singular
vectors of numerically approximated transfer operators approximate finite-time
coherent sets.

Transfer operators contain also information about finite-time expansive behav-
ior along trajectories. The finite-time entropy (FTE) field, approximated from
the transition matrix, captures nonlinear stretching directly from the entropy
growth experienced by a small localized density evolved by the transfer opera-
tor [23]. The FTE field can be considered as a probabilistic analogy of the FTLE
field [9].

The transfer operator methods have been applied to many different dynamical
systems. Applications in fluid flows of these approaches are (mainly) geophysical
flows as oceanic [1, 24–26] and atmospheric flows [27].

The transfer operator framework relies on the addition of small amount of
diffusion. In the zero-diffusion limit, one arrives the dynamic Laplacian operator
[28]. Coherent sets can be identified by dominant eigenfunctions of this operator
and can be geometrically characterized by having boundary to volume ratios that
remain minimal under the evolution of the dynamic. The recently developed
finite-element approach [29] to approximating the dynamic Laplacian provides a
robust method for sparse trajectory data.
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Also, very recently, data-based or trajectory based approaches have been de-
veloped that consider trajectories as nodes in a network or graph, see [30–34].
These methods work also for sparse trajectory data, whereas the approximation
of the transfer operator (aside from the dynamic Laplacian) requires the compu-
tation of relatively many short trajectories. Here, we apply the numerical scheme
developed by Banisch and Koltai [34] based on diffusion maps, which generates
a Markov chain on the given trajectories. The introduced diffusion map transi-
tion matrix in this method can be considered as a data-based averaged transfer
operator and can be connected to the dynamic Laplacian.

Much research has focused on the study of closed flows but there is a small
but growing literature on open systems. The restriction of the dynamics to
certain almost-invariant sets within the transfer operator framework would lead
to open dynamical systems with small escape rates [35]. The transfer operator
method was extended to the identification of almost-invariant sets in certain open
dynamical systems containing a hole by Froyland et al. using a closing scheme
[36]. A slightly different closing technique of an open system was used in [3].
Since in many application areas for example modeling of plankton dynamics [37]
and design of industrial mixers, one as to deal with open flows, characterized by
constant in- and outflows (double-open systems), this topic remains an important
one and much remains to be done.

In open systems, chaotic advection proceeds differently than in closed system,
as typical fluid particles leave the domain in finite time and the outgoing fluid
is only partially mixed [7, 37]. Some rare fluid particles may have trapped or-
bits confined on a fractal structure with Lebesgue measure zero – this is called
the chaotic saddle [38–40]. The existence of such a chaotic saddle influences the
transport and mixing tremendously: fluid patches near its stable manifold are
transported to a neighborhood of the chaotic saddle, where they will be repeat-
edly stretched and folded before they flow out along its unstable manifold. Open
flows can also contain stable regions, so called KAM islands, from which fluid
does not escape. Whereas in closed flows the existence of KAM islands prevent
mixing to homogeneity, it can enhance mixing in open flows by holding particles
longer in the mixing region [7, 37].

Several mixing measures that quantify the degree of mixedness of a density field
have been introduced [41–44]. In open flows, residence time distributions have
been considered to measure the mixing efficiency [45]. Furthermore, the fractal
dimension of the stable (or equivalently of the unstable) manifold measures the
strength of mixing [37]. Persistent patterns or strange eigenmodes, related to
eigenfunctions of a transfer operator in the limit of small diffusivity, have been
studied for closed [46–51] and open flows [45, 52]. The derived eigenmode index
is a mixing measure in open flows [45].

Based on Sobolev space norms of negative index as the mix-norm [42], op-
timal stirring protocols were designed [6, 44, 53–56]. Optimal mixing based on
the transfer operator or its generator were considered in [57–59]. Beside these
concepts to optimize velocity fields by perturbations to enhance mixing, one can
also consider the problem of finding the optimal initial distributions for a given
system, see for example in [60].
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In this thesis, we consider transport and mixing processes of fluid particles first
in closed and then in open non-dissipate systems. We present transfer-operator
based studies in closed flows. We propose a transfer operator framework to
model and study mixing in open flows with in- and outflow and present studies
in example systems. Finally, we extend a trajectory-based method and present
studies in closed and open example systems. In more detail, the contribution of
this thesis splits into the following parts:

1. Set-oriented aspects and applications of transport and mixing in closed
systems.

� We study the robustness of almost-invariant sets and coherent sets under
a constant perturbation (windage) in the well-studied periodically forced
double gyre flow [61].

� We apply the transfer operator approach to a turbulent Rayleigh-Bénard
convection (RBC) system in a two-dimensional setting [62]. We extract
coherent sets and FTE fields, which we compare with the respective FTLE
fields. In particular, we study the robustness of the results with respect
to the numerical approximation of the transfer operator. We have already
published parts of the study of coherent behavior in [63], together with a
study of coherent behavior in a three-dimensional setting.

� We model the mixing for two types of fluids within the transfer operator
approach, describe mixing measures that can be applied in this setting and
consider mixing in the double gyre flow and the RBC system.

2. Set-oriented aspects and applications of transport and mixing in specific
open systems.

� We propose a computational approach based on transfer operators that
allows us to study transport and mixing in specific models of open flows.

In particular, we consider 2D time-periodic open systems, where a constant
inflow and outflow of mass (double-open systems) can be realized. The
domains of these systems have the form of a channel with an inlet and
outlet region and a compact mixing region. Our specific setting is inspired
by mixing devices that can be realized experimentally [45, 52, 64] and can
be seen as an idealized model of an open flow mixer.

We describe the evolution of densities by means of a substochastic transition
matrix, resulting from a finite-rank approximation of a Perron–Frobenius
operator for the open system. We use the recent description of a flux
through a Markov chain [65] to model further a constant inflow of new mass,
which leads to an affine transformation involving the numerical transfer
operator. See also [66] for related Markov chain models of mixing processes.

Additionally, the proposed framework allows us to extract the crucial or-
ganizing structures relevant for mixing, such as the chaotic saddle and its
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manifolds, as well as expected residence times from the transition matrix
with negligible additional computational effort.

� We construct open example systems by combining initially closed systems
with a background flow that transports fluid particles through a compact
phase space region where the periodic mixer acts. Here, we construct open
versions of the double gyre flow [61] and the lid-driven cavity flow [67],
which are known to exhibit extended regions of stretching and folding.

We study the underlying organizing structures (chaotic saddle and its man-
ifolds). We model transport in these systems with a given inflow distribu-
tion and study and quantify how two types of fluids for different system
parameters are mixed. In particular, the resulting limit outflow pattern
corresponding to the partially mixed fluid is a fixed point of the affine
transformation. The partially-mixed fluid can then be analyzed by means
of different established mixing measures. For the double gyre mixer we
additionally consider the influence of the constant source and examine how
the mixing quality can be quantified from the underlying structures.

We have already published the proposed framework and a part of the studies
in [68].

� As a third example system serves a model of a magnetic mixing valve [69],
where we extract organizing structures with the transfer operator method.
The mixing valve can be considered as a channel with an obstacle, which
creates a mixing region.

3. Trajectory-oriented aspects and applications of transport and mixing in
closed and open systems.

� We model mixing for two types of fluids in closed and (double) open systems
within a trajectory-based framework based on the diffusion map transition
matrix [34].

� We revisit some of the previously considered example systems within the
trajectory-based approach. We apply mixing measures in the closed double
gyre system, extract organizing structures in the (double open) double gyre
mixer and model transport (including a constant source of new trajectories)
and mixing of two types of fluids in the mixing valve and extract underlying
organizing structures.

This thesis is structured as follows:

In Chapter 2 we begin by introducing definitions and concepts from dynamical
systems theory, ergodic theory and Markov chains theory.

In Chapter 3 we describe the transport of densities in closed flows within
a transfer operator approach. We review the numerical approximation of the
transfer operator as transition matrix of a Markov chain and the extraction of
coherent structures as almost-invariant sets and coherent sets.
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In Chapter 4 we describe briefly the mixing of two types of fluids within the
set oriented framework, and discuss several measures for the quantification of
mixing, such as the variance or multiscale mix-norm.

In Chapter 5 we present our transfer operator based transport and mixing
studies in closed example flows, the double gyre flow and the two-dimensional
turbulent RBC system.

In Chapter 6 we describe the transport of densities in particular (double)
open flows within a transfer operator approach. Furthermore, we discuss the
organizers of open flow mixing, such as the chaotic saddle and its manifolds, and
their numerical approximation.

In Chapter 7 we present our transfer operator based transport and mixing
studies in open example flows, the double gyre mixer and the lid-driven-cavity
mixer and the mixing valve.

In Chapter 8 we describe transport and mixing within a trajectory-oriented
approach for closed and open flows. We describe briefly the numerical extraction
of organizing structures and the modeling and quantification of mixing of two
types of fluids. Finally, we present studies in example systems, the closed double
gyre system, the (double open) double gyre flow and the mixing valve.

We conclude this thesis with a discussion in Chapter 9.
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Chapter 2.

Basic concepts and definitions

In this chapter, we present relevant definitions and concepts from dynamical
systems theory, ergodic theory and Markov chain theory, which will serve as
reference for the following chapters. For an overview on some of the presented
concepts, we refer to the textbooks [70–74].

In Section 2.1 and Section 2.2 we introduce autonomous dynamical systems
and nonautonomous dynamical systems. Section 2.3 presents open dynamical
systems as extension of the better-known closed systems. Section 2.4 provides
measure theoretic definitions from ergodic theory. Finally, in Section 2.5 we
introduce Markov chains.

2.1. Autonomous dynamical systems

We start with the definition of an autonomous dynamical system:

Definition 2.1.1. Let (T,+) be a semigroup with neutral element 0. Let
S = {St}t∈T be a family of transformations on a manifold X ⊂ Rd. The triple
(S, X,T) is an autonomous dynamical system if

(1.) S0(x) = x for all x ∈ X;

(2.) St1+t2(x) = St1(St2(x)) for all t1, t2 ∈ T and x ∈ X; and

(3.) the mapping (t,x) 7→ St(x) is continuous;

are satisfied.

X is called the phase space and T is the time. St is the time-t-map of the
evolution S. The time T can be either continuous (R or R≥0), or discrete (Z or
N0). In the discrete case, the continuity in (t,x) in (3.) reduces to the continuity
in x.

Remark. The family of transformations S = {St}t∈T together with the func-
tion composition is a semigroup. It is a group when (T,+) is a group. In this
sense, some authors differentiate further between semi-dynamical systems and
dynamical systems (also in [70, p. 191]) but here we will call both dynamical sys-
tems. Besides, the continuity property is often omitted from the definition of a
dynamical system.
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The set O(x) := {St(x) : t ∈ T} is called trajectory or orbit for x ∈ X. If
O(x) = {x}, the trajectory is a fixed point. The trajectory is periodic if there is
a period ω > 0 such that St+ω(x) = St(x) for all t ∈ T, otherwise it is aperiodic.
If St1(x) 6= St2(x) for all t1 6= t2 with t1, t2 ∈ T, the trajectory is nonintersecting.
An aperiodic trajectory has to be nonintersecting.

Example 2.1.2. Consider a system of ordinary differential equations (ODEs)
on X

ẋ(t) = u(x(t)),

where unique solutions St(x0) := x(t) with initial value x(0) = x0 exist for all
x0 ∈ X. Then ({St}t∈R, X,R) is an example of a continuous dynamical system.

We will often consider discrete dynamical systems that are generated by the
iteration of a single transformation S:

Example 2.1.3. Let S : X → X be a homeomorphism on X and let {St : X →
X}t∈N0 be the family of mappings with

St(x) := St(x) = S ◦ . . . ◦ S︸ ︷︷ ︸
t times

(x) t ∈ N0.

Then the triple ({St}t∈N0 , X,N0) represents a (non-invertible) discrete autonomous
dynamical system. Since S is invertible we can extend the time to Z by defining

S−t(x) := S−t(x) = S−1 ◦ . . . ◦ S−1︸ ︷︷ ︸
t times

(x) t ∈ N0.

The triple ({St}t∈Z, X,Z) represents then an invertible discrete autonomous dy-
namical system.

Remark. We can naturally construct a discrete dynamical system from a system
of ODEs as in Example 2.1.2 by choosing S to be the shift map for a fixed time
τ along the trajectories, that is, S = Sτ .

A set A is called a forward invariant set if

St(A) ⊂ A for t > 0.

A set A is called a backward invariant set if

St(A) ⊂ A for t < 0.

A set that is a forward and backward invariant set is called an invariant set. In
other words, a set A is an invariant set if

St(A) = A for t ∈ T.

A fixed point A1 = {x} and a periodic trajectory A2 = {St(x) | 0 ≤ t ≤ ω} are
simple examples of invariant sets.
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In the following, let d(x,y) := ‖x − y‖ =
√∑d

i=1(xi − yi)2 denote the Eu-

clidean distance between two points x,y ∈ X ⊂ Rd. We define the distance
between a point x ∈ X and a set A ⊂ X as d(x, A) := infy∈A d(x,y).

Many invariant sets are limit sets of trajectories. The ω-limit set of x is defined
as

ω(x) = {y ∈ X | ∃ a sequence tj →∞ such that Stj (x)→ y}.

Elements of ω(x) are called ω-limit points of x.

A closed invariant set A is an attracting set if there is some neighborhood U
of A such that St(x) ∈ U for t ≥ 0 and St(x)→ A as t→∞, for all x ∈ U .

Remark. In non-disspitative (or fluid-like) systems attracting sets cannot arise.
However, we will also consider open systems, where the limit points of almost all
points lie in a hole H (relevant definitions are given in Section 2.3).

A bounded aperiodic trajectory that does not converge to a periodic trajectory
and is unstable is called a chaotic trajectory. We define a chaotic invariant set
following [72, p. 737]:

Definition 2.1.4. A compact invariant set A is a chaotic invariant set if

(1.) St(x) has sensitive dependence on initial conditions on A, that is, if there
exists an ε > 0 such that, for any x ∈ A and any neighborhood U of x,
there exists y ∈ U and t > 0 such that d(St(x), St(y)) > ε; and

(2.) A is topologically transitive, that is, if for any two open subsets U, V ⊂ A
there is a t ∈ T such that St(U) ∩ V 6= ∅.

‘Hyperbolicity’ is an important term in the development of dynamical systems
when chaotic behavior occurs.

Definition 2.1.5. Let S : X → X a diffeomorphism, generating an discrete
autonomous dynamical system as in Example 2.1.3. Let Λ be an invariant set.
A hyperbolic structure for Λ is a continuous invariant direct sum decomposition
TΛX = EuΛ ⊕ EsΛ with the property that there are constants c > 0, 0 < λ < 1
such that

(1.) if v ∈ Eux, then ‖DS−n(x)v‖ ≤ cλn‖v‖ and

(2.) if v ∈ Esx, then ‖DSn(x)v‖ ≤ cλn‖v‖.

Here, TΛX consists of all tangent vectors to X at all points of Λ and DS denotes
the derivative of S. Let TxX denote the tangent space at x ∈ λ. The direct
sum splitting holds for all for all x ∈ Λ, that is TxX = Eux ⊕ Esx is a direct sum
splitting of this vector space into subspaces with dimensions u and s (u+ s = d).
The continuity of the splitting means that Eux and Esx depend continuously on x.
The invariance means that DS(x)Eux = EuS(x) and DS(x)Esx = EsS(x). Vectors
in EsΛ are contracted by DS in forward time and vectors in EuΛ are contracted in
backward time.
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The following theorem, also known as the stable manifold theorem for hy-
perbolic sets, provides a characterization of the behavior of points close to an
invariant hyperbolic set, and leads to a characterization of the chaotic behavior
within the set. We follow the presentation by [71, p. 246]:

Theorem 2.1.6. (Hirsch and Pugh, 1970): Let Λ ⊂ X be an invariant set
with a hyperbolic structure EuΛ⊕EsΛ of a Cr diffeomorphism S. Then there is an
ε > 0 and there are two collections of differentiable manifolds W s

ε (x) and W u
ε (x),

x ∈ Λ, which have the following properties:

(1.) W s
ε (x) = {y ∈ X : d(Sj(y), Sj(x)) < ε for all j ≥ 0} and

W u
ε (x) = {y ∈ X : d(S−j(y), S−j(x)) < ε for all j ≥ 0}.

(2.) TxW
s
ε (x) = Esx and TxW

u
ε (x) = Eux.

(3.) There are constants c > 0, 0 < λ < 1 such that

d(Sj(y), Sj(x)) ≤ cλjd(x,y) for y ∈W s
ε (x), j ≥ 0, and

d(S−j(y), S−j(x)) ≤ cλjd(x,y) for y ∈W u
ε (x), j ≥ 0.

(4.) W s
ε (x) and W u

ε (x) are continuously dependent on x.

We can now define the global stable and global unstable manifolds of x ∈ Λ by

W s(x) =
⋃
j≥0

S−j(W s
ε (Sj(x))) and W u(x) =

⋃
j≥0

Sj(W u
ε (S−j(x))).

The stable and unstable manifolds of Λ are given by

W s(Λ) =
⋃
x∈Λ

W s
ε (x) and W uΛ =

⋃
x∈Λ

W u
ε (x).

In particular, they are characterized by

W s(Λ) := {y ∈ X : d(Sj(y), Sj(Λ))→ 0 for j →∞} and

W u(Λ) := {y ∈ X : d(S−j(y), S−j(Λ))→ 0 for j →∞}.

The simplest example of a hyperbolic invariant set is a hyperbolic fixed point
{x}, that is, a fixed point for which the Jacobian matix DS(x) has no eigenvalues
on the unit circle.

A more complex example is generated by the well-known Smale’s horseshoe
map, first introduced in [75]. On a square Q the map is defined by vertically
compressing the square, then stretching it horizontally, and then folding it back
onto itself, see Figure 2.1. Here, the invariant hyperbolic set is a Cantor-like set.
This map can be seen as an abstraction of the action of stretching and folding
in dynamical systems that is the cause of chaos. In [72, Chapter 23] one finds a
detailed description of a horseshoe-like map, the construction of the invariant set
and a precise description of the chaotic dynamics. However, when one considers
the dynamics only on the square Q, this is not a (closed) dynamical system as
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Figure 2.1.: One iteration of the Smale’s horseshoe map contracts the square
(left), expands it, folds it around into the shape of a horseshoe and
places it back on itself (right).

in Definition 2.1.1 (and the map is not a diffeomorphism). Instead, this can be
considered as an example of an open dynamical system, which we will introduce
in Section 2.3. It can be fixed to a closed system by extending the domain by
two half-discs, one on the left and the other on the right side of the square.

Hyperbolic invariant sets are examples of nonattracting chaotic invariant sets,
that is, a chaotic saddle. ‘Chaotic saddle’ is a newer term in the development of
dynamical systems that has become popular in the last three decades, see in [72,
p. 756] for a more detailed historical overview. A chaotic saddle has typically a
Cantor-like structure and can be hyperbolic or nonhyperbolic [76], [40, p. 83].

2.2. Nonautonomous dynamical systems

We now want to consider systems that depend not only on the elapsed time but
also on the actual time t.

For a time set T we define T2
≥ = {(t1, t0) ∈ T× T : t1 ≥ t0}.

Definition 2.2.1. We consider a transformation S : T2
≥ × X → X. We call

(S, X,T) a nonautonomous dynamical system if the following properties are sat-
isfied:

(1.) S(t0, t0,x) = x for all x ∈ X and t0 ∈ T;

(2.) S(t2, t0,x) = S(t2, t1,S(t1, t0,x)) for all (t1, t2), (t1, t0) ∈ T2
≥ and x ∈ X;

and

(3.) the mapping (t, t0,x) 7→ S(t, t0,x) is continuous.

By writing St1,t0(x) := S(t1, t0,x), we can interpret S = {St1,t0}(t1,t0)∈T2
≥

as a

family of transformations on X.

Remark. This is not the only possible way of defining a nonautonomous dynam-
ical system. In [77] two ways are presented: the above definition that followed the
definition of processes by [78] and a second common way that uses an autonomous
dynamical system as driving system, which is also used for the definition of a
random dynamical system (cf. [79]).
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Example 2.2.2. Consider a system of ordinary differential equations of the form

ẋ(t) = u(x(t), t),

where unique solutions S(t, t0,x0) := x(t) with initial value x(t0) = x0 exist for
all x0 ∈ X, t0 ∈ R. Then (S, X,R) is an example of a continuous nonautonomous
dynamical system.

Example 2.2.3. Consider

xn+1 = Sn(xn),

where Sn : Rd → Rd, n ∈ Z, are continuous mappings. The solutions are given
as

S(t, t0,x0) := St−1 ◦ . . . ◦ St0(x0)

for all t, t0 ∈ Z with t > t0 and x0 ∈ X with initial value S(t0, t0,x0) := x(t0) =
x0. The triple (S,Rd,Z) is an example of a discrete nonautonomous dynamical
system.

We often use analogue definitions from the autonomous systems for nonau-
tonomous systems. For example, A is an invariant set if

S(t, t0, A) = A for all (t, t0) ∈ T2
≥.

A less strictly definition is the following: A family of sets {At}t∈T is called
invariant if S(t, t0, At0) = At for all (t, t0) ∈ T2

≥.

2.3. Open dynamical systems

Open dynamical systems refer to systems, where trajectories can escape the phase
space through a boundary or by falling into a hole. In many real world problems
it is natural to have an open system instead of a closed system. Early work on
open dynamical systems can be found in [80], where the authors considered the
dynamics on a billiard table with a small hole.

A common way to construct an open dynamical system is the following (cf.
[81]):

Consider an autonomous dynamical system generated by transformation S on
X. We want to study the dynamics on a subset A ⊂ X for which S(A) ∩ A 6= ∅
and S(A) 6⊂ A. H = X \A is called a hole. Once a trajectory enters H, that is,
Sn(x) ∈ H, we not longer track it, it has fallen in the hole. The system that is
generated by the restriction of S to the subset A is an open dynamical system.

More generally, one could think of considering nonautonomous systems with
moving holes, see for example in [82].

We formulate the following general definition of an open dynamical system:

Definition 2.3.1. Let (S, X,T) be an autonomous (resp. nonautonomous) dy-
namical system. Let A be a subset of X (or a family of subsets {At}t∈T) that is
not forward invariant. Once trajectories enter the hole H := X \ A (resp. the
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hole Ht := X \ At at time t), we not longer track them. Let SA be the fam-
ily of transformations containing the transformations St restricted to A (resp.
transformations St,t0 restricted to At). We call (SA, A,T) an open dynamical
system.

Remark. In this thesis, we consider open systems with a relatively large ‘hole’
that is fixed in space.

For x ∈ A, the smallest n > 0 such that Sn(x) ∈ H is called its time of escape,
also referred to as survival time, residence time or killing time. An analogous
concept for an open dynamical system with holes in Markov chain theory is a
Markov chain with absorbing states, where we find matching terms, described in
Section 2.5.

2.4. Ergodic theory

In studying transport and mixing we are concerned with the evolution of densities
rather than single trajectories. Therefore, we equip the phase space X with a
Borel-structure. Let (X,B(X), µ) be a probability space, where B(X) denotes
the Borel-σ algebra of X and µ : B(X) → [0, 1] is a probability measure. This
means, µ(X) = 1 and µ is σ-additive, that is, µ(

⋃
i∈I Ai) =

∑
i∈I µ(Ai) for all

countable collections of pairwise disjoint sets {Ai}i∈I .
A transformation S : X → X is measurable if S−1(A) ∈ B(X) for all A ∈ B(X),

where S−1(A) denotes the set-theoretic inverse or preimage of A.

Definition 2.4.1. Let S : X → X be a measurable transformation.

1. S is called non-singular if µ(A) = 0 implies µ(S−1(A)) = 0 for all A ∈
B(X).

2. The measure µ is invariant under S if µ(S−1(A)) = µ(A) for all A ∈
B(X). When this holds, we also say that the transformation S is measure-
preserving.

3. A measure-preserving transformation S is ergodic if either µ(A) = 0 or
µ(A) = 1 for all invariant sets A.

4. A measure-preserving transformation S is called mixing if

lim
k→∞

µ(A1 ∩ S−k(A2)) = µ(A1)µ(A2) for all A1, A2 ∈ B(X). (2.1)

This means, that for any two measurable subsets A1 and A2 the proportion
of particles starting in A1 and ending in A2 is given asymptotically as the
product of µ(A1) and µ(A2).

Remark. The above definitions can be generalized for a family of transforma-
tions {St}t≥0 on X. For example, a family {St}t≥0 of measure-preserving trans-
formations is mixing if

lim
t→∞

µ(A1 ∩ S−1
t (A2)) = µ(A1)µ(A2) for all A1, A2 ∈ B(X).
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The evolution of a density f under a transformation S can be described by a
transfer operator:

Definition 2.4.2. Let S : X → X be a nonsingular transformation. The Perron-
Frobenius operator P̄ : L1(X)→ L1(X) corresponding to S is defined by∫

A
P̄fdµ =

∫
S−1A

fdµ for all A ∈ B(X), f ∈ L1(X). (2.2)

More on Perron-Frobenius operators can be found in [83, Chapter 3]. We will
state some of its properties in the next chapter.

Let us now consider an important definition for open dynamical systems. Con-
sider a subset A := X \H, where H is a measurable set. Let µA be a probability
measure on A.

Definition 2.4.3. µA is conditional invariant or quasi invariant under SA : A→
X if

µA(S−1(B)) = µA(B) · µA(S−1(A)) for all measurable B ⊂ A.

The factor µA(S−1(A)) describes here the proportion of mass that will stay in
A under one iterate of S. In case µA(S−1(A)) = 1, µA is an invariant measure.

2.5. Markov chains

In the next chapters, we will model the dynamics of a dynamical system by a
Markov chain. By discretizing the domain of an dynamical system, we introduce
a small amount of noise in the former deterministic system. As we will see in
the next chapter, the discretized transfer operators are transition matrices of
Markov chains. When we consider open systems, we deal with transition matri-
ces of absorbing Markov chains. This section provides the relevant background
theory from the Markov chain theory. We first introduce basic definitions, which
can be found for example in the textbook [73]. Then we define a canonical form
of a transition matrix to explore in a next step spectral properties and identify
stationary and quasi-stationary distributions. Finally, we present expected resi-
dence times, which will serve to identify organizing structures in open dynamical
systems.

2.5.1. Basic definitions

A Markov chain is a stochastic process (Yk)k∈N0 that takes values on a finite or
countable set M (state space) and has the Markov property (memorylessness),
that is,

P(Yk+1 = j | Yk = i, Yk−1 = ik−1, . . . , Y0 = i0) = P(Yk+1 = j | Yk = i).

Let now M be a finite state space. The transition matrix P̄ (k) for a given
time k ∈ N0 is the matrix that contains the entries

P̄ij(k) := P(Yk+1 = j | Yk = i).
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A Markov chain is time-homogeneous if the transition matrix P̄ (k) is the same
for all times k ∈ N0. In the following, we assume the Markov chain is time-
homogeneous and we denote the transition matrix by P̄ .

A state j is accessible or reachable from state i, denoted as i→ j, if there is a
nonzero probability to reach j after a finite number of steps when starting from
i, that is, (P̄ k)ij > 0 for some k ∈ N0. A state i is said to communicate with
state j if i→ j and j → i.

A communicating class C is a maximal set of states such that every pair of
states in C communicates with each other. A communicating class Cj is accessible
from another communicating class Ci, denoted as Ci → Cj , if there is a state in Cj
that is accessible from a state in Ci. A communicating class C that is accessible
from itself we refer to as a self-communicating class. A communicating class that
consists of more than one state is always self-communicating.

A Markov chain is said to be irreducible if it is possible to get to any state from
any state (one communicating class). If there is more than one communicating
class the Markov chain is reducible.

Remark. Consider the directed graph that is induced by the transition matrix,
the state transition diagram. In terms from graph theory, a communicating class
refers to a ‘strongly connected component’.

We now state some properties of states:

1. A state i is said to be transient if, given that we start in state i, there is a
non-zero probability that we never return to i. Otherwise it is recurrent. A
recurrent state i is said to be positive recurrent if the mean time to return
to this state is finite.

2. A state i is called an absorbing state or sink if P̄ij = 0 for all j 6= i, so in
this state mass is accumulating. A Markov chain is absorbing if every state
eventually reaches an absorbing state. All states that are nonabsorbing are
then transient.

3. A state i is essential if for all j with i→ j also j → i, and there is at least
one j with i→ j. That is, i is absorbing or i communicates with all states
that are accessible from i. Otherwise i is inessential (and hence transient).

4. A state i is periodic with period d if it is the greatest common divisor of
those k for which (P̄ k)ii > 0. If there is no periodic state the Markov chain
is called aperiodic.

Remark. As a state we can call a communicating class ‘(positive) recurrent’,
‘transient’, ‘essential’, ‘inessential’, ‘absorbing’ or ‘periodic with period d’. This
causes no problems, because these state properties are class properties, meaning
that if one state in the communicating class has one of these properties all states
in the class have the same property.

A communicating class C is called closed if P̄ij = 0 for all i ∈ C and j 6∈ C, that
it, if the class is essential.
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An irreducible Markov chain that is aperiodic and positive recurrent is ergodic.
Observe that a finite closed class is always positive recurrent. Hence, an aperiodic
irreducible Markov chain on a finite state space is ergodic.

2.5.2. Canonical form of a transition matrix

Consider a reducible Markov chain on a finite state space M = {1, ..., N} with set
of communicating classes C = {C̄1, C̄2 . . . , C̄k, C1, C2, . . . , Cr}, where C̄1, . . . , C̄k
are the essential classes and C1, . . . , Cr the inessential (transient) classes.

Assume that the states are sorted by communicating classes, that is, if i, j ∈ A,
there is no h ∈ B for which i > h > j for all A,B ∈ C with A 6= B. Further the
states are sorted such that for a state i and a state j: i > j if

1. i ∈ A and j ∈ B with A→ B for all A,B ∈ C with A 6= B, or

2. i is inessential and j is essential.

Then the N × N transition matrix P̄ has the canonical form of a general non-
negative matrix (following [73, p. 14]):

P̄ =


P̄1 0 0

. . .
...

0 P̄k 0

R P

 , P =


P1 0
...

. . .

∗ . . . Pr

 (2.3)

The diagonal blocks P̄1, . . . , P̄k denote here the (stochastic) transition matrices
restricted to the essential classes C̄1, . . . , C̄k and the blocks P1, . . . , Pr denote the
(substochastic) transition matrices restricted to the inessential classes C1, . . . , Cr.
P may have nonzero entries to the left of any of its diagonal blocks – describing
the transition probabilities between different inessential classes. The submatrix
R describes the transition probabilities between the inessential states and the
essential states.

Let us now consider the transition matrix of a reducible absorbing Markov
chain. The only essential states are then absorbing states. Let Ma = {1, . . . , N−
n} denote the set of k = N−n absorbing states and let Mtr = {N−n+1, . . . , N}
denote the set of n non-absorbing states. The canonical form of the transition
matrix of a reducible absorbing Markov chain is given as:

P̄ =

[
I 0

R P

]
, P =


P1 0
...

. . .

∗ . . . Pr

 , (2.4)

where I denotes the (N − n) × (N − n) identity matrix – this is the submatrix
of P̄ restricted to the absorbing states – and P denotes the n × n submatrix of
P̄ restricted to the non-absorbing states. Each block Pi is the transition matrix
restricted to the transient class Ci. R is now the n × (N − n) submatrix that
describes the proportions of mass that flows from the transient states to the
absorbing states.
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2.5.3. Spectrum, stationary distribution and quasi-stationary
distribution

The transition matrix P̄ is nonnegative. In case P̄ is irreducible, the well-known
Perron-Frobenius Theorem gives the spectral properties:

Theorem 2.5.1. (Perron-Frobenius Theorem). Let A be a nonnegative and ir-
reducible n × n matrix. Then A has a simple positive real eigenvalue λ (the
Frobenius-Perron eigenvalue) which is equal to its spectral radius. There are
corresponding unique (up to a scalar) left and right λ-eigenvectors w, ŵ > 0
(component-wise), that is,

wA = λw and Aŵ = λŵ.

If A is additionally aperiodic, there is no other eigenvalue with same absolute
value as λ.

Since P̄ is stochastic, it can be followed that λ = 1 and the right 1-eigenvector
ŵ is the all-ones vector. The corresponding (normalized) positive real left 1-
eigenvector w is the unique stationary distribution on M , that is,

∑
iwi = 1

and ∑
i∈M

wiP̄ij = wj .

Moreover, ∑
i∈M

wi(P̄
k)ij = wj for all k ∈ N. (2.5)

Remark. The normalized nonnegative left 1-eigenvector w defines a discrete
invariant probability measure ν on M with ν(B) :=

∑
i∈B wi, B ⊂M .

If the Markov chain is additionally aperiodic, the stationary distribution is the
limit distribution for an arbitrary initial distribution p, that is,

lim
k→∞

pP̄ k = w.

In the reducible case, P̄ has the form of a lower triangular block matrix as
in equation (2.3). The spectrum of P̄ is determined by the union of spectra of
all P̄i. Each submatrix P̄i is irreducible and has a Frobenius-Perron eigenvalue
λi. For the closed classes λi = 1 and for the inessential classes 0 ≤ λi < 1.
The nonnegative left 1-eigenvectors of P̄ are stationary distributions. For each
closed class C̄i there is a (up to scalar multiples) unique left 1-eigenvector w of
P̄ such that wj > 0 if j ∈ C̄i and wj = 0 otherwise. If w is a nonnegative left
1-eigenvector, then w is a linear combination with nonnegative coefficients of
these eigenvectors. For each closed class C̄i there is a right 1-eigenvector ŵ with
all entries for states in the respected closed communicating class are 1 and else
zero. The only closed classes of an absorbing Markov chain are the absorbing
states and the stationary distributions are restricted to these states.

Let us now consider the submatrix P of an absorbing Markov chain. P is
substochastic and has the form of a lower triangular block matrix as in equation
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(2.4), where a block Pi on the diagonal is the transition matrix for transient
communicating class Ci. Pi is irreducible and substochastic and has Frobenius-
Perron eigenvalue λi, 0 ≤ λi < 1. Classes that are not self-communicating consist
only of one single state and their blocks have eigenvalue 0. Therefore, the non-
zero part of the spectrum of P is determined by the spectrum of P restricted to
self-communicating classes (cf. [84])

Let now T denote the survival time T := inf{k ≥ 0 | Yk ∈ Ma}. The normal-
ized nonnegative left x-eigenvectors w of P are quasi-stationary distributions on
Mtr (cf. [84]), that is,

∑
iwi = 1 and

Pw(Yk = j | T > k) = wj for all j ∈Mtr, k ∈ N, (2.6)

where Pw(·) :=
∑

iwiP(· | Y0 = i). Since the chain has survived until k if Yk = j
and j ∈Mtr, the condition (2.6) can be written as

Pw(Yk = j) = Pw(T > k) · wj for all j ∈Mtr, k ∈ N. (2.7)

For more details on quasi-stationary distributions, we also refer to the book [74].

Observe that the condition (2.5) for a stationary and the condition (2.7) for
a quasi-stationary distribution differ by the factor Pw(T > k) on the right hand
side of the equation. For k = 1, this factor is the eigenvalue x, since Pw(T >
1) = wP1 = xw1 = x, where 1 denotes the all-ones vector. Thus, the eigenvalue
x is the survival probability for initial distribution w.

Remark. The normalized nonnegative left x-eigenvector w defines a discrete
quasi-invariant probability measure ν on Mtr with ν(B) :=

∑
i∈B wi, B ⊂Mtr.

Summarized results on identifying all nonnegative left eigenvectors and con-
sequently all quasi-stationary distributions can be found in [84], which we will
present in the following theorem. For this, we need an additional definition: A
class Ci is called a maximal class if λj < λi for all j 6= i such that Ci → Cj .

Theorem 2.5.2. [84]

(1.) There exists a nonnegative left x-eigenvector of P if and only if there exists
a maximal class Ci such that x = λi.

(2.) If Ci is a maximal class, then there is a (up to scalar multiples) unique
left λi-eigenvector w of P such that wj > 0 if j is accessible from Ci and
wj = 0 otherwise.

(3.) If w is a nonnegative left x-eigenvector of P , then w is a linear combination
with nonnegative coefficients of the eigenvectors defined in (2.) correspond-
ing to the maximal classes Ci with x = λi.

For the right eigenvectors we can conclude the following:

Corollary 2.5.3. (1.) There exists a nonnegative right x-eigenvector of P if
and only if there exists a maximal class Ci of P T such that x = λi.
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(2.) If Ci is a maximal class of P T , then there is a (up to scalar multiples)
unique right λi-eigenvector ŵ of P such that ŵj > 0 if Ci is accessible from
j and ŵj = 0 otherwise.

(3.) If ŵ is a nonnegative right x-eigenvector of P , then ŵ is a linear com-
bination with nonnegative coefficients of the eigenvectors defined in (2.)
corresponding to the maximal classes Ci with x = λi.

Remark. P and P T have the same communicating classes but not always the
same maximal classes.

Under some assumptions, a quasi-stationary distribution is the limiting condi-
tional distribution for an initial distribution p, that is,

lim
k→∞

Pp(Yk = j | T > k) = wj .

In the simplest case, P itself is irreducible and aperiodic, than there is a unique
quasi-stationary distribution w, which is the limiting conditional distribution for
all initial distributions p [85]. A generalization for the reducible case is presented
in [84].

Signed x-eigenvectors of P can reveal states that can be reached or can reach
a (not necessarily maximal) self-communicating class. We can relatively easily
show that states in the support of a left (or right) eigenvector corresponding to
a nonzero eigenvalue can be reached (or can reach) a self-communicating class:

Proposition 2.5.4. Let x 6= 0. If there is a left x-eigenvector w of P such
that wi > 0 or wi < 0, then a self-communicating class can reach i. If there
is a right x-eigenvector ŵ such that ŵi > 0 or ŵi < 0, then i can reach a self-
communicating class.

Proof. Let i = i1 be a state that cannot be reached from a self-communicating
class and let P be in the canonical form. Assume that there is a left eigenvector
w with wi1 6= 0 such that

wP = xw

⇔ (. . . , wi1 , ..., wi2 , . . .)P = x(. . . , wi1 , ..., wi2 , . . .).

Since i1 is not self-communicating, the corresponding block to this state is the
1 × 1 matrix Pi1i1 = 0. At least one state i2 that can reach i1 in one time
step has to be an nonzero entry wi2 . Since i2 itself cannot be reached from a
self-communicating class and is not self-communicating, there has to be a state
i3 with nonzero entry wi3 that can reach i2 and cannot be reached from a self-
communicating class, and so on. Since we have only finite states this leads to a
contradiction.

Analogously one can follow that there cannot be a right eigenvector ŵ with
ŵi 6= 0 for a state i that cannot reach a self-communicating class.

In the next example, we study the left eigenvectors when there are two self-
communicating classes. In particular, we consider the case where one of the
self-communicating classes is accessible from the other.
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Figure 2.2.: State-transition diagram (restricted to transient states) of an absorb-
ing Markov chain with two self-communicating classes.

Example 2.5.5. Consider the following toy example of an absorbing Markov
chain with transition matrix

P =



0 0 0 0 0 0
0 0 0 0 0 0
c b a 0 0 0
e 0 f d 0 0
0 0 1 0 0 0
0 0 0 1 0 0


restricted to the transient states {1, 2, 3, 4, 5, 6}, where the transition probabilities
a, b, d, e are positive and c and f are nonnegative. The corresponding state-
transition diagram is presented in Figure 2.2.

The Markov chain has two self-communicating classes C1 = {3} and C2 = {4}
with corresponding Frobenius-Perron eigenvalues a and d. All other eigenvalues
of P are zero. For a left x-eigenvector w holds:

wP = xw

⇔(w1, w2, w3, w4, w5, w6)P = x(w1, w2, w3, w4, w5, w6)

⇔(w3c+ w4e, w3b, w3a+ w4f, w4d+ w6, 0, 0) = x(w1, w2, w3, w4, w5, w6).

It follows directly that w5 = 0 and w6 = 0. Hence we have

(w3c+ w4e, w3b, w3a+ w4f, w4d, 0, 0) = x(w1, w2, w3, w4, 0, 0).

Assume now f > 0, that is, C2 → C1.

First, we consider x = a and the left a-eigenvector corresponding to the max-
imal class C1. By the above equations and since an eigenvector is by definition
nonzero, we can follow that w4 = 0 (since f > 0), w3 6= 0, w2 = b

aw3 and
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w1 = w3c (hence this entry is only nonzero if c > 0). The nonzero entries have
the same sign and the eigenvector can be chosen to be nonnegative.

Now, we consider x = d and the left d-eigenvector corresponding to class C2.

For a 6= d, we can follow w3 = w4
f
d−a . We can consider three cases:

• If a > d (only C1 is a maximal class), it follows by the above equation
that w3 and w4 have different signs. w2 has the same sign as w3. w1 has
the same sign as w4 if c = 0 or if |w4e| ≥ |w3c|. In particular, w1 = 0 if
|w4e| = |w3c|.

• If a < d (both C1 and C2 are maximal classes), it follows w3 and w4 have
the same sign and further w2 and w1 have the same sign as w3 and w4.

• If a = d (only C1 is a maximal class), it follows w4 = 0, w2 = b
aw3 and

w1 = w3c (hence this entry is only nonzero if c > 0).

This shows: In case of two self-communicating classes, there has to be no eigen-
vector w with wi 6= 0 for a state i that can be reached by a self-communicating
class. Here this is the case for state 4 (and also for state 1 if c = 0) when a = d.
The eigenvalue has algebraic multiplicity 2 and geometric multiplicity 1.

Furthermore, the eigenvector w corresponding to a non-maximal class may
not reveal all states that can be reached by the class. Here this is the case when
a > d and the state 1 is reached from both self-communicating classes with same
amount of signed mass. The entry of the d-eigenvector corresponding to state 1
is then 0.

2.5.4. Expected residence times

Let (Yk)k∈N0 be a homogeneous absorbing Makov chain and let P be the tran-
sition matrix restricted to the transient states Mtr. The expected number of
time steps the chain is in Mtr before absorption, when starting in a given state
i ∈Mtr, is given as

E(T | Y0 = i) =
∑
j∈Mtr

(I − P )−1
ij .

We call E(T | Y0 = i) the expected residence time of state i. One might also refer
to it as mean first passage time from i to an absorbing state as e.g. in [73, p. 419].
The matrix (I − P )−1 is called fundamental matrix of the absorbing Markov
chain. A derivation of the above equation can be found for example in the
textbook [86, p. 419]. In practice, we compute the expected residence times by
solving the system of linear equations

(I − P )r = 1,

where the vector r contains the entries ri := E(T | Y0 = i) and 1 denotes the
all-ones vector.
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More generally, one can compute the expected residence times for a set A of a
(not necessarily absorbing) Markov chain (Yk)k∈N0 on finite state space M (see
e.g. in [25] for an application). Let P̄A be the transition matrix P̄ restricted to
the states in A. Assume that P̄ kA → 0 as k → ∞. The expected residence time
to stay in A when starting in i is then given as∑

j∈A
(I − P̄A)−1

ij .
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Chapter 3.

Set-oriented description of transport in
closed systems

In this chapter, we address advective transport in closed flows. We follow a
probabilistic approach, which considers the evolution of sets, or, more abstractly,
densities of probability measures.

For simplicity, we assume that the flow consists of ideal fluid particles that
move passively following a given fluid velocity u(x, t) on a domain X ⊂ Rd
(d = 2 or d = 3). The particle trajectories obey the ODE

ẋ(t) = u(x(t), t), x(t0) = x0 ∈ X. (3.1)

Here, we restrict to incompressible flows, that is, with divergence ∇ · u = 0.

We now want to analyze the transport over a finite time-interval [t0, t0 + τ ] in
a closed system with compact domain M ⊂ X. In the closed case, we assume
that M is an invariant set, such that no particle starting in M can leave M and
no particle starting in X \M can enter M .

In the following, we describe the mathematical model setup for the transport
in the general case, that u is a nonautonomous velocity field, which includes the
cases of nonautonomous periodic velocity fields and autonomous velocity fields.

In Section 3.1 we therefore introduce the Perron-Frobenius operator with some
of its properties and describe its numerical approximation as transition matrix.
Finally, we consider the transport over a series of time intervals, which leads to a
homogeneous Markov chain when u is a nonautonomous periodic or autonomous
velocity field. Section 3.2 describes coherent structures that function as organiz-
ing structures and explains their numerical extraction from the transition matrix.
At the end of the chapter, a nonlinear stretching measure is presented.

3.1. Transfer operator

To describe now the transport of a closed flow on M generated by the ODE in
equation (3.1), we equip M with its Borel σ-algebra B(M) and a probability
measure µ. We choose µ to be the normalized Lebesgue measure ¯̀, that is,
¯̀(B) = `(B)

`(M) for all B ∈ B(M), where ` denotes Lebesgue measure (area or

volume) on Rd.
We define a measure-preserving transformation S : M → M with S(x0) =

x(t0 + τ) that maps a particle x(t0) ∈M to its new position x(t1) after a given
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time step τ = t1 − t0. In practice, we obtain the particle trajectories (and hence
the final positions of the particles at time t0+τ) by numerical integration methods
like the classical Runge-Kutta method.

The evolution of a probability density f ∈ L1(M, ¯̀) or more general mass
distributions f ∈ L1(M, ¯̀) such as signed densities under S can now be described
by the Perron-Frobenius operator P̄ defined by (see equation (2.2)):∫

B
P̄fd¯̀=

∫
S−1B

fd¯̀ for all B ∈ B(M).

If f now denotes a mass distribution at time t0, the pushforward P̄f describes
the mass distribution at time t0 + τ .

We summarize some properties for the above defined Perron-Frobenius opera-
tor in the following theorem:

Theorem 3.1.1. Let ‖ · ‖ denotes the L1 norm, that is, ‖f‖ :=
∫
M |f |d¯̀. The

above defined Perron-Frobenius operator P̄ satisfies:

(1.) P̄ is a linear operator:

P̄(λ1f1 + λ2f2) = λ1P̄f1 + λ2P̄f2, for all f1, f2 ∈ L1(M, ¯̀), λ1, λ2 ∈ R.

(2.) P̄f ≥ 0, for all f ≥ 0, f ∈ L1(M, ¯̀).

(3.) ‖P̄f‖ = ‖f‖ for all f ≥ 0, f ∈ L1(M, ¯̀).

(4.) P̄1M = 1M due to measure-preservation of S.

The properties (1.)-(3.) make the Perron-Frobenius operator to a Markov op-
erator. For a comprehensive overview on Markov operators and Perron-Frobenius
operators, see e.g. in [70, Chapter 3].

Using Ulam’s method [18] we obtain a finite-rank approximation of the infinite-
dimensional transfer operator P̄ as a matrix P̄ . Following [15], we partition
therefore the domain M into n connected sets Bi, i = 1, . . . , n, where Bi∩Bj = ∅
for all i 6= j, which we call boxes in the following. The proportion of mass that
is mapped from box Bi to Bj under S is given by the matrix entry

P̄ij =
¯̀(Bi ∩ S−1(Bj))

¯̀(Bi)
=
`(Bi ∩ S−1(Bj))

`(Bi)
, (3.2)

where S−1(·) denotes the preimage under S.

In practice, uniformly distributed test particles are initialized in box Bi. The
entry P̄ij of the matrix P̄ is then estimated as the proportion of these particles
that gets mapped to box Bj under the action of S.

In our applications, the domain M is a (generalized) rectangle. We use the soft-
ware package GAIO [87] for the approximation of the transfer operator, where the
partition elements Bi are obtained by successive bisectioning of M into smaller
rectangles and using a binary tree for the storage. P̄ is typically a sparse matrix.
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The matrix P̄ is row-stochastic and can be interpreted as the transition matrix
of a Markov chain on a finite state space, where the boxes Bi, i = 1, . . . , n, are
the states. In the discrete context, any n×1 row vector v0 represents now a mass
distribution on M . Probability densities are represented by probability vectors
v0 ≥ 0 (component-wise), that is,

∑
i v0,i = 1 – defining a discrete probability

measure ν by v0,i = ν(Bi). The interpretation of the P̄ -induced dynamics is that

v1 = v0P̄

is the pushforward of v0 under the discretized action of S.

Remark. The above definition and approximation of the Perron-Frobenius oper-
ator was given for the whole domain M . However, for computational reasons, in
some applications a non-global version can be useful. Assume, we want to study
the transport from a subset M1 ⊂M to a small neighborhood M2 of S(M1). The
transfer operator from M1 to M2 can be approximated by (cf. [20]):

P̄ij =
`(Bi ∩ S−1(B̃j))

`(Bi)
, (3.3)

where {B1, . . . , Bn} is a partition of M1 and {B̃1, . . . , B̃m} is a partition of
M2. The n × m matrix P̄ij is row-stochastic. When M1 = M2 = M and
{B1, . . . , Bn} = {B̃1, . . . , B̃m} we obtain the transition matrix as in equation
(3.2).

Remark. When we want to study the transport on M over a series of time
intervals [t0, t1], [t1, t2], . . . , [tk, tk+1], we can construct a family of transition ma-
trices {P̄ (i)}i=0,...,k, where P̄ (i) is the transition matrix with respect to the time
interval [ti, ti+1].

For a time-dependent (aperiodic) velocity field u, the matrices P̄ (0), P̄ (1), . . . ,
P̄ (k) are different in general. Let vi describe the mass distribution at time t = ti.
The mass distribution at time t = ti+1 is then given as

vi+1 = viP̄ (i).

Starting with the initial distribution v0, we have

vi+1 = v0P̄ (0) · P̄ (1) · . . . · P̄ (i). (3.4)

When u is now an autonomous velocity field, P̄ (i) only depends on the length
τ = ti − ti−1 of the time interval. When the length of all time intervals is the
same, we have P̄ := P̄ (0) = P̄ (1) = . . . = P̄ (k) for all time steps.

Further, when u is a time-dependent periodic velocity field with period τ , that
is, u(x, t) = u(x, t + τ), and the length of all time intervals is τ , we obtain
P̄ := P̄ (0) = P̄ (1) = . . . = P̄ (k).

In the last two cases, the equation (3.4) simplifies to

vi+1 = v0P̄
i.

We can interpret P̄ as transition matrix of a time-homogeneous Markov chain
and analyze the asymptotic behavior in terms of this Markov chain.
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3.2. Organizing structures

Coherent structures are sets in the phase space that slowly mix with their neigh-
borhood. Following [20, 88], we measure how coherent a structure is by the
coherence ratio:

Definition 3.2.1. Given a reference probability measure µ on M , the coherence
ratio for two sets A1, A2 ⊂ M quantifies the fraction of mass transported from
A1 to A2 under S and is given as

ρµ(A1, A2) :=
µ(A1 ∩ S−1(A2))

µ(A1)
.

For all sets A1, A2 ⊂ M , 0 ≤ ρµ(A1, A2) ≤ 1. The coherence ratio is 0 if no
mass flows from A1 to A2 under S and it is 1 if all of the mass of A1 flows from
A1 to A2 under S.

Consider a box-discretization {B1, . . . , Bn} of M. Let P̄ be the respective
transition matrix. For box-discrete sets A1 =

⋃
i∈I Bi and A2 =

⋃
i∈J Bi,

I, J ⊂ {1, . . . , n}, the coherence ratio is approximated as (cf. [20])

ρ̂µ(A1, A2) =

∑
i∈I,j∈J µ(Bi)P̄ij∑

i∈I µ(Bi)
. (3.5)

If A1 = A2, we also write ρµ(A1) := ρµ(A1, A1) and ρ̂µ(A1) := ρ̂µ(A1, A1).
In Subsection 3.2.1 we define autonomous coherent structures such as almost-

invariant sets [15] in terms of the coherence ratio. In Subsection 3.2.2 we turn to
nonautonomous coherent structures such as finite-time coherent sets [20]. Follow-
ing [89], we define both the autonomous and nonautonomous coherent structures
in a general time-dependent setting. We define the autonomous coherent struc-
tures for general invariant reference probability measures µ. We define coherent
sets for a general reference probability measures µ, that has not to be invariant
under S. However, in our applications, we will use the normalized Lebesgue
measure as reference probability measure µ that is invariant under S.

3.2.1. Autonomous coherent structures

Autonomous coherent structures refer to coherent structures that are fixed in
space. The simplest example of autonomous coherent structures are invariant
sets, defined in Section 2.1 and Section 2.2. Let S maps a particle at initial time
t0 to its position after a time span τ . The next definition presents a finite-time
version of an invariant set.

Definition 3.2.2. Let µ be an invariant reference probability measure on M . A
set A ⊂M is called S-invariant (cf. [24]) if

ρµ(A) =
µ(A ∩ S−1(A))

µ(A)
= 1.

That is, the set A remains unchanged under the evolution of S.
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Remark. S-invariant sets include invariant sets in autonomous or nonautono-
mous dynamical systems defined in Section 2.1 and Section 2.2. But here, S-
invariant sets can also include sets that obey the invariance principle only for that
specific transformation S that maps a particle at initial time t0 to its position
after a time span τ and not for all other initial times or time spans. A more
stricter definition was used in [24], where the invariance was considered over the
time interval [t0, t0 + τ ].

Assume that S is not ergodic and the domain decomposes into k S-invariant
sets A1, . . . , Ak that are preserved by the spatial discretization of the phase space
M . This is the case, when the boundaries of the boxes lie on the boundaries
of the invariant sets. The transition matrix P̄ is then reducible with k closed
communicating classes C̄1, . . . , C̄k, which correspond to the k invariant sets. (In
the closed setting, there cannot be transient communicating classes but only
closed communicating classes for a measure preserving S.) Hence, P̄ has a k-fold
eigenvalue 1.

The communicating classes can be extracted efficiently by using a graph-based
approach such as Tarjan’s algorithm [90].

However, in most cases the spatial discretization destroys all invariant sets
apart from the phase space M and the respective transition matrix P̄ becomes
irreducible or even ergodic. In the discretized space, A1, . . . , Ak would instead be
identified as sets with relatively large coherence ratio, so-called almost-invariant
sets:

Definition 3.2.3. Let µ be an invariant reference probability measure on M . A
set A ⊂M with µ(A) 6= 0 is called (ρ0, S)-almost-invariant (cf. [89]) if

ρµ(A) =
µ(A ∩ S−1(A))

µ(A)
= ρ0.

If A ⊂M is (ρ0, S)-almost-invariant with ρ0 ≈ 1, then the probability (accord-
ing to µ) of a trajectory leaving A at some time in [t0, t0 + τ ] and not returning
to A by time t0 + τ is relatively small. This set obey an approximate invariance
principle S(A) ≈ A. In other words, A almost retains its shape under S. Such
almost-invariant sets can be identified by means of eigenvectors of P̄ with real
eigenvalue close to one [15,22].

Remark. In [19] a ρ0-almost-invariant set is slightly stricter defined for the time
interval [t0, t0 + τ ]. To differentiate invariant sets from almost-invariant sets:
For truly invariant sets, eigenvalues converge to 1 as the number of boxes go to
∞. The eigenvalues that correspond to truly almost-invariant are bounded by a
number smaller 1.

We describe now the numerical extraction of almost-invariant sets from the
transition matrix P̄ , following [16]. In this method, one uses a time-symmetrized
transition matrix instead of directly P̄ .

An approximation of the invariant reference probability measure µ on M is
given by the left 1-eigenvector p of P̄ , where µ(Bi) = pi, i = 1, . . . , n. We form
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the transition matrix P̄R of the time-reversed Markov chain of P̄ via

P̄Rij =
pjP̄ji
pi

.

Remark. If S is volume preserving and the boxes Bi have the same size, all
entries of p are in theory equal and hence also P̄R = P̄ T .

Then we form the time-symmetric matrix

R = (P̄ + P̄R)/2.

R is a transition matrix of a reversible Markov chain with stationary distribution
p. Observe, that the coherence ratio ρ̂µ(A,A) defined in equation (3.5) does not
change if P̄ is substituted by P̄R or R.

First, we consider and restate the maximization problem and its solution to
obtain two optimal almost-invariant sets in [16]. We want to find a partition
of M into two optimal almost-invariant sets of similar measure, A and Ac, that
maximize the coherence ratio under set-oriented discretization:

max
A=

⋃
i∈I Bi,A

c=
⋃
i∈J Bi

I∪J={1,...,n},I∩J=∅

{
ρ̂µ(A) + ρ̂µ(Ac) : (µ(A)− µ(Ac))2 < ε

}
where ε is small. The constraint (µ(A) − µ(Ac))2 < ε makes sure, that the
measures of A and Ac are similar. Because of this, we drop the denominators
µ(A) =

∑
i∈I pi and µ(Ac) =

∑
i∈J pi of the coherence ratios ρ̂µ(A) and ρ̂µ(Ac)

and obtain the following problem:

max
I∪J={1,...,n},

I∩J=∅

∑
i,j∈I

piRij +
∑
i,j∈J

piRij :
(∑
i∈I

pi −
∑
i∈J

pi

)2
< ε


An equivalent minimization problem is:

min
I∪J={1,...,n},

I∩J=∅

4
(

1−
∑
i,j∈I

piRij −
∑
i,j∈J

piRij

)
:
(∑
i∈I

pi −
∑
i∈J

pi

)2
< ε


We reformulate the problem by writing the constraint into the denominator of
the cost function (cf. [16]):

min
I∪J={1,...,n},

I∩J=∅

4(1−
∑

i,j∈I piRij −
∑

i,j∈J piRij)

1− (
∑

i∈I pi −
∑

i∈J pi)
2

Consider a vector x ∈ {−1, 1}n, where entry xi = 1 for i ∈ I, that is, the
corresponding box belongs to A, and xi = −1 for i ∈ J , that is, the corresponding
box belongs to Ac. We obtain the equivalent problem (cf. [16]):

min
I∪J={1,...,n},

I∩J=∅
xi=1,i∈I
xi=−1,i∈J

∑
i,j piRij(xi − xj)2∑
i pix

2
i − (

∑
i pixi)

2
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Constructing the optimal x is a difficult combinatorial problem. By allowing the
vector to take other values than ±1, we obtain the relaxed minimization problem
(cf. [16]):

min
x is nonconstant

∑
i,j piRij(xi − xj)2∑
i pix

2
i − (

∑
i pixi)

2
.

By Rayleigh’s theorem, the above problem is solved by x = ϑ2 with value
2(1− λ2), where ϑ2 is the right eigenvector corresponding to the second largest
eigenvalue λ2 of R [16].

Remark. Since the matrix R is reversible, there exist theoretical lower and upper
bounds of the maximal coherence ratio for a box-discrete set A with µ(A) ≤ 1

2
in terms of the second largest real eigenvalue λ2 of R [16]:

1−
√

2(1− λ2) ≤ max
A=

⋃
i∈I Bi

ρ̂µ(A) ≤ 1 + λ2

2
.

The signed vector entries of ϑ2 can be interpreted as relaxations of the indicator
function of the set A and its complement. Thus the vector ϑ2 defines fuzzy
almost-invariant sets on M . We use now ϑ2 to divide the phase space M into
two almost-invariant sets, A and Ac, maximizing

ρ̂µ(A,A) + ρ̂µ(Ac, Ac), (3.6)

where A =
⋃
ϑ2,i>b

Bi and Ac =
⋃
ϑ2,i≤bBi. Choosing b = 0 will lead to two

almost-invariant sets with similar measures. When we allow the sets to have
measures that differ from 1

2 , we choose a b that maximizes (3.6). Since ϑ2 has
only finitely many entries, one can choose the optimal b = b∗ from the set of
entries {ϑ2,1, . . . , ϑ2,n} by a simple line search. The sets A =

⋃
ϑ2,i>b∗

Bi and

Ac =
⋃
ϑ2,i≤b∗ Bi are the optimal almost-invariant sets [16].

However, there are often k > 2 eigenvalues close to one (followed by a spectral
gap) whose corresponding eigenvectors highlight the location of almost-invariant
sets. To obtain a partition into k almost-invariant sets, one can use more infor-
mation from the further eigenvectors ϑ3, . . . ,ϑk of R [16]. One can postprocess
the k leading eigenvectors by a k-means clustering [91]. Alternatively, to pre-
serve the eigenspace structure, one can project the eigenvectors to a sparse basis
(SEBA) [92], where the entries of each vector denote likelihoods that the under-
lying box Bi belongs to a specific almost-invariant set (see Chapter A). Hard
assignment of boxes to sets may then be performed by thresholding [92]. The
approach to find k almost-invariant sets is summarized in Algorithm 1.

3.2.2. Nonautonomous coherent structures

Unlike autonomous coherent structures, nonautonomous coherent sets are al-
lowed to move in phase space under the evolution of S.

We define a coherent pair for a subset M1 ⊂M and a small neighborhood M2

of S(M1). For a global analysis, one chooses M = M1 = M2.
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Algorithm 1: Extracting k almost-invariant sets.

Input: irreducible transition matrix P̄ on partition B = {B1, . . . , Bn}
of M

Output: k almost-invariant sets
1 Compute fixed left eigenvector p of P̄ ;

2 Form the time-reversed matrix P̄R with entries P̄Rij =
pj P̄ji
pi

.;

3 Compute the reversible transition matrix R = (P̄ + P̄R)/2;
4 Compute k right eigenvectors ϑ1,ϑ2, . . .ϑk corresponding to the k

largest eigenvalues of R;
5 Perform a clustering as k-means or SEBA on the k eigenvectors into k

clusters;
6 Return the clustering result;

Definition 3.2.4. Let µ be a reference probability measure on M1 at time t0,
and ν the pushforward probability measure on M2 under S. A (ρ0, S)-coherent
pair (cf. [89]) is defined as a pair of sets (A1, A2), with A1 ∈ M1 and A2 ∈ M2,
such that

ρµ(A1, A2) =
µ(A1 ∩ S−1(A2))

µ(A1)
= ρ0.

and µ(A1) = ν(A2). We refer to A1 as the ρ0-coherent set at initial time and
refer to A2 as the ρ0-coherent set at final time.

Remark. Observe, that for an arbitrary set A ⊂ M of positive measure, there
is the trivially coherent pair (At0 , S(At0)) with coherence ratio ρ0 = 1. However,
such a coherent pair is not of interest for us when S(At0) is very filamented
in space. In presence of diffusion, this set will mix fast with its neighborhood.
Since the box-discretization introduces diffusion into the system, the numerical
extraction of coherent pairs that is described in the following ignores such trivially
coherent pairs.

Let B = {B1, . . . , Bn} be a partition of M1 and B̃ = {B̃1, . . . , B̃m} be a par-
tition of M2. Let P̄ be the corresponding transition matrix between M1 and
M2, defined by equation (3.3). Following [20], we now describe the numerical
extraction of optimal coherent pairs from the transition matrix P̄ .

The reference probability measure µ on M1 at time t0 is discretely represented
as a probability vector p with pi = µ(Bi), i = 1, . . . , n. The image probability
vector on M2 at time t0 + τ , representing the reference probability measure ν on
M2, is then simply computed as q = pP̄ . We assume both p > 0 and q > 0 and
form a normalized matrix L via

Lij =
piP̄ij
qj

.

This matrix has the property that 1L = 1.
Consider the inner products 〈x,y〉p =

∑n
i=1 xipiyi and 〈x,y〉q =

∑m
i=1 xiqiyi.

Let L∗ denote the dual of L satisfying 〈xL,y〉q = 〈x,yL∗〉p. Here, L∗ = P̄ T .
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We want to find two coherent pairs (A1, A2), (Ac1, A
c
2), where

A1 =
⋃
i∈I1

Bi, Ac1 =
⋃
i∈J1

Bi, A2 =
⋃
i∈I2

B̃i, Ac2 =
⋃
i∈J2

B̃i,

I1 ∪ J1 = {1, . . . , n}, I1 ∩ J1 = ∅, I2 ∪ J2 = {1, . . . ,m}, I2 ∩ J2 = ∅,

that maximize the coherence ratio under the constraint that µ(A1), µ(Ac1), ν(A2)
and ν(Ac2) are similar.

Let the vector x ∈ {−1, 1}n represent the boxes belonging to A1 respective
Ac1, that is, xi = 1 if i ∈ I1 and xi = −1 if i ∈ J1. Analogously, let vector
y ∈ {−1, 1}m represent the boxes belonging to A2 respective Ac2, that is, yi = 1
if i ∈ I2 and yi = −1 if i ∈ J2. Observe that (cf. [20])

〈Lx,y〉q =ρ̂µ(A1, A2)µ(A1) + ρ̂µ(Ac1, A
c
2)µ(Ac1)

− ρ̂µ(A1, A
c
2)µ(A1)− ρ̂µ(Ac1, A2)µ(Ac1).

Thus, we achieve a high coherence ratio for the two pairs when we maximize
〈Lx,y〉q. We consider now the maximization problem (cf. [20]):

max
x∈{−1,1}n
y∈{−1,1}m

{〈Lx,y〉q : |〈x,1〉p|, |〈y,1〉q| < ε}

for a small ε. This is again a difficult combinatorial problem. We formulate a
relaxed problem (cf. [20]):

max
x∈Rn
y∈Rm

{
〈Lx,y〉q
‖x‖p‖y‖q

: |〈x,1〉p|, |〈y,1〉q| = 0

}
,

where ‖x‖p = 〈x,x〉1/2p and ‖y‖q = 〈y,y〉1/2q . The normalization term is needed
since the vectors x and y can now take values from whole R.

As shown in [20], the problem is solved by x = ψ2 ∈ Rn and y = ϕ2 ∈ Rm,
where ψ2 is the left eigenvectors of LL∗ and ϕ2 is the left eigenvector of L∗L
to the second largest eigenvalue λ2 < 1. These two eigenvalue problems can
be turned into the task of finding leading singular values and corresponding
left and right singular vectors of a sparse matrix, which can be very efficiently
computed by iterative schemes (e.g. svds in MATLAB). Therefore, we define
the diagonal matrices Πp and Πq, where (Πp)ii = pi, i = 1, . . . , n, and (Πq)ii =
qi, i = 1, . . . ,m. We compute the left and right singular vectors ψ̃2 and ϕ̃2 to

the second largest singular value λ2 < 1 of Π
1
2
p P̄Π

− 1
2

q , which is a sparse matrix.

Then, ψ2 = ψ̃2Π
− 1

2
p and ϕ2 = ϕ̃2Π

− 1
2

q . The signed vector entries of ψ2 and
ϕ2 can be interpreted as relaxations of indicator functions of the sets A1 and
A2 and their complements. Thus the vector ψ2 defines fuzzy coherent sets on
M1, whereas ϕ2 represents their image on M2. Optimal partitions of M1 into
finite-time coherent pairs can be approximated via a line search in ψ2 and ϕ2,
allowing A1 and Ac1 to have different measures than 1

2 but making sure that
µ(A1) ≈ ν(A2) and µ(Ac1) ≈ ν(Ac2).
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As already described for the almost-invariant sets in Section 3.2.1, one can
obtain k coherent sets by clustering the leading k singular vectors corresponding
to singular values close to 1. The numerical extraction of k coherent pairs is
summarized in Algorithm 2.

Algorithm 2: Extracting k coherent pairs.

Input: transition matrix P̄ between partitions B = {B1, . . . , Bn} and
B̃ = {B̃1, . . . , B̃m} of M1 and M2

Output: k coherent pairs
1 Compute p with pi = µ(Bi), i = 1, . . . , k;
2 Compute q = pP ;
3 Define diagonal matrices (Πp)ii = pi, i = 1, . . . , n and

(Πq)ii = qi, i = 1, . . . ,m ;

4 Compute left and right singular vectors ψ̃1, . . . , ψ̃k and ϕ̃1, . . . , ϕ̃k to

the k largest singular values λ1, λ2, . . . , λk of Π
1
2
p P̄Π

− 1
2

q ;

5 Set ψi := ψ̃iΠ
− 1

2
p and ϕi := ϕ̃iΠ

− 1
2

q , i = 1, . . . , k;
6 Perform a clustering as k-means or SEBA on ψ1, . . . ,ψk into k clusters;

and return the clustering result (coherent sets at initial time);
7 Perform a clustering on ϕ1, . . . ,ϕk into k clusters; and return the

clustering result (coherent sets at final time);

3.2.3. Finite-time entropy.

Transfer operators can also be used to estimate finite-time expansive behavior
along trajectories in autonomous and nonautonomous dynamical systems. In [23]
a stretching measure has been derived using the evolution of P̄. It is based on
the concept of differential entropy h(f) = −

∫
Ω f log f d`, where Ω is the support

of the density f .
For a given initial condition x0, let fε,x0 := 1

`(Bε(x0))1Bε(x0) denote a uni-

form density supported on Bε(x0), a ball of radius ε about x0. We define an
ε-smoothing operator by

Aεf(x) :=
1

`(Bε(x))

∫
Bε(x)

f d`.

The rate of increase in entropy experienced in the ε-neighborhood of x0 over
the time span [t0, t0 + τ ] of the ε-perturbed dynamics can now be described by
(cf. [23])

FTEε(x0, t0; τ) :=
1

|τ |
[h(AεP̄fε,x0)− h(fε,x0)]. (3.7)

Several properties of FTEε and its deterministic limit limε→0 FTEε have been
derived in [23]. In particular, FTEε measures nonlinear stretching directly from
the entropy growth experienced by a small localized density evolved by the trans-
fer operator.

32



An approximation of the FTE field can be obtained very efficiently within the
set-oriented framework. Let S denote the map that transports a particle x(t0) to
its new position x(t0 + τ) and let P̄ be the transfer operator that describes the
evolution of densities under S. Let {B1, . . . , Bn} be the box discretized phase
space and let P̄ denote the corresponding finite-rank approximation of P̄. In the
discrete context, densities (which are central to the FTE-construction in equation
(3.7)) are now represented by discrete probability vectors p and the entropy of
p is simply H(p) = −

∑n
i=1 pi log pi.

Let δi be a n-tuple with a 1 in the i-th position and 0 elsewhere. Under the
assumption that all boxes in {B1, . . . , Bn} are of equal volume, the discrete FTE
of a box Bi with respect to the map S is then given by (cf. [23])

FTE(Bi, t0; τ) =
1

|τ |
H(δiP̄ ) = − 1

|τ |

n∑
j=1

P̄ij log P̄ij . (3.8)

Thus the FTE field (equation 3.7) can be very quickly approximated by using
equation (3.9) when the transition matrix P̄ has been computed.

If the dynamics are described by a time-homogeneous transition matrix P̄ ,
that is, the underlying velocity field is autonomous or time-periodic with period
τ , we use the following formula to compute the FTE field with respect to the
map Sk, k ∈ N (cf. [23]):

FTE(Bi, k) = −1

k

n∑
j=1

(P̄ k)ij log(P̄ k)ij . (3.9)

In addition, the FTE field for the backward-time dynamics can be conveniently
computed by using the backward time matrix of P̄ . When all boxes have the same
measure, this backward time matrix is the transpose of P̄ with rows normalized.
Furthermore, stretching rates for differing box volumes can be computed, see [23]
for more details.

Remark. FTE can be compared with finite-time Lyapunov exponents (FTLE)
in the deterministic limit. The FTLE field is defined as [11]

FTLE(x, t0; τ) =
1

2|τ |
log
(
λmax[(DS(x))TDS(x)]

)
,

where DS(x) denotes the Jacobean matrix of S at x and λmax[·] denotes the
largest eigenvalue. Many of the geometric approaches for the identification of
Lagrangian coherent structures (LCSs) are based on FTLE [12]. Ridges in the
FTLE field indicate barriers of transport and hence boundaries of coherent re-
gions. FTE computations showed similar results to finite-time Lyapunov expo-
nent computations [23].
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Chapter 4.

Set-oriented description of mixing

In this short chapter, we address the set-oriented modeling of mixing for two
types of fluids, advected by the same velocity field.

The term mixing has a wide range of meanings. In general, mixing describes
the intermingling of distinct fluid materials that were originally separated in
space [93].

In ergodic theory, the term mixing is defined as an asymptotic concept (see
equation (2.1)). A measure-preserving transformation S : X → X is called
mixing if for any two measurable subsets M1 and M2 the proportion of particles
starting in M1 and ending in M2 is given as the product of µ(M1) and µ(M2)
after a long time. In this sense, for example an ergodic (irreducible and aperiodic)
Markov chain is mixing.

However, in nature or technically-relevant systems as the global ocean flow
or microfluidic flows, one is often interested in the degree of mixedness after a
given time span (or how long it takes to obtain a certain degree of mixedness).
In a mixing device the fluid will be in the mixing region only for a finite time
span. Furthermore, for industrial processes, it might be of interest to consider
the mixedness for two types of fluids, when particles of the first type starting in a
given subset M1 and particles of the second type in M2. An example for a closed
system is a static mixer, where the two types should be well-mixed after a given
time span. A mixing device with constant inflow and outflow is an example for
a double open system.

Mixing processes in fluid systems are typically a combination of diffusive mix-
ing and advective mixing. Diffusive mixing or molecular diffusion is based on
the undirected motions of particles at the smallest scales. An initially inhomoge-
neous scalar field will eventually be homogenized by diffusion. Advective mixing
or stirring is based on the directed motion of a conserved scalar field as it is
advected by a known velocity vector field. Mixing alone by diffusion is a very
slow process. To obtain much faster homogenization, advection can be used to
create small-scale structures in the scalar fields, which are then quickly smoothed
by diffusion.

In the following, we address the set-oriented modeling of mixing for two types
of fluids and consider mixing measures that we can apply in our model set-up.
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Figure 4.1.: Signed mass distributions on a discretized domain.

4.1. Modeling

We consider two types of fluid materials. These types have the same properties
and are advected by the same velocity field and differ only in “color” – presented
here as blue and yellow. So, in our discrete model, the transport of both mass
distributions can be described by the same transition matrix P̄ on the box-
discretized domain (see Section 3.1 for the closed setting resp. Section 6.1 for
the open setting). Instead of following the mass distributions of the two fluids
separately, we combine the two mass distributions to one signed mass distribution
v, where the sign distinguishes the two differently-colored fluid materials. A zero
entry vi would mean that in the respective box Bi the proportion of the two types
is the same. We would consider a pattern to be perfectly mixed if the proportion
of the two types in each box is equal to the proportion of the two types initialized
into the system.

Mixing under transport by P̄ includes directly mixing by advection and indi-
rectly mixing by diffusion. Diffusion happens not over the whole trajectories but
only at the final positions of the trajectories after the discrete time step. The
transition probabilities are calculated per box. Since particles are assumed to be
uniformly spread in one box, diffusion increases with box diameter.

4.2. Quantification

We turn to the question, how to quantify the degree of mixedness of a signed
scalar field c(·) (with zero mean), or the discretized mass distribution v on a
region X after a given time step (on a subset of the domain) or in case of limit
distribution.

Figure 4.1 gives an illustration of signed mass distributions on a discretized
domain. In the first panel, all fluid material of the first color is in the upper half,
and all fluid material of the second color is in the lower half. So we would say
it is poorly mixed. From left to right the mixing quality increases. We would
consider the rightmost result to be perfectly mixed, because in each box there is
the same proportion of both fluids.

Classical mixing measures are the intensity and scale of segregation by Dankw-
erts [41]. They are first- and second order statistics of the scalar field. In [94]
three dimensions of mixing are proposed: the intensity and scale of segregation
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and the exposure, which describes the potential to reduce segregation.
A classical measure of the intensity is the variance of the scalar field (or L2-

norm for a zero-mean field). This leads to the first mixing measure in the discrete
setting:

Definition 4.2.1. The sample variance is given by

s2 =
1

n− 1

n∑
i=1

(vi − v̄)2,

where v̄ is the sample mean.

Remark. Note that in a purely advective setting, that is, without diffusion, the
variance of the scalar field is unaffected by the dynamics. However, the transfer
operator approach exhibits numerical diffusion such that the sample variance is
a meaningful measure of advective mixing in our context.

For the first and second mass distributions in Figure 4.1 the sample variance is
the same. But we would not say, that they are equally mixed. Or in other words,
we need a second measure that takes the scales or the thickness of striations into
account. That brings us to our next measure.

The semivariogram γ(h) is a measure of spatial autocorrelation and provides
information on the scales [43]. Let zi be the indicator value in box Bi, i =
1, . . . , n, that is, 1 if vi > 0 and 0 otherwise. We calculate the empirical indicator
semivariogram by the estimator

γ̂(h) =
1

2|N(h)|
∑

(Bi,Bj)∈N(h)

(zi − zj)2,

where (Bi, Bj) ∈ N(h), if the distance of the centers of Bi and Bj is h ± δ for
a bin width 2δ. The inverse of the initial slope of the variogram gives the mean
length scale [95]:

Definition 4.2.2. The mean length scale is defined as

L =
1

2

[
∂γ

∂h

]−1

h→0

.

In our parameter studies, we estimate the mean length scale using the slope of
the empirical indicator semivariogram γ̂ and take into account spatial periodicity
when appropriate.

The third measure we want to consider here is the mix-norm [42], a multiscale
measure of mixing (equivalent to a negative Sobolev norm):

Definition 4.2.3. The mix-norm φ(c) of a scalar field c(·) on a 2-dimensional
torus T 2 is defined as

φ2(c) =

∫ 1

0

∫
T 2

(∫
x∈B(p,s) c(x)µ(dx)

µ(B(p, s))

)2

µ(dp)µ(ds),

where B(p, s) is a 2-dimensional ball with center p and radius s/2.
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In the sense of the mix-norm a scalar field is considered to be well-mixed if its
averages over arbitrary open sets are uniform. The variance by itself does not
capture this property. In contrast to the L2-norm of a function, which is obtained
by integrating the square of the function over the whole space, the mix-norm is
obtained by integrating the square of average values of the function over a dense
set of subsets contained in the whole space. It hence measures the mean variance
of low-pass-filtered images of the scalar field.

For a scalar field c(·) with Fourier expansion c(x) =
∑

k cke
i2π(k·x), the mix-

norm φ(c) is given by

φ2(c) =
∑
k

1

(1 + (2π‖k‖)2)
1
2

|ck|2.
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Chapter 5.

Transport and mixing studies in closed
systems

A closed system that is mixing according to the ergodic theoretical definition (see
equation (2.1)) will lead to homogenization in the long run for two types of fluid
materials. But these systems may show almost invariant and almost periodic
behavior and contain regular sets that are characterized as phase space regions
of positive Lebesgue measure that minimally mix with their surroundings (see
Section 3.2).

In closed systems, these almost-invariant sets or coherent sets can be consid-
ered as organizers of mixing. They can act as ”(leaky) ghost rods”, where the
surrounding fluid material is stretched and folded around them and thus may
mix efficiently [67]. Respective eigenvalues of the transition matrix are strongly
connected to the mixing rate, exchange rate or escape rate. This is however
an asymptotic quantity and it does not have to say anything about the mixing
quality after a finite time step. And of course, the resulting mixing patterns for
two types of fluid materials on the whole domain would also depend on what
proportions of the two types are initialized inside these regular sets.

Whereas there are many studies that consider the transport and mixing of a
single scalar (for example a blob of dye) in chaotic and turbulent flows, there
are less that consider the mixing of two scalars. Pratt, Meiss, and Crimaldi
consider two initially distant reactive scalars (separated by a third nonreactive
fluid) in example chaotic flows, where it comes to a reaction if the scalars come
into contact. They observe that the reaction front is organized along the LCSs
and the FTLE ridges serve to locate regions of enhanced reaction [96].

In this chapter, we present applications of transport and mixing in two closed
example systems. As described in Section 3.2, eigenvectors with real eigenvalue
close to one or respectively singular vectors with singular values close to one
[15, 22] and FTE fields [23] extracted from the transition matrix identify the
underlying structures that organize the mixing processes.

In Section 5.1, we consider a well-known double gyre system. In the first part of
this section we analyze the robustness of coherent structures under deterministic
constant perturbation. This will also serve as reference for Section 7.1, where we
will open up this perturbed double gyre system. In the second part, we study
the mixing patterns of two types of fluids that we initialized on the domain of
the system and apply the mixing measures defined in Section 4.2.

In Section 5.2, we consider a turbulent 2-dimensional Rayleigh-Bénard convec-
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tion flow (RBC). In the first part we demonstrate the applicability of the transfer
operator method in this more complex flow and extract coherent sets for shorter
and longer time spans. We compare the FTE fields extracted from the transition
matrix with the FTLE fields, and the results of a k-means clustering with the
results of the sparse eigenbasis approximation (SEBA). Additionally, we consider
the robustness of the transfer operator method regarding the box-discretization.
Most of this part was already published in [63]. In the brief second part, we
initialize two types of fluids in the turbulent RBC system and study the mixing
patterns.

5.1. Double gyre flow

The chaotic double gyre flow, introduced in [61], serves as testbed in many nu-
merical studies, for example in [9,22,34,96]. That the system is actually chaotic
was formally proven in [97] by showing the existence of a horseshoe map. The
extraction of almost-invariant sets and coherent sets in the double gyre system,
can be found in [22].

0 1 2

0

1

0 1 2

0

1

Figure 5.1.: Streamlines of the double gyre flow with α = 0.5 and ε = 0.4 at t = 0
(left) and t = 0.25 (right).

The periodically perturbed double gyre flow [61] has the stream function

Ψm = −α sin(f(x, t)π) sin(πy),

where f(x, t) = ε sin(ωt)x2 + (1 − 2ε sin(ωt))x models the periodic perturbation
with amplitude ε ≥ 0 and frequency ω, and α > 0 controls the amplitude of the
rotation speed of the gyres. We fix α = 0.5 and set ω = 2π, so that the period is
τ = 1. We consider the invariant domain M = [0, 2]× [0, 1].

For ε = 0, the flow is time-independent and the phase portrait displays two
counter-rotating gyres separated by a heteroclinic orbit connecting the hyperbolic
fixed points at (1, 0) and (1, 1). For ε > 0 the separatrix moves periodically.
For ε� 1, ε is approximately the maximum displacement of the separation line
from the middle to the left or right, reached at times 0.25 and 0.75, respectively.
For large ε, more than two gyres are formed at times 0.25 and 0.75.

Streamlines of the double gyre flow on M for two different time instances t = 0
and t = 0.25 are shown in Figure 5.1, with parameters α = 0.5 and ε = 0.4.
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5.1.1. Coherent structures in the double gyre flow with windage

In this subsection, we use the double gyre flow to study the robustness of coherent
structures (described in section 3.2) under deterministic perturbation. This sort
of perturbation can be understood as wind that hits the ocean surface. Changes
in shape, size, position of the coherent structures are conceivable. Under a high
impact of wind a coherent structure could even disappear or a new coherent
structure could form. The impact of wind-induced noise on LCSs was considered
in [98].

We equip M with periodic boundaries, such that mass that would leave the
domain at x = 2 enters again at x = 0, and introduce a deterministic perturba-
tion, called windage, into our system. We consider wind with a constant velocity
in a constant direction (from left to right), modeled by a constant velocity field

Ψb = βy, ub =

(
β
0

)
, with β ≥ 0.

We call β the wind factor.

The velocity field on M under impact of the wind has the form

u(x, y, t) = ub(x, y) + um(x, y, t),

where um(x, y, t) is derived from the stream function Ψm.

We divide the domain in 216 boxes and initialize 100 test points in each box.
For different system parameters ε = 0.1, 0.2, 0.3, 0.4 combined with different wind
factors β = 0, 0.1, 0.3, 0.4, 0.5, we integrate the test points in each box with
the classical Runge-Kutta method RK4 for time-span τ = 1 and compute the
transition matrix P and the respective time-symmetrized matrix R.

We extract almost-invariant sets by using the leading eigenvectors of R. We
heuristically expect to find two gyres and the background as three dominant
almost-invariant sets in the system. The leading 10 eigenvalues of R for the dif-
ferent parameter choices are shown in Figure 5.3 (left). For almost all parameter
choices there actually is a gap after the third eigenvalue (not always the largest).
For ε = 0.3 and β = 0 there is no gap after the third eigenvalue, but a gap
arises with increasing β. Eigenvectors corresponding to the second and third
eigenvalues of R are shown in Figure 5.3 and Figure 5.4. In order to compare
the results for the different parameter choices, we apply a k-means clustering on
the leading three eigenvectors of R even if it is not the optimal choice for ε = 0.3
and β = 0. In Figure 5.5 we show the results of the clustering together with
computed coherence ratios.

For ε = 0.1 and ε = 0.2 without windage, we obtain two almost-invariant sets
(cyan and yellow clusters) that are connected and lumped. For ε = 0.1, these
clusters become smaller (by number of boxes) with increasing β with slightly
smaller coherence ratio. The positions of the clusters slightly change, meaning
there are boxes in the cluster that are not part of the clusters for β = 0. For
ε = 0.2, the cyan and yellow clusters become initially smaller (with slightly
changing positions) and then the shape changes noticeably. The yellow and cyan
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Figure 5.2.: Left: Leading 10 eigenvalues of R for time span τ = 1. Right:
Leading 10 singular values of L for time span τ = 4.5. Blue: ε = 0.1,
orange: ε = 0.2, cyan: ε = 0.3, red: ε = 0.4. Dots: β = 0, circles:
β = 0.1, stars: β = 0.3, squares: β = 0.4 crosses: β = 0.5.

β = 0 β = 0.1 β = 0.3 β = 0.4 β = 0.5

ε = 0.1

ε = 0.2

ε = 0.3

ε = 0.4

Figure 5.3.: Second eigenvectors of the time-symmetrized transition matrix R
in the double gyre system with windage for time span τ = 1 and
different parameters of ε and β.

42



β = 0 β = 0.1 β = 0.3 β = 0.4 β = 0.5

ε = 0.1

ε = 0.2

ε = 0.3

ε = 0.4

Figure 5.4.: Third eigenvectors of the time-symmetrized transition matrix R in
the double gyre system with windage for time span τ = 1 and differ-
ent parameters of ε and β.

β = 0 β = 0.1 β = 0.3 β = 0.4 β = 0.5

ε = 0.1
0.9904 0.9908 0.9981 0.9897 0.9903 0.9981 0.9886 0.9884 0.9984 0.9884 0.9873 0.9989 0.9847 0.9858 0.9991

ε = 0.2
0.9866 0.9852 0.9990 0.9858 0.9832 0.9991 0.9352 0.9362 0.9987 0.8791 0.8811 0.9944 0.8715 0.8695 0.9595

ε = 0.3
0.8937 0.9153 0.9545 0.8705 0.9327 0.9479 0.9142 0.9137 0.9158 0.8681 0.9169 0.9197 0.8993 0.8969 0.9991

ε = 0.4
0.9650 0.9680 0.9987 0.9683 0.9680 0.9983 0.9151 0.9568 0.9585 0.8847 0.9440 0.9460 0.8622 0.9356 0.9378

Figure 5.5.: Extraction of 3 clusters by using a k-means clustering on the lead-
ing eigenvectors of the time-symmetrized transition matrix R in the
double gyre system with windage for time span τ = 1 and different
parameters of ε and β.

43



sets are stretched to the left and right over the whole domain and are in parts
disconnected. (The eigenvectors of P does not show prominent lumped sets
anymore, instead highlight curve-like structures.) For β = 0.5, the coherence
ratios are relatively low.

For ε = 0.3 and β = 0, there are no prominent lumped almost-invariant sets
and the extracted clusters have relative low coherence ratios. For β = 0.5, the
cyan and yellow clusters consist both of two relatively small lumped sets that are
separated in space.

For ε = 0.4 and β = 0, the cyan and yellow clusters consist both of two lumped
sets that are separated in space. For β = 0.3, four smaller lumped sets form now
one cluster and the background is separated instead further into two clusters.
When β is increased further, the cyan cluster consists of more smaller lumped
sets.

When we consider the behavior of the extracted almost-invariant sets for the
system without windage (β = 0) in the systems with windage, the coherence
ratios of these sets decrease much more. In Figure 5.6 (left), we show as an
example the coherence ratios for the cyan colored set extracted in the system
with β = 0 in the systems with windage. Except for ε = 0.3, the extracted
almost-invariant sets looks very similar for β = 0.1. However, the coherence
ratios drop significantly. The most robust set is the cyan set for ε = 0.1. The
coherence ratio of this set drops from 0.9904 to 0.8653. The coherence ratio of
cyan set for ε = 0.2 drops from 0.9866 to 0.7116. And for the cyan set for ε = 0.4
the coherence ratio drops from 0.965 to 0.4515. Under β = 0.5 the coherence
ratio of the most robust set (ε = 0.1) is 0.415.

For a longer time-span τ = 4.5, we now want to extract coherent sets. We com-
pute the transition matrix P and the respective matrix L for the system with pa-
rameters ε = 0.1, 0.2, 0.3, 0.4 for different strength of windage β = 0, 0.1, 0.3, 0.4,
0.5. We extract coherent pairs by using a k-means clustering on the leading left
and right singular vectors of L.

Figure 5.2 (right) shows the leading 10 singular values for the different system
parameters, respective left and right singular vectors for the second and third
singular values are shown in the Figures 5.7 - 5.10. Except for ε = 0.4, there
is a noticeable gap after the third singular value. For ε = 0.4 and low wind
factor a larger gap can be observed after the fifths singular value. For ε = 0.1
the spectrum is relatively robust under the influence of β. That is also the case
for the other choices of ε and a low wind factor β = 0.1. For ε = 0.2, 0.3, 0.4
and higher wind factors, the spectrum underlies more changes (larger gaps can
be found after the fourth, fifth and sixth singular values). In order to compare
the change of the coherent sets, we extract three coherent pairs for all parameter
choices.

In Figure 5.11 are the results of a k-means clustering on the leading three left
singular vectors of L, presenting the coherent sets at initial time. Under each
image the coherence ratios of the coherent pairs are given. Figure 5.12 shows
the corresponding extracted coherent sets at final time. For ε = 0.1, the cyan
set becomes smaller with increasing wind factor. The yellow set becomes slightly
bigger for β = 0.1 and then also becomes smaller with increasing β. A change in
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Figure 5.6.: Left: We consider the cyan colored almost-invariant set extracted for
β = 0 and show the coherence ratios of this set in the systems with
windage parameter β = 0, 0.1, 0.3, 0.4. Right: We consider the cyan
colored coherent pair extracted for β = 0 and show the coherence
ratio of this pair in the system with windage. Blue: ε = 0.1, orange:
ε = 0.2, cyan: ε = 0.3, red: ε = 0.4.

β = 0 β = 0.1 β = 0.3 β = 0.4 β = 0.5

ε = 0.1

ε = 0.2

ε = 0.3

ε = 0.4

Figure 5.7.: Second left singular vectors of L in the double gyre system with
windage for time span τ = 4.5 and different parameters of ε and β.
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β = 0 β = 0.1 β = 0.3 β = 0.4 β = 0.5

ε = 0.1

ε = 0.2

ε = 0.3

ε = 0.4

Figure 5.8.: Third left singular vectors of L in the double gyre system with
windage for time span τ = 4.5 and different parameters of ε and
β.

β = 0 β = 0.1 β = 0.3 β = 0.4 β = 0.5

ε = 0.1

ε = 0.2

ε = 0.3

ε = 0.4

Figure 5.9.: Second right singular vectors of L in the double gyre system with
windage for time span τ = 4.5 and different parameters of ε and β.

β = 0 β = 0.1 β = 0.3 β = 0.4 β = 0.5

ε = 0.1

ε = 0.2

ε = 0.3

ε = 0.4

Figure 5.10.: Third right singular vectors of L in the double gyre system with
windage for time span τ = 4.5 and different parameters of ε and β.
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β = 0 β = 0.1 β = 0.3 β = 0.4 β = 0.5

ε = 0.1
0.9888 0.9912 0.9981 0.9906 0.9889 0.9978 0.9886 0.9865 0.9983 0.9849 0.9887 0.9984 0.9820 0.9891 0.9985

ε = 0.2
0.9862 0.9864 0.9987 0.9867 0.9863 0.9987 0.9818 0.9793 0.9984 0.9776 0.9780 0.9950 0.9816 0.9863 0.9485

ε = 0.3
0.9764 0.9790 0.9952 0.9748 0.9754 0.9955 0.9633 0.9688 0.9944 0.9861 0.9863 0.9567 0.9857 0.9880 0.9468

ε = 0.4
0.9864 0.9810 0.9951 0.9871 0.9813 0.9959 0.9799 0.9696 0.9929 0.9898 0.9922 0.9661 0.9871 0.9898 0.9748

Figure 5.11.: Extraction of 3 clusters by using a k-means clustering on the leading
left singular vectors of L in the double gyre system with windage
for time span τ = 4.5 and different parameters of ε and β.

β = 0 β = 0.1 β = 0.3 β = 0.4 β = 0.5

ε = 0.1

ε = 0.2

ε = 0.3

ε = 0.4

Figure 5.12.: Extraction of 3 clusters by using a k-means clustering on the leading
right singular vectors of L in the double gyre system with windage
for time span τ = 4.5 and different parameters of ε and β.
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β = 0 β = 0.1 β = 0.3 β = 0.4 β = 0.5

ε = 0.1

ε = 0.2

ε = 0.3

ε = 0.4

Figure 5.13.: Image of the indicator vector of the cyan colored coherent set ex-
tracted for β = 0 in the systems with windage parameter β =
0, 0.1, 0.3, 0.4.

the positions can be observed. For ε = 0.2 the shape of the cyan and yellow set
is stretched in space for wind factors β = 0.3 and β = 0.4. The size of the cyan
sets becomes smaller and the size of the yellow set becomes larger for β = 0.4.
For β = 0.5 the clustering result shows considerable differences. The phase space
is then partitioned in two bigger clusters and one smaller cluster. For ε = 0.3
and ε = 0.4 this happens already for β = 0.4.

The extracted coherent pairs have all relatively high coherence ratios, that
means, when we follow a mass that is supported on the coherence set at initial
time over time span τ = 4.5 it would resemble the extracted coherence set at
final time. We now want to consider the behavior of the coherent sets extracted
for the system without windage (β = 0) in the systems with windage. In Figure
5.13 we follow for each ε a mass that is supported on the extracted cyan coherent
set for β = 0 under different wind factors (evolved by the computed transition
matrices). Whereas for β = 0.1 it still shows a relatively coherent behavior, it
gets more and more filamentous with increasing β and the coherence ratio of
the original coherent pair sinks significantly. In Figure 5.6 (right) we show the
coherence ratios for the cyan colored set extracted in the system with β = 0
in the systems with windage. The coherence ratio of the most robust coherent
pair (ε = 0.1) drops to 0.8697 under wind factor β = 0.1 and is 0.3972 under
β = 0.5. The coherence ratio of the cyan set for ε = 0.2 drops more drastically.
Even under β = 0.1, where the extracted coherent set looks very similar, the
coherence ratio is only 0.683.

To sum up, the existence of a regular almost-invariant set or coherent set
appears not to be destroyed by smaller windage factors. However, when using
estimated locations of these sets, even a smaller windage factor can lead to a
significant loss of mass.
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5.1.2. Mixing of two types of fluids

We consider now the double gyre flow (without windage, β = 0) and set parame-
ter ε as 0.2, 0.3 and 0.4. We consider two different initial signed mass distributions
v0. For the first, two types of fluids are placed horizontally and for the second
vertically, and the fluid materials fill the whole domain. We set v0 in that way
that entries for boxes with fluid of the first color get the value 1 and entries for
boxes with fluid of the second color -1. We compute the mass distributions vk,
k = 1, . . . , 1000. A selection of the computed mass distributions is presented in
Figure 5.14.

The mixing patterns (as resulting from stretching and folding) are organized
by the manifolds of the unstable fixed points and almost-invariant sets. In Figure
5.15 the FTE(·, 1) and FTE(·, 5) fields in backward time for ε = 0.2 are shown.
The ridges (high stretching factors) indicate neighborhoods of the local and global
unstable manifolds of the hyperbolic trajectories. Depending on the initial dis-
tributions, the mixing patterns (Figure 5.14) are dictated by these ridges. After
a few time steps we recognize the two almost-invariant sets as blue and yellow
blobs for ε = 0.2. Around 10 times steps the remaining part around these blobs
is already very filamentous. Around 20 time steps the filaments can still be seen
but the mass distribution becomes more and more homogeneous. The two blobs
pale and becomes smaller but are still visible after 1000 time steps.

For ε = 0.3, we observe a much faster homogenization, since there are no
prominent almost-invariant sets with high coherence ratio. Already after 20 time
steps the blue and yellow structures are very pale.

For ε = 0.4, the two almost-invariant sets consist of two almost-cyclic sets
that are separated in space. This behavior can be observed when using the
horizontally placed initial distribution and the yellow and blue blobs change its
position after each time step. The regular sets can still be observed after 500
time steps but the values inside are already close to the mean. After 1000 time
steps the structures are not visible anymore.

Figure 5.16 shows the computed sample variance, relative mix-norm and mean
length scale on the whole domain for the first 40 time steps. Initially, the relative
mix-norm shows a much faster decay than the sample variance. Similar results for
the L2-norm and relative mix-norm for the chequerboard flow in a non-transfer-
operator-setting were obtained in [99]. The mean scale shows a fast decay for the
beginning time steps but after ten time steps there can be observed no monotone
decay anymore.

At initial time steps the differences between the vertically placed initial distri-
butions are stronger than the differences between the horizontally placed initial
distributions. The sample variance quantified the vertically placed for ε = 0.4
as better mixed than the horizontally for a few time steps. In general, however,
the horizontally placed initial distributions seems to have an advantage over the
vertically placed initial distributions in this example system.

Both the sample variance and mix-norm quantify the mixing patterns for ε =
0.3 as best mixed. Around 10 time steps, both the sample variance and the
relative mix-norm quantify the mixing patterns for ε = 0.2 as better mixed as
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ε = 0.2 ε = 0.3 ε = 0.4

k = 0

k = 1

k = 2

k = 3

k = 4

k = 5

k = 10

k = 20

k = 50

k = 100

k = 500

k = 1000

Figure 5.14.: Evolution of the mass distribution vk (vertical and horizontal) for
the closed double gyre mixer with parameters α = 0.5 and different
choices of ε.

for ε = 0.4. At later time steps the patterns for ε = 0.2 are worst mixed.
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Figure 5.15.: FTE(·, 1) and FTE(·, 5) fields in backward time for ε = 0.2

Figure 5.16.: Mixing measures applied to vk. Left: Sample variance. Middle:
Relative mix-norm. Right: Mean length scale. Blue: ε = 0.2,
red: ε = 0.3, green: ε = 0.4. Circles: vertically placed initial
distribution, dots: horizontally placed initial distribution.

51



5.2. Rayleigh-Bénard convection flow

This section aims to demonstrate the applicability of set-oriented framework to
more complex systems as turbulent flows. Parts of the first subsection were
already published in [63]. We study the coherent behavior in turbulent Rayleigh-
Bénard convection (RBC). RBC can be seen as idealized model of natural thermal
convection flows. In the set-up, a fluid layer is placed between two parallel solid
horizontal plates with temperature difference ∆T = Tbottom − Ttop. The lower
plate is held at a constant hot temperature Tbottom and the upper plate is held
at a constant cool temperature Ttop [100].

We consider the dynamics of the RBC in a two-dimensional closed box of
small aspect ratio Γ = Lx/H = 4 (length/height) with Prandtl number Pr = 10
close to convection in water and Rayleigh number 106. We consider the same two-
dimensional RBC system as in [62]. The data set (obtained by a direct numerical
simulation) consists of velocity and temperature fields at 512 × 128 grid points
at times t = 2000 tf , 2000.1 tf , 2000.2 tf , . . . , 2500 tf , with tf = H/uf being the
free-fall time, which is taken as the convective time unit. Time averaged velocity
and temperature fields exhibits a pair of counter-rotating circulation rolls, where
hot fluid rises in the central region and cold fluid falls near the sidewalls. Figure
5.17 (slightly changed from [62]) shows the velocity field at an instantaneous
time. The following remark provides further explanations on the RBC system.

Figure 5.17.: Instantaneous velocity field of the RBC system, changed from [62].
Hot temperatures are colored in red and cool temperature are col-
ored in blue.

Remark. Two dimensionless numbers, that govern the RBC system, are the
Prandtl number (Pr) and the Rayleigh number (Ra). The Prandtl number char-
acterizes molecular dissipation properties and is defined as Pr = ν

κ , where ν is
the kinematic viscosity and κ is the thermal diffusivity of the fluid. (The Prandtl
number is extremely small in stellar or solar convection with Pr . 10−6; it is
Pr ≈ 0.7 for atmospheric turbulence, and Pr ≈ 7 for convective motion in the
oceans.) The Rayleigh number measures the vigor of convective turbulence and

is defined as Ra = αg∆TH3

νκ , where α is the isobaric expansion coefficient and the
acceleration due to gravity g (pointed in −z direction).

The nondimensionalized RBC equations, given in the Boussinesq approxima-
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tion [100], are

∂u

∂t
+ u ·∇u = −∇p+ Tez +

√
Pr

Ra
∇2u, (5.1)

∂θ

∂t
+ u ·∇θ = uz +

1√
Pr Ra

∇2θ, (5.2)

∇ · u = 0, (5.3)

where u = (ux, uz) is the velocity field, θ is the temperature fluctuation field
and p is the pressure fluctuation field. The temperature fluctuations θ are devi-
ations from the linear conductive (equilibrium) profile and related to the total
temperature field S via

T (x, z, t) = Tbottom −
∆T

H
z + θ(x, z, t).

Equations (5.1–5.3) are nondimensionalized using the height H (distance be-
tween the two plates) as the length scale, the free-fall velocity uf =

√
αg∆TH as

the velocity scale, and the temperature difference ∆T as the temperature scale.
Equations (5.1–5.3) are solved for Pr = 10 and Ra = 106 in a two-dimensional
box of aspect ratio Γ = Lx/H = 4 subject to appropriate boundary conditions.
Stress-free boundary conditions for the velocity field are applied at all walls and
the side walls have Neumann boundary conditions, ∂T/∂n = 0. The computa-
tional details can be found in [62].

5.2.1. Extraction of organizing structures

We now use the computed velocity field u of the data set to set up the transi-
tion matrix P . Therefore, we partition the domain X = [0, 4] × [0, 1] in square
boxes. We consider a coarse box discretization with 212 boxes and a finer box
discretization with 216 boxes to study the robustness of the transfer operator
method regarding the number of boxes. In addition to the results in [63], we
consider here also an increased number of test points for the finer box discretiza-
tion to study further the influence of number of test points. We initialize 16 test
points in each box on a uniform grid for both box discretizations and initialize
now also 100 test points for the finer box discretization. We integrate the test
points by the RK4 method (using spatial interpolation of the velocities by cubic
splines) from initial time 2000 tf over time span τ . As in [62] we consider the
two different cases: τ = 20 tf , which is the average turnover time for a tracer for
this setting, and a longer time span τ = 200 tf .

In the following, we will first compare the finite-time entropy (FTE) extracted
from the transition matrix (as described in section 3.2.3) with finite time Lya-
punov exponents (FTLE), and the results of a k-means clustering with the results
of the sparse eigenbasis approximation (SEBA) using the finer box discretization
and 100 test points per box. Afterwords, we consider the influence of the box
discretization and number of test points.

Figure 5.18 shows the computed forward time FTE fields (for the fine box
discretization and 100 test points per box) and FTLE fields. The FTE field for
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Figure 5.18.: Forward time FTE field for 216 boxes (top left) and FTLE field
(bottom left) computed over the short time interval [2000, 2020].
Forward time FTE field for 216 boxes and 100 test points per box
(top right) and FTLE field (bottom right) computed over the long
time interval [2000, 2200]. Dark regions are characterized by large
stretching and correspond to dominant transport barriers.

the short time span τ = 20 tf visualizes the major transport barrier separating the
two convection roles. The FTE field has large values in the box center where hot
fluid rises and also at the boundaries, where cold fluid falls, and thus where the
main heat transport takes place. The FTE field for the long time span τ = 200 tf
highlights extended regions of strong stretching, which fill the space apart from
the gyre cores, which appear to have decreased in size considerably and have
developed into more filamentary shapes. The FTE fields are very similarly with
the computed FTLE fields.

For the extraction of coherent sets, we compute the leading left and right sin-
gular vectors of the modified transition matrix L. Figure 5.20 shows the singular
vectors for the short time span τ = 20 tf . The second singular vectors identify
the left-right division induced by the major transport barrier and highlight the
two different gyres. The third singular vectors distinguish the two gyre cores
from the background flow. Further singular vectors as the fourth subdivide the
gyre cores into smaller structures. This has also been observed in [62].

There is a spectral gap after the second singular value (Figure 5.19). However,
in order to extract the apparently three dominant coherent pairs (two gyres and
background) from the leading singular vectors, we apply a standard k-means
algorithm to the three leading singular vectors. Figure 5.21 shows the clustering
result using the three leading left singular vectors (presenting the coherent sets at
initial time) and the three leading right singular vectors (presenting the coherent
sets at final time). The two gyre cores are separated from the background flow,
where most of the heat transport takes place.

As an alternative to the hard-clustering resulting from k-means for the initial
time, we use SEBA [92] to find a sparse basis representation of the space spanned
by the leading three left singular vectors. The results are shown in Figure 5.22.
Two of the resulting sparse vectors are supported on each the gyre cores, and
one sparse vector is supported on the background flow region. A superposition of
the three vectors reveals in black a particularly incoherent (well mixing) region
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Figure 5.19.: Leading 12 singular values of the modified transition matrix cal-
culated over the short time interval (left) and long time interval
(right) for 216 boxes and 100 test points per box (stars), 216 boxes
and 16 test points per box (filled dots) and 212 boxes and 16 test
points per box (circles).

Figure 5.20.: Left singular vectors ψ2, ψ3, ψ4 of the modified transition matrix L
and corresponding right singular vectors ϕ2, ϕ3, ϕ4 (right column).
Here the short time interval [2000, 2020], 216 boxes and 100 test
points per box are used for setting up the transition matrix.
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Figure 5.21.: Extracted coherent sets at initial time (left) and final time (right)
for the short time interval [2000, 2020] via an application of the
standard k-means algorithm on the first three left singular vectors
respective first three right singular vectors. Here 216 boxes and 100
test points per box are used.

Figure 5.22.: SEBA applied to the first three left singular vectors, 216 boxes and
100 test points per box, time interval [2000, 2020]. The upper row
shows two of the output sparse vectors. Lower left shows the third
output sparse vector and lower right shows the superposition of the
three sparse vectors, revealing an incoherent region in black.

separating the two gyres from the background flow. We note that the results are
comparable to those in [62].

Figure 5.23 shows leading singular vectors for the long time span τ = 200 tf .
As in the FTE and FTLE fields, we observe a shrinking and filamentation of
the gyre cores in the leading left and right singular vectors. While the second
singular vectors (top row) are analogous to those of the short time study, the
third singular vectors (second row) appear to further subdivide the right gyre.
This has also been observed in previous studies [62].

As there is a spectral gap after the fourth singular value (Figure 5.19), we use
the corresponding four leading left singular vectors for postprocessing. Applying
k-means (Figure 5.24) and SEBA (Figure 5.25, bottom) results in the identifica-
tion of three very small gyre cores and the background flow. The SEBA result
highlights here further a more coherent part of the background flow and shows
again a particularly incoherent region that separates the gyres cores from the
background flow.

The results for using less test points and for the coarse box coverings, are
shown in Figures C.1- C.8 in appendix C. The computed singular vectors for the
two different test point numbers and box coverings are very similar and highlight
the same structures, indicating that the computational results are very robust.
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Figure 5.23.: Left singular vectors ψ2, ψ3, ψ4 of the modified transition matrix L
and corresponding right singular vectors ϕ2, ϕ3, ϕ4 (right column).
Here the long time interval [2000, 2200] and 216 boxes and 100 test
points per box are used for setting up the transition matrix.

Figure 5.24.: Extracted coherent sets at initial time (left) and final time (right)
for the long time interval [2000, 2200] via an application of the stan-
dard k-means algorithm on the first three left singular vectors re-
spective first three right singular vectors. Here 216 boxes and 100
test points per box are used.

Figure 5.25.: SEBA applied to the first four left singular vectors, 216 boxes and
100 test points per box, time interval [2000, 2200]. The first and
second row show the four output sparse vectors. The third row the
superposition of the four sparse vectors.
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The computed FTE fields are in agreement with the FTE field for the finer box
discretization and 100 test points per box. However, in particular for the long
time interval, using 100 test points provides a more detailed smoother result.

Comparing the k-means results of both finer box discretizations with different
number of test points, we observe that the results are very similar but the shape
of the coherent sets is slightly different. (The coherence ratio is slightly improved
using 100 test points.) The extracted coherent pairs for the coarse box covering
highlights the same coherent sets. Comparing the SEBA results for the short
time interval of both finer box discretizations with different number of test points,
we observe again that the extracted coherent sets look very similar but have a
slightly different shape. For the long time interval the SEBA results show more
considerable differences. When one uses 16 test points, only the three gyre cores
are highlighted. Using 100 test point provides a more detailed result of the
background flow.

We studied the robustness of the coherent sets computations via k-means for
another example system, the Bickley jet flow, in a conference paper [101], where
we varied both the number of boxes and number of test points that are initialized
in each box. We obtained reliable results even when both the number of boxes and
the number of test points were reduced significantly. When the number of test
points or boxes is decreased, the singular values decrease. The number of boxes
had a larger impact on the spectrum than the number of test points. However,
existing gaps in the leading singular vectors appears to be very robust, which
we can also observe in Figure 5.19. When changing the number of boxes, the
distances between the leading singular values appear to be scaled by a constant.

These studies of coherent behavior in a Rayleigh-Bénard convection flow can
be extended to the three-dimensional case, which we did in [63].

5.2.2. Mixing of two types of fluids

We now consider two different initial distributions v0 on the domain of the RBC
flow, where two types of fluids are placed horizontally and vertically. We set
v0 in that way that entries for boxes with fluid of the first color get the value
1 and entries for boxes with fluid of the second color get the value −1. As in
the previous subsection, we use the computed transition matrices for the short
(τ = 20 tf ) and long (τ = 200 tf ) time interval. Figure 5.26 shows the evolution
of two mass distributions by the respective transition matrix using the finer box
discretization and 100 test points per box. In Figure 5.27 the respective FTE
fields in backward time are shown, whose ridges coincide with separating lines in
the mixing patterns.

After the short time span, the vertically placed two types of colors reveal
the major transport barrier between the two gyres. For the horizontally placed
colors, we observe that the blue fluid from the bottom has risen to the top and
the yellow fluid has been transported from the top to the bottom.

As expected, there is less transport and mixing from left to right: After the
long time interval, the vertically initialized colors lead to two larger blobs of blue
and yellow. The horizontally placed colors show a better mixing result after this
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Figure 5.26.: Evolution of two signed mass distributions in the RBC system.

Figure 5.27.: FTE fields in backward time computed for the short time interval
[2000, 2020] and long time interval [2000, 2200].

time span by sight. Here we observe more filaments of the other color in the
less mixed region. This is with in agreement with the mixing measures sample
variance, mix-norm and mean length scale (see Table C.1 in the appendix C).

Resulting mixing patterns for the finer box discretization and less test points
and the coarser box discretization are shown in Figure C.9 in the appendix C.
When using only 16 test points per box, the mixing patterns show a less smooth
coloring. After the short time interval the sample variance is even higher than 1,
since due to numerical inaccuracies many entries of the mass distributions have
absolute values higher 1. The mix-norm appears here to be the most robust
mixing measure when changing the number of test points and boxes. This is in
agreement with the results in [68], where we have studied the influence of the
discretization more systematically in a parameter study in an open system.
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Chapter 6.

Set-oriented description of transport in
open systems

In this chapter, we consider the transport and mixing in open flows. In particular,
we consider the dynamics of a flow map S : X → X that is defined on an infinite
strip X ⊂ R2, where X can be divided into three regions: a background flow
transports particles from an unbounded unmixed region X1 into an unbounded
mixed region X3 after passing a bounded mixing region X2 (Figure 6.1).

In Section 6.1, we give a formal set-oriented description of the transport in
these types of open systems. In Section 6.2, we formally consider the transport
in an double-open system, where additionally new mass constantly flows into
the system. In Section 6.3, we describe the organizing structures that can be
detected in these open systems.

Parts of this chapter were already published in [68].

6.1. Conditional transfer operator

Consider an infinite strip X ⊂ R2. We assume that the underlying velocity field
on X divides the domain into three regions: an unbounded unmixed region X1,
a bounded mixing region X2 and unbounded mixed region X3. A background
flow transports particles from X1 into the mixing region X2 and from X2 finally
into X3. (Figure 6.1).

Figure 6.1.: Shematic representation of the dynamics on an infinite strip X that
is divided into an unmixed region X1, a mixing region X2 and an
mixed region X3.
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Let flow map S : X → X describe the transport of a single particle on X from
time t0 to t0 + τ .

We want to describe the mass evolution on an open subsystem with domain A,
where A contains an inlet flow region A1 ⊂ X1 and an outlet flow region A3 ⊂ X3

as well as the mixing region A2 = X2. We define our compact, connected domain
A = A1 ∪A2 ∪A3 in the following way. Particles in the unmixed region A1 ⊂ X1

enter the mixing region A2 in one time step τ . In most examples, we then choose
the set A3 ⊂ X3 to be of the same size as A1 such that the particles in A3 leave
the domain of the open system in one time step.

Let SA : A → X be the restriction of S on A ⊂ X and let `A be normalized
Lebesgue measure on A, that is, `A(B) = `(B)

`(A) for all B ∈ B(A). We can formally

write SA : (A,B(A), `A) → (X,B(X), `A). By construction A is not invariant
under the action of the flow map, that is, SA(A) 6⊂ A and S−1

A (A) 6⊂ A, as some
mass leaves A under iteration of SA and S−1

A .
Analogously to the closed case, we can define a conditional transfer operator

(cf. [35, 36,81]):
P : L1(A)→ L1(A),

via ∫
B
Pfd`A =

∫
S−1B

fd`A for all B ∈ B(A).

Due to the leakage out of A, we have ‖P1A‖ < 1.
The numerical approximation of P in terms of a transition matrix P can be

derived in a similar manner as in the closed case. Let now the set A be partitioned
into n sets Bi, i = 1, . . . , n, where Bi ∩Bj = ∅ for all i 6= j and form the matrix

Pij =
`A(Bi ∩ S−1

A (Bj))

`A(Bi)
=
`A(Bi ∩ S−1(Bj))

`A(Bi)
=
`(Bi ∩ S−1(Bj))

`(Bi)
. (6.1)

The evolution of a (signed) density can be again represented by the discrete
push-forward of a vector v0 ∈ Rn via v1 = v0P .

Unlike in the closed case, P is no longer row-stochastic but row-substochastic
as there is constant outflow of mass.

We can extend P to a stochastic matrix P̄ on state space B = {Bi, i =
1, . . . n, n + 1 . . . , N} by adding N − n absorbing states that model states that
are not in the domain A in X3. Since we are not really interested in states outside
of the domain A, we model them as finite absorbing states.

Under the assumption that all particles can (eventually) leave A and reach an
absorbing state, the matrix P̄ can be considered as the transition matrix of an
absorbing Markov chain and the states in Bt = {Bi, i = 1, . . . , n} are the transient
states. Hence, the transition matrix P can be interpreted as the restriction of a
transition matrix of an absorbing Markov chain to finite transient states.

Remark. As for the closed systems, nonautonomous time-periodic velocity fields
with period τ or autonomous velocity fields will lead to a time-homogeneous
Markov chain when calculating the transition matrices for a series of time inter-
vals with length τ .
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6.2. Transport in double-open systems

We now extend the open system to a double-open system with constant inflow
and outflow of mass. Therefore, we describe the evolution of a mass distribution
in the open system by a flux through a Markov chain (cf. [65]).

In the transfer operator framework, the evolution of the density f over A
under S with additional constant inflow can be described by an affine operator:
L1(A)→ L1(A), defined by

Pf + ς,

where P is the conditional Perron-Frobenius operator and density ς describes the
new mass that is released into the system after time step τ .

We now consider the transition matrix obtained from a finite-rank approxi-
mation of the conditional transfer operator. Let Bt = {Bi, i = 1, . . . , n} be a
partition of A. Let the n × n transition matrix P contain the transition prob-
abilities between the states for a discrete time step of length τ . Then P is
substochastic and describes the mass evolution on a system with outflow, just
like the transition matrix of the open system SA : A→ X introduced in Section
6.1.

Since A is a subset of an infinite strip X, we now also want to take into account
new mass that comes into our domain A. We model the constant source via the
mass distribution σ over Bt that is injected to the system at every time step τ .
A state Bi is called source state if σi 6= 0. In our set-up, we model boxes that
are on A1 as source states.

Now let v0 denote the box-discretized initial mass distribution on A. The mass
distribution v1 after a time step of length τ is given by

v1 = v0P + σ.

In the following, we assume, that the underlying velocity field on the infinite
strip X is time-periodic with time-period τ (or autonomous) and a constant
amount of mass enters the domain A of the open system over time. When we fix
the length of all further time steps k ∈ N as time period of the velocity field, we
obtain a time-homogeneous Markov chain with P as transition matrix restricted
to the states in A.

Let vk denote the mass distribution after k ∈ N0 time steps of length τ . The
mass distribution vk after k time step of length τ is given by

vk = vk−1P + σ

or – starting with the initial distribution v0 – by

vk = v0P
k + σ(P k−1 + P k−2 + . . .+ I).

Under the assumption, that all states in A are transient, |λi| < 1 for each eigen-
value λi of P . Then, the term v0P

k tends to 0 and the geometric series of
matrices converges. Hence the mass distribution converges to the product of the
source distribution and the fundamental matrix:

vinv := lim
k→∞

vk = σ(I − P )−1.
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The invariant mass distribution vinv satisfies

vinv = vinvP + σ

and is therefore a fixed point of an affine transformation and thus solves the
linear equation (I − P )vinv = σ. The invariant mass distribution depends on
both the transition matrix and the source distribution. The leading eigenvalue
λ1 of P controls the exponential rate at which vk approaches the invariant mass
distribution and the difference vk − vinv is approximately in the direction of the
corresponding left eigenvector [65].

Remark. We have focused above on the case of a time-homogeneous Markov
chain and a constant source. Further, one can consider the following cases:

1. Time-homogeneous Markov chain and a time-periodic source: In this case,
the asymptotic mass distribution oscillates with the same period as the
source between different asymptotic values (see in [65] for the details).

2. Time-homogeneous Markov chain and time-dependent source: Let σ(k)
denote the source for time k ∈ N0. The mass distribution vk is then given
by

vk+1 = vkP + σ(k).

In general, there is no asymptotic value for the mass distribution. Under
the assumption of transience, very early source distributions will eventually
loose their influence on the mass distribution.

3. Time-periodic Markov chain and a constant source: In this case, the asymp-
totic mass distribution oscillates similarly as in (1.) with the same period as
the time-period of the Markov chain between different asymptotic values.

Let us first derive the values for Markov chain with time-period 2, that is,
the transition matrix is given as P0 for all even times and as P1 for all odd
times. Let the initial distribution be v0 = 0. The mass distributions at the
following times are then v1 = σ, v2 = σP1 + σ, v3 = σP1P0 + σP0 + σ,
v4 = σP1P0P1 + σP0P1 + σP1 + σ, and so on.

For the even times the mass distribution converges to

veven = σ(I + P1 + P0P1 + P1P0P1 + P0P1P0P1 + P1P0P1P0P1 + . . .)

= σ(I + P0P1 + (P0P1)2 + . . .) + σP1(I + P0P1 + (P0P1)2 + . . .)

= (σ + σP1)(1− P0P1)−1

and for the odd times to

vodd = σ(I + P0 + P1P0 + P0P1P0 + P1P0P1P0 + P0P1P0P1P0 + . . .)

= (σ + σP0)(1− P1P0)−1.

under the assumption of transience.
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When now the Markov chain has time-period r with transition matrices
P0, P1, . . . , Pr−1, the asymptotic mass distribution oscillates between the
values

v[i] = (σ + σPπi(1)Pπi(2) . . . Pπi(r−1) + σPπi(2) . . . Pπi(r−1) + . . .σPπi(r−1))

·(1− Pπi(0)Pπi(1) . . . Pπi(r−1))
−1, i = 1, 2, . . . , r,

where πi(x) = x+ imod r.

4. Time-dependent Markov chain and constant source: Let P (k) denote the
transition matrix for time k ∈ N0. The mass distribution vk is given by

vk+1 = vkP (k) + σ.

As in (2.) there is in general no asymptotic mass distribution and the mass
distribution can only be considered at finite times.

5. To complete this list, one could consider a combination of a time-periodic
Markov-chain and a time-periodic source and the combination of a time-
dependent Markov chain and a time-dependent source.

6.3. Organizing structures

A chaotic saddle (or nonattracting chaotic invariant set) C ⊂ A is an invariant
set of the open system SA : A → X (that is, SA(C) = C) that contains a dense
chaotic orbit. Trajectories in C thus never escape the mixing region. The stable
manifold SC contains trapped trajectories that converge towards the chaotic
saddle in forward time. The unstable manifold UC contains trajectories that
converge to the chaotic saddle in backward time. It follows that SC is forward
invariant (SA(SC) ⊂ SC) and UC is a backward invariant set (S−1

A (UC) ⊂ UC).

While the chaotic saddle and its manifolds have Lebesgue measure zero, they
still have a profound impact on the finite-time mixing properties of the flow. In
particular, particles near the stable manifold of the chaotic saddle stay longer
in the system and follow the unstable manifold on their way out. Therefore the
geometry and fractal dimension of these structures has been studied and related
to the mixing properties of the flow [7,38,40,102].

Open flow systems can also contain islands of positive Lebesgue measure (in-
variant sets that contain stable orbits) in the mixing region, where material is
trapped forever and no material from outside of these islands gets inside. Fur-
ther, one can consider almost-invariant sets and coherent sets, as defined for
closed systems in Section 3.2.

We refer to the chaotic saddle, its manifolds, and to islands collectively as
invariant phase-space structures. Here, we focus on the extraction of invariant
phase-space structures or almost-invariant sets.
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Numerical extraction of organizing structures from the transition matrix P .
The invariant phase-space structures that organize mixing will be extracted di-
rectly from the n × n transition matrix P , defined in Section 6.1. Recall that
the region of interest A ⊂ X is discretized by boxes {B1, . . . , Bn}, and Pij gives
the conditional probability that a randomly selected point in Bi has its image
in Bj . In the general case there is more than one communicating class (P is
reducible). Assume, without loss of generality, that P is in the canonical form
(see equation (2.4)), that is, P has the form of a block-lower-triangular matrix,
where the blocks P1, . . . , Pr describe the transition probabilities restricted to the
(transient) communicating classes C1, . . . , Cr of the Markov chain. In Section
2.5.3 we have described the spectrum and the set of nonnegative eigenvectors
(and their meaning) of a substochastic transition matrix P .

We now relate the phase-space structures of interest, which are approximately
represented by unions of boxes, to states and classes in the Markov chain defined
in terms of P . It is clear that those sets of boxes in the discretization of the
domain A that correspond to self-communicating classes can trap particles (by
definition there is a nonzero probability to stay in the respective set of boxes) and
thus play a crucial role in mixing. In particular, they can either reveal a chaotic
saddle or an (almost-)invariant set with positive Lebesgue measure. In practice,
the self-communicating classes of P can be found by graph-based approaches
such as Tarjan’s algorithm [90].

In the following, we describe an alternative approach based on the spectrum
of P . The set of particles that stay in A for all times can be computed as A∞ =⋂
k∈N S

k
A(A), which is a backward-invariant set [13]. In the open flow literature

[7,38,40,102], A∞ corresponds to the unstable manifold when A contains a chaotic
saddle. Now let w0 = 1

n1 and consider wk+1 = wkP , where wk is normalized
at each step. Then it is intuitively clear that the limiting vector (that is, w∞,
which could also be obtained in terms of an eigenvector of P ) is supported on
A∞. Similarly, when P T is considered, the limiting vector is supported on the
stable manifold.

We now make this intuitive notion more precise using Theorem 2.5.2. With P
sorted into blocks P1, . . . , Pr as above, let λi denote the eigenvalue of Pi with
largest real part – the Frobenius-Perron eigenvalue. The eigenvalue λi is real and
nonnegative. A class is called a maximal class if λj < λi for all j 6= i such that Cj
is accessible from Ci. There exists a nonnegative real left λi-eigenvector w of the
substochastic transition matrix P if and only if Ci is a maximal class, where the
support of w corresponds to states that are accessible from the respective class.
A nonnegative left λi-eigenvector w is a linear combination of eigenvectors with
this property corresponding to maximal classes with the same eigenvalue. The
nonnegative left λi-eigenvectors w correspond to quasi-stationary distributions,
that is, w is invariant under time evolution conditioned on absorption not yet
having taken place.

An analogous result holds for nonnegative right λi-eigenvectors ŵ of P (see
Corollary 2.5.3). Here the respective classes are maximal classes of P T and are
reachable by the states in the support of the right eigenvector.

A single self-communicating class, or several self-communicating classes that
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are not reachable from each other, correspond to maximal classes of P and P T .
When such class Ci with simple Frobenius-Perron eigenvalue λi includes a chaotic
saddle, states in the support of its left nonnegative eigenvector can be reached
by Ci, and states in the support of its right nonnegative eigenvector can reach
Ci. In this case, we can use the states in the support of the left (right) eigen-
vector to approximate a neighborhood of the unstable (stable) manifold of the
chaotic saddle. The intersection of the two invariant manifolds corresponds to a
neighborhood of the chaotic saddle.

In general, not all self-communicating classes are maximal (see Example 2.5.5),
and one obtains signed leading eigenvectors for the respective non-maximal classes
or even eigenvectors with zero entries for states that are accessible from (or can
reach) the respective non-maximal class. When now a non-maximal class Ci of
P (or P T ) includes a chaotic saddle, states in the support of its left signed eigen-
vector can be reached by Ci (or the states in the support of the its right signed
eigenvector can reach Ci). In the degenerate case, where the eigenvector shows
not all states that can be reached by (or can reach) Ci, these states can be found
by graph-based algorithms as depth-first-search.

(Almost-)invariant sets will also be identified as self-communicating classes or
as intersections of the support of corresponding left and right eigenvector.

Alternatively, the location of a stable manifold or an (almost-)invariant set can
be detected by high expected residence times (see Section 2.5.4). These can be
calculated by means of the fundamental matrix (I−P )−1. The expected number
of time steps a particle is in the domain A, when starting in a given state Bi, is

E(T | Bi) =
n∑
j=1

(I − P )−1
ij .

An unstable manifold can be detected by high expected residence times for the
backward-time dynamics. To compute these, we use the backward-time matrix
P̃ , where P̃ is P T with normalized rows.
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Chapter 7.

Transport and mixing studies in open
systems

In an open system, where the fluid stays in a mixing region only for a finite time-
span and most fluid material leaves the domain relatively quickly, the outgoing
fluid is only partially mixed. So unlike in closed systems, which can be systems
that are mixing in the ergodic theoretical sense, this will not lead to perfect
homogenization.

This chapter presents three open example systems.
The first two sample systems we consider, the open double gyre flow (in Section

7.1) and the open lid-driven-cavity flow (in Section 7.2), are defined on a domain
X ⊂ R2 as explained in Section 6.1, consisting of an unbounded unmixed region
X1, a bounded mixing region X2 and an unbounded mixed region X3 (Figure
6.1). As the velocity field on X is assumed to be divergence-free, it can be derived
from a stream function Ψ : X × R→ R, with

Ψ(x, y, t) = Ψb(x, y) + Ψm(x, y, t).

Here Ψb is the stream function of the stationary background flow, which shifts
fluid through the mixing region and acts on all of X, and Ψm is the stream
function of the mixer, which acts only on X2. The mixer is time-periodic:
Ψm(x, y, t) = Ψm(x, y, t + τ), where τ > 0 is the period. For a smooth su-
perposition of the two stream functions Ψb and Ψm, a standard bump function
supported on X2 can be used, but computationally this has turned out to be
unnecessary (see [68]). The velocity field u = (u1, u2) on X is then obtained
from

u1 =
∂Ψ

∂y
, u2 = −∂Ψ

∂x
,

and has the form

u(x, y, t) =

{
ub(x, y), for (x, y) ∈ X1 ∪X3

ub(x, y) + um(x, y, t), for (x, y) ∈ X2

where ub is the stationary background velocity field and um is the velocity field
of the time-periodic mixer. We model the background flow in our examples as
a constant homogeneous flow (translational flow), but other flow profiles such as
parabolic flows are possible as well.

When we now send constantly fluid of two different colors through the mix-
ing region with an underlying time-periodic velocity field, a periodic pattern is
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formed in the mixed region (Figure 7.1). In Section 6.1 we described the evolu-
tion on a bounded subdomain A and in Section 6.2 we additionally considered
constant inflow of mass. Here we use as subdomain A a connected set that con-
tains an inlet region A1 ⊂ X1, the mixing region A2 = X2 and an outlet region
A3 ⊂ X3. The inlet region contains all fluid mass that will enter the mixing
region in one time step of length τ . By using signed mass distributions we can
now study the mixing processes for two types of fluids on the domain A. We
are particularly interested in mixing patterns that arise on the outlet region A3,
when the two types of fluids have passed the mixing region. The outlet region is
chosen as the minimal subset, we need to describe the periodic mixing pattern.
We study the mixing patterns and apply the mixing measures defined in Section
4.2 on the limit distributions in the outlet region.

For both example systems we extract first the organizing structures. We study
how the manifolds of chaotic saddles and almost-invariant sets organize the mix-
ing processes. For the first example system, we examine in parameter-studies
how the mixing quality can be quantified from the underlying structures.

In Section 7.3 we consider as third example system a 2D model of a magnetic
mixing valve [69], which shows a parabolic flow profile. Two fluids have to pass
an obstacle. Behind the obstacle a mixing region is generated. We aim here
to extract the organizing structures of the system with our transfer operator
approach.

7.1. The double gyre mixer

For our first sample system we use the periodically perturbed double gyre flow
(see Section 5.1) as mixer with stream function

Ψm = −α sin(f(x, t)π) sin(πy),

where f(x, t) = ε sin(ωt)x2 + (1− 2ε sin(ωt))x.

For the background flow, we choose the constant velocity field

Ψb = βy, ub =

(
β
0

)
, with β > 0.

The velocity field on X has the form

u(x, y, t) = ub(x, y) + um(x, y, t)1[0,2](x),

where um(x, y, t) is derived from the stream function Ψm. The velocity field on
the mixing region matches the velocity field of the double gyre with windage with
wind factor β in Section 5.1. Here, however, the mixing region has no periodic
boundaries and the fluid will leave this region after some time.

We choose the inlet region A1 = [−β, 0) × [0, 1], which ensures that all mass
is carried into the mixing region A2 within a unit time step, the period of the
mixer. For the outlet region, we choose A3 = (2, 2 + β]× [0, 1] (Figure 7.1).
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Figure 7.1.: Setup of the double gyre mixer.

Evolution of the mass distribution in the double-open system. For setting
up the finite state Markov chain, we divide the domain A = [−β, 2 + β] × [0, 1]
in 49, 152 square boxes of side length 0.0078 and initialize 100 test particles on
a regular grid in each box. To form the transition matrix restricted to non-
absorbing states, we integrate the test particles with the classical Runge-Kutta
method with step size h = 0.01 from t = 0 to t = 1, which corresponds to one
period of the periodic mixer dynamics. The boxes in A1 correspond to the source
states.

In Figure 7.2 the first steps of a signed density evolution vk, k = 1, . . . , 12, on
the set A are illustrated, for parameters α = 0.5, ε = 0.4 and set β = 0.5 for the
inflow velocity. Here we set the initial mass distribution v0 as the zero vector, so
that no fluid is in the mixer at the beginning. The invariant mass distribution is
independent of the initial mass distribution, since it leaves the system eventually.
As a constant source we consider a signed mass distribution describing the two
different types (or colors) of fluid. Boxes with particles of the first type get the
value 1 and boxes with the second type get the value −1.

With v0 being identically zero, the fluids to be mixed are introduced as horizon-
tal stripes into the inlet by adding σ, resulting in v1 = σ. In the next iteration,
the inlet contents are mapped into the mixing region and get mixed by v1P .
Additionally, new fluid is introduced into the inlet, resulting in v2 = v1P + σ.
This is repeated several times. For k ≥ 4, mixed fluid can be found in the outlet
region. For k ≥ 8 the mixing pattern in the outlet seems to stabilize, indicating
that vk quickly converges to the invariant distribution vinv. In Subsection 7.1.2,
we therefore focus on the invariant distribution vinv and study how well the two
fluids are mixed in the outlet region.

7.1.1. Organizing structures

In this subsection, we first study the organizing structures in more detail for two
choices of parameter ε and then extract the organizing structures in an expanded
parameter study for ε.

Extraction of organizing structures. First, we fix again the parameters α = 0.5,
ε = 0.4 and β = 0.5. In Figure 7.3 we follow a set of particles in the unbounded
domain X for 8 time steps. We observe that some particles (colored in red) stay
longer in the mixing region. They reveal the unstable manifolds of two chaotic
saddles (see e.g. in Figure 7.3, bottom plot at time t = 8 ). Instead of following
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v1 v2

v3 v4

v5 v6

v7 v8

Figure 7.2.: Evolution of the mass distribution vk for the double gyre mixer with
parameters α = 0.5, ε = 0.4 and β = 0.5.

particles, we now use the transition matrix P to extract the organizing structures
of the system. By Tarjan’s algorithm, we find two self-communicating classes
(shown in Figure 7.5(a)), which both approximate a chaotic saddle. Neither self-
communicating class is accessible from the other, and hence both of them are a
maximal class of P and P T .

The transition matrix P has the leading real eigenvalues λ1 = 0.5817 and
λ2 = 0.5775. In Figure 7.6 the nonnegative left and right eigenvectors for λ1 and
λ2 are shown. The support of the leading first and the support of the second
left eigenvector approximate each an unstable manifold of one of the two chaotic
saddles. The result matches the observed structures in Figure 7.3.

We can now follow the particles that have stayed longer in the system backward
in time. At time t = 0 they lie close to the stable manifolds. The supports of
the leading first and second right eigenvectors approximate the stable manifolds
of the two chaotic saddles. The saddles themselves are approximated by the
intersections of the different supports (dark blue and orange).

The expected residence time for a particle to stay in the domain A of the mixer,
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Figure 5. Evolution of a set of particles for the double gyre mixer on the unbounded domain X with system parameters

↵= 0.5, ✏= 0.4 and � = 0.5. Position of the particles after 0, 1, 2, 3, 4, 5, 6, 7 time steps. Particles that stay longer in

the mixing region (red) reveal the stable and unstable manifolds.

extract the organizing structures of the system. We find two self-communicating classes (shown
in Fig. 6), which both approximate a chaotic saddle.

The transition matrix P has the leading real eigenvalues �1 = 0.5817 and �2 = 0.5775. In Fig. 7
the non-negative left and right eigenvectors for �1 and �2 are shown. Both the support of the

Figure 7.3.: Evolution of a set of particles for the double gyre mixer on the un-
bounded domain X with system parameters α = 0.5, ε = 0.4 and
β = 0.5. Position of the particles after 0, 1, 2, 3, 4, 5, 6, 7, 8 time
steps. Particles that stay longer in the mixing region (red) reveal
the stable and unstable manifolds.

given that the particle started in a particular box, can be extracted easily from the
transition matrix. The expected residence times in forward and backward time
are shown in Figure 7.8. Particles that start in boxes near the stable manifold stay
longer in the mixing region. Accordingly, we see that regions of high expected
residence times in forward time correspond to regions with high values in the
leading right eigenvectors of the transition matrix P . Similarly, particles close
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Figure 7.4.: Evolution of a set of particles for the double gyre mixer on the un-
bounded domain X with system parameters α = 0.5, ε = 0.35 and
β = 0.5. Position of the particles after 0 and 8 time steps. Parti-
cles that stay longer in the mixing region (red) reveal the stable and
unstable manifolds.

to the unstable manifold stay longer in the mixing region when we follow them
backward in time. Regions of high expected residence times in backward time
correspond to regions with high values in the leading left eigenvectors of the
transition matrix P .

We now change the parameter ε to 0.35. First, we follow again a set of particles
in the unbounded domain X for eight time steps and observe certain particles
that stay longer in the mixing region (Figure 7.4). Again, we find two self-
communicating classes (shown in Figure 7.5(b)), which look quite similar to the
self-communicating classes for ε = 0.4. But here the self-communicating class in
the upper right of the phase space (colored in orange) is accessible from the other
self-communicating class in the lower left of the phase space (colored in blue).
The respective Frobenius-Perron eigenvalues are λ1 = 0.5553 (corresponding to
the blue colored self-communicating class) and λ2 = 0.5519 (corresponding to
the orange colored self-communicating class). Hence, both self-communicating
classes are maximal classes of P but only the blue colored is a maximal class of
P T . In Figure 7.7 the left and right eigenvectors for λ1 and λ2 are shown. There
are two nonnegative left eigenvectors, since both classes are maximal. Some
entries of w1 corresponding to states that can be reached from the blue self-
communicating have relatively low values, these are the states that cannot be
reached from the orange self-communicating class. By considering the support
of the eigenvector we see the states that can be reached from the respective self-
communicating class more clearly. There is a nonnegative right eigenvector ŵ1

with respect to λ1. The right eigenvector ŵ2 with respect to λ2 is signed. Entries
for states that can reach the orange class by passing the blue class have a positive
sign, entries for states that can reach the orange class not by passing the blue
class have a negative sign and a relatively small absolute value. The support of
the signed vector shows the states that can reach the orange self-communicating
class more clearly. As before, the supports of the eigenvectors match the observed
structures in Figure 7.4 and the intersections of the supports of the eigenvectors
show again the self-communicating classes.

74



(a) (b)

Figure 7.5.: Self-communicating classes of P for the double gyre mixer with sys-
tem parameters α = 0.5, ε = 0.4, and β = 0.5 (a) and with sys-
tem parameters α = 0.5, ε = 0.35, and β = 0.5 (b). There are
two self-communicating classes: Boxes that belong to the first self-
communicating class are colored in blue and boxes that belong to
the second second are colored in orange.
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Figure 7.6.: Double gyre mixer with system parameters α = 0.5, ε = 0.4, and
β = 0.5. First left eigenvector w1 (a), first right eigenvector ŵ1 (b),
second left eigenvector w2 (d) and second right eigenvector ŵ2 (e)
of P . The support of these left and right eigenvectors (c), (f), where
entries < 10−12 are treated as zero. The intersection (dark blue,
orange) approximates each a chaotic saddle.

Parameter study ε. We now fix again the parameters α = 0.5 and β = 0.5, and
analyze the evolution of the organizing structures and spectrum with changing
system parameter ε. We vary ε from 0 to 2.5.

In Figure 7.9 we show the number of self-communicating classes. For most
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(a) w1 (d) w2

(b) ŵ1 (e) ŵ2

(c) support of w1 and ŵ1 (f) support of w2 and ŵ2

Figure 7.7.: Double gyre mixer with system parameters α = 0.5, ε = 0.35, and
β = 0.5. First left eigenvector w1 (a), first right eigenvector ŵ1 (b),
second left eigenvector w2 (d) and second right (signed) eigenvector
ŵ2 (e) of P . The support of these left and right eigenvectors (c), (f),
where entries < 10−12 are treated as zero. The intersection (dark
blue, orange) approximates each a chaotic saddle.

Figure 7.8.: Double gyre mixer with system parameters α = 0.5, ε = 0.4 and β =
0.5. Expected residence times E(T |·) in forward (left) and backward
time (right).

choices of ε we find exactly two self-communicating classes. For ε between 1.1
and 1.275 and for ε ≥ 2 there are no self-communicating classes. Directly before
the self-communicating classes disappear they separate in three (for ε = 1.075)
and five self-communicating classes (for ε = 1.975).

The real parts of the first and second eigenvalues and a selection of extracted
self-communicating classes are presented in Figure 7.10. In general, there is no
correlation to the leading eigenvalues in the closed double gyre systems with wind
factor 0 or wind factor 0.5 (see Appendix B). In case there are self-communicating
classes, the eigenvalues are real and represent the Frobenius-Perron eigenvalues
corresponding to one of the extracted self-communicating classes. Here, for all
ε the first and second eigenvalues are relatively similar. In case there are no
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Figure 7.9.: Number of self-communicating classes in the double gyre mixer with
different choices of ε.
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Figure 7.10.: The real parts of the first and second eigenvalues of the transition
matrix P for the double gyre mixer with different choices of ε; and
a selection of extracted self-communicating classes.

77



self-communicating classes, in theory all eigenvalues are 0 and we see here only
small numerical deviations.

For ε = 0, the two self-communicating classes are regular almost-invariant
sets with eigenvalues close to 1. For growing ε two chaotic saddles evolve. The
regular part of the extracted structures becomes smaller until we do not see any
noticeable regular part anymore. For ε between 0.175 and 0.35, one of the two
self-communicating classes is accessible from the other.

In Figure B.2 in the appendix, we show rough approximations of the box-
counting dimensions for each of the two self-communicating classes. The eigen-
values are at the beginning still very close to 1, the computed box-counting
dimension decreases there faster.

We show the expected residence times for a selection of ε in Figure 7.11. We
use there the same choices of ε as for the selection of self-communicating classes
in Figure 7.10, and show furthermore the residence times for ε = 0.1, where there
are no self-communicating classes. We observe relatively high residence times in
the regular structures. In these cases, we show the expected residence times also
for a cutted color axis in Figure B.3 in the appendix to reveal further regions
with relatively high expected residence times and parts of the domain that can
reach the self-communicating classes. The mean expected residence time for
boxes in the inlet region is nearly constant around 6 for all ε. When there are
no self-communicating classes, there are no high expected residence times, since
no particle are hold back for longer times; and thus the standard deviation of
the expected residence times is low. The corresponding residence time statistics
as the means and standard deviations for all different values of ε are shown in
Figure B.4 in the appendix.

ε = 0 ε = 0.1 ε = 0.175

ε = 0.3 ε = 0.45 ε = 0.775

ε = 0.85 ε = 0.975 ε = 1.1

ε = 1.35 ε = 1.8 ε = 1.875

Figure 7.11.: Expected residence times for different choices of ε.
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7.1.2. Mixing of two types of fluids

In this subsection, we consider the mixing of two types of fluids in the open
double gyre mixer. First we quantify the mixing patterns in the parameter study
for ε from the previous subsection. Then we consider the problem of finding the
optimal source (for fixed parameters) and aim to use a structure-based mixing
measure.

Parameter study ε. As a constant source we now consider a signed mass distri-
bution describing the two different colors of fluid. Boxes in the upper half of A1

with particles of the first color get the value 1 and boxes in the lower half of A1

with the second color −1. We fix again α = 0.5 and β = 0.5 and vary ε from 0
to 2.5 (as in Subsection 7.1.1). For each setting, we compute the invariant mass
distribution vinv.

𝜖 = 0.1 𝜖 = 0.3 𝜖 = 0.45 𝜖 = 0.775 𝜖 = 0.975 𝜖 = 1.1 𝜖 = 1.875

Figure 7.12.: vinv (top) and E(T |·) in backward time, shown in A3, for the double
gyre mixer for different choices of ε. α = 0.5 and β = 0.5 are fixed.

In Figure 7.12 we show the resulting mixing patterns restricted to the outlet
region A3 for different choices of ε in the top row. In the bottom row are the
respective expected residence times fields in backward time. Similarly as the
FTE fields in backward time in the closed setting, the expected residence times
fields in backward time show a correspondence to the resulting mixing patterns
in the open setting. The mixing patterns of two types of fluids are dictated by
the unstable manifolds of the two chaotic saddles. In regions of high values in
the expected residence times field in backward time (and so neighborhoods of
the unstable manifolds of the two chaotic saddles), the fluid material stayed a
longer time in the mixing region and had a chance to be much more stretched
and folded. In these regions there is a potential for thinner filaments of blue and
yellow. Of course, the mixing patterns also depend on the source distribution in
the inlet region A1, what we will discuss in the next section.
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The different measures of mixing applied to vinv restricted to A3 and examples
of some invariant mass distributions are shown in Figure 7.13. The mixing quality
shows an oscillatory behavior instead of a monotonic dependence on ε. The
different mixing measures quantify this behavior similarly but there are some
deviations in the ranking. The two prominent local minima are at ε = 0.275
and ε = 0.675 for the sample variance and at ε = 0.3 and ε = 0.775 for the
relative mix-norm. The graph of mean length scale using a bin width tolerance
of δ = 0.0051 shows similarities to the graph of the sample variance. If one uses a
larger bin width tolerance of δ = 0.0095, more box pairs are in the neighborhood
N(h) for the given distance h. The graph of the computed mean length scale
then mimics the relative mix-norm.

Figure 7.13.: Different measures of mixing applied to vinv restricted to A3 for the
double gyre mixer for different choices of ε. α = 0.5 and β = 0.5 are
fixed. Crosses: sample variance, circles: relative mix-norm, dots:
mean length scale using δ = 0.0095 (dashed line) and δ = 0.0051
(solid line).

Optimal source and structure-based mixing measures. We elaborate on the
question, how we can determine the mixing quality for different source distri-
butions. Instead of looking at the resulting mixing patterns and apply mixing
measures, we want to use only the underlying organizing structures to propose
the mixing quality. This study is meant as a first step to develop spectral mixing
measures for two types of fluids.

We fix the parameter ε = 0.45. In this setting, we have two chaotic saddles.
The leading two real nonnegative right eigenvectors ŵ1 and ŵ2 correspond each
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Figure 7.14.: Right eigenvectors ŵ1 (left) and ŵ2 (middle) restricted to the inlet
region and the residence times field in backward time restricted to
the outlet region (right).

to a neighborhood of a stable manifold of one of the chaotic saddles (in the sense,
that the corresponding self-communicating class can be reached by states of the
support of the eigenvector). Figure 7.14 shows ŵ1 and ŵ2 restricted to the inlet
region.

We consider source distributions σ(α), where a line through the midpoint of
the inlet separates the two types of fluids. The parameter α denotes the degree
between this separating line and the horizontal line. We vary α = 0, 0.1, . . . 3.1.
These source distributions are comparable in their unmixed state. Nevertheless,
some of them might have a natural advantage, which is not considered here. A
selection of source distributions and resulting invariant mass distributions on the
outlet region are presented in Figure 7.15. When we compare the mixing patterns
to the respective residence times field in backward time (see Figure 7.14, right),
we see that the potential for mixing is fulfilled the most for α = 1.8.

Fluid patches in the neighborhood of the stable manifolds are transported to a
neighborhood of the chaotic saddles, where they experience repeated stretching
and folding before they flow out along the unstable manifolds. The two self-
communicating classes are of similar size. We assume that the amount of neg-
ative and positive mass that flows from the support states of the leading right
eigenvectors into the two self-communicating classes should be equal to obtain
good mixing. Therefore, we consider |(ŵ1 + ŵ2)Tσ(α)|+ |(ŵ1− ŵ2)Tσ(α)| as a
heuristic spectral mixing measure (for two colors and two chaotic saddles), which
is small when the magnitude of both ŵT

1 σ(α) and ŵT
2 σ(α) and the magnitude

of the differences are small.

We compute the relative mix-norm (all normalized by the mix-norm of unmixed
horizontal stripes, since the absolute mixing quality should be compared) and
sample variance as mixing measures of the invariant mass distributions in the
outlet region, shown in Figure 7.16 (left). Both the sample variance and the
relative mix-norm quantify the patterns for growing α similarly. Figure 7.16
(right) shows the heuristic spectral mixing measure. Compared to the applied
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Figure 7.15.: Source distributions for α = 0, 1, 1.8, 2.5 and the respective invari-
ant mass distribution on the outlet region.

mixing measures, this heuristic measure appears to be a good indicator for the
mixing quality as well.

7.2. The lid-driven cavity mixer.

As a second and more realistic example, we choose the lid-driven cavity flow
as mixer [67]. This system has a piecewise-steady velocity field, where the flow
pattern switches between two states every τ/2 unit of time, where τ is the period.
Its stream function for the period t ∈ [kτ, (k + 1)τ) is

Ψm(x, y, t) =

{
−U1g1(x, y) + U2g2(x, y) for kτ ≤ t < (k + 1

2)τ

U1g1(x, y) + U2g2(x, y) for (k + 1
2)τ ≤ t < (k + 1)τ

on the domain [0, a]× [−b, b], where for κ = 1, 2

gκ(x, y) = Cκfκ(y) sin
(κπx

a

)
,

with

fκ(y) =
2πy

a
cosh

(
κπb

a

)
sinh

(κπy
a

)
− 2πb

a
sinh

(
κπb

a

)
cosh

(κπy
a

)
and

Cκ =
a2

2κπ2b

[
a

2κπb
sinh

(
2κπb

a

)
+ 1

]−1

.
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Figure 7.16.: Left: sample variance (red) and relative mix-norm (blue). Right:
|(ŵ1 + ŵ2)Tσ(α)|+ |(ŵ1 − ŵ2)Tσ(α)|.

The ratio U2/U1 regulates the streamline pattern of the flow.

We fix parameters τ = 1, a = 6 and b = 1. The streamlines um on the mixing
region X2 = A2 = [0, 6]× [−1, 1] with U1 = 9 and U2 = 8 for time instances t = 0
and t = 0.5 are shown in Figure 7.17. For the background flow, we choose here
Ψb = βy, with β = 1. We divide the domain A = [−1, 7]× [−1, 1] in 216 square
boxes of side length 0.0156. The boxes in A1 = [−1, 0]× [−1, 1] correspond to the
source states. We initialize 100 test particles on a regular grid in each box and
integrate with the classical Runge-Kutta method with step size h = 0.01 from
t = 0 to 1.

0 6

-1

1

0 6

-1

1

Figure 7.17.: Streamlines of the lid-driven cavity flow with U1 = 9 and U2 = 8 at
t = 0 (left) and t = 0.5 (right).

Evolution of the mass distribution. We set the initial mass distribution v0 to
0, and fix the parameters U1 = 9 and U2 = 8 and β = 1. In Figure 7.18 the first
steps of the density evolution vk, k = 1, . . . , 8, on the set A are illustrated. At
each iteration the source distribution σ is added, which introduces the fluids to
be mixed as horizontal stripes into the inlet.

7.2.1. Organizing structures.

We fix again the parameters U1 = 9 and U2 = 8 and β = 1. By Tarjan’s
algorithm, we find one self-communicating class. The transition matrix P has the
leading real eigenvalue λ1 = 0.7709. In Figure 7.19 the left and right eigenvectors
for λ1 are shown. The intersection of the support of these eigenvectors (dark blue)
reveals the neighborhood of the chaotic saddle of the system. The structure fills
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v1 v2

v3 v4

v5 v6

v7 v8

Figure 7.18.: Evolution of the mass distribution vk, k = 1, 2, 3, . . . , 12, for the
lid-driven cavity mixer with system parameters U1 = 9, U2 = 8 and
β = 1.

relatively large parts of the mixing region and the stable manifold fills the inlet
region extensively.

7.2.2. Mixing of two types of fluids

As a constant source we now consider a signed mass distribution, where boxes in
the upper half of A1 with particles of the first color get the value 1 and boxes in
the lower half of A1 with the second color −1.

We fix U1 = 9 and vary the parameter U2. We consider U2 = 6, 6.25, . . . , 12.
Examples of invariant mass distributions restricted to A3 and the different mea-
sures of mixing are shown in Figure 7.20. For this range of parameters the mixing
patterns are all relatively well mixed, only for U2 ≈ 9 one observes patterns that
are slightly less mixed. The graphs of the sample variance and the relative mix-
norm show at U2 ≈ 9 a difference in the quantification of the mixing quality.
The relative mix-norm has one local maximum at U2 = 9 whereas the sample
variance has two local maxima at U2 = 8.75 and U2 = 9.5.

The graph of the mean length scale using a bin width tolerance δ = 0.0094
shows also two local maxima, at U2 = 8.75 and U2 = 9.25. If one uses the larger
bin width tolerance δ = 0.0163, as in the graph of the relative mix-norm, the
graph of the computed mean length scale then has one local maximum at U2 = 9.
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Figure 7.19.: Lid-driven cavity mixer with system parameters U1 = 9, U2 = 8
and β = 1. First left eigenvector w1 (a), first right eigenvector ŵ1

(b) and the support of these eigenvectors, where entries < 10−3

are treated as zero. The intersection (dark blue) approximates the
chaotic saddle.

7.3. A channel with an obstacle

We now want to consider the action of a magnetic mixing valve. The fluids in
this mixing device have similar properties to water and the Reynolds number is
in a range of 380 < Re < 560. The flow simulations on a simplified 2D domain
were derived by the use of the software ANSYS in [69]. The given velocity data
is available for 200 time slices (from 0.025 s to 5 s) for a 291 × 3001 grid. The
domain and the velocity field at first time slice t = 1 is shown in Figure 7.21.
In this example system, the inflow region is separated further into two channels.
The two separated channels terminate at an obstacle and join into a common
channel. Behind the obstacle a mixing region is generated.

In the velocity data we observe a time periodic behavior with time period 161.

We divide the domain [−0.08, 0.22] × [−0.02, 0.02] in 216 boxes and initialize
100 test particles on a regular grid in each box. To form the transition matrix
restricted to non-absorbing states, we discard boxes where the center point has a
velocity close to 0 (< 10−4) obtaining n = 45981 boxes. We use a simple nearest-
neighbor interpolation to obtain the underlying velocity field. We integrate the
test particles with the MATLAB function ode45 from time slice t = 1 to time
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Figure 7.20.: Different measures of mixing applied to vinv restricted to A3 for
the lid-driven cavity mixer for different choices of U2. U1 = 9 and
β = 1 are fixed. Crosses: sample variance; dots: mean length scale
using δ = 0.0163 (dashed line) and δ = 0.0094 (solid line); circles:
relative mix-norm.

Figure 7.21.: Simplified 2D domain of the mixing valve with indicated velocity
field for the first time slice.

slice t = 161 and form the substochastic transition matrix P . The evolution of a
signed density described by the computed transition matrix is shown in Figure
7.22. At initial time t = 1 we fill a subdomain including the inlet region and a
part of mixing region with two types of fluids. The initial distribution is here
not chosen as a realistic initial distribution for the two fluids that are to be
mixed but should demonstrate the ensuing action of the mixing valve modeled
by the transition matrix. After one time step of length τ = 160 much of the fluid
material that started in the inlet region has already passed the obstacle.

We extract ten self-communicating classes from the time-homogeneous P posi-
tioned around the obstacle (Figure 7.23). Nine of the self-communicating classes
are relatively small (between 2 and 5 boxes). The largest self-communicating
class consisting of 202 boxes and corresponding to the 7-th largest eigenvalue
λ7 = 0.6183 is positioned behind the obstacle.

In Figure 7.24 we show the right eigenvectors for the first, second, third and
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Figure 7.22.: Evolution of a signed mass distribution in the mixing valve.

seventh eigenvalues (λ1 = 0.8686, λ2 = 0.8606, the following eigenvalues come in
pairs, λ3 = λ4 = 0.8 and λ5 = λ6 = 0.7826). The respective right eigenvectors for
the leading eigenvalues show nonzero entries on the boundaries of the channels,
where the particles move relatively slowly due to the parabolic flow profile. The
eigenvector of the seventh eigenvalue show a more complicated structure.

Figure 7.25 presents the respective left eigenvectors of the first, second, third
and seventh largest eigenvalues. They reveal a generated vortex street.

Here, we have not modeled the transport with constant inflow. Since after one
time step of length τ = 160 there is already empty space in the mixing region
behind the fluid that has passed the obstacle, we would have to partition the cho-
sen time interval τ in shorter time intervals to model the evolution with a source
distribution (we only want to use boxes on the left-hand side of the obstacle as
source states). This would result to a periodic series of different transition matri-
ces (as in Remark 6.2, third case). Further, we have used here a relatively coarse
box-discretization for this size of the domain. However, the actual mixing region
is relatively short. To obtain finer approximations of the observed structures by
the right eigenvectors, one could consider a smaller subdomain. Also, the shape
of boxes are not optimal for the circular obstacle. We come back to this system
by using a trajectory-based approach, which is free of a box-discretization, in the
next chapter.
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Figure 7.23.: Extracted self-communicating classes in the mixing valve.

Figure 7.24.: Right eigenvectors corresponding to λ1, λ2, λ3 and λ7.

Figure 7.25.: Left eigenvectors corresponding to λ1, λ2, λ3 and λ7
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Chapter 8.

Trajectory-oriented description of
transport and mixing

In this chapter, we aim to use a data-based approach using diffusion maps to the
trajectory space to describe transport and mixing in closed and (double) open
systems.

In practice, one might be faced with the problem to have only very sparse
trajectory data on the domain of interest. Especially in real world data, the
underlying velocity field is often not known. The gaining of large amounts of
trajectories may be associated with high costs or may not be feasible, for example
when using ocean drifters or other methods to track particles in fluids. Further, in
some applications one is interested to extract the macroscopic coherent structures
of a certain scale.

Relatively recent trajectory-oriented methods or Lagrangian methods has been
developed that cluster on the trajectory data by using graph or network based
tools, for example [29, 31, 33]. Banish and Koltai [34] extended the method of
diffusion maps [103–105] to sparse trajectory data to estimate finite-time coherent
sets.

In Section 8.1 we describe the theory and numerics and in Section 8.2 we come
back to three example systems.

8.1. Theory and numerics

Assume, we observe m trajectories {xi(t)}, i = 1, . . . ,m evaluated at T time
slices t ∈ It within a finite time step of length τ on a domain A.

The idea of spacetime diffusion maps [34] is to obtain information of the global
dynamics (here in form of coherent sets) by using only local information in form
of distances of neighboring particles. This is done by introducing a diffusion
process on the trajectory data. We follow [34] to construct the so-called spacetime
diffusion map transition matrix.

Spacetime diffusion map transition matrix. Consider the rotation-invariant
kernel

kε0(x,y) = crexp(−‖x− y‖
2
2

ε0
)1‖x−y‖22≤r,

where ε0 is a scaling parameter, r the cutoff radius and cr scaling parameter.
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For each time slice t ∈ It, we compute the forward-backward diffusion matrix
B(t) with entries [34]:

Bij(t) = bε0,t(x
i(t),xj(t)),

where

bε0,t(x,y) :=
1

dε0,t(x)

m∑
k=1

kε0(x,xk(t))kε0(xk(t),y)

kε0,t(x
k(t))2

, dε0,t(x) :=

m∑
k=1

kε0(x,xk(t))

kε0,t(x
k(t))

kε0,t(x(t)i) :=
∑
j

kε0(xi(t),xj(t)).

The entries Bij(t) are high if the distance of positions of the i-th and j-th
trajectory at time slice t is small. That is, diffusion happens between trajectories
that are close.

The spacetime diffusion map transition matrix Q for time span τ is given as
average of the forward-backward diffusion matrices [34]:

Qij =
1

T

∑
t∈It

Bij(t).

The matrix Q is stochastic, close to symmetric and can be interpreted as
transition matrix of a Markov chain on trajectories.

Banisch and Koltai [34] showed further a link to the transfer operator frame-
work: When the number of trajectories goes to infinity, Q converges to a time-
averaged forward-backward transfer operator. Hence Q can be seen as data-based
version of this operator.

Open systems and double open systems. When A is the domain of an open
system, in general, not all observed trajectories are on A for the whole time span.
If we consider a double open system, at every time slice trajectories can enter or
leave A. When the positions of particles is only given on A we have incomplete
trajectory data.

As mentioned in [34], the construction ofQ works also for incomplete trajectory
data. A natural way to deal with incomplete trajectories is to assign the distance
of a particle to others to∞ at a time slice t when the particle position at that time
slice is not known (or the particle is not in the domain A). The corresponding
transition probabilities for that trajectory to others at that time slice are then
zero. The distance of such a particle to itself at that time slice is assigned to 0,
or respectively the transition probability to itself at that time slice to 1.

If instead the distance of such a particle to itself at that time slice is assigned
also to ∞, the resulting matrix would be substochastic. We denote this matrix
in the following by Qs.

Extraction of organizing structures. In the trajectory-based framework almost-
invariant sets and coherent sets can be understood as tight bundles of trajectories.
Particles will be together in a coherent set when they are close for a long time.
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The information of these coherent structures is coded in the spacetime diffusion
map transition matrix Q, since the entries of Q corresponding to two trajectories
that are close for all time slices will have a relatively high value. They can be
extracted by a hard or soft clustering method on the dominant eigenvectors of
Q [34].

Note that the eigenvectors of Q and also the clustering results provides infor-
mation in space and time, since each entry correspond to a trajectory. That is,
one can follow the clusters for the chosen time slices over the given time span τ .

In the applications of Chapter 7 we have extracted chaotic saddles and their
manifolds in open systems with a transfer operator method. We should be able to
extract these organizing structures also with the trajectory-based method. Some
trajectories (starting near the stable manifolds) are staying in the system for a
longer time. Choosing an appropriate long time span, we expect to extract them
as coherent sets, where the positions of the clusters at the initial time slice reveal
the stable manifolds and the positions of the clusters at the final time slice reveal
the unstable manifolds.

Modeling and quantification of mixing. In this paragraph, we extend the
trajectory-based approach using spacetime diffusion map transition matrices to
model mixing of two types of fluids and consider mixing measures that we can
use to quantify resulting mixing patterns.

Let us consider again m trajectories {xi(t)}, i = 1, . . . ,m, evaluated at T
time slices t ∈ It = {t0 = t0,1, t0,2 . . . , t0,T = t1} within a time step of length
τ = t1− t0 on a domain A. We interpret fluid particles as small packages of fluid
transported along their trajectories. When we now initialize two types of fluid
materials, we label a particle that belongs to the first type by 1, and a particle
that belongs to the second type by -1. In other word, we initialize a signed mass
distribution or m × 1 color vector z0 at time t = t0, where z0,i = 1, if the i-th
particle belongs to the first type, and z0,i = −1 if the i-th particle belongs to the
second type. Particles that are at any time step t ∈ It very close together are
assumed to exchange small parts of their packages of fluid via diffusion. Let Q
be the spacetime diffusion map transition matrix for time span τ , constructed as
described in Section 8.1. The coevolved color vector after time span τ is modeled
as z1 = Qz0.

Remark. When we want to study the evolution of a color vector on A over a
series of time intervals [t0, t1], [t1, t2], ..., [tk, tk+1], we can construct a family of
transition matrices {Q(i)}i=0,...,k, where Q(i) is the transition matrix with respect
to the time interval [ti, ti+1] with Ti time slices. Note that when we construct
each Q(i) only for the trajectories that are in A at some time slice of the time
interval [ti, ti+1], the size of the matrices and the indices for the trajectories can
change. Then, after each time interval the color vector zi needs to be updated
before processing by deleting indices of trajectories that are not in A in the next
time interval and adding new indices with (source) color values for trajectories
that enter A in the next time interval. Denote this updated color vector by z′i .
The color vector at time t = ti+1 is then given as zi+1 = Q(i)z′i . We obtain then
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a series of color vectors z0 = z′0, z1, z
′
1, z2, z

′
2, . . . zk−1, z

′
k−1, zk. For our example

systems we know prior to the construction how many trajectories we will observe.
In that case, we can create one initial color vector z0 for all trajectories.

We now want to quantify the degree of mixedness of trajectories at a given time.
Let m particles be distributed on domain A with additional color information z,
where z was calculated by Q = 1

T

∑
t∈It B(t) using time slices t ∈ It = {t0 =

t0,1, t0,2 . . . , t0,T = t1}.
As first simple mixing measure one can use the sample variance of the color

vector
1

m− 1

m∑
i=1

(zi − z)2,

where z = 1
m

∑m
i=1 zi.

As second mixing measure we can again consider the mix-norm by using in-
formation on the position of the particles and interpolation in space.

Further, we want to use a mixing measure that uses besides z only information
that are saved in the network B(t1), the forward-backward diffusion matrix for
the last time slice. Here, we try a mixing measure that is based on the mean
length scale. Let z̃ denote the indicator vector of z. We calculate the inverse of
the averaged squared differences of the indicator variable of neighbored pairs of
particles in the network B(t1)

1

N

∑
(i,j):B(t1)ij>0

(z̃i − z̃j)2,

where N is the number of neighbored pairs (i, j).

8.2. Example systems

In this section, we present three example systems. As first example system serves
again the (closed) double gyre flow to test the mixing measures. As second ex-
ample system we consider the (double open) double gyre mixer, where we extract
the underlying organizing structures. As third example system we consider again
the channel with an obstacle, where we consider the transport of two types of
fluids and extract the underlying organizing structures.

8.2.1. Double gyre flow

We consider again the closed double gyre flow (see Section 5.1). We set parameter
ε as 0.2. We initialize 20301 particles on a grid. We set z0 in that way that
particles with fluid on the left half of the domain get the value 1 and particles
on the right of the domain -1.

We obtain the trajectory data by the classical Runge Kutta method for a time
span τ = 20. We split the time interval [0, 20] into 20 time intervals of length
1: [0, 1], [1, 2], . . . , [19, 20]. For each time interval [i, i + 1], i = 0, 1, . . . 19, we
compute Q(i), using 11 time slices of the trajectory data (with ε0 = 0.0005).
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Figure 8.1.: Particles plotted with coevolved color vector zk (vertical) in the
closed double gyre system with parameters α = 0.5, ε = 0.2 at
differnt times k.

We compute the color vector for the particles at time t = i by zi+1 = Q(i)zi.
A selection of the computed color vectors z1, . . .z20 is presented in Figure 8.1.
We compute the sample variance, mix-norm and mean scale based measure (Fig-
ure 8.2). The applied mixing measures on the color vectors computed by Q(i)
show similarly behavior as the mixing measures applied to vk computed with the
transfer operator method (Section 5.1.2).

8.2.2. Double gyre mixer

We consider again the double open double gyre mixer and set parameters α = 0.5,
ε = 0.4 and β = 0.5 (see Section 7.1). We initialize particles on a grid on X with
grid length 0.0136 such that constantly particles enter and leave the domain
A ⊂ X for a short time span τ = 1 and a longer time span τ = 5. The short
time span was used in the transfer operator approach to compute the transition
matrix P . The longer time span is still lower than the mean expected residence
time when starting in the inlet region A1 = [−0.5, 0] × [0, 1], which is around
6. We integrate with the classical Runge Kutta method and delete afterwards
the positions of particle that are not in A = [−0.5, 2.5]× [0, 1], so that only the
trajectory data on A is available. Over the time span τ = 1 we observe 19,092
trajectories in A and for τ = 5 we have 29,896 trajectories.

For each time span we compute the substochastic spacetime diffusion map
transition matrix Qs with diffusion map parameter ε0 = 0.001 and cutoff radius
r = 2ε0. We will use the leading eigenvectors of Qs to extract the organizing
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Figure 8.2.: Mixing Measures applied to the color vectors zk (vertical) for the
closed double gyre mixer with parameters α = 0.5, ε = 0.2. Sam-
ple variance (left). Relative mix-norm (middle). Mean length scale
based measure (right).

structures. First we use k-means clustering on the eigenvectors to obtain a hard
partition into k coherent sets. And then, we use SEBA, where the entries of
each output vector denote the likelihood that the underlying particle belongs to
a specific coherent set.

Let us first consider the short time span τ = 1. We observe larger gaps after
the leading second, fourth and sixth eigenvalue and a relatively large gap after
the 12th eigenvalue of Qs (Figure 8.3(left)). In Figure 8.4 are the results of the
k-means clustering and in Figure 8.5 are the results of SEBA using k = 2, 4, 6
and 12 clusters.

The k-means algorithm produces a partition of the trajectory data in k = 2, 4, 6
and 12 sets respectively. Smaller clusters can be found in the mixing region as
well in the inlet region when choosing a higher number of clusters. Particles
that are in the inlet region at the final time slice (and also particles that start
on the left side of the domain) and particles that start in the outlet region
A3 = [2, 2.5]× [0, 1] are packed in one cluster.

Shapes of these sets show an agreement with the shapes of the SEBA results.
The SEBA algorithm highlights particles that are with high likelihood in a coher-
ent set and also those that show an incoherent behavior. Not all but many of the
coherent particles we extract with SEBA are placed around the locations of the
stable manifolds of the chaotic saddles at t = 0. However, the stable manifolds
are widely stretched in space. The time span τ = 1 is too short to extract a
manifold as one coherent set. Instead one gets sets of particles that are more
lumpy.

We further observe, that the results of k-means and SEBA change, when only
particles are followed that are in A at t = 0 and no new particles come into the
system. Then, particles that start on the left hand side of A, are more likely in
a coherent set (Figure 8.6).
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Figure 8.3.: Leading eigenvalues of Qs for τ = 1 (left) and τ = 5 (right).

Figure 8.4.: Result of a k-means clustering for τ = 1 on the first two (top left),
four (top right), 6 (bottom left) and 12 eigenvectors (bottom right)
of Qs, shown at time slice t = 0.

Figure 8.5.: τ = 1: Superpositions of the output vectors obtained by SEBA using
two (top left), four (top right), 6 (bottom left) and 12 eigenvectors
(bottom right) Qs, shown at time slice t = 0.
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Figure 8.6.: τ = 1: Result of a k-means clustering and superposition of the output
vectors obtained by SEBA using six eigenvectors of Q, when no new
particles enter A, shown at time slice t = 0.

Figure 8.7.: τ = 5. Results of a k-means clustering on the first two (left) and
on the first six eigenvectors (right) of Qs, shown at time slice t = 0.
Bottom row:

Figure 8.8.: τ = 5. Top row: Output sparse vectors obtained by SEBA using the
first two eigenvectors of Qs, shown at timeslice t = 0. Bottom row:
Superpositions of the output vectors obtained by SEBA using two
(left) and six eigenvectors (right) of Qs, shown at timeslice t = 0.
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t = 0 t = 1

t = 2 t = 3

t = 4 t = 5

Figure 8.9.: τ = 5. Left: Superposition of two vectors obtained by SEBA, shown
at different time slices.

Let us now consider time span τ = 5. We observe the largest gap after the
leading second eigenvalue of Qs (Figure 8.3, right). Further, there is a relative
large gap after the sixth eigenvalue.

In Figure 8.7 are the results of the k-means clustering to the leading two
eigenvectors and to the leading four eigenvectors of Qs. All eigenvectors highlight
particles near the stable manifolds of both chaotic saddles. Using k = 2 clusters,
the k-means algorithm shows a coarse approximation of one of the two stable
manifolds. Using k = 6 clusters, both manifolds – consisting of two and three
regions – are separated from the background.

We apply SEBA to the leading two eigenvectors of Qs. SEBA separates the
particles near the stable manifolds into two coherent sets such that each coherent
set represents an approximation of a stable manifold of one of the two chaotic
saddles (Figure 8.8, top row). The result is in agreement with the extracted
stable manifolds of the two chaotic saddles by the eigenvectors of the transition
matrix (Section 7.1). Figure 8.9 shows the superposition of the output vectors
using two eigenvectors (bottom left) and further using six eigenvectors (bottom
right). In the last case there are three coherent regions highlighted instead of
two for each manifold.

Note, that the eigenvectors of Qs as well as the clustering results are spacetime.
In Figure 8.9 we show the superposition of the output sparse vectors obtained
by SEBA using the leading two eigenvectors of Qs for different times.

Only few particles that are in the inlet region A1 = [−0.5, 0] at t = 1 belong
to a coherent set. When calculating 6 SEBA vectors, more particle that are
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at t = 1 in A1 belong to a coherent sets with high likelihood. But even when
calculating many SEBA vectors, only few particles that are in A1 at t = 2 belong
to a coherent set, since the method searches for coherent sets over the time span
τ .

At the final time slice the coherent particles reveal the unstable manifolds of
the chaotic saddles.

8.2.3. Channel with an obstacle

We consider again the model of the magnetic mixing valve (see Section 7.3).

We want to model the coevolution of a color vector by spacetime diffusion map
transition matrices over five time intervals of equal size (over the given 200 time
slices).

First we initialize particles on an equally sized grid with grid length 0.0005 on
subdomain [−0.08, 0]× [−0.0135, 0.0135], such that some particles are already in
the mixing region. To obtain the trajectories we integrate with the MATLAB
function ode45. We construct spacetime diffusion map transition matrices Q(i),
i = 1, 2, 3, 4, 5, using 11 time slices with diffusion parameter ε = 0.00001 and
cutoff radius r = 2ε0, where we omit diffusion between trajectories in upper half
and lower half of the inlet region since we have two separated inlets.

As color vector z0, we set entries of v0 corresponding to particles in the lower
half of the domain to -1 and the remaining entries to 1. In Figure 8.10 we see the
evolution of the color vector for five time instances from the initial to final time
of the given data set. The given time span of the data is too short that particles
that start on the subdomain leave the domain A. Note that we have assumed
a periodic velocity field for the evolution by the transfer operator approach in
Section 7.3. There, v1 shows the signed mass distribution at time slice 161. Here,
z5 is the color vector at the final time slice 200.

Now we want to introduce new trajectories into the system at each time slice
that is considered for the construction of the transition matrices Q(i). Therefore,
we consider at each of these time slices the grid in the inlet regions and initialize
new particles at grid points that have no particles in a certain neighborhood. We
integrate the particles from the given time slice to the final time and set positions
at earlier time slices to NaN. All in all we consider now 20750 trajectories.

We construct one color vector z0 for all trajectories. Entries of z0 that corre-
spond to particles that are the lower half for the first time slice that they are in
A are set to -1 and else to 1.

We construct Q(i) and also Qs(i), i = 1, 2, 3, 4, 5, where Q(i) or Qs(i) corre-
sponds to the i-th time interval. With the chosen ε the sparsity of the computed
matrices lies between 94% and 97%. Q(i) has ones to the diagonal for trajecto-
ries that are not inside the domain for the given time interval. Otherwise these
particles would loose their initial color to zero. Another possibility would be to
use a source color vector and construct the entries of Q only for particles that are
in the domain within the given time interval and setting entries corresponding
to the others to 0.

In Figure 8.11 we show the evolution of the color vector using Q. The use of
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Figure 8.10.: Particles with coevolved color vector by Q(i) in the channel with
an obstacle.

the substochastic matrices Qs would lead to a color loss, shown in Figure 8.12.
(A slight color loss would also happen, when we would add ones to the diagonal
entries of trajectories that have not yet entered the system.)

We now want to extract organizing structures of the dynamics from the ma-
trices Q(i). Here one could now consider each interval alone or one could try to
combine the transition matrices to a single one, what we intend to do here. The
product or average matrix are thinkable options for this. By our construction of
Q(i) there are many isolated trajectories (trajectories that are not in the domain
in the given time interval) corresponding to an diagonal entry 1 (and hence mul-
tiple eigenvalue 1). To extract coherent structures we set these diagonal entries
to 0. One could also consider the submatrix restricted to entries that correspond
to non-isolated trajectories. In Figure 8.13 we present the dominant spectrum
of Q(i) and of the average matrix Q, as well as the dominant spectrum of Qs(i)
and of the corresponding average matrix Qs.

To extract coherent structures, we now use the SEBA algorithm on the leading
10 eigenvectors of the averaged matrix Q. Figure 8.14 shows the output sparse
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Figure 8.11.: Particles with coevolved color vector by Q(i) in the mixing valve.
Here new particles enter the system.

Figure 8.12.: Color vector z5 computed by using Qs(i) in the mixing valve.

vectors at the initial time slice and in Figure 8.15 are shown these vectors at
the final time slice. The second output vector (top right in Figure 8.14 and
second row in Figure 8.15) shows a similar structure as we found in Section 7.3
by the seventh eigenvector of the transition matrix P corresponding to the largest
self-communicating class. Using instead 11 eigenvectors would lead to a further
partition of this structure in a lower and upper cluster at initial time. At final
time these vector highlights the region around the obstacle as well as some gyre
cores. The other output vectors highlight further coherent structures, some of
these correspond to the generated vortices and some to the outer boundaries of
vortices. The superposition of the output vectors at the final time slice is shown
in Figure 8.16.

Figure 8.17 shows the superposition of the vectors obtained by SEBA using
Qs instead of Q at the final time slice. Here, similar structures are highlighted
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but some regions show a lower likelihood to belong to a cluster. Particles that
are in the inner inlet region at final time are not assigned to a coherent set.

Since we have used here the averaged matrix Q, the extracted structures can
be interpreted as averaged coherent sets.

Figure 8.13.: Leading 30 eigenvalues of Q(i) (blue) Qs(i) (cyan), for i = 1 (dots),
2 (plus signs), 3 (circles), 4 (asterisks), 5 (crosses), and their corre-
sponding average matrices Q (purple) and Qs (green).
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Figure 8.14.: Output sparse vectors obtained by SEBA using Q̄, shown at the
initial time slice.
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Figure 8.15.: Output sparse vectors obtained by SEBA applied to the first 10
eigenvectors of Q̄, shown at the final time slice.
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Figure 8.16.: Superposition of the vectors obtained by SEBA using Q̄, shown at
the final time slice.

Figure 8.17.: Superposition of the vectors obtained by SEBA using Q̄s, shown at
the final time slice.
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Chapter 9.

Conclusion

In this thesis, we first considered transport and mixing in closed systems, and
then in (double) open systems within a set-oriented transfer operator approach.
In the mixing studies, we focused on the mixing of two types of fluids. Finally,
we extended a recent trajectory-based approach.

Within the transfer operator approach, we considered the influence of a con-
stant perturbation (wind) on coherent structures in the closed double gyre flow
on a periodic domain. We observed a change in position, shape and size us-
ing only one wind direction. For small wind factors and some structures, these
changes might be relatively small. Depending on the specific application, it can
be crucial to take into account plausible wind factors.

We applied the numerical transfer operator framework for analyzing coher-
ent behavior in nonautonomous systems to a (closed) two-dimensional Rayleigh-
Bénard convection system. We reliably identified the gyre cores and the results
compared well with those using trajectory-based methods in [62]. Whereas the
dominant features can be extracted also when using less boxes and test points
for the approximation of the transfer operator, the results of the FTE fields and
the SEBA algorithm show more details of the dynamics in the background flow
when more test points are used. In [63] we applied the transfer operator ap-
proach also to a RBC system in a three dimensional setting, and demonstrated
thus the applicability to more complex systems. However, in turbulent systems
coherent sets will exist only for a relatively short time span and the standard
transfer operator approach will not be able to find any coherent sets when the
time span is too long. Recent approaches as evolutionary clustering [106] and
a novel inflated dynamic Laplacian operator construction [107] aim to overcome
these issues.

The main contribution is the work on (double) open flows. We proposed a
transfer operator framework to model and study the transport and mixing in
specific open flows that can be seen as idealized open flow mixers.

We described the mixing of two types of fluids in both closed and open systems
within the transfer operator framework. We computed finite-time mixing pat-
terns for the closed double gyre flow and the RBC system, and invariant mixing
patterns for different parameters the two double open systems, the double gyre
mixer and the more realistic lid-driven cavity mixer. For the quantification of
finite-time mixing of two different fluids in the closed systems and quantification
of the invariant mixing patterns in the outlet region of double open systems, we
applied several frequently used mixing measures, such as sample variance, mean

105



length scale, and a multiscale mix-norm.
The sample variance and mix-norm give consistent results. However, the mix-

norm appears to be most robust with respect to numerical parameters (such as
number of boxes and test particles). The computation of the mix-norm assumes a
periodic domain of a torus. The quantification of mixing based on a mix-norm on
arbitrary domains was recently considered in [108]. The use of the mean length
scale showed problems to identify differences in the mixing patterns for the closed
double gyre system at later times. An improvement of this mixing measure could
be the use of concentration data instead of the box-discrete indicator variables.
Also, as indicated in the open double gyre example, an increasing of the bin
width can lead to a multi-scale mixing measure. The semivariogram can further
be used to analyze mixing patterns in specific directions such as horizontal or
vertical directions, which was not done here.

When considering mixing patterns of two different fluids in open systems after
finite time the question arises, how one should deal with or quantify empty
space in mixing patterns. With the transfer operator approach we can detect
empty space in the patterns by following both fluids separately. It can then be
considered how space-filling the two fluids are or how the two fluids are mixed
on this structure.

In open systems, the chaotic saddle and its manifolds are known to organize
the mixing processes. We demonstrated that the leading left and right eigenvec-
tors or the self-communicating classes of the transition matrix can be used to
approximate these structures. However, a direct relation between spectral prop-
erties of the substochastic transition matrix and the mixing properties of two
fluids observed is not obvious, as there is no information of the source distribu-
tion in the transition matrix P . (Further, we cannot deduce the mixing quality
in the double open system from the dominant spectrum of the corresponding
closed system (see Appendix B). Hence, one has to study the open system.) The
mixing patterns depend both on the underlying dynamics encoded in the tran-
sition matrix P and on the source distribution σ. In a parameter study, we
studied the influence of the source distribution and give a first idea of a spectral
mixing measure that takes two types of fluids into account. A next step would
be to study if this heuristic mixing measure is reliable if the underlying stable
manifolds change.

With regard to optimal mixing, it would be also interesting to extend recent
transfer-operator based results on optimal initial tracer patterns in closed flows
[60] to open flows and to combine the open-flow transfer operator framework with
optimization schemes to maximize mixing, such as in [57].

With the channel with an obstacle we considered an example system with
a realistic flow profile. This system also illustrates some restrictions/issues of
the transfer operator approach, that is, it can be computational expensive to
obtain an approximation of the transfer operator for a fine box-discretization for
large domains. Also, the box-discretization itself becomes more challenging for
domains that are not rectangular. Further, to model the transport in the double
open channel, we had to extend the inlet region or we had to model the transport
with a series of transition matrices (see Remark 6.2, 3. case).
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In our examples, we restricted to periodic velocity fields (or assumed period-
icity in the channel with an obstacle). For aperiodic flows, the mixing patterns
restricted to the outlet region would be time-dependent (see Remark 6.2, 4. case)
and could be studied using the different mixing measures. An extension of the
transfer operator approach would be the extraction of the finite-time organizing
structures within these specific open systems.

We considered here instead a trajectory-based approach, developed by [34],
that is promising for the study of mixing processes in aperiodic open flow mixers,
since it uses no information about the velocity fields.

We have modeled the mixing of two types of fluids using the diffusion map
transition matrix. The results of the applied mixing measures to mixing patterns
in periodic-forced double gyre flow within this approach are in agreement with
the results within the transfer operator approach. Using an appropriate time-
span, we could extract coherent sets in the double gyre mixer that revealed the
stable and unstable manifolds of the chaotic saddles. In the channel with an
obstacle we assumed no periodic velocity field and extracted a similar underlying
structure as with the transfer operator approach together with further coherent
sets.

We have defined coherent sets for fixed time intervals. However, in these open
flow mixers, many trajectories leave the system soon and many trajectories enter
the system at later times. These particles have in our construction a relatively
low chance to be part of a coherent set. For the channel with an obstacle we aimed
to extract time-averaged coherent sets. A further ansatz could be to use other
weightings for these trajectories in the diffusion map transition matrix. It would
be interesting to consider the approaches of using an evolutionary clustering or
to allow coherent sets to arise and to die [106,107].

In this thesis, we restricted our computational studies to two-dimensional ex-
ample settings. The extension of both the transfer operator and trajectory-
oriented approach to the three-dimensional setting is straightforward.
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Appendix A.

SEBA

In both the transfer operator approach (Chapter 3) and the trajectory-based
approach (Chapter 8), it is frequently the case that multiple almost-invariant
sets or coherent sets are encoded in several dominant approximate eigenvectors
or singular vectors.

In order to disentangle individual features, the SEBA (Sparse EigenBasis Ap-
proximation) algorithm [92] seeks a rotation of the vectors so that the rotated
vectors span the same subspace and each rotated vector contains an individual
feature.

In more detail, if each eigenvector or singular vector vi, i = 1, . . . , k is a column
vector in Rn and V := [v1|v2| · · · |vk] is an n × k array, we wish to find a sparse
array S = [s1|s2| · · · |sk] for which span{s1, s2, . . . , sk} ≈ span{v1, v2, . . . , vk}.
Sparsity implies a small total feature support in each vector.

SEBA finds a locally optimal k× k rotation matrix R with V ≈ SR small and
S sparse. See [92] for a precise description of the algorithm and further details.

When we have obtained s1, . . . , sk by SEBA, we interpret the j-th entry of si,
si,j , as likelihood that (the box Bj or trajectory xj) belongs to cluster i, when
si,j > 0. When we combine the information in a superposition vector, an entry
of this vector provides an indication of cluster membership certainty.
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Appendix B.

Double gyre systems

Comparison of the different double gyre systems. We compute the transition
matrices for the closed double gyre system without windage (denoted as P c),
the double gyre system with windage parameter β = 0.5 on the periodic domain
(denoted as P p) and the open double gyre system (denoted as Po) on the domain
[0, 2]× [0, 1] partitioned in 216 boxes for time span τ = 1 and different choices of
ε.

In Figure B.1 are shown the leading second and third eigenvalues of P c and the
real part of the second and third largest eigenvalues (sorted by real part) of P p.
The first eigenvalues are 1, since the transition matrices are stochastic. Further
are shown the real part of first and second largest eigenvalues of Po (there are
only small complex eigenvalues when there are no self-communicating classes).

Figure B.1.: Comparison of the dominant eigenvalues in the different double gyre
systems. Leading second (dark green) and third (green) largest
eigenvalues of P c, real part of the second (dark blue) and third
(blue) largest eigenvalues of P p, and real part of first (red) and sec-
ond (orange) largest eigenvalues of Po.

For small ε all shown eigenvalues are close to 1. For the closed system, only in a
region around ε = 0.3 the eigenvalues are noticeably lower. It becomes clear that
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it is not enough to consider the leading eigenvalues of P c to know how windage
(as in the system on the periodic domain or the open system) would effect the
system.

Only for a few regions of ε the dominant eigenvalues of P p and Po are in
agreement, indicating similar dominant structures. In general the (real part of
the) eigenvalues of P p are larger. Some of this eigenvalues are complex with
nonzero imaginary part, indicating almost-cyclic structures that dominates the
dynamics. But for some ε they are also real, indicating an almost-invariant
structure that exist because of the periodic domain.

Box-counting dimension. A fractal dimension, the so-called box-counting di-
mension, of a structure U is defined by

D = lim
δ→0

logNδ(U)

log 1
δ

,

where Nδ(U) is the smallest number of boxes of a diameter δ which can cover
U . A one-dimensional curve has box-counting dimension 1 and a surface has
box-counting dimension 2. For a chaotic saddle and its stable and unstable
manifolds the box-counting dimensions are in generally not an integer, and it
holds 1 < D ≤ 2 (see in [7,37] for a review on the box-counting dimension in the
context of open flow mixing).

In a set-oriented framework, Siegmund and Taraba [109] used the subdivision
algorithm [13] to approximate the box-counting dimension of attractors. Because
of the transience in our open setting and the non-attractiveness of our phase-space
structures, we can not use this subdivision algorithm to obtain approximations of
the structures. However, based on these ideas we compute coarse approximations
of the box-counting dimension of structures as chaotic saddles, their manifolds
or almost-invariant sets.

Therefore, we use the already computed boxes in the supports of the leading
eigenvectors or self-communicating classes of P as covering of a structure U .
Since we use GAIO [87] for our computations, we also have a covering of the
structure U using squared boxes with side length twice the size. We approximate
the box-counting dimension of U by

D̂ =
logNr − logN2r

log 2
,

where Nr denote the number of boxes in the covering of the structure U using
squared boxes with radius r and N2r denote the number of the boxes in the
covering of U using squared boxes with radius 2r.

Figure B.2 presents the approximated box-counting dimensions for the ex-
tracted self-communicating classes in the double gyre system for different ε.

An idea to obtain stepwise finer approximations could be to subdivide the
boxes in the support of leading left and right eigenvectors and calculate again
the transition matrix only on these boxes.
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Figure B.2.: Rough approximations of the box-counting dimensions of the ex-
tracted self-communicating class on the left of the mixing region
(blue) and of the self-communicating class on the right of the mix-
ing region (orange) in the double gyre mixer with different choices
of ε.

Expected residence times.

ε = 0 ε = 0.1

ε = 0.175 ε = 1.35

Figure B.3.: Expected residence times (smaller than 10) for different choices of
ε. Expected residence times higher than 10 are shown in white.
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Figure B.4.: Means (dots) and standard deviations (circles) of the expected res-
idence times in the double gyre mixer with different choices of ε.
Blue are the statistics for boxes in the inlet region and gray are the
statistics for all boxes. The y-axis is cutted at 12. For small ε, the
statistics for all boxes are much higher, since there are relatively
large almost-invariant sets.
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Appendix C.

RBC

Figure C.1.: Left singular vectors ψ2, ψ3, ψ4 of the modified transition matrix L
and corresponding right singular vectors ϕ2, ϕ3, ϕ4 (right column).
Here the short time interval [2000, 2020] and 212 boxes are used for
setting up P̄ .

Figure C.2.: Left singular vectors ψ2, ψ3, ψ4 of the modified transition matrix L
and corresponding right singular vectors ϕ2, ϕ3, ϕ4 (right column).
Here the long time interval [2000, 2200] and 212 boxes are used for
setting up P̄ .
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Figure C.3.: Left singular vectors ψ2, ψ3, ψ4 of the modified transition matrix L
and corresponding right singular vectors ϕ2, ϕ3, ϕ4 (right column).
Here the short time interval [2000, 2020], 216 boxes and 16 test points
per box are used for setting up P̄ .

Figure C.4.: Left singular vectors ψ2, ψ3, ψ4 of the modified transition matrix L
and corresponding right singular vectors ϕ2, ϕ3, ϕ4 (right column).
Here the long time interval [2000, 2200], 216 boxes and 16 test points
per box are used for setting up P̄ .
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Figure C.5.: Forward time FTE fields computed over the short time interval
[2000, 2020] (left column) and the long time interval [2000, 2200]
(right column). The first row show these using 212 boxes and the
second rows show these using 216 boxes and 16 test points per box.

Figure C.6.: Extracted coherent sets at initial time (left column) and final time
(right column) via an application of the standard k-means algorithm.
The first two rows show these for the short time interval and long
time interval using 212 boxes. The last two rows show these using
216 boxes and 16 test points per box.
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Figure C.7.: Output sparse vectors obtained by SEBA applied to the first four
left singular vectors, 216 boxes and 16 test points per box, time
interval [2000, 2200].

Figure C.8.: Superpositions of the output sparse vectors obtained by SEBA
applied to the first three left singular vectors for time interval
[2000, 2020] (left column) and to the first four left singular vectors
for time interval [2000, 2200] (right column). The first row show
these using 212 boxes and the second row show these using show
these using 216 boxes and 16 test points per box.
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Table C.1.: Sample variance s2, mix-norm φ2 (relative mixnorm φ2
rel) and mean

length scale L̂ in the RBC system after τ = 20 tf , 200 tf .
# boxes, test points v0 s2 φ2(φ2rel) L̂
212, 16 horizontal 1.0428, 0.2897 0.0854 (0.6372), 0.0066 (0.0491) 0.4523, 0.0769

vertical 0.9717, 0.3649 0.0972 (0.7246), 0.0199 (0.1481) 0.4218, 0.0892
216, 16 horizontal 1.1358, 0.3989 0.0873 (0.6507), 0.0065 (0.0484) 0.2450, 0.0221

vertical 1.0533, 0.4299 0.0986 (0.7357), 0.0197 (0.1472) 0.2047, 0.0236
216, 100 horizontal 0.9745, 0.2787 0.0870 (0.6488), 0.0063 (0.0468) 0.2904, 0.0283

vertical 0.9519, 0.3102 0.0986 (0.7351), 0.0196 (0.1465) 0.2435, 0.0297

Figure C.9.: Evolved signed mass distributions – horizontally placed (left column)
and vertically placed (right column) – in the RBC system. The first
two rows show the mass distributions after the short and long time
span using 212 boxes and the last two rows show these using 216

boxes and 16 test points per box.
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