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Preface 

This cumulative dissertation is submitted for the degree of Dr. rer. nat. at Leuphana University in Germany. It 

comprises of five chapters based on empirical research in Tanzania, conducted between 2019 and 2022. The 

research described herein was part of an interdisciplinary research project “Wildlife, values, justice: reconciling 

sustainability in African protected areas” funded through a Junior Professorship for research into the 

sustainable use of natural resources by the Robert-Bosch Foundation. Together, the empirical studies presented 

in this dissertation contribute to the understanding of the ecological effectiveness of different protection levels 

(from strict to less strictly protected: national park, game reserve, forest reserve, game-controlled area, and 

unprotected areas) and functional connectivity across a large protected area network in southwestern Tanzania.  

The empirical studies were designed within the context of protection gradient, land-use and land-use change, 

and conditions potentially influencing biodiversity patterns. One chapter (4) is published, one revision 

submitted (2) and two are in revision (3 and 5). A reference to the journal in which a chapter is published or in 

revisions as well as its status and co-authors are presented at the title page of each chapter. A bibliography is 

provided at the end of each chapter, and some chapters are followed by supporting information. Due to the 

standalone nature of the individual chapters, some reiteration in the text of this dissertation was inevitable.  
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Abstract 

Biodiversity is quickly diminishing across the planet, primarily owing to human pressures. Protected areas are 

an essential tool for conserving biodiversity in response to increasing human pressures. However, their 

ecological effectiveness is contested and their capacity to resist human pressures differ. This dissertation aimed 

to assess the ecological effectiveness of different protection levels (from strict to less strictly protected: national 

park, game reserve, forest reserve, game-controlled area, and unprotected areas) in protecting biodiversity (both 

mega diverse butterflies and mammals), maintaining habitat connectivity, and reducing anthropogenic threats 

at the wider landscape in southwestern Tanzania. To achieve this overarching goal, I employed an 

interdisciplinary approach. First, I analyzed butterfly diversity and community composition patterns across 

protection levels in the Katavi-Rukwa Ecosystem. I found that species richness and abundance were highest in 

the game reserves and game-controlled areas, intermediate in the forest reserves, national park and unprotected 

areas. Species composition differed significantly among protection levels. Landscape heterogeneity, forest 

cover, and primary productivity influenced species composition. Land-use, burned areas, forest cover, and 

primary productivity explained the richness of species and functional traits. Game reserves hosted most 

indicator species. 

 

Second, I modelled the spatial distribution of six large mammal target species (buffalo Syncerus caffer, elephant 

Loxodonta africana, giraffe Giraffa camelopardalis, hartebeest Alcelaphus buselaphus, topi Damaliscus korrigum, and 

zebra Equus burchellii) across environmental and protection gradients in the Katavi-Rukwa Ecosystem. Based 

on species-specific density surface models, I found relatively consistent effects of protection level and land-use 

variables on the spatial distribution of the target mammal species: relative densities were highest in the national 

park and game reserves, intermediate in forest reserves and game-controlled areas and lowest in un-protected 

areas. Beyond species-specific environmental predictors for relative densities, our results highlight consistent 

negative associations between relative densities of the target species and distance to cropland and avoidance of 

areas in proximity to houses.  
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Third, I examined temporal changes in land-use, population densities and distribution of six large mammal 

target species across protection levels between 1991 and 2018. During the surveyed period, cropland increased 

from 3.4 % to 9.6 % on unprotected land and from ≤0.05 % to <1 % on protected land. Wildlife densities of 

most, but not all target species declined across the entire landscape, yet the onset of the observed wildlife 

declines occurred several years before the onset of cropland expansion. Across protection levels, wildlife 

densities occurred at much greater densities in the national park and game reserves and lowest in the forest 

reserves, game-controlled areas and unprotected areas. Based on logistic regression models, target species 

preferred the national park over less strictly protection levels and areas distant to cropland. Because these 

analyses do not support a direct relationship between the timing of land-use change and wildlife population 

dynamics, other factors may account for the apparent ecosystem-wide decline in wildlife. 

 

Fourth, I quantified land-use changes, modelled habitat suitability and connectivity of elephant over time across 

a large protected area network in southwestern Tanzania. Based on analyses of remotely-sensed data, cropland 

increased from 7% in 2000 to 13% in 2019, with an average expansion of 634 km2 per year. Based on ensemble 

models, distance from cropland influenced survey-specific habitat suitability for elephant the most. Despite 

cropland expansion, the locations of the modelled elephant corridors (n=10) remained similar throughout the 

survey period. According to ecological knowledge, nine of the modelled corridors were active, whereas one 

modelled corridor had been inactive since the 1970s. Based on circuit theory, I prioritize three corridors for 

protected area connectivity. Key indicators of corridor quality varied over time, whereas elephant movement 

through some corridors appears to have increased over time.   

 

Overall, this dissertation underpins differences in ecological effectiveness of protected areas within one 

ecosystem. It highlights the need to utilize a landscape conservation approach to guide effective conservation 

across the entire protection gradient. It also suggests the need to enforcing land use plans and having alternative 

and sustainable forms for generating income from the land without impairing wildlife habitat. 
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Introduction 

Almost 30 years after the Convention of Biological Diversity entered into force, biodiversity continues to 

decline at extraordinary rates due to human-induced pressures (IPBES, 2019; Mammides, 2020; WWF, 2020). 

Land-use change, direct exploitation of organisms, pollution, and invasive species associated with an increasing 

human population and per capita resource use are the underlaying drivers of biodiversity loss globally (IPBES, 

2019). In sub-Saharan Africa land grabbing by big firms from other countries for large-scale agriculture 

(Balehegn, 2015; Williams et al., 2021), and widespread poverty, human population growth, and heavy 

dependence on natural resources pose serious threats to biodiversity (Coad et al., 2008; Fisher et al., 2005; 

Redford and Fearn, 2007). As a primary response to these manifold human pressures on species and 

ecosystems, protected areas are a key conservation instrument for conserving nature and safeguarding 

biodiversity and human well-being (Gaston et al., 2008). However, the effectiveness of protected areas is 

questioned, and their ability to endure multiple human pressures differs (Geldmann et al., 2019). To increase 

protected area effectiveness, understanding the drivers and responses determining their capacity to protect 

biodiversity is crucial (Burkmar and Bell, 2015; Mazor et al., 2018). 

 

Despite the large and currently increasing coverage of protected area networks in Africa, empirical evidence 

indicated that large mammal populations have declined by more than 50% over the past decades (Craigie et al., 

2010). Land-use change and direct exploitation are considered to be the foremost direct drivers, while human 

population growth and reduced functional connectivity (Fynn and Bonyongo, 2011; Riggio and Caro, 2017; 

Roever et al., 2013), underfunding  (Coad et al., 2019), and subsequent failure to implement and enforce 

effective conservation measures (Henson et al., 2016; Lindsey et al., 2014; Muhumuza and Balkwill, 2013) are 

frequently mentioned as the underlying causes.  

 

Among ecosystems with documented declines in large mammal populations are the Katavi-Rukwa Ecosystem 

(Caro, 2008; Mtui et al., 2017), the Ruaha-Rungwa ecosystem, (TAWIRI, 2013), and  the Ugalla ecosystem 

(TAWIRI, 2010), all located in southwestern Tanzania. In spite of large coverage of protected areas with 
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different designated (International Union for Conservation for Nature [IUCN], 2020; Riggio et al. 2019;), 

ranging from strictly protected (IUCN Categories I to V) to less strictly protected, permitting human activities 

and resource extraction to some extent (IUCN Category VI). Land-use change (especially the expansion of 

cropland) and overexploitation (often illegal harvesting) of species (Caro et al., 2013; Martin and Caro, 2012) 

elevated by a growing human population (Masanja, 2014) and an increasing demand for natural resources pose 

increasing pressure on protected areas and surrounding landscapes in southwestern Tanzania (Martin and Caro, 

2012; WCMC-UNEP, 2016). However, insights on the extent of land-use change on biodiversity (especially 

large mammal populations) remain scarce (Kiffner et al., 2013). Apart from unprotected areas, different 

categories of protected areas exist in Tanzania, ranging from strictly protected (national park) to less strictly 

protected (game reserve, forest reserve and game-controlled area) permitting human activities and resource 

extraction to some extent (Caro and Davenport, 2016; Caro, 1999a). Few studies already investigated the 

ecological effectiveness of protected areas in protecting vertebrate biodiversity (especially large mammals) 

across Tanzania (Stoner et al., 2007), however this countrywide assessment only focused on national parks and 

game reserves and did not consider other protection levels that may also support wildlife populations (Caro, 

1999a). Likewise studies on invertebrate biodiversity (especially butterflies) from the Katavi-Rukwa Ecosystem 

are rare, and mostly focused on the strictly protected national park (Fitzherbert et al., 2006), leaving out the less 

strictly protected game reserve (Gardner et al., 2007). To date, however, biodiversity patterns (especially 

butterfly species richness and abundance, and large mammal population densities) have neither been linked to 

land-use changes nor to different protection levels across an entire ecosystem at the wider landscape. Here, I 

integrate biodiversity patterns and land-use change analyses over time to assess the ecological effectiveness of 

five protection levels (national park, game reserve, forest reserve, game-controlled area, and unprotected areas) 

in safeguarding biodiversity and reducing human threats. Understanding how protection levels mediates 

biodiversity and human threats is crucial for effective planning and management of integrated protected areas 

system at the wider landscape (CBD, 2022; UNEP-WCMC; IUCN; and NGS, 2020). My dissertation provides 

evidence-based information on the ability of unprotected and protected areas with different management form 
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to maintain natural habitat cover, butterfly species, and population densities of large mammal for making 

informed decision.  

  

Accelerating loss and fragmentation of wildlife habitats outside protected areas through land-use change (in the 

East African context mainly expansion of cropland and settlement), progressively isolates protected areas in 

many ecosystems (Fynn and Bonyongo, 2011; Newmark, 2008, 1996). One effective approach to ensure that 

protected areas can meet their core conservation goals is to connect established protected areas through 

corridors (Gilbert-Norton et al., 2010; Sekhran et al., 2010; Simberloff et al., 1999). A feasible approach to 

maintain or reverse the loss of habitat connectivity is to identify, and then protect, or restore wildlife corridors 

(Bond et al., 2017; Jones et al., 2012). Even though the locations of the majority of wildlife corridors in Tanzania 

are widely recognized (e.g. Caro et al. 2009 ; Riggio and Caro 2017), their precise locations and present status 

are frequently unknown (Jones et al., 2009). In an ideal world, wildlife corridor locations are informed by the 

actual movement of the target species (Alavi et al., 2022; Zeller et al., 2012). However, such data are rarely 

available for an entire protected area network and over lengthy periods of time. As an alternative to animal 

movement data, presence data from periodically conducted aerial surveys serve as a suitable surrogate for space 

use over large areas (Pittiglio et al., 2012). Based on such presence data, species distribution models can be 

generated for target species (Tobgay and Mahavik, 2020; Torres et al., 2010), and the inverse of the habitat 

suitability can be used to predict movement corridors across the protected area network (Cisneros-Araujo et 

al., 2021a; Keeley et al., 2016).  

 

Although wildlife corridors models based on available species distributions and remotely sensed data have been 

performed for large-scale conservation planning of wide-ranging large mammal species in eastern Tanzania (e.g. 

Cisneros-Araujo et al. 2021b). To this end, I  aimed to conduct a comprehensive analysis of the protected area 

network connectivity in southwestern Tanzania by adding the following four crucial elements: First, I 

incorporate connectivity analyses over time to investigate temporal processes affecting habitat suitability and 

connectivity (Martin et al., 2019; Ntukey et al., 2022; Saura et al., 2019). Second, I include empirical data rather 



15 
 

than relying solely on expert opinion (e.g. Van de Perre et al. 2014; Cisneros-Araujo et al. 2021b) and 

parameterize species distribution models with both natural landscape and anthropogenic features rather than 

using land cover (e.g. Cisneros-Araujo et al. 2021b) alone as input for modelling corridors. Third, I evaluate the 

relative importance of individual corridors in order to prioritize conservation actions on the ground, and 

validate corridor models by comparing them to independent data.  Understanding functional connectivity at 

the wider landscape is imperative for large-bodied and wide-ranging terrestrial mammals to ensure well-

connected and effective systems of protected areas (CBD, 2022; UNEP-WCMC; IUCN; and NGS, 2020). My 

dissertation provides spatially explicit information about wildlife corridors to precisely identify critical places 

for functional connectivity protection and restoration across a large protected area network in southwestern 

Tanzania. Further, my dissertation offers a framework to integrate several temporal data sources, ecological 

models and validation techniques to model spatially explicit wildlife corridors for effective protected area 

network conservation. 

 

Mammals and insects as biodiversity focal taxa 

Biodiversity covers different levels of organization from genes to ecosystems with different dimensions (i.e., 

taxonomic, functional, genetic and phylogenetic diversity; Chao & Colwell 2022). To this end I focus on distinct 

taxonomic and functional groups because different taxonomic groups may respond differently to land-use and 

land-use changes, and protection levels. In this dissertation, I use large mammals and butterflies as study taxa 

to understand how biodiversity respond to land-use and land-use changes; and protection levels in Tanzania. 

The two taxonomic groups provide important ecosystem services and all are facing critical extinction rates 

(IUCN, 2021; WWF, 2018). Large mammals play important ecological roles and require vast areas and when 

their habitats are adequately protected, many other species that live in these areas are also protected (Caro 2003; 

Kideghesho 2016). Some species (e.g. elephant) plays a crucial role in shaping the structure and functioning of 

savannah and forest ecosystems that support other species; (Babweteera et al., 2007; Campos-Arceiz and Blake, 

2011; CITES, 2010). Butterflies play an important role in pollinating plants and respond quickly to changes in 

the environment and land use (Ekroos et al., 2013; Kremen, 1992; Nelson, 2007) and have been identified as 
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ecological indicators in a variety of ecosystems worldwide (Bhardwaj et al., 2012; Stuhldreher and Fartmann, 

2018; Thomas, 2005). 

 

Overarching goal 

This dissertation was part of the interdisciplinary research project “Wildlife, values, justice: reconciling 

sustainability in African protected areas”, which aims to assess protected area effectiveness and its contribution 

to sustainability by combining ecological and social processes and outputs in response to governance 

arrangements. The overarching goal of my PhD dissertation was to assess ecological effectiveness of different 

protection levels (from strict to less strictly protected: national park, game reserve, forest reserve, game-

controlled area, and unprotected areas) in protecting invertebrate and vertebrate biodiversity, maintaining 

connectivity, and reducing anthropogenic threats at the wider landscape in southwestern Tanzania. Specifically, 

I aimed at:  

• Analyzing butterfly diversity and community composition patterns across protection levels in the 

Katavi-Rukwa Ecosystem, western Tanzania (Chapter 2).  

• Modelling the spatial distribution of six large mammal target species in response to environmental 

variables and protection level in the Katavi-Rukwa Ecosystem, western Tanzania (Chapter 3). 

• Investigating temporal changes in land-use, population densities and distribution of six large mammal 

target species across protection levels in the Katavi-Rukwa Ecosystem, western Tanzania (Chapter 4). 

• Modelling habitat suitability and connectivity of wide-ranging large mammal species over time across 

a large protected area network in southwestern Tanzania (Chapter 5). 

 

Brief overview of methods 

This dissertation builds on a combination of sampling and methods used in spatial sciences, ecology and in the 

social sciences. These included for example, (i) spatial and temporal analysis of land-use and land-use changes 

using remote sensing and geographical information system techniques, (ii) temporal analysis of wildlife 

population densities using wildlife aerial surveys data, (iii) modelling habitat suitability over time using ensemble 
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distribution models, (iv) modelling functional connectivity using least cost and circuit theory approach, (v) 

validating the connectivity models using local ecological knowledge (i.e., key informant interviews), and (vi) 

carrying out ground surveys. The ground surveys of large mammals and butterflies were based on line distance 

sampling framework (Thomas et al., 2010) and standardized line-transect counts (Pollard and Yates, 1994), 

respectively.  

 

Data analysis for butterflies involved a range of methods that included: (i) detrended correspondence analysis, 

and indicator analysis for the analysis of community composition patterns; (ii) generalized linear mixed models 

used for analysis of species richness and functional group responses; (iii) Additive partitioning of diversity for 

the analysis of diversity patterns at different scales. Data analysis for large mammals from indirect wildlife 

detection survey was based on a density surface modelling framework, a two-stage method which first accounts 

for uncertain detectability (primarily as a function of distance between transect and observations; Thomas et 

al., 2010) and a spatial model of the density of the target populations (Miller et al., 2013). 

 

Thesis outlook 

This thesis presents five chapters, four grounded on empirical research and one framework chapter. The first 

four empirical studies (Chapter 2-5) aim to understand ecological effectiveness of a protected area network by 

analyzing biodiversity patterns and habitat connectivity at the wider landscape. Chapter 2 and 3 present the 

current state of biodiversity patterns for one snapshot in time, whereas chapter 4 and 5 present the temporal 

changes in biodiversity patterns and functional connectivity for multiple snapshots in time, respectively. Next, 

I provide a brief summary of each chapter.  

 

Chapter 2 provides an account of ecological effectiveness by analyzing butterfly diversity patterns across 

protection levels (from strict to less strictly protected: national park, game reserve, forest reserve, game-

controlled area, and unprotected areas) at the wider landscape. Based on butterfly data collected along foot 

transects across protection levels: (i) I analyzed total species richness and abundance, and richness and 
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abundance of functional traits across protection levels, (ii) assessed species composition along a protection and 

land cover gradients, (iii) analyzed the influence of environmental variables on community composition, species 

richness, and richness of functional traits and; iv) investigated hierarchical patterns of butterfly diversity at 

different spatial scales; and (v) identified appropriate indicator species for each protection level. I found that 

species richness and abundance were highest in the game reserves followed by game-controlled areas and forest 

reserves; national park and unprotected areas had intermediate butterfly species richness and abundance. I 

found that species composition differed significantly among protection levels. Moreover, I found that landscape 

heterogeneity, forest cover, and primary productivity influenced species composition, while burned areas, forest 

cover, and primary productivity explained the richness of species and functional traits. In addition, I found that 

game reserves hosted most indicator species. My findings revealed the high conservation value of areas with 

different protection levels in the Katavi-Rukwa Ecosystem. My findings suggest that conserving butterfly 

diversity across areas differing in protection levels requires consideration of the entire landscape and execution 

of appropriate measures at different spatial scales.  

 

In Chapter 3 I modelled the spatial distribution of six large mammal species in response to environmental 

variables and protection level. Using a density surface modelling framework, I estimated relative densities as 

proxy for conservation effectiveness within areas differing in protection levels (from strict to less strictly 

protected: national park, game reserve, forest reserve, game-controlled area, and unprotected areas). I found 

that relative densities were highest in the national park and game reserves, intermediate in forest reserves and 

game-controlled areas, and lowest in unprotected areas. I found that protection level and land-use play crucial 

role in moderating the spatial distribution of target species within the Katavi-Rukwa Ecosystem. While findings 

show relative high wildlife densities in strictly protected areas, this study also shows a worrying lack of wildlife 

outside of these protected areas. In sum, my findings suggest that a better integration of conservation efforts 

outside of protected areas is needed in the Katavi-Rukwa Ecosystem.  
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Chapter 4 investigated the ecological effectiveness of protected areas by assessing temporal changes in land-

use, population densities and distributions of six large mammal target species (buffalo Syncerus caffer, elephant 

Loxodonta africana, giraffe Giraffa camelopardalis, hartebeest Alcelaphus buselaphus, topi Damaliscus korrigum, and 

zebra Equus burchellii) across protection levels (from strict to less strictly protected: national park, game reserve, 

forest reserve, game-controlled area, and unprotected areas) in the Katavi-Rukwa Ecosystem. During six survey 

periods between 1991 and 2018, I analyzed data from remote sensing and aerial wildlife surveys to derive (i) 

spatiotemporal patterns of cropland cover in relation to protection gradient; (ii) population densities of the six-

target species; and (iii) distribution of these species across protection level, land-use and environmental 

variables. I found that between 1991 and 2018, cropland increased from 3.4 % to 9.6 % in unprotected areas 

and from ≤0.05 % to <1 % in protected areas. Among the protected areas, forest reserves recorded the highest 

amounts of cropland expansion over time followed by game reserves, national park and game-controlled areas. 

I found that wildlife densities of most, but not all target species declined across the entire landscape. Among 

protected areas, populations of large mammals occurred at much greater densities in the national park and game 

reserves, and lowest in the forest reserves, game-controlled area, and unprotected areas. Further, I found that 

the main wildlife declines occurred during the 1990s before the onset of massive cropland expansion that took 

place between 2001 and 2018. Thus, the major wildlife declines largely preceded habitat loss. Further, I found 

consistent effects of protection level and land-use change on the distribution of all investigated target species. 

Target species preferred areas distant to cropland and preferred strictly protected area national park over other 

less strictly protection levels (game reserve, forest reserve, game-controlled area, unprotected areas) with fewer 

restrictions on resource utilization and perhaps also less protection from legal and illegal hunting. In sum, my 

findings do not support a direct link between land-use change and wildlife densities, additional factors may 

explain the apparent ecosystem-wide decline in wildlife. Together my findings suggest that proactive strategies 

are needed to reduce direct threats to wildlife and cropland expansion toward wildlife dispersal areas and 

migratory corridors. 
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In Chapter 5 I modelled habitat suitability and connectivity for the African elephant (Loxodonta africana) in a 

protected area network of southwestern Tanzania. During three survey periods between 2000 and 2019, I 

quantified land-use changes through remote sensing data; estimated habitat suitability through wildlife aerial 

survey data, remotely sensed variables and ensemble species distribution models; modelled least-cost corridors; 

identified the relative importance of each corridor for the connectivity of the protected area network and 

potential bottlenecks over time through circuit theory; and validated corridors through local ecological 

knowledge and ground wildlife surveys. I found that from 2000 to 2019, cropland increased from 7% to 13% 

in the region, with an average expansion of 634 km2 per year. Despite cropland expansion, the locations of the 

modelled elephant corridors (n=10) remained similar throughout the survey period. Based on local ecological 

knowledge, I found nine of the modelled corridors were active, whereas one modelled corridor had been 

inactive since the 1970s. Based on circuit theory, I prioritize three corridors for protected area connectivity. In 

addition, I found that key indicators of corridor quality varied over time, whereas elephant movement through 

some corridors appears to have become costlier over time. In sum, my findings indicated that for over the past 

two decades, functional connectivity across the surveyed protected area network has largely persisted. Restoring 

and enhancing ecological connectivity in the study region requires enforcing land use plans and having 

alternative and sustainable forms for generating income (e.g., income from selling carbon credits, beekeeping, 

and ecotourism) from the modelled corridors without impairing wildlife habitat.  

 

Synthesis 

This dissertation is one of the few empirical studies aimed to investigate ecological outcomes of different 

protection levels (from strict to less strictly protected: national park, game reserve, forest reserve, game-

controlled area, and unprotected areas), and model functional connectivity of a protected area network at the 

wider landscape over time. The key findings show that: (i) less strictly protection levels hold the highest species 

richness and abundance of butterflies (Chapter 2) compared to strictly protection areas (ii) strictly protected 

areas generally hold the highest population densities (Chapter 3 and 4) of most large mammal target species 

compared to less strictly protection levels; (iii) over the past six decades cropland largely increased on 
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unprotected land compared to protected land (Chapter 4); (iv) over the past six decades wildlife densities of 

most target species declined across the entire landscape, yet the onset of the observed wildlife declines occurred 

several years before the onset of cropland expansion (Chapter 4); (v) protection level, land-use, and land-use 

changes play vital in moderating the spatial distribution of large mammals and butterflies (Chapter 2, 3 and 4);  

(vi) nine of the modelled corridors were active, whereas one modelled corridor had been inactive since the 

1970s, and key indicators of corridor quality varied over time over (Chapter 5). Based on these findings I discuss 

three interlinked themes that span the different studies. First, I discuss response of biodiversity patterns to 

protection levels. Second, I discuss response of biodiversity patterns to land-use and land-use changes, and 

finally, I discuss connectivity conservation.  

 

Responses of biodiversity patterns to protection levels 

The empirical studies which form part of this dissertation revealed that biodiversity patterns varied widely 

across protection levels. First, I found that strictly protected level embraced higher population densities 

(Chapter 3 and 4) of most large mammal target species than areas with less strictly protection levels or 

unprotected areas. My findings support conclusions from previous studies in the same (Giliba et al., 2022) and 

other Tanzanian ecosystems (Kiffner et al., 2020; Oberosler et al., 2020) that unprotected areas may no longer 

support viable population densities of large mammal species. Second, I found that less strictly protection levels 

embraced higher butterfly species richness and abundance (Chapter 2) than strictly protection level. Compared 

to unprotected areas, butterfly species richness and abundance in the strictly protected national park were not 

significantly greater than those in the unprotected areas. In contrast, population densities and relative densities 

of all six large mammal target species where generally highest in the national park and lowest in unprotected 

areas.  A possible explanation for this pattern may be due to the fact that larger mammal species are often more 

prone to illegal hunting (Caro, 1999; Caro, 2008; Martin et al., 2013; Martin & Caro, 2012; Mgawe et al., 2012) 

or suffer from habitat loss (Giliba et al., 2022; Lobora et al., 2017) as a result of their higher energy demands 

and subsequent need for larger home ranges (McNab, 1963; Ofstad et al., 2016), which predominate in 

unprotected areas of Katavi-Rukwa Ecosystem. Moreover, my density surface models (Chapter 3) and logistic 
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regression models (Chapter 4) demonstrated a consistent influence of protection level on the spatial distribution 

of all six large mammal target species. All target species preferred the national park over less strictly protection 

levels (Chapter 4) and they were generally widely distributed in the national park compared to less strictly 

protection levels (Chapter 3). This suggest that the protection level largely explains the spatial distribution of 

large mammals in the Katavi-Rukwa Ecosystem. These findings confirm the strong influence of the protection 

level in regulating distributions and densities of large mammals in East Africa (Bhola et al., 2012; Kiffner et al., 

2020). Preference of strictly protected national park possibly is due to better protection from legal and illegal 

hunting (Waltert et al., 2009), and from habitat degradation (Schwartz et al., 2002) compared to less strictly 

protection levels. In sum my findings underpin differences in relative ecological effectiveness of protected areas 

within one ecosystem. My main conclusion from these findings is that while less strictly protection levels 

(especially unprotected areas but also game-controlled areas and forest reserves) were relatively effective in 

supporting butterfly communities, they were largely ineffective in conserving populations of large mammal 

species. These findings suggest landscape approach to incorporate the entire protection gradient into land-use 

plans that integrate the needs of both biodiversity and people.  

 

Responses of biodiversity patterns to land-use and land-use change 

Analyses of nearly three decades of land cover and wildlife aerial surveys (Chapter 4) indicated that cropland 

increased massively in the unprotected areas and marginally in the protected areas, and wildlife densities of 

most target species declined across the entire landscape. However, the major wildlife declines occurred during 

the 1990s, whereas the massive land-use changes occurred during the 2000s and 2010s. Thus, because wildlife 

declines largely preceded habitat loss in the Katavi-Rukwa Ecosystem, it is probable that the initial wildlife 

declines were caused by other factors. Several previous studies in the Katavi-Rukwa Ecosystem have pointed 

to illegal hunting (prompted by extensive bushmeat consumption and the selling of animal parts) as the main 

reason for the decline of large mammal populations. Moreover, my density surface models (Chapter 3) and 

logistic regression models (Chapter 4) demonstrated a consistent influence of land-use and land-use changes 

(especially distance to cropland) on the spatial distribution of all six large mammal target species respectively. 
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Generally, target species avoided areas near to cropland and partially also avoided areas in immediate proximity 

to houses, suggesting that land-use thrusts large mammal species further into the core areas of protected areas. 

This observation backs up what other case studies in East Africa (e.g., Msoffe et al., 2011; Ogutu et al., 2012; 

Veldhuis et al., 2019) have found, which is that expanding cropland towards the edges of protected areas not 

only largely confines large mammals to protected areas but also makes edge areas within protected areas less 

suitable for large mammal populations. Similarly, my generalized linear mixed-effects models from the butterfly 

study (Chapter 2) further support the influence of land-use on the spatial distribution of butterfly species 

richness.  I found that species richness was positively associated to distance to cropland and houses, signifying 

that species richness increased distant to these anthropogenic structures. This tendency may be attributable to 

the enormous distances between habitat patches in farmland (Loos et al., 2022, 2015) as well as the use of 

pesticides, which I noticed during butterfly surveys within farmland, and the corresponding reduction in 

flowering plants (Tambara et al., 2013). My main conclusion from these findings is that expanding cropland 

and human settlements not only diminishes the actual amount of available habitat but also lessens the amount 

of habitat that is effectively used by butterflies and large mammals. These findings suggest proactive strategies 

(implementing and enforcing site-specific land-use planning) to reduce direct threats to biodiversity and 

cropland expansion towards dispersal areas and migratory corridors in the Katavi-Rukwa Ecosystem. 

 

Connectivity conservation 

Connecting established protected areas through corridors is an effective way to ensure that protected areas can 

meet their core conservation goals (Gilbert-Norton et al., 2010; Sekhran et al., 2010; Simberloff et al., 1999), 

but as shown here elephant corridors are vulnerable  to the effects of land-use changes (Chapter 5). Findings 

from this dissertation indicated that among the 10 key corridors identified, one was inactive and had reportedly 

been blocked before the start of this study. The remaining nine active corridors were characterized by increasing 

movement costs over time and contraction caused by expansion of human settlements and cropland. For 

instance, between 2000 and 2019, cropland cover rose by 634 km2 per year, primarily at the cost of natural 

vegetation (habitat for wildlife) around protected areas. This land-use change in the study region is likely related 
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to a rise in the number of rural human population (World Bank, 2019), which is partially boosted by immigration 

from other regions (NBS, 2012). Tobacco and cotton being the dominant cash crops in the study region (NBS, 

2012), unsustainable agriculture or shifting cultivation particularly for tobacco production likely contributed to 

land-use change near elephant corridors and near core protected areas in the study region.  The key factors for 

shifting cultivation in the region include the low soil fertility of the region (Chidumayo, 1999), the high nutrient 

requirements of tobacco (Baris et al., 2000), as well as the need for biomass energy to dry the tobacco leaves 

(Jew et al., 2017).   

 

Moreover, the expansion of the Ruaha National Park in 2006 resulted in further displacement of Usangu 

farmers and Sukuma pastoralists from Mbarali District to frontier areas around the western part of the park 

(Sirima, 2016). Possibly, such migration to frontier areas around the western part of Ruaha National Park 

contributed to the observed encroachment within elephant corridors. My main conclusion from these findings 

is that if the observed trend in land-use change continues, elephant movements within the study region will 

most likely be hampered further in the near future. This calls for timely conservation action to protect and 

partly restore the functional connectivity in study region. Based on my findings, I recommend the following 

conservation actions. First, delineating the corridors would be a key first step in protecting wildlife corridors in 

locations where they are becoming more constrained and encroached. This also requires enforcing land use 

plans and having alternative and sustainable forms for generating income from the land without impairing 

wildlife habitat. One possible strategy would be producing a forest and wildlife-based economy from the 

modelled corridors (e.g., income from selling carbon credits, beekeeping, and ecotourism) in seeking to generate 

benefits from nature to outweigh the costs associated with wildlife conservation. Second, in highly degraded 

areas within some modelled corridors due to human encroachment from arable farming, restoration may be an 

option through natural regeneration of miombo.  In sum, a long-term approach would be to include protected 

area networks in land-use plans that consider the requirements of both people and wildlife. 
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Abstract 

Although vital for regional conservation planning, little is known about invertebrate diversity patterns across 

areas with different protection levels from sub-Saharan Africa. For their sensitivity to interventions, we studied 

butterfly diversity patterns in five protection levels in the Katavi-Rukwa Ecosystem (KRE), western Tanzania. 

We surveyed 105 randomly selected sites for butterfly species richness and abundance in the national park, 

game reserve, game-controlled area, forest reserve, and unprotected areas during the dry season of 2021. We 

compared the total species richness, abundance, and community composition of butterflies in the five 

protection levels using univariate and multivariate statistics. We used generalized linear mixed-effects models 

on total species richness and species richness within functional groups in response to landscape heterogeneity, 

forest cover, primary productivity, elevation, climate, burned areas, and proximity to anthropogenic structures. 

We analyzed butterfly diversity at different scales using additive partitioning and detected indicator species 

related to each protection level using multi-level pattern analysis. Species richness and abundance did not 

decline systematically along a protection gradient. Species richness and abundances were significantly higher in 

less strictly compared to strictly protected areas. Based on permutational multivariate analysis of variance test 

species composition differed significantly among protection levels and land cover. Based on detrended 

correspondence analysis landscape heterogeneity, forest cover, and primary productivity influenced species 

composition. Based on generalized linear mixed effects model burned areas, forest cover, and primary 

productivity explained the total richness of species and species richness within functional groups.  β-diversity 

contributed with 89 % of the diversity within the community, whereas α-diversity represented 11 % of the 

sampled community. Game reserves hosted most indicator species. Our study revealed the high conservation 

value of areas with different protection levels in the KRE. Conserving invertebrate diversity in the KRE requires 

consideration of the entire landscape and implementation of appropriate measures to maintain woodland and 

heterogeneity at different spatial scales. 
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1. Introduction 

The biodiversity crisis is no longer debatable (Butchart et al., 2010; Ripple et al., 2019). Across the globe, 

biodiversity is rapidly declining mostly due to manifold anthropogenic pressures (Ferrier et al., 2019; IPBES, 

2019; Mammides, 2020). The main direct causes are overexploitation and habitat loss associated with an 

increasing human population, per capita resource use and changes in land-use (IPBES, 2019; Maxwell et al., 

2016; Ripple et al., 2017). In sub-Saharan Africa, land grabbing by big multinational corporations from wealthy 

countries for large-scale agriculture (Balehegn, 2015; Williams et al., 2021), and   widespread poverty, human 

population growth, and heavy dependence on natural resources pose serious threats to biodiversity (Coad et 

al., 2008; Fisher et al., 2005; Redford and Fearn, 2007). 

 

One of the most widespread strategies to slow or halt biodiversity loss and ecosystem degradation is the 

establishment of protected areas (PAs). In implementation of this, signatory parties globally agreed to a target 

to protect at least 17% of all lands and 10% of seascapes by 2020 through ecologically effective systems of PAs, 

with an increase towards 30% until 2030 (CBD, 2022). Although the amount and coverage of protected areas 

worldwide has almost arrived at the areal goal, with 16.6% of global land area protected under national authority 

dominion (UNEP-WCMC and IUCN, 2020), the effectiveness to actually conserve biodiversity remains 

disputed (Adams et al., 2019; Wauchope et al., 2022). Donating to this total, Tanzania, a CBD signatory, has 

designated 38% (363,541 km2) of its land area into a PA system (UNEP-WCMC and IUCN, 2020; URT, 2015). 

However, to develop effective landscape-scale conservation strategies, it is indispensable to assess the 

contribution of areas with different conservation categories, ranging from unprotected to strictly protected 

areas towards regional diversity (IPBES, 2019; Loos, 2021; Webb et al., 2020).  

 

Protected areas in Tanzania (and in our study region) vary greatly in their characteristics, from strictly protected 

(IUCN Categories I to V) to less strictly protected, permitting human activities and resource extraction to some 

extent (IUCN Category VI). Despite having large coverage of PAs with different designation in managing 

biodiversity (IUCN, 2020; Riggio et al., 2019), multiple anthropogenic pressures challenge their effectiveness 
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(Giliba et al., 2022; Martin and Caro, 2012; WCMC-UNEP, 2016). One region with documented biodiversity 

declines in large mammals is the Katavi-Rukwa Ecosystem (KRE) in western Tanzania (Caro et al., 2009; Giliba 

et al., 2022; Mtui et al., 2017). Overexploitations, and expansion of human settlements and agriculture elevated 

by increasing human population and demand for natural resources being the reasons for the declines (Caro et 

al., 2013; Giliba et al., 2022; Masanja, 2014). Several studies already investigated the ecological outcomes of PAs 

with different management forms in protecting biodiversity within the KRE (Caro et al., 2009; Giliba et al., 

2022; Mtui et al., 2017; Stoner et al., 2007). However, these studies focused on vertebrate taxa, while studies on 

invertebrates from this area are rare, and concentrated on the strictly protected national park (Fitzherbert et al., 

2006). Assessing spatial diversity patterns of invertebrate taxa across areas with different conservation 

categories may offer data on variety of taxa and deliver meaningful insights for effective planning and 

management of biodiversity at the landscape scale (CBD, 2010).  

 

To safeguard biodiversity in these remaining anthropogenically modified ecosystem, and integrating 

megadiverse invertebrate taxa into conservation planning, it is necessary to understand their current diversity 

patterns and obtain large-scale baseline data for future monitoring (Hanspach et al., 2015; Jew et al., 2015). To 

this end, we analyzed butterfly diversity patterns in areas with different conservation categories, ranging from 

unprotected to strictly protected areas within KRE, where no large-scale numerical data on butterflies have 

been collected to the best of our knowledge. We chose butterflies as a target group, because they respond 

quickly to changes in the environment and land use (Ekroos et al., 2013; Kremen, 1992; Nelson, 2007) and 

have been identified as ecological indicators in a variety of ecosystems worldwide (Bhardwaj et al., 2012; 

Stuhldreher and Fartmann, 2018; Thomas, 2005).  

 

To address our overarching goal of providing relevant information for understanding butterfly diversity 

patterns in areas with different levels of protection, ranging from unprotected to strictly protected areas, we 

sought to answer the following research questions:  
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i. Does the total species richness and abundance as well as the species richness and abundance within 

functional groups differ systematically along a protection gradient?  

ii. Does the community composition vary significantly across protection levels and land cover? 

iii. Which environmental and anthropogenic variables influence total species richness and species richness 

within functional groups, and community composition? 

iv. What is the hierarchical pattern of butterfly diversity at different spatial scales, including the 

contribution of α-diversity (i.e., within transect) and β1-diversity (i.e., among transects), β2-diversity 

(i.e., among protection levels) to total γ-diversity (i.e., the entire study area)? 

v. Which indicator species represent typical butterflies of a specific protection level? 

 

2. Methods 

2.1 Study area 

Our study focused on the RKE in western Tanzania, which covers about 15,110 km2 and contains PAs with 

different designation in the area. The study area lies between 6° to 7° S and 30° to 31° E, (Fig. 1) and is 

characterized by a mosaic of unprotected areas (UA, i.e. land that does not have a formal conservation category), 

and formally protected areas. Here, unprotected areas and formally protected areas together represent the 

protection gradient underlying our study design. Protection categories range from areas with little enforcement 

of human land-use restrictions (Game Controlled Areas, GCA: here, settlement, agriculture, livestock keeping 

are not allowed, but hunting on permit in specific hunting blocks is allowed), areas that allow regulated resource 

extractions such as Forest Reserves (FR, here, limited timber and non-timber products extraction is permitted) 

and Game Reserves (GR, here, tourist game hunting on permit is allowed) to strictly protected national parks 

(NP) where human activities are restricted to photographic tourism and research (Caro and Davenport, 2016; 

Caro, 1999). Distinguished PAs in the study area include: Katavi National Park (KNP) and Rukwa Game 

Reserve (RGR), and Lwafi Game Reserve (LGR), Mlele Game Controlled Area (GCA), Mpanda Line Forest 

Reserve, Msaginia Forest reserve (MFR), and Nkamba Forest reserve (NKF) (Fig. 1). KRE receives an annual 

rainfall between 800 - 1200 mm, while the temperature ranged between 17 - 26 °C. Elevation ranges from 600-
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1800 m asl. The soil types range from alluvial soils (black cotton soils) in grassland/flood plains to loamy soils 

in woody vegetation. The vegetation consists of miombo woodlands and flood plains (Banda et al. 2006). 

Miombo forms a single story, with open canopy of deciduous woodland dominated by trees of the genera 

Brachystegia, Julbernadia, and Isoberlinia (Banda et al. 2008). The human population in the KRE has rapidly grown 

due to increasing migration of pastoralist from other regions over the past 40 years (Salerno 2016; Izumi 2017). 

Agriculture and livestock keeping are the main land-use activities in the KRE (Caro 1999). Rice farming is 

restricted to river terraces and flood plains while shifting cultivation for other crops, i.e. maize, cotton and 

tobacco, is practiced at the expense of clearing natural vegetation around the PAs (Giliba et al., 2022, Jew et al. 

2015).  
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Fig. 1. Map of the study area, highlighting the spatial distribution of butterfly sampling sites (triangular transects 

with three sections of 1 km length each) across protection levels (KNP = Katavi National Park, RGR = Rukwa 

Game Reserve, LGR = Lwafi Game Reserve, MGCA= Mlele Game Controlled Area, NFR= Nkamba Forest 

Reserve, MFR= Msaginia Forest Reserve, MLFR= Mpanda Line Forest Reserve). The inset in the lower left 

shows the location of the study area within Tanzania. 

 

2.2 Butterfly surveys 

We established a 35 km buffer around the boundary of KNP to include areas with different protection levels, 

ranging from unprotected to strictly protected (UA, GCA, FR, GR, NP). To capture even coverage of butterfly 

transects across different protection levels, we divided our study area into 5 km by 5 km grids, so that transects 

had a minimum distance of 5 km to minimize spatial autocorrelation of the data. We randomly selected 105 

grids (21 grids within each protection level) for placement of triangularly fixed transects of 3 km length (divided 

into three sections of 1 km length, Fig. 1). We recorded butterfly species and their abundances per section of 

1000 m by walking transects of 5 m width (2.5 m to each side, 5 m above and in front of the observer). We 
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recorded species names and counted the number of individual butterflies captured butterflies with a sweep net 

and released them after identification.  All butterfly species were identified to the species level in the field and 

verified using national and regional field guides (Kielland, 1990; Larse, 1991; Martins and Collins, 2016; 

Woodhall, 2020), except for six species that were identified to genus level (Tuxentius sp, Chilades sp, Mylothris sp, 

Pseudacraea sp, Acleros sp, Lepidochrysops sp) in the field. All surveys were conducted by the same observers under 

suitable weather conditions and without strong wind between 9 am and 5 pm, during the dry season between 

July and September 2021.  

 

2.3 Butterfly richness within functional groups 

To understand how species richness and abundance within functional groups (i.e., habitat specialization, host 

plant specialization, and wingspan) varies across different protection levels, we classified species into six 

functional traits from the literature on East and Southern Africa butterflies (Kielland, 1990; Larse, 1991; Martins 

and Collins, 2016; Woodhall, 2020): 1. generalists (using more than one habitat); 2. specialists (only using one 

habitat); 3. polyphagous (using host plants in multiple genera); 4. monophagous (only using one host plant 

species); 5. large (>50 mm); and 6. small (<50 mm) wingspan for both male and female, which is often used as 

an indicator for mobility (Kuussaari et al., 2014; Öckinger et al., 2010). Mobility is a crucial factor governing 

butterfly species responses to different environmental and anthropogenic variables (Loos et al., 2014c; Topp et 

al., 2022). 

 

2.4 Environmental variables 

To understand the influence of environmental and anthropogenic variables on species richness and abundance, 

and community composition, we used the 5 km by 5 km grids for each of the 105 transects; first, to quantify 

mean annual temperature, mean annual precipitation , and solar radiation from WorldClim database 

(www.worldclim.org; (Fick and Hijmans, 2017) using ArcMap 10.6 (ESRI, 2018). Second, to quantify mean 

elevation from SRTM digital elevation model from the U.S. Geological Survey (https://earthexplorer.usgs.gov), 

and slope, terrain ruggedness index from DEM using QGIS (QGIS, 2020). Third, to quantify primary 
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productivity calculated as mean enhanced vegetation index (EVI) values for the period (i.e. between July and 

September)  that overlap with our butterfly surveys from Google Earth Engine - Landsat 8 Collection 1 Tier 1 

8-Day EVI Composite (Gorelick et al., 2017). Fourth, to quantify proximity to anthropogenic structures 

calculated as  mean distances to houses (spatial features were obtained from OpenStreetMap 

(http://download.geofabrik.de/africa/tanzania.html), and mean distances to cropland (obtained from our land 

cover) using the Euclidian distance tool in ArcMap 10.6 (ESRI, 2018). Fifth, to quantify compositional 

heterogeneity calculated as Simpson index of diversity and configurational heterogeneity calculated as edge 

density, forest cover, burned area cover, and cropland cover from our land cover map (Fig. S1) using 

FRAGSTATS v4.2 (McGarigal et al., 2012). 

 

To produce the land cover map, we used Google Earth Engine (GEE) to build stacks of Landsat 8 Surface 

Reflectance Tier 1 atmospherically corrected surface reflectance images (Gorelick et al., 2017). Image 

collections were constrained to the dates from July to September that overlapped with our butterfly surveys. 

Image composite was created using median a default metric for GEE that balanced oversaturated and low pixel 

values (Würsch et al., 2017). A total of 600 training samples were used for land classification through composite 

imagery, high-resolution Google Earth images, field knowledge (Giliba et al., 2022; John et al., 2021), and 

ground truthing using ArcMap 10.6 (ESRI, 2018). We used the scatterplot tool to evaluate our training samples 

to find out if there was enough distinction between land cover classes. We employed a supervised classification 

approach using a support vector machine algorithm to classify satellite images (Giliba et al., 2022; Heydari and 

Mountrakis, 2019; Maulik and Chakraborty, 2017). We classified five major land cover categories (dense 

woodland, open woodland, burnt area, cropland, and water bodies, Supplementary Information, Fig. S1). We 

generated 500 points using stratified random sampling in ArcMap to assess the accuracy of our classified map. 

We used high-resolution images from Google Earth and base-map layers from Google Satellite, ESRI Satellite, 

and Bing Satellite available in ArcMap and QGIS to validate the land cover map (Connette et al., 2016; Hu et 

al., 2013; Yu and Gong, 2012). Our land cover classification obtained an overall accuracy of 98 % and a kappa 

coefficient of 0.97 (Supplementary Information, Table S1).  
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2.5 Statistical analyses 

2.5.1 Species richness and abundance 

We pooled all observed butterfly species and individuals from the three transect sections for each survey site. 

First, we aggregated total species richness and abundance, and species richness and abundance within functional 

groups (i.e., generalist, specialist, polyphagous, monophagous, large and small wingspan) across protection 

levels (Table 1).  Afterwards, we tested for differences in total species richness and abundance, and species 

richness and abundance within functional groups among protection levels by using Analysis of Variance 

(ANOVA), followed by multiple comparisons Tukey’s HSD test (at the α=0.05 level) to determine whether 

differences occurred (Fig. 2 & 3).  

 

2.5.2 Community composition across protection levels and land cover 

We tested for differences in butterfly species composition among protection levels and land cover using 

permutational multivariate analysis of variance (PERMANOVA) with Bray–Curtis dissimilarity and 999 

permutations. The PERMANOVA was conducted using the adonis function in the vegan R package (Oksanen, 

2022). We performed pairwise comparisons to determine where differences in species composition occurred 

using the pairwise.adonis function in the PairwiseAdonis R package (Arbizu, 2020). Beforehand, we confirmed 

the homogeneity of multivariate dispersion by using betadisper function in the vegan R package (Oksanen, 

2022).  

2.5.3 Responses of community composition and species richness to environmental variables 

To investigate the influence of environmental variables on butterfly species composition, we conducted a 

detrended correspondence analysis (DCA) for all levels of protection. Prior to the DCA, all numerical 

explanatory variables were scaled to mean zero and unit variance. To understand the responses of total species 

richness and species richness within functional groups to environmental variables, we used a generalised linear 

mixed effects model with Poisson error distribution in the lme4 R package (Bates et al., 2022). Richness of 

generalist, polyphagous species and species with a small wingspan were over-dispersed, and consequently a 

negative binominal generalised linear model was fitted using the MASS R package (Ripley et al., 2022). In our 
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all models, “sites” was included as a random effect, as the transects were nested within the sites. Beforehand, 

we tested the explanatory variables for collinearity and retained only variables with r < 0.7 (Dormann et al., 

2013) in the model (Table 2). For total species richness and species richness within functional groups, we fitted 

a global model with all potential variables. Best fitting models were selected using the dredge function of the 

MuMiN R package (Barton and Barton, 2020), which returned models with the lowest delta AIC values < 4 

(Burnham and Anderson, 2002). 

 

2.5.4 Additive partitioning of diversity 

To investigate hierarchical patterns of diversity at multiple spatial scales, we performed additive partitioning of 

diversity (Crist et al., 2003) to determine which scale (alpha, beta and gamma) contributes more to the total 

butterfly diversity (γ). We used species richness to perform an additive partitioning of diversity, in which γ-

diversity is the sum of the α- and β-diversity values (γ = α + β). We calculated the spatial hierarchy of the 

butterfly species’ β-diversity as follows: i) α-diversity: average richness within transect; ii) β1-diversity: the mean 

difference of assemblages between transects within protection level; and iii) β2-diversity: the mean difference 

of the assemblages between protection levels. To compare the observed and expected α- and β-diversity, we 

randomized 999 times to generate the expected values to which observed values can be compared (Crist et al., 

2003; Layou, 2007). We used adipart function in the vegan R package (Oksanen, 2022) to perform additive 

partitioning of diversity. 

 

2.5.5 Indicator species 

To determine indicator species for each protection level, we performed a species indicator value (IndVal) 

analysis to detect associations of butterfly species to protection levels using the multipatt function in the 

indicspecies R package (De Caceres et al., 2022).  
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3. Results 

3.1 Species richness and abundance across protection levels and land cover types 

We recorded a total of 10578 individuals of 172 butterfly species (Table S2) belonging to five Lepidopotera 

families (83 Nymphalidae, 43 Pieridae, 21 Lycaenidae, 21 Hesperiidae, 8 Papilionidae) and 72 genera.  Sixty-two 

percent of all individuals belonged to 10 species: Bicyclus safitza, Hamanumida daedalus, Eurema hecabe, Precis archesia, 

Catopsilia florella, Belenois aurota, Hyalites eponina, Ypthima asterope, Neptis saclava, and Junonia natalica. Overall, species 

richness (ANOVA, df= 4, F = 5.61, P < 0.001) and abundance (ANOVA, df=4, F=5.13, P < 0.001) varied 

significantly between all five protection levels. Butterfly species richness and abundance were consistently 

higher in the order of GR>GCA>FR>NP>UA (Table 1, Fig. 2a & b). However, values from UA were not 

significantly different to those in NP (Fig. 2a & b). Similarly, across functional groups, species richness and 

abundance for generalist, specialist, polyphagous, large wingspan, and small wingspan varied significantly 

between all five protection levels. Butterfly species richness and abundances across all six groups were 

consistently higher in the GR and GCA than for FR, NP, and UA (Table 1). However, values from UA were 

not significantly different to those in NP across all six functional groups. (Fig. 3a-l). We detected four species 

that were unique to farmland, 113 species that occurred exclusively in woodland and 55 species that occurred 

in both land cover types.  Among those species occurring on farmland were Actizera lucida, Coeliades forestan and 

Colotis aurigeneus; the most abundant species in woodland were Junonia artaxia, Eurema brigitta, and Bicyclus anynana; 

and the most abundant species sharing those land cover types were Bicyclus safitza, Hamanumida daedalus, and 

Eurema hecabe. The completion of our butterfly sampling seemed adequate at the time and season of our survey 

as sized-based rarefaction extrapolation curves almost reached asymptote in all protection levels (Fig. S2a), and 

coverage-based rarefaction and extrapolation curves suggested that diversity in our study region was well 

represented with a sample coverage percentage above 95 % (Fig. S2b). 
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Table 1: Total butterfly species richness and abundance as well as species richness and abundance within 

functional groups in the different protection levels in the Katavi-Rukwa Ecosystem (UA: Unprotected Area; 

GCA: Game-Controlled Area; FR: Forest Reserves; GR: Game Reserves; NP: National Park). Total species 

richness displays the observed (obs.) species richness during butterfly transects, Chao1 is mean ± standard 

deviation of the expected species richness. Obs: Chao1 is the ratio of observed and expected number of species. 

Human land-use restrictions are consistently lower in the order of UA<GCA<FR<GR<NP.  

Protection levels Total 

Species richness UA GCA FR GR NP  

Total species richness 76 109 80 115 81 172 
Chao1 86.42 ± 4.09 128.30 ± 6.78 93. 37 ± 5.65 132.79 ± 8.00 93.53 ± 6.15 192.93 ± 6.08 
Obs: Chao1 87.94% 84.95% 85.68% 86.60% 86.60% 89.15% 
Habitat specialization       

Generalists 56 73 54 72 55 103 
Specialists 20 36 26 43 26 69 
Host plant specialization       

Polyphagous 63 80 63 86 66 122 
Monophagous 13 29 17 29 15 50 
Wingspan       

Large 28 41 33 42 36 59 
Small 48 68 47 73 45 113 
Species abundance       

Total species abundance 1360 2315 2137 3119 1647 10578 
Habitat specialization       

Generalists 1216 2070 1954 2661 1405 9306 
Specialists 144 245 183 458 242 1272 
Host plant specialization       

Polyphagous 1251 2100 2023 2716 1439 9529 
Monophagous 109 215 114 403 208 1049 
Wingspan       
Large 565 1003 1031 1382 643 4624 
Small 795 1312 1106 1737 1004 5954 
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Fig. 2. Boxplots of species richness and abundance across protection levels in the Katavi-Rukwa Ecosystem 

(FR, Forest Reserve; GCA, Game Controlled Area; GR, Game Reserve; NP, National Park; UA, Unprotected 

Areas), western Tanzania. Different letters above the boxplots indicate significant differences between 

protection levels at P < 0.05 (Post-Hoc Tukey test). 



47 
 

 

Fig. 3. Boxplots of species richness and abundance within functional groups [(a) and (b) Monophagous, (c) and 

(d) Polyphagous, (e) and (f) Habitat specialists, (g) and (h) Habitat generalists, (i) and (j) Small wingspan, (k) 

and (l) Large wingspan] in response to protection levels within the Katavi-Rukwa Ecosystem (FR, Forest 

Reserve; GCA, Game Controlled Area; GR, Game Reserve; NP, National Park; UA, Unprotected areas), 

western Tanzania. Different letters above the boxplots indicate significant differences between protection levels 

at P < 0.05 (Post-Hoc Tukey test). 

 

3.2 Community composition across protection levels and land cover 

Despite no complete species turnover (length of first axis = 2.89) in the DCA, species composition still varied 

significantly across all protection levels (P < 0.001, Df = 4): Species composition differed between NP and GR, 

between NP and GCA, between FR and GCA, between GR and UA, between FR and UA, and between GCA 

and UA (Table S3. However, species composition did not differ significantly between NP and FR, GCA, and 
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UA (P > 0.05; Table S3). Also, species composition in GR, and FR and GCA did not differ significantly (P > 

0.05; Table S3). Thus, we find some differentiation between species composition across protection levels, but 

overall a large similarity. Likewise, we detected a significant variation in species composition across all land 

cover types (P < 0.001, Df = 2), with differing species composition between dense and open woodlands; and 

between dense woodland and farmland (Table S3). Some farmland transects seemed to differentiate most visibly 

from other transects (Fig. 4). However, species composition was similar between open woodland and farmland 

(P > 0.05; Table S3).  

 

3.3 Responses of community composition and species richness to environmental variables 

The variability on transect species composition extracted by DCA (Fig. 4) showed that a correlation of the first 

axis (Eigenvalue = 0.28) with composition heterogeneity, configurational heterogeneity and temperature to one 

side and to the enhanced vegetation index, forest cover, distances to houses and cropland, and elevation to the 

other side. Forest cover emerged as the most important variable driving the species composition. The second 

axis (Eigenvalue = 0.23) positively correlated to composition heterogeneity, configurational heterogeneity, and 

distance to houses; and negatively correlated to the enhanced vegetation index, forest cover, temperature, 

distance to cropland, and elevation. Total species richness and species richness within some functional groups 

were related to enhanced vegetation index, forest cover, and configurational heterogeneity (Table 3). Total 

species richness and species richness within most functional groups were related to burned areas (Table 3). 

Total species richness was related to distance to houses and distance to cropland (Table 3). Species richness 

within some functional groups were associated to temperature, rainfall and elevation (Table 3).  
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Fig. 4. DCA ordination plot of butterfly species, with significant environmental variables superimposed (P < 

0.05) (Abbreviations: EVI, Enhance Vegetation Index; FC, Forest cover; DH, Distance to houses; ED, 

landscape configurational heterogeneity; TMP, Temperature; DCL, Distance to cropland; ELEV, Elevation; 

SIDI, landscape compositional heterogeneity). 
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Table 2: Summary statistics of generalized linear mixed-effects models describing associations between 

explanatory variables and the species richness with significance levels indicated by: ***P < 0 .001; **P < 0.01; 

*P < 0.05. 

 
Species 
richness 

Monophagous 
species 

Polyphagous 
species 

Specialists 
species 

Generalists 
species 

Large wingspan 
species 

Small wingspan 
species 

Intercept 2.882 1.046 2.723 1.329 2.651 2.079 3.955 

BA -0.128*** ns -0.123** -0.377*** -0.135** -0.121* -0.377*** 

EVI 0.155*** 0.271** ns 0.234** 0.119*** ns 0.186** 

FC ns ns 0.113** ns ns 0.155*** ns 

AR ns -0.153* ns ns ns ns ns 

DH 0.075** ns ns ns ns 0.098** ns 

ED 0.056* ns ns ns ns ns ns 

TMP ns ns -0.084* -0.289* ns ns ns 

DCL 0.066* ns ns ns 0.069* ns 0.251*** 

ELEV ns ns ns -0.222* ns ns -0.119* 
Abbreviations: BA, Burned areas; EVI, Enhance Vegetation Index; FC, Forest cover; AR, Annual rainfall; DH, Distance 

to houses; ED, Edge density; TMP, Temperature; DCL, Distance to cropland; ELEV, Elevation; ns, not significant. 
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3.4 Additive partitioning of diversity 

Spatially hierarchical partitioning of butterfly species richness showed that β-diversity contributed with 89 % 

of the diversity within the community, whereas α-diversity (average richness within transect – α1) represented 

11 % of the sampled community (Table 2). The β-diversity among transects within protection level (β1) 

accounted for 44 %, while the β-diversity among protection levels (β2) accounted for 45 % of the total diversity 

(γ, Table 2). When comparing the observed and the expected species richness results, we observed that only 

β2-diversity is higher than expected at random (OBS = 77.60, EXPS = 46.88, P < 0.001), while β1-diversity is 

significantly lower than the expected at random (OBS = 76.01, EXPS = 90.54, P < 0.001). Similarly, the α- 

diversity is lower than expected at random (OBS = 18.39, EXPS = 34.62, P < 0.001; Table 2).  

 

Table 3: Spatial partitioning of the assemblage of butterflies at different scales (α- within transects, β1- among 

transects, β2- between protection levels in RKE. The expected value is the mean of the null distribution by 999 

randomizations to which observed values can be compared with significance levels indicated by: ***P < 0 .001; 

**P < 0.01; *P < 0.05.  

Index Scales  Observed % Expected P-value 
Richness       
 α Within transect 18.39 10.69 34.62 0.001*** 

 β1 Among transects 76.01 44.19 90.50 0.001*** 
 β2 Among protection levels 77.60 45.12 46.88 0.001*** 
 γ Total 172.00 100.00 172.00  

  

3.5 Indicator species 

We identified 11 indicator butterfly species across all five protection levels (Table 4), out of which seven species 

were both generalist and polyphagous with small wingspan (Bicyclus dentatus, Eurema desjardinsii, Heteropsis simonsii, 

Lampides boeticus) and big wingspan (Phalanta phalantha, Papilio demodocus, Vanessa cardui), three species were both 

specialist and monophagous with small wingspan (Euryphura concordia, Colotis danae, Neptis jordani), and one 

species was a generalist but monophagous with small wingspan (Dixeia pigea). Six species were associated with 

GR, two species with UA, one with NP, one with FR, and one with GCA (Table 4). 
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Table 4: Indicator species across levels of protection (IV = Indicator Value, significance levels indicated by: ***P < 0 .001; **P < 0.01; *P < 0.05. 

FR  GCA  GR  NP  UA 

 Species IV P-value   Species IV P-value  Species  IV P-value  Species  IV P-value  Species  IV P-value 
Phalanta 
phalantha 0.324 0.0061**  

Dixeia 
pigea 0.43 0.0007***  

Euryphura 
concordia 0.403 0.0006***  

Colotis danae 
annae 0.35 0.0042**  

Vanessa 
cardui 0.359 0.0019** 

              
Lampides 
boeticus 0.38 0.0011**         

Papilio 
demodocus 0.282 0.044* 

              

Eurema 
desjardinsii 
marshalli 0.344 0.0009***               

              
Heteropsis 
simonsii 0.343 0.0006***               

              Bicyclus dentatus 0.32 0.01670*               

              Neptis jordani 0.293 0.0016**               
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4. Discussion 

Our butterfly diversity patterns analyses covering areas with different protection level, ranging from 

unprotected to strictly protected in western Tanzania suggest that less strictly protected areas can be species-

rich, and species richness and composition are mediated by multiple anthropogenic and environmental variables 

at the landscape level.  

 

4.1 Species richness and community composition 

Our analyses revealed that butterfly species richness and abundance did not decline systematically along a 

gradient of decreasing conservation protection (i.e., in this order NP>GR>FR>GCA>UA), and species 

numbers and in contrast to our expectation, butterfly abundances were not systematically higher in the NP. We 

even found that areas that allow regulated resource extraction (i.e., GR, FR, GCA) are more species-rich and 

abundant than strictly protected areas (i.e., NP, Table 2 & Fig 2). Less species richness and abundance in the 

NP is likely linked to the influence of late burning observed during butterfly surveys though it is used as a 

management tool in the NP. This observation stands in contrast to other studies that have detected differing 

patterns of butterfly species richness and abundance according to their mobility across a gradient of time since 

fires (Mason et al., 2021; Topp et al., 2022). It would thus be interesting to study the effect of fire on patterns 

in butterfly diversity over time in the KRE. Our findings indicated that species richness and abundance was 

similarly high in NP and UA (Fig 2). This highlights that human dominated landscapes on UA may host 

substantial numbers of butterfly species richness and abundances, which might be enabled by the mosaic of 

fallow land and remnants of natural vegetation (i.e., miombo woodland). This mosaic of low-intensity 

agricultural landscapes may contain habitat patches for butterflies (Bennett et al., 2006; Loos et al., 2022; Wurz 

et al., 2022). However, those four species exclusively occurring on farmland are widely distributed, generalist 

species (Martins and Collins, 2016; Woodhall, 2020), which questions whether farmland within the miombo 

ecoregion might be considered highly valuable habitat for specific butterfly species. Notwithstanding, those 55 

species that used both woodland and farmland express a suitability of farmland for occurrences of many 

different species, which calls for the maintenance of the rather small-scale agricultural structures, which became 



54 
 

visible by the heterogeneity variables driving species richness and species community patterns (Loos et al., 

2014a; Wurz et al., 2022). Previous studies have demonstrated that small-scale farming profits biodiversity by 

supporting diverse resources for butterflies (Loos et al., 2014b; Wurz et al., 2022).  We found differences in 

species composition between less strictly protected areas (e.g., GR, GCA) and strictly protected areas (e.g., NP), 

likely due to differences in vegetation composition in these areas. Unlike NP, GR and GCA were largely covered 

by dense woodland dominated by miombo. Considering land cover, we found higher species richness and 

abundances in dense woodland than in open woodland and farmland. A possible explanation for this pattern 

may be the high availability flowering plants, litter, debris and microhabitat conditions observed during dry 

season butterfly survey and many host plants occur in denser forest cover (Curtis et al., 2015; Jew et al., 2015; 

Loos et al., 2014b; Nkwabi et al., 2021; Schmitt et al., 2020). 

 

4.2 Response of species richness to environmental variables  

We found that butterfly species richness was associated with enhanced vegetation index and forest cover. High 

enhanced vegetation index and forest cover indicate dense woodland that could offer diverse resources for 

butterflies (Curtis et al., 2015; Jew et al., 2015; Munyuli, 2013; Nkwabi et al., 2021). This was evidenced by the 

high richness and abundance of butterfly within dense woodland areas compared to open woodland and 

farmland. Furthermore, butterfly species richness was associated to distance to cropland and houses, suggesting 

that species richness increases with increasing distance to anthropogenic structures (i.e., human settlements). 

This pattern might be likely due to large distances between habitat patches in farmland (Loos et al., 2014c, 

2022) as well as the use of pesticides, which we observed during butterfly surveys within farmland, and the 

related limitation in flowering plants (Tambara et al., 2013). We found that butterfly species richness was 

significantly negatively associated with annual rainfall, annual temperature, and elevation, suggesting that species 

richness was lower in areas with higher elevation, rainfall and temperature. A possible explanation for this is 

that areas with high elevation and rainfall are associated with elevated hilly rocky areas whereas areas with high 

temperature associated with cultivated areas, which recorded low enhanced vegetation index and forest cover. 

Temperature and precipitation, which in turn moderated by elevation are well known to influence butterfly 
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abundance and species richness (Acharya and Vijayan, 2015; Kucherov et al., 2021; Pires et al., 2020; Rija, 2022). 

We found that butterfly species richness significantly positively associated with landscape configurational 

heterogeneity represented by edge density, suggesting that species richness increases with increasing edge 

density. Likely, this pattern might be explained by the increased availability of herbaceous vegetation along 

habitat edges, which resulted from a certain level of habitat fragmentation (Fahrig et al., 2011; Loos et al., 2014b; 

Rossi and Van Halder, 2010). 

 

4.3 Additive partitioning of diversity 

Contributions of α-diversity and β-diversity to γ-diversity form the root for   understanding the biodiversity 

components at different spatial scales (Crist et al., 2003; Meynard et al., 2011; Zhang et al., 2014). We found 

significantly higher contribution of β2-diversity (i.e., among protection levels) than α-diversity (i.e., within 

transect) to γ-diversity (i.e., region) (Table 2). This suggests that butterfly diversity in the region may benefit 

most from managing several areas with different conservation category including unprotected areas. Increasing 

our understanding of how α and β-diversity vary across spatial scales could help in choosing the appropriate 

spatial scale for species conservation (Crist et al., 2003; Gering et al., 2003). 

 

4.4 Indicator species 

Determining a set of indicator species is vital in long-term environmental monitoring for conservation and 

biodiversity management (De Caceres et al., 2012; Rossi and Van Halder, 2010; Sharma et al., 2020). We found 

11 indicator butterfly species associating with different protection levels in the region that can be useful for 

future monitoring and assessment of biodiversity in the ecologically sensitive region of KRE. These indicator 

species were mostly habitat generalist and polyphagous. However, a few indicator species were habitat 

specialists, monophagous and had a small wingspan (Euryphula concordia, Colotis danae, Neptis jordani), which 

suggests limited dispersal ability and high dependence on specific habitat that may occur only under specific 

environmental conditions (Tiple et al., 2011). Previous studies have shown that the plant-abundance 
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relationship is mediated by butterfly traits and it is strongest for species that are habitat specialist, monophagous, 

and less mobile (Curtis et al., 2015; Dainese et al., 2017).  

 

Conclusions 

Conserving biodiversity across areas with different conservation category, ranging from unprotected to strictly 

protected is vital for the long-term persistence of invertebrate taxa, such as butterflies. Our investigations on 

butterfly diversity patterns suggest that less strictly protected areas in the KRE are more species rich than strictly 

protected areas. Our findings on additive partitioning of diversity could help in the conservation of butterfly 

diversity at multiple spatial scales in the region. To reinforce butterfly conservation in the KRE, as proactive 

strategies, we recommend the implementation and enforcement of site-specific land-use planning to reduce 

direct threats to butterfly diversity, maintain both woodland and heterogeneity, and avoid homogenization 

through monocultures and deforestation in the KRE. 
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Supplementary Information 

Table S1: Cross-tabulation error matrix for 2021 land cover classification in Katavi-Rukwa Ecosystem (KRE) 

western Tanzania. 

Land cover 2021 Dense woodland Open woodland Burned area Cropland Water bodies Total User accuracy 

Dense woodland 98 2 0 0 0 100 0.980 

Open woodland 1 98 1 0 0 100 0.980 
Burned area 0 1 98 1 0 100 0.980 

Cropland 0 1 2 97 0 100 0.970 

Water bodies 0 0 0 0 100 100 1.000 

Total 99 102 101 98 100 500  
Producer accuracy 0.990 0.961 0.970 0.990 1.000   
Overall accuracy       0.982 
Kappa       0.977 
 
 

 
Fig. S1: Map of the study region, showing land cover distribution in protected and unprotected areas in 2021.  
Abbreviations: KNP = Katavi National Park, RGR = Rukwa Game Reserve, LGR = Lwafi Game Reserve, 
MGCA= Mlele Game Controlled Area, NFR= Nkamba Forest Reserve, MFR= Msaginia Forest Reserve, 
MLFR= Mpanda Line Forest Reserve, and UA= unprotected areas. 
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Table S2: Permutational multivariate analysis of variance (PERMANOVA) with Bray–Curtis dissimilarity and 

999 permutations of species composition among protection levels (NP, National park; GR, Game reserve; FR, 

Forest reserve, GCA, game-controlled area; Unprotected areas, UA) and land cover (DW, Dense woodland; 

OW, open woodland; FL, Farmland) with pairwise comparisons with significance levels indicated by ***P < 

0 .001; **P < 0.01; *P < 0.05.  

Variable F model P value Multiple comparisons P value 

Protection levels F4,100 = 3.23 < 0.001*** NP vs GR 0.020* 

     NP vs FR 0.103 

     NP vs GCA 0.032* 

     NP vs UA 0.172 

     GR vs FR 0.099 

     GR vs GCA 0.273 

     GR vs UA < 0.001*** 

     FR vs GCA 0.025* 

     FR vs UA 0.004** 

     GCA vs UA < 0.001*** 

Land cover F2,102 = 3.61 < 0.001*** DW vs OW 0.006** 

    DW vs FL 0.013* 

     OW vs FL 0.099 
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Fig. S2: Species richness at regional level across protection levels (Hill number q = 0), shown by the sized-based rarefaction and extrapolation curves (a) 
and sample coverage-based rarefaction and extrapolation curves (b). The solid line represents the interpolation, whereas the dashed line represents the 
extrapolation. The shaded region in (a) represents the 95% confidence intervals. 
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Abstract 

Understanding the responses of wildlife populations across different area-based protection levels is crucial to 

estimating conservation effectiveness at the wider landscape. As wildlife populations are also influenced by 

environmental variables, such comparisons require accounting for environmental heterogeneity. To this end, 

we modelled the spatial distribution of six target mammal species across environmental and protection gradients 

in the Katavi-Rukwa Ecosystem, western Tanzania. We conducted line distance sampling surveys and counted 

dung of six target mammal species along foot transects within areas differing in protection levels (from strict 

to less strictly protected: national park, game reserve, forest reserve, game-controlled area, and unprotected 

areas). We modelled the spatial distribution of six mammal species (elephant, giraffe, buffalo, zebra, topi, 

hartebeest) in response to environmental variables and protection level using a density surface modelling 

framework. Based on species-specific density surface models, we found relatively consistent effects of 

protection level and land-use variables on the spatial distribution of the target mammal species: relative densities 

were highest in the national park and game reserves, intermediate in forest reserves and game-controlled areas, 

and lowest in unprotected areas. Beyond species-specific environmental predictors for relative densities, our 

results highlight consistent negative associations between relative densities of the target species and distance to 

cropland and avoidance of areas in proximity to houses. Our findings underpin differences in relative ecological 

effectiveness of protected areas within one ecosystem. Protection level and land-use play crucial roles in 

moderating the spatial distribution of all considered mammal species in the Katavi-Rukwa Ecosystem. Our 

findings suggest that a landscape approach needs to guide effective conservation across the entire protection 

gradient of the Katavi-Rukwa Ecosystem.  
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1. Introduction 

Globally, and despite their ecological and economic values, large mammals are rapidly declining due to 

anthropogenic pressures (Geldmann et al., 2019, 2014; Ripple et al., 2015). Large mammal populations on the 

African continent (Craigie et al., 2010; WCMC-UNEP, 2016) and in Tanzania (Stoner et al., 2007) are no 

exceptions to this worrying global trend. To respond to increasing human pressures, protected and conserved 

areas (PCAs) are the main approach for safeguarding biodiversity including large mammals (CBD, 2022; IPBES, 

2019). PCAs in Tanzania vary greatly in their protection levels, ranging from strictly protected (IUCN 

Categories I to V) to less strictly protected, permitting human activities and resource extraction to some extent 

(IUCN Category V; Caro & Davenport, 2016). However, their ecological effectiveness in protecting large 

mammals and natural habitat is challenged, mostly because of i) direct exploitation and habitat degradation 

inside protected areas, and ii) increasing isolation through habitat loss and other anthropogenic pressures in the 

wider landscape in which the PCAs are embedded (Caro, 2008; Giliba et al., 2022; Lobora et al., 2018; Martin 

et al., 2013). Thus, it is important to better understand the effectiveness of these different area-based protection 

levels not only by monitoring the distribution and abundance of wildlife inside PCAs, but also by quantifying 

wildlife populations in the wider landscape. Through spatially explicit information on wildlife densities, it may 

be possible to determine the effectiveness of the PCA network from a landscape perspective. However, 

assessing ecological effectiveness of PCAs based on average wildlife densities across space for one snapshot in 

time without controlling for environmental variables is challenging because environmental conditions [which 

may primarily determine the carrying capacity of a given species (e.g. Pettorelli et al., 2009)] vary between PCAs 

(Rosenblatt et al., 2019, 2016). Thus, it is necessary to disentangle whether differences in wildlife densities are 

due to inherent differences in environmental conditions or due to specific area-based conservation efforts 

(Waltert et al., 2009).  

 

While a suite of wildlife detection methods are available, wildlife surveys are typically labor- and cost-intensive, 

or are difficult to implement over large spatial scales (Jachmann, 2002, 1991; Schwarz and Seber, 1999; Williams 

et al., 2002). Over the past 30 years, aerial counts have been widely used in wildlife monitoring within the 
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Katavi-Rukwa Ecosystem (Caro, 2016; Giliba et al., 2022; Stoner et al., 2007); however, the estimates derived 

from aerial counts are typically lower than estimates from ground counts due to sighting and visibility bias 

(Greene et al., 2017; Jachmann, 2002, 1991). To overcome potential bias associated with aerial surveys, 

terrestrial line surveys have been suggested for wildlife monitoring and applied within the study region to 

estimate wildlife densities across different protected areas (Caro, 1999a, 1999b). However, these surveys were 

conducted along the existing road network and this non-random placement of sample units may yield biased 

density estimates (Kiffner et al., 2022b; Waltert et al., 2008). To address the shortcomings of systematic aerial 

surveys and of road counts, foot counts along systematically distributed transects have been used to estimate 

wildlife in Katavi National Park and Rukwa Game Reserve (Waltert et al., 2008). However, walking transects 

carried out in the ecosystem yielded sufficient number of detections for few species only: despite more than 

1000 km of walking transect effort, only four species were detected > 60 times (Waltert et al., 2008), which is 

the recommended threshold for estimating robust detection functions in a line distance sampling framework 

(Buckland et al., 2001; Thomas et al., 2010).  

 

The low detection rates from direct counts could be partially due to animal behavior, which itself can be 

mediated by protection level. For instance, animals may be relatively indifferent towards human observers inside 

strictly PCAs but very skittish (and thus less likely to be detected) in less strictly in PCAs where legal or illegal 

hunting takes place (Caro, 2005). In addition, species may adjust their diel use of certain areas and use human-

dominated areas primarily during nighttime (de Jonge et al., 2022). Thus, relying on direct sightings during 

daytime to estimate wildlife density along a protection gradient could be biased due to variation in animal 

behavior. A solution for this is the use indirect survey methods such as dung surveys (Jachmann, 1991; Kiffner 

et al., 2019).  

 

To address our overarching goal of providing robust information on the ecological effectiveness of different 

PCAs across western Tanzania, we combined data from a systematic dung survey and remotely sensed data to 

quantify relative wildlife densities using a spatially explicit density surface  modelling  framework (Miller et al., 
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2013). We focused our analyses on six numerically dominant terrestrial mammal species in the ecosystem (Caro, 

2008; Caro, 1999a), which can reliably be monitored through indirect ground surveys: buffalo Syncerus caffer, 

elephant Loxodonta africana, giraffe Giraffa camelopardalis, hartebeest Alcelaphus buselaphus, topi Damaliscus korrigum, 

and zebra Equus burchellii;. We hypothesized that, while accounting for environmental conditions which could 

influence species-specific relative densities, the relative densities of target species would consistently be higher 

in strictly protected areas. We designed our study to deliver spatially explicit information on the distribution of 

selected mammal species that are of interest to conservation and that allow an evidence base for comparing the 

ecological effectiveness of a PCA network across a Miombo ecosystem.  

 

2. Methods 

2.1 Study area 

Our study focused on the Katavi-Rukwa Ecosystem in western Tanzania, which covers 20,961 km2 and contains 

PCAs with different designation. The study area lies between 6° to 7° S and 30° to 31° E (Fig. 1), and is 

characterized by a mosaic of unprotected areas (UA, i.e. land that does not have a formal conservation category), 

and formally protected areas. Protection categories range from areas with little enforcement of human land-use 

restrictions (Game Controlled Areas, GCA: here, settlement, agriculture, livestock keeping are not allowed, but 

hunting on permit in specific hunting blocks is allowed), areas that allow regulated resource extractions such as 

Forest Reserves (FR, here, limited timber and non-timber products extraction is permitted) and Game Reserves 

(GR, here, tourist game hunting on permit is allowed) to strictly protected national parks (NP) where human 

activities are restricted to photographic tourism and research (Caro & Davenport, 2016; Caro, 1999a). The 

study area includes multiple PCAs, and we centred this study around Katavi National Park (KNP), the adjacent 

Rukwa Game Reserve (RGR), Lwafi Game Reserve (LGR), Mlele Game Controlled Area (GCA), Mpanda Line 

Forest Reserve, Msaginia Forest Reserve (MFR), and Nkamba Forest Reserve (NKF) (Fig. 1).  

 

The Katavi-Rukwa Ecosystem receives an annual rainfall between 800 - 1200 mm, while the temperature ranges 

between 17 - 26 °C. Elevation ranges from 600-1800 m asl. The soil types range from alluvial soils (black cotton 
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soils) in flood plains to loamy soils in areas that are not seasonally inundated. The vegetation consists of miombo 

woodlands in non-inundated areas and grasslands in the flood plains (Banda et al., 2006). Miombo forms a 

single story, with open canopy of deciduous woodland dominated by trees of the genera Brachystegia, Julbernadia, 

and Isoberlinia (Campbell, 1996). The human population in the Katavi-Rukwa Ecosystem has rapidly grown due 

to increasing migration of pastoralist from other regions over the past 40 years (Izumi, 2017; Salerno, 2016). 

Agriculture and livestock keeping are the main land-use activities (Caro, 1999a). Rice farming is restricted to 

river terraces and flood plains while shifting cultivation for other crops such as maize, cotton and tobacco, is 

practiced in areas were natural vegetation had previously been cleared (Giliba et al., 2022; Jew et al., 2015). 

 

Fig. 1. Map of the study area, highlighting the spatial distribution of wildlife dung sampling sites (triangular 
transects with three sections of 1 km length each) across protection levels (KNP = Katavi National Park, RGR 
= Rukwa Game Reserve, LGR = Lwafi Game Reserve, MGCA= Mlele Game Controlled Area, NFR= Nkamba 
Forest Reserve, MFR= Msaginia Forest Reserve, MLFR= Mpanda Line Forest Reserve). The inset in the lower 
left shows the location of the study area within Tanzania, whereas the insert middle left shows the transect 
walks navigation. 
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2.2 Field survey 

We established a 35 km buffer around the boundary of KNP to include areas with different protection levels, 

ranging from unprotected to strictly protected. To capture an even coverage of transects across different 

protection levels, we divided our study area into 5 km by 5 km grids, so that transects were separated by 5 km 

to minimize spatial autocorrelation of the data. We randomly selected 105 grids (21 grids within each protection 

level) and placed triangular-shaped transects of 3 km total length in the centre of each selected grid. To ease 

logistics in the field (see Waltert et al., 2008), we opted for 1 km segment length (Fig. 1). We surveyed each 

transect once during the dry season between July and September 2021. Three people (one each primarily 

responsible for navigating, observing, and recording) walked along the transect. We used a handheld GPS and 

compass to navigate between segments (i.e. we moved towards 90° E in the first segment, 330° NW in the 

second segment, and 210° SW in the third segment; Fig. 1). In each transect, we counted and recorded the 

number of individual dung piles. To measure perpendicular distances from the centre of a dung pile to the 

centre line of a transect, we used a tape measure. To define the centre line of the transect (and avoid rounding 

of distances near the line to zero), we used a walking stick (Marques et al., 2001). Upon detection, we identified 

each dung pile to species level. Before the formal survey, we conducted a literature review and a pilot survey to 

establish species-specific dung pile definitions based on the shape of pellets and quantity of pellets per dung 

pile (Table 1). 
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Table 1: Attributes used to define individual dung piles for each target species based on number/pile 

and shape of pellets in the Katavi-Rukwa Ecosystem, western Tanzania. 

Species Sample 
size 

Minimum 
no. of 

pellets/ 
pile 

Maximum 
no. of 

pellets/ 
pile 

Median 
no. of 

pellets/ 
pile 

Mean 
no. of 

pellets/ 
pile 

Standard 
error 

Pellets 
shape 

Buffalo 

 

12 1 2 1 1.16 0.11 Thick pancake-like pellets, very variable size and 
structure (Stuart and Stuart, 2019). 

Elephant 

 

12 3 6 4 4.42 0.28 
Large barrel-shaped pellets (over 10 cm in 
diameter) accumulate in large dung heaps or 
partially broken up (Stuart and Stuart, 2019). 

Giraffe 

 

12 109 185 145 148.83 7.68 
Roughly spherical pellets usually in scattered 
heaps, pellets pointed at one end (Stuart and 
Stuart, 2019). 

Hartebeest 

 

12 107 226 171 162.67 12.44 

Roughly spherical or cylindrical commonly in 
heaps, pellets pointed at one end, diameter is 
relatively wider compared to topi (Hibert et al., 
2008). 

Topi 

 

12 103 216 153 154.25 10.28 

Roughly spherical or cylindrical commonly in 
heaps, pellets pointed at one end, diameter is 
relatively smaller compared to hartebeest (Hibert 
et al., 2008). 

Zebra 

 

12 10 32 22 22.67 2.12 Several separate kidney-like shape pellets with 
central vertical groove (Stuart and Stuart, 2019). 

 

 

2.3 Estimating relative animal densities 

We analysed the data in a density surface modelling framework, a two-stage method which first accounts for 

uncertain detectability (primarily as a function of distance between transect and observations; Thomas et al., 

2010) and a spatial model of the density of the target population (Miller et al., 2013). We used the function `ds´ 

in the R package `distance´ (Miller and Lawrence, 2022) to fit species-specific global detection functions. Due 

to low sample sizes per PCA category, we pooled species-specific sightings of dung piles across all protection 

levels to fit global detection functions (Thomas et al., 2010). We truncated the farthest 10% of observations 

(Buckland et al., 2001), and fitted three models for each species: 1. half-normal with no adjustment terms, 2. 

uniform with cosine adjustment, and 3. hazard-rate with cosine adjustment (Table 2). For all six species, we 
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selected the half-normal function due to formal fit criteria (high chi-squared goodness-of-fit value), low AIC 

values (Table 2), adequate visual fit (Fig. 2), and evidence that half-normal detection functions typically yield 

unbiased estimates (Prieto Gonzalez et al., 2017).  

 

Table 2: Parameters for the different models fitted to estimates relative densities of six target species surveyed 

on foot in the Katavi-Rukwa Ecosystem, western Tanzania. GOF stands for chi-squared goodness of fit, SE 

for standard error, and AIC for Akaike information criterion. 

Species Model Truncation 
distance (%) 

GOF 
p-value 

Average 
detectability 

SE (Average 
detectability) 

Delta 
AIC 

(a) Buffalo       

 

Half-normal  10 0.058 0.632 0.030 0.000 
Uniform  10 0.064 0.619 0.025 0.001 
Hazard-rate  10 0.073 0.590 0.050 2.985 

(b) Elephant        

 

Half-normal  10 0.063 0.758 0.036 0.000 
Uniform 10 0.060 0.729 0.036 0.278 
Hazard-rate 10 0.071 0.723 0.061 2.891 

(c) Giraffe        

 

Half-normal  10 0.064 0.580 0.030 0.000 
Hazard-rate  10 0.092 0.517 0.042 0.806 
Uniform 10 0.064 0.578 0.023 2.405 

(d) Hartebeest        

 

Uniform  10 0.049 0.737 0.041 0.000 
Half-normal  10 0.052 0.773 0.041 1.414 
Hazard-rate  10 0.050 0.798 0.056 3.235 

(e) Topi        

 

Hazard-rate  10 0.001 0.026 0.006 0.000 
Uniform  10 0.067 0.648 0.065 13.825 
Half-normal  10 0.059 0.679 0.071 15.497 

(f) Zebra        

 

Uniform  10 0.070 0.602 0.027 0.000 
Half-normal  10 0.064 0.610 0.033 0.707 
Hazard-rate 10 0.078 0.602 0.054 1.892 
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Fig. 2. Detection functions (black line) of conventional distance sampling models for (a) buffalo, (b) elephant, 

(c) giraffe, (d) hartebeest, (e) topi, and (f) zebra sighted along foot transects in the Katavi-Rukwa Ecosystem in 

western Tanzania. The histograms (grey bars) show the observed frequency of dung sightings against 

perpendicular distance; detection functions were modelled using half-normal key functions. 

 

2.3 Density surface modelling 

To model the spatial distribution of the relative densities of the six target species, we used the function `dsm´ 

in the R package ´density surface modelling (DSM)´ (Miller et al., 2022). In a first step, based on hypothesized 

relationships between the distribution of large savanna mammals in Tanzanian ecosystems and landscape 

features (Bond et al., 2017; Giliba et al., 2022; Van de Perre et al., 2014), we selected the following landscape 

variables for our spatially explicit models: the five-level categorical variable protection level (as an indicator of 

ecological effectiveness), and the following numerical variables to account for environmental heterogeneity: 

elevation, slope, rainfall, distance to cropland, houses, rivers and Enhanced Vegetation Index (EVI).  We choose 
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EVI as a proxy for primary productivity due to its advantages of reducing the background noise, atmospheric 

noise, and saturation in most cases compared to NDVI (Huete et al., 2002). We extracted elevation and slope 

data from SRTM digital elevation model from the U.S. Geological Survey (https://earthexplorer.usgs.gov), and 

annual rainfall data from CHIRPS (https://data.chc.ucsb.edu/products/CHIRPS-2.0/, using ArcMap 10.6 

(ESRI, 2018). We quantified proximity to rivers and houses from spatial features obtained from OpenStreetMap 

(http://download.geofabrik.de/africa/tanzania.html), and proximity to cropland from 2021 land cover map 

generated by Giliba et al. (2022) in ArcMap 10.6 (ESRI, 2018), and EVI from Google Earth Engine - Landsat 

8 Collection 1 Tier 1 8-Day EVI Composite (Gorelick et al., 2017). In a first step prior to the DSM, all spatial 

layers were resampled to a 1 km resolution to overlap with our transects of 1 km segment length in ArcMap 

10.6 (ESRI, 2018). Moreover, all numerical explanatory variables were scaled to mean zero and unit variance 

and tested for collinearity. For model fitting, we retained all variables because none of the variable dyads 

exceeded the (r) ≥ 0.7 (Pearson’s correlation coefficient) threshold (Dormann et al., 2013). In a second step, 

we prepared the segment data (table with sample label identifier for the segments, effort/length of segment, 

and the landscape variables, observation data (table with unique object identifier, sample label identifier for the 

segment where observation occurred, dung counts and distance to observations), and prediction data (a 

table/grid holds all the potential landscape variables for prediction). In a third step, we modelled species-specific 

density and spatial distribution as a sum of spline smooth functions for the selected landscape variables using 

a generalized additive models with Tweedie family (Miller et al., 2013; Wood, 2017). This probability distribution 

is able to deal with zero-inflated data (Peel et al., 2013; Strindberg et al., 2018), a prerequisite for our data that 

contained many transects without any sightings, particularly in unprotected areas. We used the stepwise 

backward selection procedure for variable selection (P > 0.05 as criteria for removing non-significant variables) 

within generalized additive models (Marra and Wood, 2011).  

 

3. Results 

After controlling for associations with fine-scaled (1 km resolution) environmental and anthropogenic variables, 

our density surface models generally revealed that protection level was positively correlated with species-specific 
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relative densities: among all target species, relative densities were highest in either the national park (buffalo, 

giraffe, topi, zebra) or game reserves (elephant, hartebeest) and lowest in the unprotected areas (Table 3).     

The density surface model for buffalo suggested that relative buffalo densities increased with increasing distance 

from cropland and rivers, and was positively associated with EVI, and slope; elevation and distance to houses 

showed hump-shaped relationships with relative buffalo densities (Fig. S1a). Controlling for these associations, 

relative buffalo densities were highest in the national park, followed by the game reserves, forest reserves, game-

controlled areas, and unprotected areas had by far the lowest relative densities (Table 3a). Similarly, relative 

elephant densities increased with distance to cropland and rivers, and were negatively associated with slope and 

showed a hump-shaped relationship with distance to houses (Fig. S1b). Beyond these associations, their relative 

densities were greatest in game reserves, closely followed by the national park; game-controlled areas and forest 

reserves had intermediate relative elephant densities (Table 3b). Unprotected areas had the lowest relative 

densities (Table 3b). 

The density surface model for giraffe suggested that their relative densities increased with distance from 

cropland and rivers; relative densities were negatively associated with the amount of precipitation and followed 

a hump-shaped curve with EVI (Fig. S1c). Controlling for these associations, relative giraffe densities were 

highest in the national park, followed by the forest reserves, game reserves, game-controlled areas, and 

unprotected areas had by far the lowest relative densities (Table 3c). Relative hartebeest densities increased with 

distance to houses and rivers, and decreased with EVI (Fig. S1d). Beyond these associations, their relative 

densities were greatest in game reserves, closely followed by the national park, forest reserves, game-controlled 

areas. Unprotected areas had lowest relative densities (Table 3d).  

Relative densities of topi decreased with EVI and showed a hump-shaped association with distance to houses 

(Fig. S1e). Controlling for these associations, relative topi densities were highest in the national park, followed 

by the game-controlled areas, forest reserves, game reserves; unprotected areas had the lowest relative densities 

(Table 3e). The density surface model for zebra suggested that their relative densities increased with increasing 

distance to cropland, was positively associated with slope, and decreased with increasing distance from rivers 

(Fig. S1f). Beyond these associations, their relative densities of zebra were greatest in the national park followed 
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by the game reserves, forest reserves, game-controlled areas; unprotected areas had the lowest relative densities 

(Table 3f).  

 

Table 3. Parameter estimates of density surface models (parameterized as general additive models) to describe relative 

densities of target species across protection levels while accounting for environmental variables in the Katavi-Rukwa 

Ecosystem, western Tanzania. Protection level was defined as factor whereas the baseline variables is national park (NP). 
(a) Buffalo  (b) Elephant 

    
Parametric variable Estimate SE t-value p-value 
Intercept -3.472 0.1815 -19.127 <0.001*** 
Protection level FR -1.153 0.2758 -4.180 <0.001*** 
Protection level GCA -2.149 0.504 -4.263 <0.001*** 
Protection level GR -1.136 0.3584 -3.170 0.002** 
Protection level UA -87.92 6980000 0.000 0.999 
Smooth term Estimated df F-value p-value  
Distance to cropland 4.158 3.004 <0.001***  
Distance to houses 4.927 3.476 <0.001***  
Elevation 4.007 2.303 <0.001***  
EVI 1.506 0.584 0.019*  
Slope 2.104 1.18 0.001**  
Distance to rivers 2.156 0.805 0.011*  

 

Parametric variable Estimate SE t-value p-value 
Intercept -3.724 0.089 -41.892 <0.001*** 
Protection level FR -0.534 0.184 -2.907 0.004** 
Protection level GCA -0.218 0.242 -0.899 0.369 
Protection level GR 0.174 0.115 1.522 0.129 
Protection level UA -1.013 0.279 -3.632 <0.001*** 
Smooth term Estimated df F-value p-value  
Distance to cropland 0.800 0.439 0.023*  
Distance to houses 4.929 4.109 <0.001***  
Distance to rivers 0.861 0.435 0.024*  
Slope 0.775 0.366 0.034*   

(c) Giraffe (d) Hartebeest 

   
Parametric variable Estimate SE t-value p-value 
Intercept -3.433 0.101 -34.159 <0.001*** 
Protection level FR -0.271 0.252 -1.077 0.282 
Protection level GCA -0.827 0.307 -2.696 0.007** 
Protection level GR -0.432 0.173 -2.495 0.013* 
Protection level UA -86.140 6992000 0.000 0.999 
Smooth term Estimated df F-value p-value  
Distance to cropland 1.882 1.144 0.002**  
Rainfall 2.388 0.703 0.040*  
EVI 1.887 0.742 0.018*  
Distance to rivers 0.931 1.470 <0.001**  

 

Parametric variable Estimate SE t-value p-value 
Intercept -3.205 0.114 -28.003 <0.001*** 
Protection level FR -0.051 0.178 -0.287 0.774 
Protection level GCA -0.406 0.190 -2.136 0.033* 
Protection level GR 0.026 0.150 0.173 0.863 
Protection level UA -2.791 0.588 -4.748 <0.001*** 
Smooth term Estimated df F-value p-value  
Distance to houses 2.524 1.620 <0.001***  
EVI 1.037 0.350 0.047*  
Distance to rivers 1.893 1.199 0.001**   

(e) Topi (f) Zebra 

  
Parametric variable Estimate SE t-value p-value 
Intercept -4.475 0.250 -17.894 <0.001*** 
Protection level FR -0.758 0.364 -2.084 0.038* 
Protection level GCA -0.653 0.425 -1.538 0.125 
Protection level GR -0.827 0.406 -2.034 0.043* 
Protection level UA -68.460 7136000 0.000 0.999 
Smooth term Estimated df F-value p-value  
Distance to houses 3.197 1.709 0.020*  
EVI 1.200 0.528 <0.001***   

Parametric variable Estimate SE t-value p-value 
Intercept -3.712 0.111 -33.401 <0.001*** 
Protection level FR -0.624 0.280 -2.225 0.027* 
Protection level GCA -1.150 0.304 -3.789 <0.001*** 
Protection level GR -0.268 0.184 -1.460 0.145 
Protection level UA -81.770 6997000 0.000 0.990 
Smooth term Estimated df F-value p-value  
Distance to cropland 0.750 0.324 0.044*  
Distance rivers 1.984 0.983 0.006**  
Slope 2.176 1.164 0.004**  

 

Significance codes: ‘***’ <0.001 ‘**’ 0.01 ‘*’ 0.05; GR, Game Reserve; GCA, Game-controlled Area; FR, Forest Reserve;  
UA, Unprotected Area; EVI, Enhanced Vegetation Index; df, degree of freedom; SE, Standard Error 
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4. Discussion 

Our study is one of few recent empirical attempts to model (relative) densities of terrestrial wildlife species 

across different protection levels and across a large spatial extent (but see Maisels et al., 2013; Strindberg et al., 

2018). While accounting for environmental variables, our model provides evidence on the effectiveness of area-

based conservation measures for large mammal populations in a Sub-Saharan African context. Specifically, we 

show for western Tanzania that areas with a stricter protection level embraced higher relative densities of large 

mammals than areas with less strict protection levels or unprotected areas. Our findings support conclusions 

from previous studies in the same (Giliba et al., 2022) and other Tanzanian ecosystems (Kiffner et al., 2020; 

Oberosler et al., 2020) that unprotected areas may no longer support viable population densities of large 

mammal species (Giliba et al., 2022; Kiffner et al., 2020; Oberosler et al., 2020).  

 

Generally, all considered species were widely distributed in strictly protected areas (especially Katavi National 

Park but also Game Reserves) compared to less strictly protected areas (Fig. S2a-f), suggesting that the 

protection level largely explains the spatial distribution of large mammals in the Katavi-Rukwa Ecosystem. 

These findings confirm the strong influence of the protection level in regulating distributions and densities of 

large mammals in East Africa (Bhola et al., 2012; Kiffner et al., 2020). As our study is of correlative nature, we 

can merely hypothesize on the underlying, mutually non-exclusive, mechanisms for the positive impact of strict, 

area-based conservation management on wildlife populations in this ecosystem: stricter protection could (1) 

result in lower human-caused mortality either due to legal (in game reserves and game-controlled areas) and/or 

illegal hunting (all PCAs) (Waltert et al., 2009); (2) lead to better habitat quality due to better protection from 

habitat degradation compared to less strictly protected areas (Schwartz et al., 2002). In addition, (3) stricter 

PCAs could have an inherently greater carrying capacity for the target species that could not be explained by 

the selected environmental variables.          

 

While these findings indicate ecological effectiveness of core protected areas, we also observed a lack of 

integration of these areas into the wider landscape and a possible failure to ensure functional connectivity. 
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Although the target species appear relatively widely distributed across the core PCAs in the ecosystem (NP, 

GR, FR, GCA), they were mostly absent from the UA (Fig. S2a-f). Since large-scale connectivity is pivotal 

especially for large and wide-ranging mammals (Cisneros-Araujo et al., 2021b; Riggio et al., 2022), we 

recommend targeted  efforts in areas outside of protected areas to ensure functional connectivity to adjacent 

ecosystems in order to support the persistence of wildlife populations over the long term.   

 

Similarly, our density surface models demonstrated a consistent influence of land-use (especially distance to 

cropland) on the spatial distribution of all considered species (Table 3a-f). Generally, target species avoided 

areas near to cropland and partially also avoided areas in immediate proximity to houses, suggesting that land-

use thrusts large mammal species further into the core areas of protected areas. This observation underpins 

findings from other case studies across East Africa (e.g., Msoffe et al., 2011; Ogutu et al., 2012; Veldhuis et al., 

2019), highlighting that expansion of cropland towards protected areas boundaries negatively impairs the 

distribution of large mammal species. We did not detect signs of most considered species beyond protected 

area boundaries (Fig. 3a-f), possibly indicating the unsuitability of unprotected land for wildlife to disperse, use 

and survive. This unsuitability of unprotected land has likely been increasing over the last decades due to 

destruction of natural habitats around protected areas of the Katavi-Rukwa Ecosystem (Giliba et al., 2022) and 

high levels of bushmeat poaching (Martin et al 2013). Notwithstanding, we detected relatively high relative 

densities of elephant and hartebeest even in less strictly protected areas (Fig. S2b and S2d).  Possibly, this is due 

to their preferences for woodland habitats (De Knegt et al., 2011; Rodgers, 1979), which are found inside Katavi 

National Park to some extent but predominate in game and forest reserves of the Katavi-Rukwa Ecosystem 

(Waltert et al., 2009). Notably, these two species occurred at relatively high relative densities in areas designated 

for trophy hunting (i.e. Game Reserves), providing further support that well-managed hunting areas with 

relatively low hunting offtake can sustain substantial wildlife populations and contribute to landscape-wide 

conservation goals (Di Minin et al., 2016; Pinheiro et al., 2019).     
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Compared to data from aerial surveys carried out in this ecosystem (Giliba et al. 2022), our dung survey also 

provides evidence that several species are much more widely distributed across the PCA network. For example, 

aerial surveys suggested that several of our target species were rarely or not detected during aerial surveys carried 

out in GCAs and FRs during the 2010s (see e.g. Table 3 in Giliba et al. 2022), yet we frequently detected their 

dung in GCAs and FRs during our 2021 survey (Fig. S2a-f). We hypothesize that this discrepancy is mostly due 

to visibility bias associated with aerial surveys (Greene et al., 2017; Jachmann, 2002, 1991) and due to behavioral 

adjustments of wildlife species. Several target species (e.g. elephants, buffalo, zebra) are cathemeral [i.e. active 

during both day and night; (Clauss et al., 2021)], thus exhibiting the behavioral flexibility to potentially use 

human-dominated or less strictly protected areas primarily during nighttime to avoid direct interference with 

humans (de Jonge et al., 2022).  While we cannot disentangle the exact causes for the method-related density 

differences, these comparisons provide circumstantial evidence that indirect survey methods (such as dung, 

camera trap, or acoustic surveys) are well suited for monitoring wildlife populations along anthropogenic 

gradients.            

 

Conclusions 

Based on our density surface models, protection level and land-use play crucial roles in moderating the spatial 

distribution of large mammals within the Katavi-Rukwa Ecosystem. While our findings show relative high 

wildlife densities in strictly protected areas, our study also shows a worrying lack of wildlife outside of these 

designated areas. Considering that effective and hands-off (i.e. not requiring intensive management such as 

translocations or supplementary feeding) conservation of wildlife populations ultimately depends on the 

connectivity of a network of habitats and ecosystems, a better integration of conservation efforts outside of 

protected areas is needed in the Katavi-Rukwa Ecosystem. The long-term survival of mammals here and 

possibly also in other places on Earth can only be achieved not only through establishing protected areas, but 

to conserve a gradient of protection arrangements across entire landscapes.  
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Supplementary Information 
Figure S1. Predicted effects of significant explanatory continuous variables (derived from generalized additive 

models) on the relative densities of target mammal species [(a) buffalo Syncerus caffer, (b) elephant Loxodonta 

africana, (c) giraffe Giraffa camelopardalis, (d) hartebeest Alcelaphus buselaphus, (e) topi Damaliscus korrigum, and (f) 

zebra Equus quagga] in the Katavi-Rukwa Ecosystem southwestern Tanzania. The tick marks on the x-axis are 

surveyed data points. The x-axis represents scaled values to mean zero and unit variance. The y-axis represents 

the predicted effect of each variable at a certain effective degree of freedom. The dashed lines indicate the 95% 

confidence intervals. The explanatory variables are: EVI = Enhanced Vegetation Index; dst.cropland = distance 

to cropland; dst.houses = distance to houses; dst.rivers = distance to rivers. 
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Figure S2. Map of dung density (dung piles km-²) and of associated coefficient of variation for (a) buffalo, (b) 

elephant, (c) giraffe, (d) hartebeest, (e) topi, and (f) zebra. across protection levels (FR: Forest Reserve; GCA: 

Game Controlled Area; GR: Game Reserve; NP: National Park; UA: Unprotected Area) of the Katavi-Rukwa 

Ecosystem in western Tanzania. Black and grey dots represent the distribution and magnitude dung sighted. 
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Abstract  

Despite being key conservation instruments, the ecological effectiveness of protected areas is contested. To 

assess the ecological effectiveness of protected areas in the Katavi-Rukwa Ecosystem in western Tanzania, we 

investigated temporal changes in land-use and population densities of six large mammal target species (elephant, 

buffalo, giraffe, zebra, topi and hartebeest) across areas with different conservation category, ranging from 

unprotected to strictly protected. During six survey periods between 1991 and 2018, we analysed data from 

remote sensing and aerial wildlife surveys to derive i) spatio-temporal patterns of cropland cover in relation to 

protection category; ii) population densities of the six-target species; and iii) distribution of these species across 

protection category, land-use and environmental variables. During the surveyed period, cropland increased from 

3.4 % to 9.6 % on unprotected land and from ≤0.05 % to <1 % on protected land. Wildlife densities of most, 

but not all target species declined across the entire landscape, yet the onset of the observed wildlife declines 

occurred several years before the onset of cropland expansion. Logistic regression models indicated that target 

species preferred the national park over less strictly protected areas and areas distant to cropland. As our data 

do not support a direct link between land-use change and wildlife densities, additional factors may explain the 

apparent ecosystem-wide decline in wildlife. To bolster wildlife conservation in the Katavi-Rukwa Ecosystem, 

we recommended proactive strategies to reduce direct threats to wildlife and cropland expansion towards 

wildlife dispersal areas and migratory corridors.
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1. Introduction 

Across the globe, biodiversity is rapidly declining mostly due to human-induced pressures (IPBES, 2019; 

Mammides, 2020; WWF, 2020). Direct exploitation of organisms, climate change, pollution, invasive species, 

and changes in land-use are presumably the most influencing direct drivers for biodiversity loss (IPBES, 2019). 

As a response to these multiple human pressures on ecosystems, protected area (PA) establishment is one key 

approach to safeguard biodiversity and human wellbeing (Gaston et al., 2008). However, the effectiveness of 

PAs is contested, and their ability to withstand anthropogenic pressures varies (Geldmann et al. 2019). To 

increase PA effectiveness, knowledge on the drivers and responses determining their ability to safeguard 

biodiversity is pivotal (Burkmar and Bell, 2015; Mazor et al., 2018). 

 

Despite an impressive  PA network in Africa (Riggio et al., 2019; WCMC-UNEP, 2016), some of the most 

severe declines in large mammal populations have occurred here over the past decades (Craigie et al., 2010; 

Ogutu et al., 2011; Ripple et al., 2015; WCMC-UNEP, 2016), with habitat loss and direct exploitation 

considered to be the main direct drivers. Available evidence strongly suggests that the underlying reasons for 

these developments to be rooted in human population growth, reduced functional connectivity (Fynn and 

Bonyongo, 2011; Riggio and Caro, 2017; Roever et al., 2013), insufficient staff and capacities to manage PAs 

adequately (Lindsey et al., 2014), and subsequent failure to implement and enforce effective conservation 

measures (Henson et al., 2016; Lindsey et al., 2014; Muhumuza and Balkwill, 2013). In particular, many PAs 

lack enforcement on the ground (Di Minin and Toivonen, 2015), suffer from underfunding (Coad et al., 2019) 

and data deficiency may hinder evaluation of their effectiveness (Craigie et al., 2010; Geldmann et al., 2019; 

Loos, 2021b). 

 

One region with documented mammal wildlife declines is the Katavi-Rukwa Ecosystem in western Tanzania 

(Caro, 2008; Mtui et al., 2017). Despite its relative high coverage with designated PAs (IUCN, 2020; Riggio et 

al., 2019), a growing human population (Masanja, 2014) and an increasing demand for natural resources 

stimulates land-use changes and overexploitation of species (Caro et al., 2013; Martin and Caro, 2012). The 
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expansion of land for cultivation and unsustainable (and often illegal) harvesting of species pose a dual and 

increasing pressure on PAs in the area (Martin and Caro, 2012; WCMC-UNEP, 2016). However, insights on 

the extent of land-use change on wildlife populations remain scarce (Kiffner et al., 2013). 

 

Besides unprotected land, different categories of PAs exist in Tanzania (and in our specific study area), ranging 

from strictly protected (International Union for Conservation for Nature, IUCN categories I to V) to less 

strictly protected, permitting human activities and resource extraction to some extent (IUCN categories VI). 

Previously, the effectiveness of PAs in protecting wildlife populations has been studied across Tanzania (Stoner 

et al., 2007), but this nationwide assessment considered only two protection categories (i.e., National Parks and 

Game Reserves) and did not consider other PA categories which may also support wildlife populations (Caro, 

1999a). To date, however, wildlife population trends have neither been linked to land-use changes nor to 

different protection categories across an entire ecosystem. To this end, we integrate both wildlife population 

densities and land-use change analyses over time to assess the effectiveness of four protection categories (i.e., 

National Park, Game Reserve, Forest Reserve, Game Controlled Areas), as well as unprotected areas (UA) in 

safeguarding wildlife populations and reducing anthropogenic threats. Understanding how conservation 

category mediates wildlife populations and anthropogenic threats over time is crucial in ensuring the delivery 

of positive ecological outcomes (Caro et al., 1998; Gardner et al., 2007; Stoner et al., 2007; WWF, 2020).  

 

In the context of East Africa, scholars have mostly focused on two indicators for assessing the ecological 

effectiveness of protected areas: land-use change in previously natural habitats (Riggio et al., 2019), and wildlife 

densities and their trends over time (Kiffner et al., 2020). Both indicators of PA effectiveness are important 

metrics for conservation management, but analyzing each in isolation provides only limited insights (Ghoddousi 

et al., 2021) because land-use change is not only an indicator of PA effectiveness, but could also be the main 

driver of wildlife declines (Pereira et al., 2012). Here, we looked into this relationship to understand whether 

and to what extent land-use change relates to wildlife population densities in western Tanzania. Since land-use 

change is a driver responsible for the destruction of natural habitats and could affect habitat and resource 
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availability for wildlife species (Dirzo et al., 2014; Tucker et al., 2021; Young et al., 2016), we hypothesized that 

a decline of available habitat for wildlife, would be followed by a time-lagged decline in wildlife populations. 

This scenario is often referred to as ‘extinction debt’ (Halley et al., 2016; Kuussaari et al., 2009). Such a scenario 

is particular plausible for the Katavi-Rukwa Ecosystem, where, similar to the Serengeti ecosystem in northern 

Tanzania (Veldhuis et al. 2019), rapid conversion of natural habitats reached the border of Katavi National Park 

within a few decades. However, it is unclear to what extent this land-use change, in particular cropland 

expansion, is related to the distribution of wildlife species. Although the distribution of wildlife and population 

dynamics are not identical, understanding how wildlife species are distributed across landscapes and how 

wildlife responds to land-use changes could provide important insights for targeted spatial planning that caters 

both for human and wildlife needs (Kremen and Merenlender, 2018).  

 

To address our research goal of assessing and understanding the ecological effectiveness of PAs in western 

Tanzania, we aimed at: (i) analyzing the patterns of cropland expansion across different protection categories 

over time; (ii) analyzing population trends of six large ungulate populations (buffalo Syncerus caffer, elephant 

Loxodonta africana, giraffe Giraffa camelopardalis, hartebeest Alcelaphus buselaphus, topi Damaliscus korrigum, and 

zebra Equus burchellii) across areas with different protection categories over time; and (iii) generating species-

specific models to identify key ecological and anthropogenic spatial variables associated with the presence of 

the target species. We hypothesized that: (i) the extent of cropland within all areas would show an increasing 

trend over time and that the increase in cropland would be particularly pronounced on unprotected land; (ii) 

population trajectories of target species would be particularly negative in unprotected or less strictly protected 

areas and be constant or only slightly negative in strictly protected areas; (iii) target species would prefer the 

national park and areas distant to cropland; and (iv) the distribution of target species would be mediated by 

environmental variables, such as preferences for areas near rivers and areas with intermediate primary 

productivity (Esmaeili et al., 2021). Our findings can be used in implementing conservation plans beyond PA 

boundaries and can provide information on how different conservation categories affect conservation 

outcomes. 
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2.  Methods 

2.1 Study area 

Our study focused on the Katavi-Rukwa Ecosystem (KRE) which is located between 6° to 7° S and 30° to 31° 

E, situated in Mpanda and Katavi Districts, western Tanzania (Fig. 1). The KRE covers c. 15,110 km2 (this is 

the extent of area that was consistently covered by aerial surveys carried out from 1991 to 2018), and comprises 

eight different administrative units (Caro, 2011; TAWIRI, 2014, 2018): Katavi National Park, managed by 

Tanzania National Park (TANAPA); Rukwa and Lwafi Game Reserves, Mlele and Rungwa-River Game 

Controlled Areas, managed by the Tanzania Wildlife Management Authority (TAWA); Nkamba and Msaginia 

Forest Reserves, managed by the Tanganyika District Council and  Tanzania Forest Service Agency (TFS), 

respectively; as well as Usevia, and Sitalike Unprotected Areas, managed by the district council. These 

administrative units fall under four protection categories ranging from areas with little enforcement of human 

land-use restrictions [Game Controlled Areas (GCA): here, settlement, agriculture, livestock keeping are not 

allowed, but hunting on permit in specific hunting blocks are allowed], areas that allow regulated resource 

extractions such as Forest Reserves (FR: here, limited timber extraction is permitted) and Game Reserves (GR: 

here, touristic game hunting with permits is allowed) to a strictly protected National Park (NP) where human 

activities are restricted to photographic tourism and research (Caro and Davenport, 2016; Caro, 1999a). Beyond, 

we investigated Unprotected Areas (UA) i.e. land that does not have a formal conservation category. Hence, 

our approach entails land under different conservation categories across the KRE, spanning the entire gradient 

of formal conservation approaches in this landscape. Large mammals found within KRE include buffalo, 

elephant, giraffe, hartebeest, topi, and zebra (Caro, 2008, 1999b; TAWIRI, 2018, 2014). We focused on these 

six species for two reasons; they are the numerically dominant terrestrial species in the ecosystem (TAWIRI, 

2018, 2014), and they can reliably be monitored through aerial surveys as their relatively large body sizes 

facilitate detection during aerial surveys (Jachmann, 2002).  

 

From 1991 to 2018 (the period of our data collection), the KRE received an annual rainfall between 800 - 1200 

mm, while the temperature ranged between 15 - 25 °C. Elevation ranges from 600-1800 m asl. The soil types 
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range from alluvial soils (black cotton soils) in grassland/flood plains to loamy soils in woody vegetation. The 

vegetation consists of miombo woodlands and flood plains (Banda et al., 2006). Miombo forms a single story, 

with open and closed canopy of deciduous woodland dominated by trees of the genera Brachystegia, Julbernadia, 

and Isoberlinia (Banda et al., 2008). The flood plains predominantly occur on the flat terrains of the Katavi, 

Chada, and Katisunga plains that are drained by the Katuma River (Mtui et al., 2017). The human population 

in the KRE has rapidly grown due to increasing migration of pastoralist from Simiyu, Shinyanga, Mwanza, and 

Geita regions over the past 40 years (Izumi, 2017; Salerno, 2016). The main land-use activities in the KRE 

include agriculture and livestock keeping (Caro, 1999a). Rice farming is restricted to river terraces and flood 

plains while shifting cultivation for other crops, i.e. maize, cotton and tobacco, is practiced in deforested areas 

(Jew et al., 2017). In 1991, Katavi National Park was enlarged by annexing parts of Rukwa Game Reserve. Its 

area increased from 2,253 km2 in 1991 to 4,471 km2 in 1998, while Rukwa Game Reserve area decreased from 

6,412 km2 in 1991 to 4,194 km2 in 1998, and 1,294 km2 from Game Controlled Area become part of Rukwa 

Game Reserve in 1998. To be consistent, we used the PA category at the time of the survey for cropland cover 

analyses, and to capture species-specific aerial survey strip segments for wildlife density analyses.  
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Fig. 1. Map of the Katavi-Rukwa ecosystem (KRE), highlighting the spatial distribution of different 
conservation areas [Katavi National Park (KNP); Rukwa Game Reserve (RGR); Lwafi Game Reserve (LGR); 
Mlele Game Controlled Areas (MGCA); Rungwa-River Game Controlled Areas (RRGCA); Nkamba Forest 
Reserve (NFR); Msaginia Forest Reserve (MFR)] and Unprotected Areas (UA), as well as major towns and 
villages. The inset in the lower left shows the location of the study area within Tanzania. 
 

2.2 Large mammal population data 

We obtained a total of 892 target species sightings for the years 1991, 1998, 2001, 2006, 2014, and 2018, for 

KRE from the Tanzania Wildlife Research Institute (TAWIRI) following our formal requests. Aerial counts 

were conducted during the dry season following the systematic reconnaissance flight technique as described by 

Norton-Griffiths (1978). Transects were flown in east-west directions at predefined 5 km spacing for 1991, 

1998, 2001 and 2006 surveys. For 2014 and 2018 surveys some transects were flown in southwest directions 

and others in north-east directions. (TAWIRI, 2018, 2014).  
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2.3 Land cover and environmental variables 

Based on published relationships between the distribution of large savanna mammals in Tanzanian ecosystems 

and landscape features (Bond et al., 2017; Van de Perre et al., 2014), we selected the following environmental 

variables in our species-specific binomial regression models (see below): land cover (as a proxy for habitat 

structure and land-use), Enhanced Vegetation Index (EVI; as a proxy for primary productivity due to its 

advantages of reducing the background noise, atmospheric noise, and saturation in most cases compared to 

NDVI (Huete et al., 2002)), elevation, slope, terrain ruggedness and proximity to rivers, lakes, roads, houses, 

and the amount of rainfall in the year of the survey.  

 

To produce land cover maps for the KRE, we acquired readily available 30 m resolution Landsat 5 and Landsat 

8 imagery from U.S. Geological Survey’s Earth Explorer (https://earthexplorer.usgs.gov/). Our choice of date 

for satellite imagery was based on availability of aerial surveys data for the dry seasons between 1991 and 2018, 

and imagery free from cloud cover. We used the atmospheric correction algorithm ATCOR to remove haze 

and calculate top of atmosphere reflectance for Landsat 5 and Landsat 8 imagery using PCI Geomatica version 

2018 (PCI Geomatics 2018). We generated 1,106 training polygons for each year for our land classification 

through composite imagery, high-resolution Google Earth images and field knowledge. We used the scatterplot 

tool to evaluate our training samples to find out if there was enough separation between landcover classes using 

ArcMap (ESRI, 2018). We employed a supervised classification approach using a support vector machine 

algorithm to classify satellite imagery (Heydari and Mountrakis, 2019; Maulik and Chakraborty, 2017). We 

mapped five major land cover categories (dense woodland, open woodland, burnt area, cropland, and swamp 

areas) and linked these land cover categories with wildlife species presence. We generated 475 points using 

stratified random sampling in ArcMap to assess the accuracy of our classified maps. We used high-resolution 

images from Google Earth and base-map layers from Google Satellite, ESRI Satellite, and Bing Satellite 

available in ArcMap and QGIS to validate our land cover maps (Connette et al., 2016; Hu et al., 2013; Yu and 

Gong, 2012). Our overall land cover classification accuracy for the six dates ranged from 96 % to 98 % with 

kappa coefficients between 0.95 and 0.98 (Supplementary Table 4). We used the overall accuracy and kappa 



106 
 

coefficient to validate our classified maps. We calculated the mean EVI values for the dry season (i.e. between 

July and September) of each year from Google Earth Engine - Landsat 5/8 Collection 1 Tier 1 8-Day EVI 

Composite (Gorelick et al., 2017). To extract information on elevation, we obtained the global 30 m SRTM 

digital elevation model (DEM) for the KRE from the U.S. Geological Survey (https://earthexplorer.usgs.gov). 

We used DEM to derive slope and terrain ruggedness raster surface using QGIS 3.16 (QGIS, 2020). We 

obtained spatial layers for major roads and rivers from OpenStreetMap 

(http://download.geofabrik.de/africa/tanzania.html), and for seasonal lakes and houses from TAWIRI 

(TAWIRI, 2018). We generated distance raster surfaces for rivers, lakes, roads, and houses at resolution of 30 

m using the Euclidian distance tool in ArcMap 10.6 (ESRI, 2018). Finally, we obtained the annual rainfall at a 

resolution of 5 km for each year for the KRE from CHIRPS (https://data.chc.ucsb.edu/products/CHIRPS-

2.0/).  

 

2.4 Temporal trends of cropland cover and large mammal populations 

We used time-matched administrative boundaries of the PAs at the extent of KRE and aerial surveys to extract 

cropland cover across different protection categories for each year using the Tabulated Tool in ArcMap (ESRI, 

2018). We plotted cropland cover against the year to explore cropland cover across different protection 

categories over time. To estimate species- and PA-specific wildlife densities for each dry season count, we used 

Jolly’s method 2 for unequal-sized sample units (Jolly, 1969). We plotted estimated densities of the six target 

species against the year to explore annual densities of target species within the different protection categories 

over time. We used Kendall’s correlation tests to investigate the strength and direction of temporal trends of 

cropland and wildlife densities. We approximated mean annual rates of change of wildlife populations by 

subtracting wildlife density estimates of the last (2018) survey from the density estimates of the first (1991) 

survey, divided by the time period in years. Because our data were not normally distributed (based on visual 

inspection of histograms and Shapiro-Wilk tests), we used non-parametric Kruskal-Wallis test to assess if overall 

wildlife densities in both 1991 and 2018 differed between protection categories. We used the species-specific 

densities as replicates for these analyses of variance (ANOVAs). We used the same non-parametric test to assess 
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whether the extent of cropland differed between protection categories. Because we had no replicates for a given 

time step, we used the year-specific estimates as replicates. Finally, we used Dunn’s post hoc test to assess 

which protection categories differed from each other in terms of wildlife densities and extent of cropland cover. 

Statistical significance was set at P < 0.05. We analysed all data in R 4.0.4 (R Core Team 2020). 

 

2.5 Identifying correlates for the distribution of large mammals 

To model habitat associations for the six-target species, we first overlaid TAWIRI survey block polygons with 

the time-matched PAs administrative boundaries to obtain the overall extent of the landscape (i.e., 15,110 km2) 

that has consistently been surveyed throughout the six aerial surveys from 1991 to 2018. As a next step, we 

intersected the overlay from step one with aerial survey strips to obtain presence/absence strips in each 

protection category. For each of these species-specific aerial survey strip segments (median width = 310 m, 

range 80 to 2,000 m, median length = 5 km, range 1.5 to 5 km), we extracted ecological and anthropogenic 

spatial variables using the Tabulated Tool in ArcMap 10.6 (ESRI, 2018). All variables, except for protection 

category (categorical variable with five levels: NP, GR, FR, GCA, and UA) and land cover (categorical variable 

with five levels: closed woodland, open woodland, cropland, burnt area, and swampy area), were continuous 

variables. For continuous variables we computed mean values for each segment while for categorical variables 

we extracted majority values of the most frequently occurring category in each segment. To avoid potential 

problems arising from collinearity, we tested explanatory continuous variables for cross correlations using the 

corrplot package (Wei and Simko, 2017). Due to high levels of autocorrelation [(r) > 0.7 (Zhu and Peterson, 

2017)], we removed the variables ‘terrain ruggedness index’, and ‘distance to seasonal lakes’ and used eight 

uncorrelated continuous variables to fit the models along with two categorical variables based on ecologically 

relevant hypotheses (Table 1). To test for a unimodal relationship in response to vegetation productivity, we 

included a quadratic term of EVI. We used generalized linear mixed models (GLMMs) with binomial error 

distribution and survey period (year) as a random factor to assess the strength and direction of associations 

between environmental variables and the presence of target species within the KRE. For each target species, 

we first fitted a global model with all potential variables. Using the dredge function of the MuMiN package 
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(Barton and Barton, 2020), we  generated models with all combinations of variables in the global model. We 

ordered these candidate models according to the sample-size corrected Akaike’s information criterion (AICc) 

score (i.e., lowest on top) and model weights (i.e., highest on top). Due to model selection uncertainty, we opted 

for model averaging and considered models with delta AICc < 4 (Burnham and Anderson, 2002). Because our 

aim was to determine which variables are most important predictors of target species presence, we estimated 

model averaged coefficients using the full average method (Anderson and Burnham, 2002; Nakagawa and 

Freckleton, 2011). 

 

Table 1: Predictor variables for modelling of large mammal distributions and associated hypotheses. 

Protection category and land cover are categorical data; other variables are continuous data. 

Predictor Hypotheses: Large mammal presence 

Protection category Level of protection varies between protected area and affecting large mammal 

presence. Large mammals are expected to prefer strictly protected areas and avoid 

unprotected areas. 

Land cover Habitat type which may be avoided or preferred by large mammals. Due to 

species-specific differences in feeding ecology, we expected specific responses to 

natural land cover types.   

Enhanced vegetation index Large mammals prefer areas with medium or high primary productivity; due to 

species-specific food preferences, we expected that these associations would differ 

by species. 

Rainfall Influences vegetation growth and surface water availability which in turn drives 

large mammal distribution.  

Elevation Determines habitat type which in turn drive large mammal presence. 

Slope Steeper slopes constrain movement for some species. 

Distance to river During the dry season, large mammals prefer sites closer to rivers as they provide 

water. As water dependency differs by species, we expected species-specific 

responses. 

Distance to cropland Large mammals avoid sites closer to cropland, as these areas potentially represent 

elevated risks exerted by humans. 

Distance to houses Large mammals avoid sites closer to houses as these areas potentially represent 

elevated risks exerted by humans. 

Distance to roads Large mammals avoid sites closer to roads as these areas potentially represent 

elevated risks exerted by humans. 

 



109 
 

3. Results 

3.1 Patterns of cropland cover across different protection categories 

In 1991, cropland covered 3.4 % of the entire study area; in 2018, the area under cropland covered 9.6 % of 

the entire surveyed area.  In 1991, the extent of cropland in all PAs was marginal (≤1 %) (Fig. 2a) and cropland 

cover was mainly restricted to UA (9.6 %) (Fig. 2b). From 1991 to 2018, cropland cover increased within all 

considered protection categories (Fig. 2a & 2b). The temporal trend of this expansion differed between 

protection categories, evidenced by different average annual rates of cropland expansion: NP = 0.02 % increase 

year-1; GCA = 0.02 % increase year-1; GR = 0.03 % increase year-1; FR = 0.10 % increase year-1; and UA = 

1.29 % increase year-1. The temporal trend of cropland expansion appeared non-linear and the timing of 

cropland expansion differed between protection categories. For example, inside the NP, cropland showed a 

sharp increase between 2006 and 2018 (Fig. 2a) while cropland expansion inside the GR started earlier in 2001 

(Fig. 2a). In the GCA, we observed a sharp increase in cropland expansion between 2006 and 2018 (Fig. 2a), 

while cropland in FR and UA increased almost linearly throughout the observation period (1991-2018) (Fig 2a, 

b). A Kruskal-Wallis test showed that there was a significant difference in cropland expansion across protection 

categories from 1991 to 2018 (H = 19.85, df = 4, p <0.001). Dunn's post-hoc test showed that the extent of 

cropland cover within UA was greatest and differed significantly from other protection categories (NP, GR, 

FR, GCA). Among the other protection categories, cropland cover did not differ significantly over time. In 

2018, cropland cover approached the northern and southern borders of NP, in areas previously covered by 

dense and open woodlands (Fig. 3a-d).  
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Fig.2 Percent of cropland cover from 1991 to 2018 within different PAs (a) and within UA (b) of the Katavi-
Rukwa ecosystem and associated results of non-parametric correlation analyses to describe the temporal trends.  
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Fig. 3. Extent of cropland around Katavi National Park between 1991 (a) and 2018 (f).  

 

3.2 Population trends of large mammals across different protection categories 

In 1991, high densities of buffalo occurred in the NP, GR, FR and OA, and zebra also occurred at high densities 

in the UA. For the 1991 survey data, a Kruskal-Wallis test showed that there was no significant difference in 

overall wildlife densities (i.e. species-specific densities as replicates) across protection categories (H = 7.63, df = 

4, p = 0.11), however, a follow up Dunn’s post-hoc test for pairwise comparisons showed that wildlife densities 

in the NP were significantly greater than those in the FR and GCA.  However, in 2018, wildlife densities differed 

significantly between protection categories (H = 10.19, df = 4, p = 0.03). A follow up Dunn's post hoc test 

showed that wildlife densities in the NP were significantly greater than those in the FR, GCA, UA, but not 

different to densities in the GR. The population trends of all target species combined differed between 

protection categories, evidenced by different average annual rates of change in densities: NP = 0.58 % decline 
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year-1; GCA = 0.69 % decline year-1; GR = 0.17 % decline year-1; FR = 2.7 % decline year-1; and UA= 3.3 % 

decline year-1. Specifically, we observed steep declines of previously high population density of zebra and 

buffalo in FR and UA (Fig. 4). These species also declined in NP and GR (Fig. 4). However, in the NP and GR 

their densities seem to have stabilized at a lower level, whereas in the less strictly protection categories (i.e., FR, 

GCA, UA), the density of these species seems to have declined precipitously, or these species are no longer 

using these areas (Table 3). Population densities of elephant, giraffe, topi, and hartebeest remained relatively 

stable at low levels or seem to have disappeared in the less strictly protection categories (Fig. 4, Table 3). 

Although not significant (likely due to low test power), the combined densities (i.e. the summed densities of all 

six target species) seemed negatively associated with the extent of cropland in a given area (R = -0.60, p = 0.13, 

n = 6). 
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Table 3: Survey-specific densities of wildlife (ind. km-2) across different protection categories [National Park 

(NP), Game Reserve (GR), Forest Reserve (FR), Game Controlled Area (GCA), Unprotected Area (UA)]. 

  1991 1998 2001 2006 2014 2018 
NP 18.73 14.12 10.61 7.93 12.80 3.00 

Buffalo 14.26 7.84 4.24 3.74 10.89 1.78 
Elephant 1.79 0.95 1.53 1.10 0.88 0.38 
Giraffe 0.23 0.35 1.53 0.03 0.25 0.13 
Hartebeest 0.42 0.22 0.29 0.07 0.04 0.16 
Topi 0.66 1.29 1.83 0.20 0.24 0.15 
Zebra 1.36 3.48 1.19 2.78 0.51 0.39 

GR 7.94 2.05 1.50 1.62 1.93 3.28 
Buffalo 5.58 1.49 0.50 1.27 1.39 2.90 
Elephant 0.11 0.11 0.28 0.05 0.09 0.04 
Giraffe 0.35 0.10 0.28 0.07 0.04 0.02 
Hartebeest 0.45 0.05 0.11 0.11 0.19 0.02 
Topi 0.19 0.01 0.00 0.08 0.01 0.00 
Zebra 1.26 0.30 0.33 0.03 0.22 0.31 

FR 6.70 0.27 0.35 0.61 0.27 0.48 
Buffalo 6.11 0.00 0.01 0.00 0.00 0.04 
Elephant 0.00 0.05 0.16 0.56 0.20 0.30 
Giraffe 0.22 0.10 0.16 0.01 0.07 0.00 
Hartebeest 0.37 0.11 0.00 0.04 0.00 0.06 
Topi 0.00 0.00 0.03 0.00 0.00 0.00 
Zebra 0.00 0.02 0.00 0.00 0.00 0.09 

GCA 1.18 0.76 1.74 0.84 0.17 0.25 
Buffalo 0.55 0.57 0.61 0.00 0.00 0.09 
Elephant 0.00 0.00 0.32 0.67 0.00 0.00 
Giraffe 0.19 0.00 0.32 0.17 0.03 0.00 
Hartebeest 0.43 0.00 0.49 0.00 0.01 0.16 
Topi 0.00 0.03 0.00 0.00 0.00 0.00 
Zebra 0.00 0.17 0.00 0.00 0.13 0.00 

UA 20.71 0.83 0.44 0.16 0.19 0.41 
Buffalo 13.89 0.07 0.22 0.05 0.00 0.00 
Elephant 0.00 0.49 0.00 0.02 0.03 0.00 
Giraffe 0.60 0.17 0.00 0.09 0.00 0.00 
Hartebeest 0.14 0.10 0.15 0.00 0.00 0.27 
Topi 0.57 0.00 0.00 0.00 0.00 0.00 
Zebra 5.52 0.01 0.08 0.00 0.16 0.15 
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Fig. 4. Densities of large ungulate species within NP (a), GR (b), FR (c), GCA (d), UA (e) based on aerial counts 

conducted during dry seasons between 1991 and 2018 and associated results of non-parametric correlation 

analyses to describe the temporal trends. 

 

3.3 Anthropogenic and environmental variables associated with the distribution of target species 

Model averaged estimates of generalized linear mixed models indicated that six environmental variables, namely 

EVI, land cover, elevation, slope, distance to rivers, distance to roads; and three anthropogenic variables, 

distance to cropland, distance to houses and protection category, were strongly associated to the distribution 

of the target species (Table 2a-f). The distributions of all target species were positively associated with distance 

to cropland. All target species except for hartebeest had lower likelihoods to occur in GR, GCA, FR, and UA 

compared to the reference category, NP (Table 2a-f). The presence of buffalo, elephant, and zebra was 

negatively associated with distance to rivers (Table 2a, b, e & f). Buffalo, and elephant presence was negatively 

associated with EVI (Table 2a & b). Giraffe, and hartebeest presence was negatively associated with the 
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quadratic term of EVI, while the distribution of buffalo was positively associated with the quadratic term of 

EVI (Table 2a, c & d). The distributions of giraffe and zebra were negatively correlated with elevation (Table 

2c & f), while buffalo and hartebeest were negatively correlated with slope (Table 2a & d). Topi and elephant 

preferred open woodland and hartebeest preferred burnt areas (Table 2b & e). Zebra distribution was positively 

correlated with distance to houses while the distribution of topi was negatively correlated with distance to 

houses (Table e & f). Distributions of buffalo, giraffe and topi were negatively associated with distance to roads 

(Table 2a, c & e).   
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Table 2: Summary statistics of generalized linear mixed models describing associations between explanatory 

variables and the presence of target species [(a) buffalo, (b) elephant, (c) giraffe, (d) hartebeest, (e) topi, and (f) 

zebra] in the Katavi-Rukwa ecosystem. Protection category and land cover were defined as factors, whereas the 

baseline variables are national park (NP) and closed woodland (CW), respectively. Estimates are log odds. 
    
 

(a) 

        
 
 (b) 
 

    

             β SE (β) z-value P-value   β SE (β) z-value P-value 
(Intercept) -1.341 0.333 -4.033 <0.001*** (Intercept) -2.46 0.44 -5.60 <0.001*** 
Distance to cropland 0.025 0.008 3.284 0.001** Distance to cropland 0.03 0.01 3.53 <0.001*** 
Distance to rivers -0.020 0.007 -2.674 0.007** Distance to rivers -0.02 0.01 -2.29 0.02* 
Distance to roads -0.024 0.011 -2.184 0.029* EVI -3.48 1.54 -2.26 0.02* 
Slope -0.075 0.036 -2.098 0.036* Landcover BA 0.32 0.32 0.99 0.32 
EVI -7.388 2.472 -2.989 0.003** Landcover CL -0.39 1.11 -0.35 0.73 
I(EVI^2) 12.883 6.277 2.052 0.040* Landcover OW 0.60 0.25 2.39 0.02* 
Protection category FR -1.437 0.532 -2.700 0.007** Landcover SA -26.04 523.00 0.00 1.00 
Protection category GCA -1.061 0.453 -2.341 0.019* Protection category FR -0.12 0.32 -0.38 0.70 
Protection category GR -0.183 0.232 -0.791 0.429 Protection category GCA -1.68 0.61 -2.77 <0.006** 
Protection category UA -1.129 0.375 -3.006 0.003** Protection category GR -1.65 0.33 -5.01 <0.001*** 
     Protection category UA -1.57 0.51 -3.07 0.002** 
          

  
 
 
 

(c) 
 β SE (β) z-value P-value 

  
 
 

(d) 

β SE (β) z-value P-value 
(Intercept) 2.196 1.004 2.187 0.029* (Intercept) -2.337 0.457 -5.118 0.001*** 
Annual rainfall -0.003 0.001 -2.287 0.022* Distance to cropland 0.023 0.006 3.629 0.001*** 
Distance to cropland 0.024 0.007 3.190 0.001** Slope -0.191 0.064 -3.013 0.003** 
Distance to roads -0.016 0.010 -1.659 0.097 EVI -2.413 4.599 0.525 0.600 
Elevation -0.002 0.001 -2.421 0.016* I(EVI^2) -15.531 5.728 -2.711 0.007** 
EVI 3.964 4.652 0.852 0.394 Landcover BA -0.961 0.435 -2.211 0.027* 
I(EVI^2)                -11.525 4.126 -2.793 0.005** Landcover CL -1.708 1.027 -1.663 0.096 
Protection category FR -0.951 0.393 -2.418 0.016* Landcover OW -0.333 0.265 -1.256 0.209 
Protection category GCA -0.528 0.440 -1.200 0.230 Landcover SA -0.146 0.851 -0.171 0.864 
Protection category GR -0.349 0.229 -1.520 0.129      
Protection category UA -0.878 0.294 -2.990 0.003**      
  
 

(e) 
 
 β SE (β) z-value P-value 

  
 

(f) 

β SE (β) z-value P-value 
(Intercept) -3.057 0.459 -6.663 0.001*** (Intercept) 0.554 0.798 0.695 0.487 
Distance to cropland 0.033 0.015 2.276 0.023* Distance to cropland 0.016 0.007 2.115 0.034* 
Distance to houses -0.030 0.013 -2.426 0.015* Distance to houses 0.022 0.008 2.774 0.006** 
Distance to roads -0.027 0.008 -3.581 0.001*** Distance to rivers -0.037 0.010 -3.646 0.001*** 
Landcover BA 0.736 0.437 1.683 0.092 Elevation -0.003 0.001 -3.762 0.001*** 
Landcover CL 1.209 0.813 1.486 0.137 Protection category FR -1.832 0.725 -2.528 0.011* 
Landcover OW 0.981 0.369 2.655 0.008** Protection category GCA -1.314 0.529 -2.484 0.013* 
Landcover SA -11.909 66.099 -0.180 0.857 Protection category GR -0.588 0.227 -2.587 0.010** 
Protection category FR -2.381 1.023 -2.328 0.020* Protection category UA -0.695 0.293 -2.374 0.018* 
Protection category GCA -2.076 1.033 -2.010 0.044*      
Protection category GR -1.103 0.452 -2.441 0.015*      
Protection category UA -1.379 0.565 -2.440 0.015*      

Significance codes: ‘***’ <0.001 ‘**’ 0.01 ‘*’ 0.05; GR, Game Reserve; GCA, Game-controlled Areas; FR, Forest Reserve;  
UA, Unprotected Area; EVI, Enhanced Vegetation Index; OW, Open Woodland; BA, Burnt Area;  
CL, Cropland; SA, Swampy area. 
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4. Discussion 

Many parts of the world, especially those experiencing land-use changes, face unprecedented losses of 

mammalian megafauna (Dirzo et al., 2014; Ripple et al., 2015; Sala et al., 2000). Our time series analyses covering 

almost three decades of remote sensing data and aerial survey data of large-bodied mammal species in western 

Tanzania suggest that the KRE is no exception to this worrisome global trend, but the relation to land-use 

changes appears less obvious. 

 

4.1 Land-use change 

Between 1991 and 2018, cropland cover increased significantly in three (UA, FR, GCA) out of five protection 

categories (Fig. 2a & b) of the KRE. Our results clearly show that the highest rates of encroachment occurred 

in areas subject to fewer restrictions to human resource utilization, particularly in UA. Yet, starting from the 

early 2000s, cropland expansion occurred to a small degree even inside formally protected areas such as NP, 

GR, FR and GCA. Interestingly, GCAs exhibited the lowest rate of encroachment despite their relatively low 

level of protection (Fig. 2a). This may seem surprising as land-use change in PAs of Eastern Africa typically 

correlates with protection category (Riggio et al., 2019). While GCAs in other parts of Tanzania such as the 

Tarangire-Manyara ecosystem (Msoffe et al., 2011) or the Kilombero valley (Msofe et al., 2019) are subject to 

substantial land-use changes, GCAs in the KRE seem to be spared of encroachment. We assume that this may 

be due to their remote locations in hilly terrains with relatively low adjacent human population densities.  

 

Similarly, the GR and NP were subject to relatively small land-use changes over time. However, cropland is 

now directly bordering Katavi National Park in several locations (Fig. 3). Among the PAs, FR recorded the 

highest amounts of cropland expansion over time. Presumably, this is linked to the immigration of people from 

the lake zone of Tanzania. The major increase in cropland cover occurred in the unprotected areas from 2006 

to 2018. This land-use change is likely associated with an increase of the human population size (119,939 people 

in 2002 to 179,136 people in 2012) in Mpanda district which is mostly driven by immigration of people 

belonging to the pastoralists Sukuma ethnicity (URT, 2016), a process that started already in the 1980s (Izumi, 
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2017). Sukuma usually settle in frontier areas and clear woodlands and forests for agriculture (e.g., rice, maize, 

cotton, tobacco) (Salerno, 2016). When population growth limits further cropland expansion and land for 

grazing, households typically migrate to other areas (Coppolillo, 2001). Likely, such migration to frontier areas 

around PAs in the KRE contributed to the observed replacement of natural vegetation cover by cropland and 

may accelerate the degradation of natural habitat along PA boundaries (Salerno, 2016; Veldhuis et al., 2019). 

Indeed, Figure 3 shows widespread edge degradation due to cropland expansion around the southern and 

northern boundaries of Katavi National Park over the past three decades. Our species distribution models 

consistently suggest that all target species spatially avoided cropland, implying that cropland expansion pushes 

large wildlife species further into the core areas of PAs. This pattern has previously been shown for lions 

(Panthera leo) but not for large herbivores in Katavi National Park (Kiffner et al., 2013). However, the 

distribution of large herbivores in the Serengeti ecosystem in northern Tanzania seems to follow the same 

pattern (Veldhuis et al., 2019). Our land cover analyses further indicate that cropland extended towards the 

northwest of Katavi National Park in 2018, towards a wildlife corridor that ensures elephant movement 

between Katavi and Mount Mahale National Park (Caro et al., 2009). If the observed trend in land-use change 

persists in the future, elephant movements between Katavi and Mahale Mountains National Park are likely 

impaired.  

 

Similar loss of connectivity due to insularization of PAs have been reported in other parts of East African such 

as the Tarangire ecosystem (Morrison and Bolger, 2014). Acknowledging that most of the land conversion in 

the KRE was presumably legal (i.e. occurred in unprotected areas), we suggest that future land-use change 

should be planned and guided by principles that ensure meeting both the needs of a growing human population 

as well as those of the wildlife populations (Grass et al., 2019). To achieve this, workable trade-offs between 

economic land-use activities of individuals and wildlife conservation goals should be a top priority. This requires 

better planning for the needs and wants of different stakeholders for example by implementing participatory 

spatial planning tools (Rambaldi et al., 2012).   
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4.2 Wildlife population trends 

Analyses of nearly three decades of aerial surveys confirm declines in densities of many large ungulate species 

across different protection categories of the KRE (Caro, 2016, 2008; Mtui et al., 2017; Stoner et al., 2007). 

While several of the species-specific population trends did not produce a statistically significant signal in our 

study (likely due to low test power inherent to six data points), the overall decline of large mammals in the KRE 

is apparent [indicated by 25/30 species-area (6 species x 5 protection categories) combinations exhibiting a 

negative population trend signal over time] and a cause for concern. Similar to earlier work by Caro et al. (1998) 

and Caro (1999), our results suggest that populations of large mammals in the KRE occurred at much greater 

densities in areas with higher protection categories (particularly NP and GR) compared to areas with fewer 

restrictions on land-use and that these spatial density differences appear to have grown over time. Similar to 

studies in other ecosystems, the differences in densities detected across different protection categories in this 

study may be particularly pronounced in large-bodied species (Vinks et al., 2020). Interestingly though, less 

strictly protection categories (particularly FR and UA and to a smaller degree also GCA) seem to have supported 

relatively high densities of one or two large mammal species (zebra and buffalo) at the beginning of our time 

series. Seemingly, these areas no longer support functional population densities of the surveyed large mammal 

species during the dry season (Fig. 4c, d, e). This is a worrisome finding because those species provide important 

ecosystem services and contribute to the functioning of important ecosystem processes such as seed dispersal, 

nutrient cycling, and carbon sequestration (Berzaghi et al., 2019; Brockerhoff et al., 2017; Ripple et al., 2015). 

In addition, the loss of large herbivorous mammals in less strictly protection categories likely has strong 

cascading consequences for species of other taxa who crucially depend on large herbivores such as large 

carnivores (Vinks et al., 2020), commensal bird species (Diplock et al., 2018), or dung beetles (Wardle and 

Bardgett, 2004).  

 

While our data covered nearly three decades, the observed trends may have underestimated the full extent of 

anthropogenic pressures on the distribution and population densities of wildlife populations, because human 

activities likely exerted negative impacts on wildlife populations before the start of systematic wildlife 
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monitoring (Mihoub et al., 2017). Notwithstanding, our study depicts an illustrative example of the defaunation 

process in a large network of protected areas and helps to shed more light on large mammal conservation in 

the KRE. Drivers of wildlife declines rarely operate in isolation; they often work in tandem and synergistically 

drive population declines and local extinctions. For instance, habitat fragmentation could increase accessibility 

to humans and facilitate further reductions in habitat availability and exploitation of wildlife (Brook et al., 2008; 

Di Marco et al., 2015). In tandem with variables hypothesized to drive population declines, time series of wildlife 

population may provide circumstantial evidence on the underlying reasons for observed population declines 

(Caughley, 1994), or to characterize the defaunation process which is typically characterized by three phases: 

(1) wildlife exploitation using traditional technologies, (2) adoption of modern technologies to exploit wildlife, 

and (3) habitat conversion (Dirzo et al., 2014; Young et al., 2016).   

 

Several underlying reasons for wildlife declines in the KRE have been tested previously. Reduced water flow 

caused by dam construction of the Katuma river may have negatively affected large mammal populations inside 

Katavi National Park (Caro et al., 2013). Diseases and droughts might have caused the wildlife declines but 

neither disease outbreaks have been reported by Tanzania National Parks Management, nor were there 

indications of droughts between 1987 and 2004 (Caro, 2008). Combining time series of land cover, wildlife 

densities and habitat selection models suggests that cropland expansion negatively influences the distribution 

of wildlife species. Thus, expanding cropland not only reduces the actual amount of available habitat but also 

reduces the amount of habitat that is effectively used by large mammal species (Table 2).  

As such, expansion of cropland can clearly contribute to the observed wildlife declines. However, wildlife 

declines due to habitat loss typically occur with a time lag (i.e. several years after habitat loss), a scenario referred 

to as ‘extinction debt’ (Halley et al., 2016; Kuussaari et al., 2009). In contrast to this often-observed sequence, 

it is remarkable that, in our case study, we did not find this temporal pattern. Evidently, the main wildlife 

declines occurred during the 1990s (Fig. 4), and thus before major land-use changes occurred (Fig. 3). Because 

large herbivore species in the KRE do not necessarily rely on resources that are outside of protected areas as  

they do in migratory ecosystems such as the Tarangire and Serengeti ecosystems in northern Tanzania (Bond 
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et al., 2017; Morrison and Bolger, 2014; Veldhuis et al., 2019), and because cropland cover was mainly restricted 

to the UA, it is unlikely that the cropland extent prior to 1991 caused the observed wildlife declines. Thus, as 

wildlife declines largely preceded habitat loss in the KRE, it is plausible that the initial wildlife declines were 

due to other causes.  

 

Multiple previous studies in the KRE have suggested that illegal hunting (motivated by widespread 

consumption of bushmeat and sale of animal parts) was the key reason for declines in large mammal 

populations (Caro, 1999; Caro, 2008; Martin et al., 2013; Martin & Caro, 2012; Mgawe et al., 2012). The fact 

that all considered species are highly valued by hunters in the KRE (Martin et al., 2013) and the spatial 

distribution of wildlife declines provide circumstantial support for this hypothesis. While FRs and GCAs were 

similarly effective in protecting against land-use change to GR and Katavi National Park, they were seemingly 

ineffective in conserving populations of large herbivores. Both FR and GCA in the KRE are lightly staffed and 

anti-poaching patrols are rarely carried out in these areas, which effectively limits their effectiveness to habitat 

conservation and renders them largely ineffective for conserving populations of large mammals. In Rukwa GR, 

signs of illegal resource utilization were encountered more frequently than in Katavi National Park, lending 

support to the idea that illegal activities in the KRE are inversely correlated with protection category (Waltert 

et al., 2009). Moreover, evidenced by declines in elephant and buffalo populations (Fig. 4) and coherent reports 

of illegal hunting (Jones et al., 2018; Martin et al., 2012) inside the NP, even the conservation management in 

areas with the highest protection status was seemingly not sufficient to effectively protect populations of large-

bodied mammals. In sum, these observations suggest that increasing the management effectiveness across all 

existing conservation entities would be necessary to boost wildlife populations in the KRE (Lindsey et al., 2017).  

 

4.3 Correlates for the distribution of large mammals 

Generalized linear mixed models (GLMMs) revealed consistent effects of protection category and land-use on 

the distribution of all investigated target species. Buffalo, elephant, giraffe, hartebeest, hartebeest, topi, and 

zebra preferred areas distant to cropland and preferred NP over other protection categories with fewer 
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restrictions on resource utilization and possibly also less protection from legal and illegal hunting. Our findings 

reinforce findings from other case studies (e.g. Msoffe et al. 2011, Ogutu et al. 2012,  Veldhuis et al. 2019), 

demonstrating that the expansion of land-use negatively impacts the distribution of large ungulates. It is 

noteworthy that these results are in contrast to results of a recent meta-analysis (Tucker et al., 2021), which 

showed that mammal population densities were higher in human modified areas. Likely, these discrepancies 

emerged due to our selection of target species: large-bodied species are susceptible to species filtering (e.g. Di 

Marco et al. 2015) and these species may have been extinct in human modified landscapes before they could 

have been surveyed systematically and registered in databases used for meta-analyses. Moreover, our results 

suggest that even when controlling for environmental variables, large mammal species avoid areas with less 

protection that do not effectively limit direct exploitation, confirming the strong influence of protection 

category in moderating distributions and densities of large mammals in East Africa (Bhola et al., 2012; Kiffner 

et al., 2020).  

 

Further, our GLMMs confirm the strong surface water dependence of  buffalo, elephant and zebra (Kihwele 

et al., 2020) during the dry season (Anderson et al., 2010; Eby et al., 2014; Treydte et al., 2008). As bulk grazers, 

buffalo preferred areas with high primary productivity (Anderson et al., 2016; Kaszta et al., 2016), but also areas 

with low vegetation productivity; areas with low EVI may provide safety from predation due to a large field of 

vision. Unexpectedly, elephant preferred areas with low primary productivity. Possibly, low EVI values are 

indicative of open woodland. Giraffe and hartebeest preferred areas with medium vegetation productivity, 

broadly supporting the forage maturation hypothesis (Esmaeili et al., 2021). Giraffe and zebra preferred low 

elevation areas while hartebeest and buffalo favored flatter areas, as these areas may likely provide relative good 

visibility and low movement costs (Anderson et al., 2016). Buffalo, giraffe and topi preferred to be in areas 

close to roads possibly due to vegetation changes and presence of minerals along the roads, which may attract 

some species (Laurian et al., 2008). Furthermore, roads in the KRE and other East African ecosystem are not 

necessarily impermeable barriers for large mammals (Morrison and Bolger, 2014), and some species (especially 

carnivores) may use them to navigate between different habitats. More broadly, our species distribution models 
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highlight that species-habitat associations differ by species, reinforcing the need to protect heterogeneous 

landscapes for effective conservation of intact wildlife assemblages. 

 

Conclusions 

Our spatiotemporal investigations on wildlife populations and land-use changes over three decades suggest that 

populations of large mammals are declining across the Katavi-Rukwa Ecosystem, possibly not only in relation 

to recent cropland expansion but also because of other anthropogenic factors with illegal hunting being a 

plausible candidate. While multiple use areas such as Game Controlled Areas and Forest Reserves in the Katavi-

Ruwka Ecosystem were relatively effective in protecting against land-use change, they were largely ineffective 

in conserving populations of large mammal species. Thus, investing in specific conservation actions towards 

protecting large herbivores in and around these protected areas may be worthwhile considerations. In light of 

the pervasive expansion of cropland in the Katavi-Rukwa Ecosystem, holistic landscape planning approaches 

are required to integrate wildlife conservation needs with an expanding human population and agricultural 

production.  
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Abstract 

Protected area (PA) connectivity is pivotal for the persistence of wide-ranging wildlife species, but is challenged 

by habitat loss and fragmentation. We analyzed habitat suitability and connectivity for the African elephant 

(Loxodonta africana) across PAs in southwestern Tanzania in 2000, 2010, and 2019. We quantified land-use 

changes through remote sensing data; estimated habitat suitability through aerial survey data, remotely sensed 

variables and ensemble species distribution models; modelled least-cost corridors; identified the relative 

importance of each corridor for the connectivity of the PA network and potential bottlenecks over time through 

circuit theory; and validated corridors through local ecological knowledge and ground wildlife surveys. From 

2000 to 2019, cropland increased from 7% to 13% in the region, with an average expansion of 634 km2 per 

year. Distance from cropland influenced elephant distribution models the most. Despite cropland expansion, 

the locations of the modelled elephant corridors (n=10) remained similar throughout the survey period. Based 

on local ecological knowledge, nine of the modelled corridors were active, whereas one modelled corridor had 

been inactive since the 1970s. Based on circuit theory, we prioritize three corridors for PA connectivity. Key 

indicators of corridor quality varied over time, whereas elephant movement through some corridors appears to 

have become costlier over time. Our results suggest that, over the past two decades, functional connectivity 

across the surveyed landscape has largely persisted. Beyond providing crucial information for spatial 

prioritization of conservation actions, our approach highlights the importance of modeling functional 

connectivity over time and verifying corridor models with ground-truthed data. 
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1. Introduction 

Habitat loss and habitat fragmentation are among the most serious threats to biodiversity conservation 

worldwide (Newbold et al., 2016; Sala et al., 2000). To counteract these trends, protected areas (PAs) are key 

conservation instruments (IPBES, 2019; Joppa et al., 2008; Pimm et al., 2018; WWF, 2020). However, 

accelerating human pressures in unprotected land adjacent to PAs, mainly through cropland and settlement 

expansion, increasingly isolate terrestrial PAs in many parts of the world (DeFries et al., 2005; Mammides, 2020; 

Seiferling et al., 2012), including savanna ecosystems of East Africa (Fynn and Bonyongo, 2011; Newmark, 

2008, 1996). 

 

An effective way to ensure that PAs can meet their core conservation goals is to connect established PAs 

through corridors (Gilbert-Norton et al., 2010; Sekhran et al., 2010; Simberloff et al., 1999). Well-designed and 

sufficiently protected wildlife corridors (defined here as a swath of land intended to allow passage by a focal 

species between two or more PAs (Beier et al., 2008)) facilitate animal movement between two PAs or across 

an entire PA network. From a biological perspective, such functional connectivity provides multiple benefits 

to wildlife populations. Corridors facilitate genetic exchange between sub-populations and thus support genetic 

diversity, enable species to track seasonal changes in food resources, allow for distribution shifts if the habitat 

of one area becomes unsuitable, for example due to climate change, enable natural recolonization in areas where 

a species went locally extinct, and expand the area and diversity of habitats beyond the boundaries of the PAs 

(Brennan et al., 2021; Caro et al., 2009; Green et al., 2018).  

 

Functional connectivity between PAs is particularly important for large-bodied and wide-ranging terrestrial 

mammals, such as African savanna elephants (Loxodonta africana, hereafter elephants) (Cisneros-Araujo et al., 

2021b; Naidoo et al., 2018; Roever et al., 2013). Elephants have large home ranges (Galanti et al., 2006; Wall et 

al., 2021), and they have shown remarkable site fidelity to their home ranges and movement routes even over 

multiple generations (Fishlock et al., 2016; Polansky et al., 2015). In Miombo ecosystems of Tanzania, elephant 

distribution also overlaps with the distribution of many other mammal species, suggesting that conserving 



136 
 

corridors designed for elephants could also be beneficial for many other mammal species (Epps et al., 2011; 

Green et al., 2018).  

 

For centuries, elephant populations in East Africa have experienced multiple waves of human-caused mortality, 

primarily driven by the demand for ivory, interspersed with periods of population recovery (Chase et al., 2016; 

Foley and Faust, 2010; Milner-Gulland and Beddington, 1993; Spinage, 1973). In sum, elephant populations in 

East Africa are nowadays much smaller compared to historic baselines (Chase et al., 2016; TAWIRI, 2015a). 

Southwestern Tanzania - the focus of this study - contains one of the few remaining elephant strongholds in 

Tanzania (Chase et al., 2016; Jones et al., 2018), yet recent surveys suggest that their populations are declining: 

in the Ruaha-Rungwa ecosystem, elephant numbers declined from 31,625 in 2009 to 20,090 in 2013 (TAWIRI, 

2013); in the Katavi-Rukwa ecosystem the population dropped from 6,396 in 2009 to 5,738 in 2014 (TAWIRI, 

2014), and in the Ugalla ecosystem, their abundance declined from 4,000 in 2006 to 1,000 in 2009 (TAWIRI, 

2010). While poaching is an immediate threat to the viability of elephant populations across the African 

continent (CITES, 2014; IUCN, 2020; Wittemyer et al., 2014), rapid, extensive and unplanned expansion of 

human land-uses in many parts of East Africa reduces the functional connectivity between PAs (IUCN, 2020; 

Riggio and Caro, 2017; Roever et al., 2013; UNEP et al., 2013) and poses a threat for the long-term persistence 

of elephant populations in the region (Cisneros-Araujo et al., 2021b). Recent genetic research shows incipient 

signs of genetic differentiation among elephant populations in southwestern Tanzania (Lobora et al., 2018), 

which indicates a potential lack of exchange between populations. 

 

Although the locations of most wildlife corridors in Tanzania are broadly known (e.g.(Caro et al., 2009; Riggio 

and Caro, 2017)), their exact locations and their current status are often obscured (Jones et al., 2009). Ideally, 

the locations of wildlife corridors are informed by the actual movement of the target species (Alavi et al., 2022; 

Zeller et al., 2012), yet such data are rarely available for an entire PA network and over long time periods. As 

an alternative to animal movement data, presence data from periodically carried out aerial surveys provide a 

useful proxy for space use across large spatial scales (Pittiglio et al., 2012). Based on such presence data, species 

distribution models can be developed for target species (Tobgay and Mahavik, 2020; Torres et al., 2010) and 
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the inverse of the habitat suitability (i.e. landscape resistance) can be used as input for modelling movement 

corridors across the PA network (Cisneros-Araujo et al., 2021a; Keeley et al., 2016).  

 

While corridor models based on available species distributions and remotely sensed data are routinely 

performed for large-scale conservation planning (e.g. (Cisneros-Araujo et al., 2021a)), we here aim to conduct 

a thorough assessment of the PA network connectivity in southwestern Tanzania by adding four key elements. 

First, we include connectivity analyses over time (three snapshots during two decades) to identify the role of 

temporal processes affecting habitat suitability and connectivity (Martin et al., 2019; Ntukey et al., 2022; Saura 

et al., 2019). Second, we include empirical data (i.e. elephant presence data) instead of solely relying on expert 

opinion (e.g. (Cisneros-Araujo et al., 2021a; Van de Perre et al., 2014)) and parameterize species distribution 

models with natural landscape features (land cover, vegetation quality, terrain) and anthropogenic features 

(distance to cropland, distance to houses, distance to roads) instead of using land cover only (e.g. (Cisneros-

Araujo et al., 2021a)) as input for modelling corridors. Third, we assess the relative importance of individual 

corridors to provide information for prioritizing conservation efforts on the ground. Fourth, we verify our 

corridor models through comparison with independent data (Osipova et al., 2019). In the absence of actual 

animal movement data (Zeller et al., 2012), we utilize local ecological knowledge data obtained via interviews 

with key informants. Previous research suggests that local ecological knowledge can provide a robust validation 

dataset for habitat (Madsen and Broekhuis, 2020) and corridor use of large mammals (Riggio and Caro, 2017; 

Van de Perre et al., 2014; Zeller et al., 2011).  

 

To address our overarching goal of providing relevant information for the conservation of functional habitat 

connectivity across southwestern Tanzania, we aimed at: (i) quantifying land-use changes in the region; (ii) 

modelling region-wide habitat suitability for elephants over time using ensemble distribution models; (iii) 

identifying least-cost corridors for elephant movement between PAs over time; (iv) identifying the relative 

importance of each modelled wildlife corridor; (v) identifying areas where elephant movement is constrained; 

and vi) validating the connectivity models by assessing whether identified corridors are reportedly used by 

elephants.  
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2. Methods 

2.1 Study area 

Our study focused on southwestern Tanzania (between 6° to 9° S and 30° to 35° E), which covers an area of 

about 187,308 km2 (Fig. 1). The region is characterized by a mosaic of unprotected land (i.e. land that does not 

belong to a formal conservation category), and formally protected areas. Protection categories range from areas 

with little enforcement of human land-use restrictions (Game Controlled Areas: here, settlement, agriculture, 

livestock keeping are not allowed, but hunting on permit in specific hunting blocks is allowed), areas that allow 

regulated resource extractions such as Forest Reserves (here, limited timber and non-timber products extraction 

is permitted) and Game Reserves (here, touristic game hunting on permit is allowed) to strictly protected 

National Parks where human activities are restricted to photographic tourism and research (Caro and 

Davenport, 2016; Caro, 1999). Notable PAs in the study area include: Katavi National Park (KNP) and Rukwa 

Game Reserve (RGR), Ugalla National Park (UNP), Lukwati-Piti Game Reserve (LPGR), Rungwa-Kisigo 

Game Reserve (RKGR) and Ruaha National Park (RNP), Kalambo Forest Reserve (KFR), and Mount Mahale 

National Park (MMNP) and Lwafi Game Reserve (LGR) (Fig. 1). The dominant terrestrial mammal wildlife 

species include buffalo Syncerus caffer, elephant Loxodonta africana, eland Taurotragus oryx, giraffe Giraffa 

camelopardalis, hartebeest Alcelaphus buselaphus, greater kudu Tragelaphus strepsiceros, topi Damaliscus lunatus, roan 

antelope Hippotragus equinus, and zebra Equus quagga (Caro, 1999; TAWIRI, 2018, 2014). 

 

From 2000 to 2019 (the time period of our study), the area received between 350–2000 mm of annual rainfall, 

while the annual temperature ranged between 13–28 °C (CHIRPS, 2017). Elevation ranges from 600–2600 m 

asl. The vegetation mostly consists of miombo woodland, interspersed with Acacia (Vachellia)-Combretum-

Commiphora woodland, grassland and flood plains (Douglas-Hamilton and Barnes, 1982). Miombo woodland 

typically forms a single storey canopy of deciduous trees dominated by species of the genera Brachystegia, 

Julbernadia, and Isoberlinia (Campbell, 1996). From 2000 to 2012, the human population in rural Tanzania has 

grown from 26,025,846 to 38,691,642 (World Bank, 2019). In the study area, human population growth is 

partially fuelled by immigration from other regions (NBS, 2012). The main land-use activities include agriculture 

and livestock keeping (NBS, 2012).  
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Fig. 1. Map of the protected area network of southwestern Tanzania, highlighting the spatial distribution of 
elephant’s core areas (KNP = Katavi National Park, RGR = Rukwa Game Reserve, LPGR = Lukwati-Piti 
Game Reserve, LGR = Lwafi Game Reserve, KFR = Kalambo Forest Reserve, MMNP = Mount Mahale 
National Park, UNP = Ugalla National Park, RKGR = Rungwa-Kisigo Game Reserve, RNP = Ruaha National 
Park) and major towns and interview sites/villages. The inset in the lower left shows the location of the study 
area within Tanzania. 
 

2.2 Elephant presence data and landscape variables 

As a proxy for elephant space use across the study area, we used elephant presence data from periodically 

carried-out aerial surveys (Pittiglio et al., 2012). The main rationale was that such data were readily available at 

large temporal (three time steps during two decades) and spatial scales (TAWIRI, 2015a, 2010), and that aerial 

surveys relatively reliably detect elephants (Jachmann, 2002). We are aware that corridors are ideally informed 

by movement data from collared elephants (Poor et al., 2012; Xu et al., 2017), yet such data were not available 

for our study area. 
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We obtained 339 (year 2000), 295 (year 2011), and 293 (year 2019) geo-referenced detections of elephant groups 

from the Tanzania Wildlife Research Institute (TAWIRI). Aerial surveys were conducted during the dry season 

following the systematic reconnaissance flight technique as described by Norton-Griffiths (1978). The main 

rationale of using dry season data was that such data were readily available at large temporal and spatial scales. 

While elephants often range more widely during the wet season (Birkett et al., 2012), wet season surveys for the 

Katavi region are scarce  (TAWIRI, 2015b) and likely fail to detect a substantial proportion of elephants due to 

limited visibility caused by green crown cover (Schlossberg et al., 2016). Based on established relationships 

between the distribution of large savanna mammals in Tanzanian ecosystems and landscape features (Bond et 

al., 2017; Giliba et al., 2022; Van de Perre et al., 2014), we selected the following landscape variables in our 

habitat suitability model: land cover (as a proxy for habitat structure and land-use), Enhanced Vegetation Index 

(EVI; as a proxy for primary productivity due to its advantages of reducing the background noise, atmospheric 

noise, and pixel saturation in most cases compared to NDVI during the dry season (Huete et al., 2002)), 

elevation, slope, topographic wetness index, terrain ruggedness and proximity to cropland, roads, houses, rivers, 

and rainfall. We obtained the global 30 m SRTM digital elevation model (DEM) for the study area from the 

U.S. Geological Survey (https://earthexplorer.usgs.gov) and used the DEM to derive slope, topographic 

wetness index and terrain ruggedness index using QGIS 3.16 (QGIS, 2020). We obtained spatial layers for 

houses for the years 2000 and 2011 from TAWIRI (TAWIRI, 2018) and for the year 2019 from OpenStreetMap 

(http://download.geofabrik.de/africa/tanzania.html). We obtained spatial layers for  roads and rivers for a 

single time step from OpenStreetMap. For all three spatial layers, we generated distance raster surfaces at a 

resolution of 30 m using the Euclidian distance tool in ArcMap 10.6 (ESRI, 2018). We obtained the annual 

rainfall at a resolution of 5 km for each year for the study area from CHIRPS 

(https://data.chc.ucsb.edu/products/CHIRPS-2.0/). We generated EVI raster surface for the dry season (i.e. 

between July and September) of each year from Google Earth Engine - Landsat 5/8 Collection 1 Tier 1 8-Day 

EVI Composite (Gorelick et al., 2017). We projected all layers to the same projection and resampled them to 1 

km resolution.  

 

 



141 
 

2.3 Spatial distribution of cropland 

To produce land cover maps as inputs for land-use change analyses, habitat suitability and connectivity 

modelling, we acquired readily available 30 m resolution Landsat 5 and Landsat 8 imagery from U.S. Geological 

Survey’s Earth Explorer (https://earthexplorer.usgs.gov/) for each time step. Our choice of date for satellite 

imagery was based on availability of aerial survey data for the dry seasons between 2000 and 2019, and imagery 

free from cloud cover. We used the atmospheric correction algorithm ATCOR to remove haze and calculated 

the top of atmosphere reflectance for Landsat 5 and Landsat 8 imagery using PCI Geomatica version 2018 

(PCI Geomatics 2018). For land-use classification, we generated 600 training polygons for each year through 

composite imagery, high-resolution Google Earth images and field knowledge(Giliba et al., 2022). We used the 

scatterplot tool to evaluate our training samples to assess if there was enough separation between land cover 

classes using ArcMap (ESRI, 2018). Subsequently, we employed a supervised classification approach using a 

support vector machine algorithm to classify satellite imagery(Heydari and Mountrakis, 2019; Maulik and 

Chakraborty, 2017), which allowed us to condense land cover to five major categories: dense woodland, open 

woodland, burned areas, cropland, and water bodies. To assess the accuracy of our classified maps, we generated 

1800 accuracy assessments points using stratified random sampling in ArcMap. We used high-resolution images 

from Google Earth and base-map layers from Google Satellite, ESRI Satellite, and Bing Satellite available in 

ArcMap and QGIS to validate our land cover maps (Connette et al., 2016; Hu et al., 2013; Yu and Gong, 2012). 

Our overall land cover classification accuracy for the three dates ranged from 96% to 98% with kappa 

coefficients ranging between 0.95 and 0.97 (Supplementary Information, Table S1). 

 

2.4 Modeling habitat suitability  

To avoid potential problems arising from collinearity, we tested variables for cross correlations using the 

corrplot package (Wei and Simko, 2017), and selected only variables with Pearson’s correlation coefficient (r) 

≤ 0.7 (Dormann et al., 2013). Due to a strong correlation between ‘slope’ and ‘terrain ruggedness index’, we 

removed the variable ‘terrain ruggedness index’, and used ten uncorrelated variables to fit elephant distribution 

models for each study period. We used elephant presence data with a background mask to generate 1000 

pseudo-absences as response variable and environmental data as explanatory variables to build an ensemble 
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model for each study period using the SDM package (Naimi and Araujo, 2019). Ensemble modelling uses 

multiple modelling algorithms, a strategy that minimises uncertainty associated with a single modelling approach 

and increases the accuracy of model predictions (Dondina et al., 2020). The ensemble model included the 

following algorithms: maximum entropy (Maxent), generalized boosted model (GBM), generalized additive 

model (GAM), and random forest (RF). We selected these algorithms based on their predictive power (high 

AUC values) obtained from the model run. For each algorithm, we ran 10 replications in which 75% of the 

presence points were used to train the model and the remaining 25% were used to test the model(Torretta et 

al., 2020). We used the area under curve (AUC) of the receiver operating characteristic (ROC) to evaluate the 

accuracy of four distribution models (Elith et al., 2006; Phillips and Dudík, 2008). To build the ensemble model, 

we used a weighted-averaging approach whereby individual models were weighted according to their predictive 

accuracy (Naimi and Araujo, 2019; Thuiller et al., 2009). We used the AUC of the ROC to evaluate the 

performance of the ensemble model (Marmion et al., 2009; Naimi and Araujo, 2019; Scherrer et al., 2019). 

Based on the output obtained from the models for the three study periods, we predicted habitat suitability for 

the entire landscape for each study period. To visualize the spatial and temporal dynamics of suitability maps 

for elephants over time, we categorized habitat suitability into three classes (high, moderate, and marginal) 

according to the natural breaks classification technique (Całka, 2018; Chen et al., 2019). We used the Jack-knife 

test to assess the relative contribution of each predictor in the final habitat suitability model for each study 

period. 

 

2.5 Modeling habitat connectivity 

For each time step, we modelled the connectivity across the PA network using Linkage Mapper (McRae and 

Kavanagh, 2011). As input data, we considered the polygon feature class containing core areas as source 

locations and a resistance surface map. As source locations we used the PAs (including area annexed in 2006) 

that are known to be occupied by elephants (i.e., all PAs that are displayed in Fig. 1). To estimate landscape 

resistance, we transformed the habitat suitability values into resistance values using the linear (i.e., the factor c 

= 0.25) transformation function (Keeley et al., 2016): R = 100 - 99 * (((1- exp(-c * h))/(1 – exp(-c))), where R is 

resistance, h is suitability, and the factor c determines the shape of the curves. For this transformation, resistance 
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equals 1 when habitat suitability is 1 and resistance equals 100 when habitat suitability is 0. We used the linkage 

mapper to create least-cost corridors between PAs based on calculated cost-weighted distance (CWD)(McRae 

and Kavanagh, 2011). Due to a lack of empirical data on the optimum width of CWD for African savanna 

elephants, we tested three different maximum cost-distance values: 200, 150, 100, and 50 cost-weighted 

kilometers (cw-km); the 200 cw-km cutoff value (i.e. the largest default threshold in Linkage Mapper 

Connectivity Analysis Software  (McRae and Kavanagh, 2011)) was chosen for further analysis because it 

resulted in reasonable corridor widths without the loss of multiple corridors connecting PAs, and it is wide 

enough to facilitate movement. Then, we truncated the least-cost corridors at 200 cw-km and this threshold 

was used to clip the least-cost corridors across the study period. To quantify the characteristics of each resulting 

least-cost corridor we used Centrality Mapper (which calculates the sum of all current density values) and 

Pinchpoint Mapper (which generates current-maps that identify and map pinch-points i.e., constrictions or 

bottlenecks) that utilize circuit theory (Mcrae and Shah, 2011), and treat resistance surface as the hindrance 

between PAs (Keeley et al., 2016). We used the Centrality mapper (McRae, 2012a) to identify the corridors 

most important for maintaining the connections among the networks (i.e., gatekeepers of connectivity), and 

Pinchpoint Mapper (McRae, 2012b) to identify bottlenecks (i.e., locations of the corridors where animal 

movement is restricted due to unfavorable landscape and anthropogenic features). We used two metrics to 

describe the quality of each corridor (Kong et al., 2021; Tobgay and Mahavik, 2020). First, the ratio of CWD 

to the Euclidean distance (EUD) separating each pair of PAs; this value indicates how difficult it is to move 

between PAs relative to how adjacent they are. Second, the ratio of CWD to the length of least critical path 

(LCP); this value indicates the average resistance along the optimal path between the PAs. For both 

metrics, high quality corridors are characterized by a ratio close to 1 (Dutta et al., 2016). 

 

2.6 Validating habitat and corridor models 

To validate our habitat suitability maps, we collected evidence for elephant presence (i.e., direct observations, 

elephant dung) along 105 three-kilometres transects within the Katavi-Rukwa ecosystem. We chose this subset 

of the study area for our validation approach as it is centrally located within the study region and allowed us to 

sample across a wide range of PA categories. We divided our validation study area into a 5 km by 5 km grid, so 
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that transects were separated by 5 km to minimize spatial autocorrelation of our independent validation data. 

We surveyed each transect once during the dry season between July and September 2020. In each grid, we 

recorded centroid coordinates, and along each transect, we recorded the presence/absence of elephant dung. 

To validate our predictive maps, we first condensed our data to presence-absence; in 63 of the 105 transects 

we detected elephant dung; in the remaining 42 transects, we did not detect elephant dung. Second, we applied 

the specificity-sensitivity threshold (Grenouillet et al., 2011; Saupe et al., 2015) to convert our continuous 

suitability maps into binary maps (i.e., suitable and marginally suitable areas). Third, we superimposed presence 

data on the current 2019 binary map and used the extraction tool to extract the binary values to elephant 

presence data for accuracy assessment using ArcMap (Supplementary Information, Figure S1). 

 

To validate our least-cost corridors, we conducted key informant interviews in sites (i.e., beekeeping and fishing 

camps) and villages close to the least-cost corridors generated within our study area. For each modelled corridor 

between two PAs, we conducted interviews at 1 to 3 villages or fishing/beekeeping camps: KNP-UNP (Uruwira 

fishing camp) and RGR-UNP Mlele (beekeeping camp), LPGR-UNP (Ilude-Koga), UNP-RHGR (Ipole, Itulu, 

Mgodini), LPGR-RKGR (Kambikatoto), LPGR-RNP (Isangawana), LGR-MMNP (Kapara, Nkungwi), LGR-

KFR (Kasapa), MMNP-UNP (Ugala, Mwese), and RKR-KFR (Milundkikwa) (see Fig. 1 for the locations of 

the villages and camps). At each fishing/beekeeping camp, we interviewed 5 persons. In each village, we 

interviewed 10 persons: one village executive officer and/ or village chairperson, one beekeeper or fisherman, 

four members of natural resource committees or village game scouts, and four farmers and/ or pastoralists 

using semi-structured interviews. Prior to the fieldwork, we reported to the village office to gain permission for 

the interviews. We also involved the village leaders in selecting suitable interviewees (i.e. extensive wildlife 

knowledge; above the age of 18 years; and resident of the area since 2000). When approaching interviewee 

candidates, we explained the purpose of the study, promised that their identities would remain anonymous, and 

asked for consent to participate in an interview. The key interview questions were: i) “How many individual 

elephants have you seen in this area during the last year and where was this?”, and ii) “What season of the year 

did you see the elephants?”. 
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3. Results 

3.1 Cropland cover and habitat suitability for elephants  

From 2000 to 2019, the study area has experienced substantial land-use changes (Table 1). Most notable is a 

substantial increase of cropland cover from 6.71% (12,568 km2) in 2000 to 13.14% (24,612 km2) in 2019 (Fig. 

2 & Table 1). On average, a total of 0.34% of surface area was converted to cropland every year (634 km²/year). 

By 2019, cropland cover approached the borders of all PAs in southwestern Tanzania (Fig. 2). Our model 

evaluation results suggested that all ensemble habitat suitability models for each time step had good 

performance, with weighted average AUC scores above 0.8 (Table 2). Among the variables influencing survey-

specific habitat suitability for elephants, distance to cropland consistently contributed most (Fig. 3). Based on 

the validation data collected in 2020, our overall predictive map accuracy for 2019 was 92.06%.  Predictions of 

our ensemble model suggest that highly suitable elephant habitat declined over time: in 2000, 21.11% of the 

area was highly suitable for elephants, in 2011, this area was reduced to 20.25%, and in 2019, it was further 

reduced to 17.32% of the surveyed region (Fig. 4). At each time step, large portions of highly suitable habitat 

fell within the boundaries of PAs (2000: 16.57%; 2011: 16.28%; 2019: 14.14%; Fig. 4). Small pockets of highly 

suitable habitat were widely distributed in the eastern part of MMNP, the southern part of UNP, and the 

northern part of RKGR. Across the study period, most areas outside the PAs were classified as marginally 

suitable elephant habitat.  
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Table 1: Extent and rate of land cover changes between 2000 and 2019 in southwestern Tanzania (Area covered = 187,308 km2). 

Land cover type Area (%) Change in land cover (%) Average annual rate of change (2000-2019) 

 2000 2011 2019 2000-2011 2011-2019 2000-2019 (%) (Km2) 

Dense woodland 22.38 33.38 23.77 10.99 -9.61 1.39 0.07 136.57 

Open woodland 38.43 38.45 31.17 0.03 -7.29 -7.26 -0.38 -715.36 

Cropland 6.71 8.79 13.14 2.08 4.34 6.43 0.34 633.55 

Burned areas 24.70 11.70 24.41 -13.00 12.71 -0.29 -0.02 -28.52 

Water bodies 7.78 7.67 7.51 -0.11 -0.16 -0.27 -0.01 -26.31 
 
 
 

 
 Fig. 3. Relative contribution of predictor variables for predicting the potential habitat distribution of elephants in southwestern Tanzania. 
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Fig. 2. Map of the study region, showing the estimated distribution of cropland in (a) 2000, (b) 2010, and (c) 

2019. The polygon with the blue colour in (a) 2000 indicates area annexed by the RNP in 2006. 

 

Table 2: Accuracy evaluation of the habitat suitability for elephants between 2000 and 2019 (AUC: area under 

the curve of the receiver-operating characteristic). 

 
Methods 

AUC 

2000 2010 2019 

Maximum entropy algorithm (Maxent) 0.85 0.86 0.85 

Generalized boosted models (GBM) 0.85 0.85 0.84 

Generalized additive models (GAM) 0.84 0.85 0.86 

Random forest models (RF) 0.95 0.94 0.94 

Weighted average 0.87 0.88 0.87 
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Fig. 4. Map of habitat suitability, indicating spatial and temporal distribution of potential habitat for elephant 

within protected areas network of southwestern Tanzania. The polygon with the blue colour in (a) 2000 

indicates area annexed by the RNP in 2006. 

 

3.2 Connectivity models for elephants 

For each time step, our modelling approach identified ten elephant corridors across the PA network (Fig. 5 & 

Table 3). The findings of our analyses based on cost-weighted ratio metrics indicated a variation over time  in 

the cost of elephant movement between PAs:  The average resistance encountered by elephants along an 

optimal path between corridors varied over time (Table 3). Highest CWD:EucD ratios were recorded for the 

corridors linking RGR-KFR, LGR-KFR, and LPGR-KNP indicating that the cost of elephant movement 

between these PAs was higher than for other pairs of PAs throughout the study period (Table 3). The corridors 

between LPGR-UNP and RGR-UNP exhibited the lowest CWD:EucD ratios, suggesting that the costs for 

elephants to move between these PAs were lower than for other pairs of PAs throughout the study period 

(Table 3). Similarly, the highest CWD:LCP ratios were recorded for the corridors between RGR-KFR, LGR-

KFR, and LPGR-RNP, indicating that the average resistance encountered by elephants along the optimal path 
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between PAs was higher than for other corridors throughout the study period (Table 3). The lowest CWD:LCP 

ratio was estimated for the corridors between LPGR-UNP and RGR-UNP, indicating low resistance for 

elephant movement along these corridors (Table 3).  

 

3.3 Relative corridor importance and bottlenecks 

Across time, the main corridor locations remained relatively constant (Fig. 5 & 6). However, our network link 

centrality analyses showed that the corridors between LPGR-RNP, LGR-KFR, and LGR-MMNP recorded the 

highest centrality scores throughout the study period, highlighting their importance for overall connectivity in 

the region (Table 3). For all time steps, the lowest centrality score was recorded for the corridor between RGR 

and KFR, indicating its apparent minor role for overall connectivity (Table 3). Our pinch-point analyses also 

showed that areas with high current flow density represented corridor bottlenecks (Fig. 6). Despite the spatial 

location of bottlenecks remaining relatively consistent across time, its current flow density increased across 

corridors over time (Supplementary Information, Table S2). The corridors between MMNP-UNP, LGR-

MMNP, and LGR-KFR, exhibited the highest current flow density, suggesting that elephant movement is more 

restricted at the corridor margins by physical barriers such as anthropogenic and topographical features than 

for other pairs of PAs throughout the study period (Fig. 6, Supplementary Information, Table S2). The 

corridors between UNP-RKGR, KNP-UNP, and LPGR-UNP recorded the lowest current flow density, 

highlighting that elephant movements are less restricted on the corridor margins by physical barriers throughout 

the study period (Fig. 6).  

 

3.4 Validating elephant corridors 

To validate our corridors, we systematically gathered local ecological knowledge from 130 interview partners in 

one fishing camp, one beekeeping camp and 12 villages in the vicinity of the modelled corridors. Out of 130 

interview partners, 120 (i.e. 92%) reported that they saw at least one elephant during the last year (Table 3). Out 

of the ten modelled corridors, respondents confirmed that nine were used by elephants in the year prior to the 

interviews (Table 3). In five of these locations, interview partners reported that they observed elephants during 

the wet (October-December; March-June) and dry season (end of June to the beginning of October; January-
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February) in the camp and village area (Table 3). In four locations, respondents reported elephant presence for 

the wet season only (Table 3). In the RGR-KFR corridor, none of the interview partners had seen elephants in 

the year prior to the interviews. According to the interview partners, elephants used this corridor until the 

1970s. Among the active corridors, interview partners reported the highest relative numbers of elephants in 

areas located near corridors linking LGR-KFR, RGR-UNP, and KNP-UNP (Table 3). 
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Table 3: Attributes of 10 corridors mapped between PAs in southwestern Tanzania. Corridors are sorted by decreasing centrality scores to demonstrate their 

importance in keeping the protected areas network connected.  

PA aCWD:EUCD 
 

bCWD:LCP 
 

Current flow centrality (Amps) Sightings cSightings 

Interview 

partners Corridor 

From To 2000 2010 2019 2000 2010 2019 2000 2010 2019 Mean ± SD Season N status 

LPGR RKGR 84.90 85.54 89.86 77.51 78.09 82.03 7.34 7.31 7.09 7.80 ± 2.20 Wet and Dry 10 Active 

LGR KFR 96.05 89.21 91.25 88.88 77.43 82.18 6.91 6.90 6.93 21.90 ± 3.81 Wet 10 Active 

LGR MMNP 82.69 71.51 66.88 78.03 67.48 59.37 6.37 6.62 6.78 8.40 ± 3.44 Wet and Dry 20 Active 

LPGR RNP 86.65 86.27 86.07 81.54 81.79 81.00 4.79 4.82 4.92 10.40 ± 3.80 Wet and Dry 10 Active 

RGR UNP 64.48 63.85 68.40 61.13 56.63 56.25 3.62 3.54 3.60 18.40 ± 1.67 Wet 5 Active 

UNP RKGR 71.44 72.97 69.85 58.77 63.22 62.41 3.44 3.36 3.33 10.00 ± 3.15 Wet 30 Active 

MMNP UNP 71.21 71.77 72.26 64.09 65.16 65.74 3.28 3.05 3.00 11.50 ± 3.05 Wet and Dry 20 Active 

KNP UNP 72.23 68.58 70.67 62.79 63.06 64.70 3.03 3.09 3.09 16.60 ± 2.15 Wet 5 Active 

LPGR UNP 60.16 61.98 61.48 56.21 54.66 53.36 2.25 2.11 2.19 13.70 ± 1.88 Wet and Dry 10 Active 

RGR KFR 98.04 90.97 96.11 89.70 83.23 87.93 1.25 1.23 1.21 0 - 10  Inactive 

aIndex describes the cost of elephant movement between PAs relative to how adjacent they are.  
bIndex represents the average resistance encountered by elephants along an optimal path between PAs. 
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Fig. 5. Map of least-cost corridors clipped at cost-weighted distance (CWD) of 200 km, depicting spatial and 

temporal distribution of elephant corridors.  

 

 
Fig. 6. Pairwise pinch point maps indicating where the current flow is highly restricted between the two 

protected areas.  
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4. Discussion 

Our data-driven and field-validated models of elephant habitat and corridors over two decades suggest that 

functional connectivity for elephants is largely persisting in this region of southwestern Tanzania. However, the 

loss of at least one elephant corridor and the observed rapid pace of land-use change calls for timely 

conservation action to protect and partly restore the functional connectivity in this landscape.  

 

4.1 Drivers of habitat suitability and functional connectivity 

Our results indicate that the habitat suitability for elephants in our study area is more determined by 

anthropogenic variables than by environmental variables. Among the variables influencing habitat suitability, 

distance to cropland and houses consistently contributed most (Fig. 3). These findings echo results of other 

studies which have shown that elephants and other large East African mammals avoid cultivated and settled 

areas (Giliba et al., 2022; Morrison and Bolger, 2014; Ogutu et al., 2010; Riggio et al., 2022), highlighting that 

the expansion of human settlements and agriculture pushes and compresses the distribution of large wildlife 

species further into the core areas of PAs. This pattern has previously been shown for large herbivores in the 

Katavi-Rukwa ecosystem in western Tanzania (Giliba et al., 2022) and the Serengeti ecosystem in northern 

Tanzania (Veldhuis et al., 2019). While an evaluation of connectivity typically relies on movement data, our 

results on habitat suitability and elephant corridors derived from two independent presence/absence datasets 

(dung survey and local ecological knowledge) mirror elephant-habitat relationships [e.g. avoidance of human 

influence (i.e., settlements and cropland)] that were found in elephant movement-habitat studies (Wall et al., 

2021). However, as our analyses were based on elephant space-use during the dry season, our models may not 

fully capture elephant movement. In some ecosystems of East Africa, elephant movements outside of PAs 

mostly occur during the rainy seasons (Kiffner et al., 2022; Pittiglio et al., 2012) and thus dry season distributions 

may provide rather conservative models for landscape-scale distribution and functional connectivity. 

Nevertheless, interview-based data suggest that the modelled corridors [which were based on imperfect data – 

a common issue for documenting dynamic processes such as long-distance migrations (Sawyer et al., 2009) are 

used by elephants during both dry and wet seasons (Table 3). Additional research could elucidate which areas 
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of the ecosystem are primarily used for connectivity and which patches are additionally used as stop-over or 

longer-term habitat (Green et al., 2018).    

 

Anthropogenic change such as expansion of human settlements and agriculture towards PAs are often 

associated with habitat destruction, encroachment and blockage of wildlife corridors (Kauffman et al., 2021; 

Wall et al., 2021). Among the ten key corridors identified, one was inactive and had been blocked by human 

settlements and agriculture before the start of our study. The remaining 9 active corridors were characterized 

by increasing movement costs over time and contraction caused by expansion of human settlements and 

agriculture (Supplementary Information, Fig. S2). Albeit still being in use, our land-use change analyses 

demonstrated that by 2019 most of our corridors (7 out of 10, i.e., RGR-KFR, LPFR-RKGR, LPGR-RNP, 

UNP-RKGR, MMNP-UNP, LGR-MMNP, and LGR-KFR) were encroached by cropland in the study region 

(Supplementary Information, Fig. S2c). Between 2000 and 2019, cropland cover increased by 634 km2 per year, 

mostly at the expense of natural vegetation (i.e., dense and open woodlands) around PAs (Fig. 2). This land-

use change in the region is likely associated with an increase of the rural human population (World Bank, 2019), 

which is partially elevated by immigration from other regions (NBS, 2012). Agriculture (e.g., rice, maize, cotton, 

tobacco) and livestock keeping are the main land-use activities in the region (NBS, 2012); the former is practiced 

in an unsustainable manner (i.e., shifting cultivation) particularly for tobacco production. Low fertility of the 

regions’ soils (Chidumayo, 1999) and the nutrient-demanding nature of tobacco (Baris et al., 2000), as well as 

demand for biomass energy to dry the tobacco leaves (Jew et al., 2017) are the primary reasons for shifting 

cultivation in the region. Such shifting cultivation likely contributed to land-use change near elephant corridors 

and near core protected areas in the study region (Supplementary Information, Fig. S2a-c).  

 

Importantly, the expansion of the RNP in 2006 resulted in further displacement of Usangu farmers and Sukuma 

pastoralists from Mbarali District to frontier areas around the western part of the park (Sirima, 2016). Likely, 

such migration to frontier areas around the western part of RNP contributed to the observed encroachment 

within LPGR-RNP and LPGR-RKGR corridors (Supplementary Information, Fig. S2a-c). If the observed 
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trend in land-use change continues, elephant movements within the study region will most likely be hampered 

further in the near future (e.g., through RGR-KFR, LPFR-RKGR, LPGR-RNP, UNP-RKGR, LGR-KFR, and 

MMNP-UNP corridors), with anticipated negative consequences on population viability of elephants. 

 

4.2 Conservation implications 

The study region is one of the few regions in Africa where large scale movements of elephants seem to persist 

(Dejene et al., 2021; Zacarias and Loyola, 2018), yet our results suggest that this functional connectivity is 

increasingly threatened by anthropogenic land conversion for human settlements and cropland. A recent study 

recorded evidence of genetic differentiation among the elephant populations from the Ruaha-Rungwa and 

Katavi-Rukwa ecosystems in the study region (Lobora et al., 2018). Although the levels of genetic differentiation 

recorded were low and mainly concerned the younger cohort, it still indicates a recent divergence likely caused 

by habitat connectivity loss between the two ecosystems in the study region (Lobora et al., 2018). Linking PAs 

with corridors is a cost-effective way to safeguard functional connectivity within and across ecosystems and 

requires relatively little land as corridors do not necessarily need to be very wide. The importance of wildlife 

corridors is also reflected by the Wildlife Corridor Act of the Tanzanian government (MNRT, 2018, 2013). 

Based on our analyses, we recommend the following conservation actions to retain, restore or enhance 

ecological connectivity in the study region.  

 

First, in areas where corridors get narrower (e.g., MMNP-UNP, LGR-MMNP, and LGR-KFR) and encroached 

(e.g., LPFR-RKGR, LPGR-RNP, UNP-RKGR, MMNP-UNP, and LGR-MMNP), delineation of the corridor 

would be a first crucial step in conserving wildlife corridors. This also requires enforcing land-use plans and 

having alternative and sustainable forms for generating income from the land without impairing wildlife habitat. 

One possible avenue for implementation would be generating a forest and wildlife-based economy from the 

modelled corridors (e.g., income from selling carbon credits, beekeeping, and ecotourism) in seeking to generate 

benefits from nature to outweigh the costs associated with wildlife conservation. For example, Carbon Tanzania 

established a REDD+ project that secures habitat in the corridor linking MMNP and KNP corridor through 



156 
 

LGR and provides adjacent communities with income through the sale of carbon credits. Second, in highly 

degraded areas within some modelled corridors (e.g., RGR-KFR, LPGR-RKGR, MMNP-UNP) due to human 

encroachment from arable farming, restoration may be an option through natural regeneration of miombo 

from roots and cut stumps (Luoga et al., 2004; Shirima et al., 2015; Syampungani et al., 2017). However, despite 

a high regeneration potential, long-term reforestation of native miombo species planning is required (Montfort 

et al., 2021) to restore highly degraded areas that cannot regenerate naturally. Third, our models provide spatially 

explicit locations of wildlife corridors, thus any future development projects (e.g., upgrading earth roads to 

tarmac roads) and activities impairing wildlife habitat should be prioritized outside of the modelled corridors 

to avoid further impacts on connectivity. In sum, a long-term strategy would be to incorporate PA networks 

into land-use plans that integrate the needs of both people and wildlife (Grass et al., 2019; Kremen and 

Merenlender, 2018). Our modelled elephant corridors and land-use change maps for the two past decades could 

offer valuable inputs for such landscape planning. 

 

Conclusions 

Conserving functional connectivity is vital for the long-term persistence of wide-ranging mammals, such as 

elephants. Our findings on connectivity in the Miombo region of southwestern Tanzania could help in the 

delineation, restoration, and conservation of elephant corridors. Elephant connectivity can be maintained or 

restored by reducing further anthropogenic cropland expansion towards the modelled corridors through 

implementation and enforcement of site-specific land-use planning. Our analysis integrates several temporal 

data sources (from remote sensing and aerial wildlife surveys), models (ensemble species distribution models, 

least-cost and circuit theory approach) and validation techniques (local ecological knowledge and ground 

wildlife surveys) to model spatially explicit wildlife corridors for effective PA network land-use planning and 

conservation. The approach can also be reproduced in other regions and for other wildlife species. 
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Supplementary Information 
 
Table S1: Cross-tabulation error matrix for 2000, 2010 and 2019 land cover classification in 
southwestern Tanzania. 

Land cover 2000 Dense woodland Open woodland Burned area Cropland Water bodies Total User accuracy 
Dense woodland 118 2 0 0 0 120 0.983 

Open woodland 1 117 2 0 0 120 0.975 

Burned area 0 2 117 1 0 120 0.975 

Cropland 0 0 2 118 0 120 0.983 

Water bodies 0 0 0 0 120 120 1.000 

Total 119 121 121 119 120 600  
Producer accuracy 0.992 0.967 0.967 0.992 1.000   
Overall accuracy       0.983 

Kappa       0.979 

         
Land cover 2010 Dense woodland Open woodland Burned area Cropland Water bodies Total User accuracy 

Dense woodland 117 3 0 0 0 120 0.975 

Open woodland 2 114 3 1 0 120 0.950 
Burned area 0 2 116 2 0 120 0.967 

Cropland 0 2 2 116 0 120 0.967 

Water bodies 0 0 0 0 120 120 1.000 

Total 119 121 121 119 120 600  
Producer accuracy 0.983 0.942 0.959 0.975 1.000   
Overall accuracy       0.972 
Kappa       0.965 

         
Land cover 2019 Dense woodland Open woodland Burned area Cropland Water bodies Total User accuracy 

Dense woodland 117 3 0 0 0 120 0.975 

Open woodland 2 114 3 1 0 120 0.950 

Burned area 0 4 114 2 0 120 0.950 
Cropland 0 1 3 116 0 120 0.967 

Water bodies 0 0 0 1 119 120 0.992 

Total 119 122 120 120 119 600  
Producer accuracy 0.983 0.934 0.950 0.967 1.000 0.000  
Overall accuracy       0.967 

Kappa       0.958 
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Table S2: Distribution of current flow density (Amps/cell) within the modelled corridors between PAs across 
three time steps (2000, 2010, and 2019) in southwestern Tanzania.  

PA Current flow density (Amps/cell) 

From To 
2000 2010 2019 

Min Max Min Max Min Max 

MMNP UNP 0.04 0.13 0.04 0.15 0.03 0.20 

RGR KFR 0.03 0.14 0.33 0.15 0.03 0.16 

LGR MMNP 0.09 0.12 0.09 0.13 0.06 0.15 

LGR KFR 0.08 0.11 0.09 0.12 0.09 0.14 

LPGR RNP 0.03 0.11 0.04 0.12 0.04 0.13 

LPGR RKGR 0.04 0.10 0.05 0.11 0.02 0.12 

RGR UNP 0.02 0.09 0.02 0.10 0.02 0.12 

LPGR UNP 0.03 0.08 0.03 0.09 0.03 0.07 

KNP UNP 0.02 0.04 0.02 0.50 0.23 0.06 

UNP RKGR 0.01 0.03 0.01 0.04 0.03 0.05 

 
 

 
Figure S1. Validation map, presenting presence and absence of elephants within our predicted binary maps (i.e., 

suitable and marginally suitable areas) in 2019. Each dot represents a three kilometer long transect. 
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 Figure S2. Map of the study region, showing the cropland distribution within and around the modelled 

corridors in (a) 2000, (b) 2010, and (c) 2019. The polygon with the blue colour in (a) 2000 indicates area annexed 

by the RNP in 2006. 
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