
Detecting and Assessing Road
Damages for Autonomous Driving

Utilizing Conventional Vehicle Sensors

Faculty of Business and Economics at Leuphana University Lüneburg,
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Abstract

Motivation: Environmental perception is one of the biggest challenges in
autonomous driving to move inside complex traffic situations properly. Per-
ceiving the road’s condition is necessary to calculate the drivable space; in
manual driving, this is realized by the human visual cortex. Enabling the
vehicle to detect road conditions is a critical and complex task from many
perspectives. The complexity lies on the one hand in the development of tools
for detecting damage, ideally using sensors already installed in the vehicle,
and on the other hand, in integrating detected damages into the autonomous
driving task and thus into the subsystems of autonomous driving. High
Definition Feature Maps, for instance, should be prepared for mapping road
damages, which includes online and in-vehicle implementation. Furthermore,
the motion planning system should react based on the detected damages to
increase driving comfort and safety actively. Road damage detection is essen-
tial, especially in areas with poor infrastructure, and should be integrated as
early as possible to enable even less developed countries to reap the benefits
of autonomous driving systems. Besides the application in autonomous driv-
ing, an up-to-date solution on assessing road conditions is likewise desirable
for the infrastructure planning of municipalities and federal states to make
optimal use of the limited resources available for maintaining infrastructure
quality.

Research Approach: Addressing the challenges mentioned above, the re-
search approach of this work is pragmatic and problem-solving. In designing
technical solutions for road damage detection, we conduct applied research
methods in engineering, including modeling, prototyping, and field studies.
We utilize design science research to integrate road damages in an end-to-end
concept for autonomous driving while drawing on previous knowledge, the
application domain requirements, and expert workshops.

Contribution: This thesis provides various contributions to theory and
practice. We design two individual solutions to assess road conditions with
existing vehicle sensor technology. The first solution is based on calculating
the quarter-vehicle model utilizing the vehicle level sensor and an accelera-
tion sensor. The novel model-based calculation measures the road elevation
under the tires, enabling common vehicles to assess road conditions with
standard hardware. The second solution utilizes images from front-facing
vehicle cameras to detect road damages with deep neural networks. Despite
other research in this area, our algorithms are designed to be applicable on
edge devices in autonomous vehicles with limited computational resources
while still delivering cutting-edge performance. In addition, our analyses of



deep learning tools and the introduction of new data into training provide
valuable opportunities for researchers in other application areas to develop
deep learning algorithms to optimize detection performance and runtime.
Besides detecting road damages, we provide novel algorithms for classifying
the severity of road damages to deliver additional information for improved
motion planning. Alongside the technical solutions, we address the lack of an
end-to-end solution for road damages in autonomous driving by providing a
concept that starts from data generation and ends with servicing the vehicle
motion planning. This includes solutions for detecting road damages, assess-
ing their severity, aggregating the data in the vehicle and a cloud platform,
and making the data available via that platform to other vehicles.

Limitations: Fundamental limitations in this dissertation are due to bound-
aries in modeling. Our pragmatic approach simplifies reality, which always
distorts the degree of truth in the result. This affects the model building
of the quarter-vehicle and deep learning. Further limitations occur in the
end-to-end concept. This represents the integration of road damages in the
autonomous driving task but does not detail the aggregation modules and
interfaces of the subsystems.

Future Research: The completion of this work does not conclude the
topic of road damage detection and assessment in autonomous driving. Re-
search must continue to optimize the proposed solutions and test them on a
widespread basis in the real world. Furthermore, the sensor fusion of different
approaches is fascinating in order to combine the advantages of individual
systems. Integrating the end-to-end concept into the ecosystem of an au-
tonomous vehicle is another fascinating field, taking interfaces and cloud
platforms into account.

Keywords

Road damage detection, Road damage severity, modeling, quarter-vehicle,
vehicle dynamic sensor, computer vision, deep learning, autonomous driving
architecture
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Chapter 1

Introduction

1.1 Motivation

Autonomous Driving (AD) will fundamentally change mobility as we know it
today. This applies to the labor sectors in public transportation and logistics,
which are undergoing a major transformation and facing new challenges [1].
Private transportation is also transforming through improved on-demand
shared services and the creation of leisure time on the way to work and on
vacation. To master the AD task, major research efforts are required for
the development of AD technology. Due to its diverse impact on numerous
areas of society and the economy, autonomous driving is considered a key
technology for social change with far-reaching consequences [2].

Media coverage over the last decade reveals that AD was expected to
be realized more quickly. The Guardian proposed in 2015 that we will be
“permanent backseat drivers” by 2020 [3], and a Forbes article from 2017
predicted that “10 million self-driving cars will hit the road by 2020” [4].
Despite significant advances in technology, the automotive industry (e.g.,
General Motors Company, Waymo LLC, Tesla Inc., Honda Motor Company,
Toyota Motor Corporation) has not been able to keep its promises to make
AD a serial feature by 2020.

“Google is working on self-driving cars, and they seem to
work. People are so bad at driving cars that computers
don’t have to be that good to be much better.”

Marc Andreessen, Venture Capitalist, 2011

Andreessen’s quote exposes that just being better than manual driving is
not enough to spur widespread application of AD, which is already largely
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safer than manual driving [5]. However, the extent of the social and legal
hurdles that must be overcome in order to make AD possible has been un-
derestimated, despite the high degree of maturity of the technology. Thus,
there is a large technological gap between being better than manual driving
and being good enough for social and legal acceptance [6].

It is necessary to examine this topic from an ethical point of view because
the use of AD technology requires regulation and ethical guidelines for suc-
cessful deployment. Recent research has investigated moral decision making
in various studies, e.g., Greene et al. 2016 [7], Conitzer et al. 2017[8], and
Awad et al. 2018 [9]. Ethics committees in most industrialized countries
are also dealing with the matter. According to the Society of Automotive
Engineers (SAE) [10], the necessity for regulation and ethical guidelines is
especially marked for high levels of automation (levels 4 and 5, cf. Section 2.1
and Appendix A). In Germany, for instance, this implies that AD must em-
body the following characteristics: a defensive and anticipatory driving style,
a preference for property damage over personal injury, no qualification of peo-
ple characteristics, and an overall strongly positive risk balance considering
the number of accidents and fatalities [6].

One strategy employed by automotive manufacturers is to initially ap-
ply AD in scenarios of limited complexity. This means, for instance, that
the early series-produced vehicles will drive autonomously on freeways and
highways and will transition to driver’s control when exiting onto rural roads
or into urban traffic. The more complex the traffic situation, the more de-
manding it is for any Autonomous Vehicle (AV) to navigate reliably. AD
involves a recurring perception-planning-action process executed by differ-
ent technologies and components in the vehicle [11]. In practical terms, this
means that the environment is perceived, the trajectory is planned on the
basis of the environment, and the motion is executed in an iterative process
by the vehicle’s dynamic system.

The vehicle perception system is responsible for perceiving the environ-
ment, including road lanes, road signage, traffic lights, other vehicles, and
many more objects. An essential part of the Vehicle Motion Planning Sys-
tem (VMPS) is the calculation of the “drivable space” based on the perceived
environment [12, 13, 14]. This requires the detection of road quality and any
significant damage to the road [15, 16]. Without this feature, AD would only
be feasible in areas with rather good road quality. To overcome the techni-
cal challenge of autonomously driving the vehicle in poor road conditions,
these conditions must be properly recorded. This technical challenges also
have social consequences, as AD should not only be realized in industrialized
countries but also in developing countries, which tend to have infrastructure
of worse quality.
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The recognition of road conditions has not yet been sufficiently imple-
mented in the perception system of AV. We determine this from the literature
(e.g., Koch et al. 2015 [17]) and from the expert workshops we conducted,
as described in Publication I. Even Tesla, Inc., famously an early adopter
of camera-based object detection, announced as recently as 2020 via a tweet
from CEO Elon Musk that they are labeling road damages in their database
in order to react to them proactively and increase the safety and comfort of
vehicle occupants.

“Yes! We’re labeling bumps & potholes, so the car can
slow down or steer around them when safe to do so.”

Elon Musk, CEO of Tesla, 2020

The implementation of Road Damage Detection (RDD) algorithms in
series-produced vehicles has been delayed for many reasons. One is undoubt-
edly the aging electronic and electric vehicle architecture and the current
efforts of traditional automotive manufacturers to facilitate centralized com-
puting capacities. The days of a fragmented, control unit-based vehicle archi-
tecture seem to be numbered. As a consequence, developers and researchers
are still struggling to find a solution for RDD.

A potential solution is the resource-saving use of already existing vehicle
sensor systems. We find this particularly significant, as from a philosophical
point of view it serves a pragmatic approach and leans on critical inquiry and
the principle of abduction, which encourages looking for immediate solutions
first in order to solve problems [18]. Compared to commercial solutions that
record road quality, which cities and municipalities spend a lot of money on
in order to monitor their infrastructure [19, 20], our technology proposed in
this dissertation can record data in real-time. Thus, degradation of the road
quality can be recorded transparently and accelerated changes in quality due
to weather conditions can be quickly tracked to improve vehicle navigation,
which also benefits the infrastructural planning of municipalities.

Although this dissertation focuses primarily on new road condition moni-
toring technologies, it also examines the lack of an end-to-end system for us-
ing such road condition data to support AD. Consequently, we address both
the challenges specific to vehicle architecture and the technological problems
related to the application of RDD.
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1.2 Problem Statements

The growing number of components is to some extent a required practice for
car manufacturers; the addition of new features increases safety. However,
this trend has fallen out of favor with manufacturers, as it is a significant cost
driver [21]. How, then, can we effectively integrate new features, in our case
explicit monitoring of road conditions in real-time, into the vehicle without
having to install additional hardware?

Solutions for the real-time detection of road conditions in AD
that leverage existing vehicle sensor technology are missing.

Problem 1

Studies on the detection of road damage have been conducted in the past,
especially camera-based research, but the solutions have so far been geared
towards detection performance. As a result, they ignore the limited comput-
ing resources in vehicles. Lightweight Machine Learning (ML) solutions with
hand-crafted features cannot keep up with Deep Learning (DL) approaches
and therefore fall out of consideration. A low-cost and lightweight approach
becomes essential when considering how many tasks AVs must perform in
parallel. In the overall context of the AD task, RDD is only a tiny part of
successful implementation, so a solution should only take up an incremental
share of the total computing power. According to Koch et al. [17], past re-
search did not satisfactorily achieve road condition and defects assessment in
2015. The workshops with experts in AD that are described in Publication
I confirm that this statement still holds today.

No satisfactory high-performance and lightweight solution exists for sensing
road conditions with conventional front-facing vehicle camera sensors.

Problem 2

Connected and Autonomous Vehicles (CAVs) draw information from their
on-board sensor systems. High Definition Feature Maps (HD Feature Maps)
are critical to validation of local detections. Many modern vehicles are ca-
pable of sensing the environment continuously. These multiple sources lead
to redundant information in the online HD Feature Map and therefore in-
crease the confidence about the presence of objects in road traffic. Yet, no
end-to-end concept that incorporates from data generation to delivery of in-
formation for vehicle motion planning is currently available. The technologies
for detecting road damage are likewise neither clearly defined nor embedded
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in a concept. If road damage and possible hazards are to be successfully
addressed in AD, the new features must be integrated into the existing AD
pipeline (cf. Section 2.1.3).

No end-to end CAVs concept that addresses road damage in the on-board
and online integration in HD Feature Maps is currently available.

Problem 3

A lightweight concept that integrates road damage features into the ar-
chitecture of modern AVs, especially regarding the VMPS, the Vehicle Per-
ception System (VPS), and the Online Mapping System (OMS), has not yet
been formulated.

1.3 Research Questions

Based on the three problems discussed in the previous section, we generate
research questions that we address through our research. Our research ques-
tions are designed according to Thuan et al. [22]. The publications listed in
this dissertation each contribute to the answers of the research questions.

Research question 1 (RQ1) is drawn from Problem 1 and addresses the
lack of solutions for RDD that utilize existing vehicle sensors. Novel ap-
proaches are to be explored to record road damage with existing vehicle
sensors, only by using additional software.

How can built-in vehicle sensors be utilized to detect road damages?

Research Question 1 (RQ1)

Research question 2 (RQ2) is drawn from Problem 2 and addresses the
current focus on detection performance in DL. Due to the limited computa-
tional resources in AVs, DL algorithms must be designed in a resource-saving
manner. We strive to develop DL algorithms that maintain cutting-edge de-
tection performance while being lightweight enough to be applicable in AVs.
RQ2 focuses on the training methods of DL algorithms and the impact of
the training data.

How and upon what data must a road damage DL
algorithm be trained to be applicable in AVs?

Research Question 2 (RQ2)
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Research Question 3 (RQ3) is respectively drawn from Problem 3 and
focusing on how an end-to-end concept must be designed to support the AV
motion planning. The question addresses the process from data generation
of on-board sensors, via calculation of road damage features to the actual
utilization of the features in motion planning.

How can sensor data be used in an end-to-end concept
to deliver valuable AVs motion planning information?

Research Question 3 (RQ3)

1.4 Research Structure

Each of the topics of this dissertation contributes to our ultimate goal of
teaching the autonomous vehicle how to sense road conditions, correctly as-
sess and process them, and incorporate them into the vehicle motion plan-
ning. The goal is to allow AVs to drive comfortably and safely, even in poor
road conditions. The technical implementations of individual components
differ greatly, which is why we structure the dissertation following the tech-
nological solutions and the description of an end-to-end concept from sensors
to service.

Table 1.1: Overview of the publications of the dissertation

No. Outlet
I Data & Knowledge Engineering (under review)
II IEEE Sensors Conference 2019
III IEEE Vehicular Technology Conference 2020 Fall
IV IEEE Sensors Conference 2020
V IEEE Sensors Journal
VI IEEE Intelligent Transportation Systems Conference 2020
VII IEEE International Conference on Big Data 2020
VIII IEEE Vehicular Technology Conference 2021 Fall
IX IEEE Transactions on Intelligent Vehicles (under review)

X IEEE Int. Conf. on Electr., Information and Commu. 2021

Table 1.1 displays the outlets of the ten publications in this dissertation.
The table does not represent the chronological ordering as in many research
projects (and reinforced by the applied setting of the publication in HELLA’s
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research laboratory for automotive electronics E-LAB), the publication con-
tents follow the competence development of the researchers and new ideas
throughout the research process. For this reason, the contents of the ten pub-
lications were usually not processed in strict succession but partly in parallel
and influenced by each other. Publication X in Table 1.1 is out of the scope
of this dissertation and will not be addressed in the preamble; however, it
has been included for the sake of completeness.

The following explains the new, thematically appropriate structure, the
research methodology, and the sensor technology that was used. In order
to explain the research contributions, limitations, and future work in the
preamble, we group Publications I to IX in three subject areas: utilization
of on-board sensors in the Quarter Vehicle Model (QVM) to assess road ele-
vation, Computer Vision (CV) application of front-facing camera sensors to
detect and classify road damages ahead of the vehicle, and End-to-end (E2E)
concept that integrates road damage features into the modern architecture
of AVs, from sensor data generation to support of vehicle motion planning.

Table 1.2 outlines our QVM-based research on assessment of road condi-
tions. The table illustrates, for Publications I to VI, the sensors that were
utilized, the research approach and methodology, and the relevant contribu-
tions.

QVM: The first approach uses sensors in the vehicle dynamics to compute
the elevation profile of the road under the tires. It is a model-based calcu-
lation that utilizes the Vehicle Level Sensor (VLS) and an AS in the QVM.
The output is an accurate elevation profile that can be processed into differ-
ent road quality indices (c.f. Section 2.2). Publications II to VI deal with
the evolutionary stages of the novel method for measuring the road surface
(see Table 1.2). Publication II delivers first results in a research-in-progress
paper, introducing the design of a laboratory setup explicitly developed for
the proof of concept. The setup reflects a quarter of a vehicle and isolates
the vertical forces, which allows for evaluation of the sensor setup for the
model-based calculation. Publication III describes the exact modeling pro-
cess, tests different parameter sets of the QVM in the laboratory setup, and
demonstrates the setup’s functionality. It represents a new level of matu-
rity compared to Publication I and includes the evaluation of the research.
Publication IV is a live demonstration paper. At IEEE Sensors (conference),
demonstrations of research were covered in a dedicated track and were open
for discussion over the duration of the conference. We were able to present
our laboratory setup live in front of an expert audience. Publication V is
an extension of Publication III and represents the transfer of the functional
principle to a real vehicle. Dealing with vehicle interfaces, raw sensor data,
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and data processing on edge devices was a significant part of the extension
and prerequisite for the field study. Evaluation of the technology in a test
vehicle is a major step toward application.

Table 1.2: Publications related to QVM-based road condition monitoring

Publication II & Publication III

Sensors Pre-installed Vehicle Level Sensor & Acceleration Sensor
Approach Model building & Prototyping
Contribution Novel road assessment utilizing the quarter-vehicle

Publication IV

Sensors Pre-installed Vehicle Level Sensor & Acceleration Sensor
Approach Live demonstration at conference including discussion
Contribution Road assessment in laboratory setup

Publication V

Sensors Pre-installed Vehicle Level Sensor & Acceleration Sensor
Approach Prototyping & field study
Contribution Laboratory setup & field study in a real vehicle setup

Publication VI

Sensors Pre-installed Vehicle Level Sensor & Acceleration Sensor
Approach Prototyping & field study
Contribution ML-based detection of road pavements and damages

Publication VI indicates the transition in our research from the first to
the second approach. We pair our use of the VLS and the AS in the vehi-
cle dynamics with classic ML approaches. The sequence of data is used to
detect road coatings (e.g., concrete, asphalt, gravel) and damage. Already
transversed road damages are transmitted to a cloud platform to be used for
subsequent vehicles. For this publication we have performed measurements
in Toulouse, France with our test vehicle. Furthermore, the publication in-
cludes the architecture of the cloud prototype and the visualization of the
results in an online map.

In addition to these contributions, we acknowledge that the recognition of
poor road conditions happens when the vehicle has already passed them and
that the measurements are limited to the surface under the tires. Despite
the application in the cloud scenario, we would like to enable the vehicle to
detect damage in a predictive and board-autonomous way in order to move
more comfortably and safely, even without an internet connection. This
led us to the use of camera sensors for RDD. A considerable advantage of
this technology is that camera sensors face the direction of travel and can
assess road damages in advance. In this scenario, road damages can lead to
adjustments in driving behavior within the vehicle and do not have to be
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obtained via a cloud platform.

CV: By utilizing the camera in the second approach, we apply CV tech-
nology. The Publications VII to IX are displayed in Table 1.3, including
the sensor technology, the research approach, and the contributions. CV-
related contributions also answer RQ1, as front-facing cameras are standard
hardware in modern vehicles. Additionally, the approach contributes to RQ2
through its focus on applicability regarding computational resources. From
Publication VII to IX, we increasingly focus on designing DL algorithms for
edge devices in vehicles. Detecting road damages rather than processing an
accurate profile of the road has advantages and disadvantages. These are
explained in detail in the publications and are included in the contributions
of the preamble (c.f. Contributions).

Publication VII represents our DL approach to RDD, Faster Region-
based Convolutional Neural Network (FRCNN) (cf. Section 2.4.1). With
this solution, we were able to place twelfth of over 200 submissions in the
IEEE Global Road Damage Detection Challenge (GRDDC) 2020 [23, 24],
which led to an invitation to publish our results at the IEEE International
Conference on Big Data. All teams were provided with the Road Damage
Dataset (RDDS), including over 31,000 damage annotations (cf. Datasets
and Labeling).

Building on these successes and the competing solutions in the GRDDC,
we investigate You Only Look Once (YOLO) algorithms (cf. Section 2.4.2)
in Publications VIII and IX. Although the first investigates YOLOv4 and
the second YOLOv5, both focus on designing a sweet-spot for efficient per-
formance of a Deep Neural Network (DNN) while maintaining real-time ca-
pability in AVs. We generalize our analyses and application of the tools to
facilitate research of object detection tasks independent of the use case. In
addition to RDD, Road Damage Severity (RDS) classification is of great rele-
vance for the motion planning of AVs. Minor damages should not be avoided,
even if they are detected. Avoidance of significant damage, which is crucial
for vehicle comfort and, above all, for safety, should be a priority.

Publications I and VIII provide approaches on classifying the severity of
potholes. However, the subject is not conclusively addressed in this disser-
tation for other damages classes than potholes (cf. Limitations). For the
two publications, we self-labeled over 10,000 automotive-grade camera im-
ages, which we use alongside the RDDS from the challenge. The ADS is not
public, but it is described in detail in Publications VIII and IX, as well as in
Appendix A.

E2E : In Publication I, we conduct Design Science Research (DSR) and pro-
pose an end-to-end concept for the AD system that incorporates road dam-
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Table 1.3: Publications related to the CV-based road condition monitoring

Publication VII

Sensors Front-facing camera: RDDS from GRDDC
Approach DL modeling & evaluation
Contribution FRCNN DL algorithm for road damage detection

Publication VIII

Sensors Front-facing camera: self-labeled ADS & RDDS
Approach Prototyping
Contribution Lightweight DL algorithm for RDD & RDS detection

Publication IX

Sensors Front-facing camera: self-labeled ADS & RDDS
Approach Prototyping & structured impact analysis of tools in DL
Contribution Impact of DL tools and guidelines for DL model design

ages and improves the high- and low-level path planning of AVs. This utiliza-
tion of both technologies in this dissertation (QVM and CV) in an end-to-end
concept to be implemented in the AD architecture is the first of its kind. The
concept combines the two approaches to both enable predictive detections of
road damages and also to validate the detections with the QVM-based cal-
culation of the road. E2E in this context refers to the process that begins
with the generation of sensor data in the vehicle and ends with the provision
of road damage information to the AV’s motion planning system. We have
specifically designed algorithms for RDD and RDS that are in accordance
with the limited computation resources.

Table 1.4: Publication related to the (E2E) concept for road damage detec-
tion and severity classification in autonomous vehicles

Publication I

Sensors Front-facing camera: self-labeled ADS & RDDS
Approach Design Science Research incl. expert workshops & modeling
Contribution End-to-end concept on road damage detection in AVs

1.5 Research Methodology

To answer the RQs raised in Section 1.3, we have chosen a bottom-up ap-
proach to pay respect to previous knowledge and the research setting in
the laboratory for automotive electronics (E-LAB) at HELLA GmbH & Co.
KGaA. Bottom-up in this dissertation refers to first focusing on developing
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technical solutions (QVM and CV) that are capable of assessing road condi-
tions. We follow up with a concept of how to utilize them within the existing
vehicle architecture. In this section, we provide an overview of the research
methodologies applied in this dissertation. First, we explain our approach
to the Literature Analysis, which is necessary for all research content. We
then explain the DSR paradigm that was employed in Publications I and IX.
Finally, we discuss the Applied Quantitative Research to the development of
our technical solutions. We define the methods, modeling, prototyping, and,
field study commonly applied in engineering that appear repeatedly in the
dissertation’s publications.

1.5.1 Literature Analysis

Reviewing the relevant research literature is crucial to understanding the
relevant domain contents, issues, and results [25]. Familiarity with related
research expands the knowledge base and prevents previously explored topics
from being researched again. As none of the publications include a full lit-
erature review, an in-depth heuristic literature analysis has been performed
for each publication.

We identify and analyze relevant publications for our field, using schol-
arly search engines, such as Google Scholar and IEEE Xplore. The selection
of keywords is based on the related literature and is refined during the anal-
ysis as we explore which wording is primarily utilized in our domain. The
sources of particularly suitable publications are examined to ensure that no
relevant publications have been omitted. The analysis also includes group-
ing the publications by specific properties. For example, we were able to
cluster research results on road condition monitoring according to the sensor
technology used.

1.5.2 Design Science Research

We have holistically applied DSR only in Publication I and as a research
paradigm in Publication IX. However, studying the research method also
helped us to problematize, iterate, and adapt to the needs of the application
domain in the other publications (especially VIII). We are drawn to DSR’s
epistemological stance, especially its pragmatism and preference for utility
over truth [26, 27, 28].

A characteristic feature of DSR is the recurring examination of the knowl-
edge base and the needs and requirements of the application domain. The
framework for this iterative process is displayed in Figure 1.1. It entails the
relevance cycle, which deals with the application domain, and the rigor cycle,
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which deals with the research foundations. The design cycle is between the
other two cycles and represents the actual build process of the determined
artifact(s), as well as its evaluation.

Building artifacts in DSR can follow very different paths depending on
which artifact type is being designed. Artifact types include but are not lim-
ited to algorithms, model designs, guidelines, frameworks, and processes [29].
The research in Publication I is special and unusual, as two different artifact
types and three artifacts are designed in total (one model design, two algo-
rithms) in response to the application domain context. The evaluations can
and must be as varied as the artifacts. This allows for both qualitative testing
of their processes and concepts (via workshops and interviews) and quantita-
tive testing of their algorithms (via mathematical evaluation metrics). The
three cycles and our take on each are fully explained in Publication I

Transparency regarding the applied tools is especially important in the
execution of DSR due to the high degree of freedom of the researchers. For
example, we supply a step-by-step description of our approach and imple-
mentation in inputs, methods, steps and results in the respective cycles.

Application Domain

• People
• Organizational

Systems
• Technical Systems
• Problems &

Opportunities

Design
Cycle

Build Design

• Artifacts &
Processes

Evaluate

Foundations

• Scientific Theories
& Methods

• Experience &
Expertise

• Meta-Artifacts
(Design Products &
Design Processes)

Relevance 
Cycle

Rigor
Cycle

Figure 1.1: Cycles of Design Science Research according to Hevner 2007 [30]

1.5.3 Applied Quantitative Research

Our research approach in building the technical QVM-based and CV-based
solutions is applied and quantitative. Applied research is designed to solve
practical problems, rather than to acquire knowledge for knowledge’s sake
(similar to DSR focusing on pragmatism over truth). One can conclude that
the goal of the applied scientist is to improve the human condition in the
modern world [31]. It employs theories, knowledge, and techniques for a
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specific purpose. Due to its application oriented nature, applied research is
mostly empirical. The process of gathering and evaluating numerical data
is known as quantitative research. It may be used to look for patterns,
make predictions, evaluate causal relationships, and extrapolate results [32].
Results are obtained on the basis of quantitative evaluations.

Smith 2003 describes the engineers take on problem solving as “the use of
heuristics to cause the best change in a poorly understood situation within
the available resources” [33], which is very familiar to the approach taken in
this work. Regarding Smith’s description, we explain below the applied and
quantitative methods, modeling, prototyping, and field study utilized in our
research.

Modeling : In modeling, researchers strive to build models that expresses only
those properties of the real-world artifact that are considered important for
the investigation. The simplification aims at a manageable and mathemati-
cally computable model or a model suitable for experimental investigations.
Models tackle different purposes which is why they can be designed to repre-
sent a structure, a behavior, or a process. Model building can be conducted
systematically and/or creative [34]

Figure 1.2 displays an iterative process of model building according to
Nollau 2009 [34]. The original system and the model cannot be directly
compared with each other, as Figure 1.2 illustrates. Based on the observed
behavior, a initial modeling approach results in a starting model. The model
behavior can then be compared with the observed behavior of the original
system to derive behavioral differences. Design iterations are executed to
improve the model design.

Original System

Observed Behavior

ModelComparison

Modeled Behavior

Data
Modeling

approach

Data Numerical

simulation

Design

iteration

Model

improvements

Experiment

Figure 1.2: Process of model building [34]
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The QVM utilized in Publications II to V is a simplification of the re-
ality. We use this model to calculate the road elevation and quantitatively
evaluated the results by comparing the real-world behavior with the model
behavior. Modeling in DL, especially in object detection, is also an itera-
tive optimization task. In this case, we want to realize the task of object
recognition as precisely as possible. The detection performance evaluated by
computer vision metrics (e.g., mean Average Precision (mAP), F1-score) and
visualized in confusion matrices, for example.

Prototyping : Major content of this work is realized in prototypes. Proto-
typing is commonly applied in engineering and, like DSR, focuses on prag-
matism. A prototype is a tangible representation of a specific artifact, often
in an interactive system. It is the opposite of an abstract description that
must be interpreted. Designers, as well as managers, developers, customers,
and end users, can use the prototype to visualize and troubleshoot the final
system, as it provides limited exhibition of the main functional capabilities
of the proposed system. This method is often used due to its pragmatic
and solution-oriented nature, which allows for easy testing of principles and
functions [35].

Regarding the QVM-based solution (cf. Table 1.2), we first design a
laboratory setup (a miniaturized prototype of a quarter-vehicle) to rapidly
investigate the VLS and the AS in the QVM. The design of the laboratory
setup is based on a morphological analysis, a creativity method for the sys-
tematic analysis of complex artifacts. The method structures and investigates
the total set of relationships contained in multidimensional, non-quantifiable
problems [36]. Our goal was to build miniaturizations of a quarter-vehicle
and of road segments that represent various road coatings and qualities. We
structured the laboratory setup into assembly parts, for which potential solu-
tions are listed regarding each part. By combining parts in a variety of ways,
innovative, goal-oriented approaches can be identified [36]. The result is the
design of the laboratory setup published in Publications II to V. We fol-
lowed with the development of the model-based calculation of the laboratory
setup’s QVMs. This includes the acquisition of the spring and damper con-
stants and of the sprung and unsprung masses. Subsequently, we integrated
the VLS and the AS signal processing on a microcontroller to gather the
motion data from the spring-damper system of the laboratory setup. Based
on the successful implementation of the model-based calculation in minia-
turization, we proceed with the implementation in a test vehicle to evaluate
the concept.

Field Study : Field studies are the extension of laboratory experiments into
real-life situations and provide a more realistic take on the phenomena or
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artifact under investigation [37]. The projection from a laboratory setup
into an application system can entail massive time and cost expenses. It
often involves dealing with subsystems and interfaces to other systems. The
goal of a field study is to evaluate the behavior of the object of investigation
in a real-world environment. In contrast to field studies in business science,
field studies in engineering science can be evaluated quantitatively regarding
a measurand, if the ground truth is available [37].

In this dissertation, the QVM-based solution on assessing the road surface
is evaluated in a field study. To get to this point, integration into the vehicle
must have taken place. The evaluation of CV solutions, on the other hand,
is debatably a field study, as we have not implemented the system in a
test vehicle, though, the ADS (cf. Section 2.4.3) provides images from real
front-facing vehicle cameras. We furthermore evaluated the runtime of the
algorithms on an edge device built for lightweight application.
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Chapter 2

Research Background

This chapter addresses a cross-section of the fundamental research back-
ground of Publications I to IX. This sets the stage for a smooth transition
to the publications’ content, as each publication contains its specific research
background. Hence, this chapter is not redundant but complementary to the
publications at a higher level of abstraction. Following the introduction to
the fundamental principles of AD, the Perception-Planning-Action Pipeline
(Section 2.1.3) is introduced, focusing particularly on the Environmental Per-
ception (Section 2.1.1), and HD Feature Maps (Section 2.1.2). Inspired by
DSR, this mirrors the application domain. The contextualization increases
the relevance of the publications and is therefore invaluable.

The same applies more specifically to the fundamentals of Vehicle Dynam-
ics (Section 2.3), in particular the Quarter-Vehicle Model (Section 2.3.1) and
the sensors installed therein (Section 2.3.2). These sections are particularly
relevant for the context and content of Publications II to VI.

The last part of the research background is about CV, especially DNNs,
the basis of Publications VII to IX. Following an introduction to CV, dis-
cussion focuses upon object recognition, basic parameters, and settings for
training DNNs. Next, we explain the two DL frameworks, FRCNN (Sec-
tion 2.4.1) and YOLO (Section 2.4.2), which are essential to this research.

2.1 Autonomous Driving

With fully autonomous driving, vehicle occupants no longer have to perform
any driving tasks. To achieve this goal driver assistance systems have al-
ready relieved the driver of a considerable portion of vehicle control. This
includes the engine, the brakes, and the steering. In the automotive industry,
autonomous driving is seen as a mega-trend with considerable impact on the
industry itself and society as a whole [2].
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In 2014, the SAE published what became the global standard for defining
levels of vehicular automation [10]:

• Level 0: No automation.

• Level 1: The vehicle operates with support systems, such as antilock
braking system or electronic stability control, that intervene automat-
ically in appropriate situations.

• Level 2: Automated systems take over partial tasks (e.g., adaptive
cruise control, lane change assistant, automatic emergency braking).
However, the driver retains control of and responsibility for the vehicle.

• Level 3: The car can conditionally accelerate and can break and steer
independently. If necessary, the system prompts the driver to take
control.

• Level 4: In standard operation, the vehicle can be fully autonomous.
However, the driver has the option to intervene and drive manually.

• Level 5: Fully automated, autonomous operation of the vehicle with
no possibility of or necessity for driver intervention.

A more detailed explanation of the different levels of automation can be
found in Appendix A, Table A.1. There we further distinguish the levels be-
tween Steering & Acceleration, Monitoring of Driving Environment, Fallback
Performance Driving Task, and Drive Modes.

AD requires various types of support systems that in higher levels of
automation must interact to achieve truly autonomous behavior. Among
them are braking, adaptive speed, traffic jam, lane departure, turning, and
parking systems. In addition, there are various sensor systems. AVs must
be equipped with systems for environment recognition. Besides cameras,
other sensor systems include Radio Detection and Ranging (RADAR) and
Laser Detection and Ranging (LIDAR) sensors for measuring distances and
processing environmental data.

AD level 5 will entail far-reaching changes to the vehicle interior, as it will
no longer be possible or necessary for the vehicle occupants to intervene in the
driving task. In Germany, in contrast to other highly developed countries, the
legal framework for the highest level of automation is still unclear because the
law currently states that the driver must be able to “overrule” the vehicle [38].
Accidents, even if in reduced numbers, should still be expected. Liability in
such events remains a partly open issue because the vehicle itself can hardly
be held accountable, and the automotive companies will want to prevent
liability.
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2.1.1 Environmental Perception

Starting at level 2 and increasing dramatically in subsequent levels, the ve-
hicle must understand the scene in which it is located by perceiving various
objects in the environment. In order to gain a sufficient understanding of the
traffic situation to be able to move reliably in it, various tasks must be car-
ried out in parallel to capture the scene. In the following, we will therefore
describe the subsystems Localizer, Mapper, Road Mapper, Moving Objects
Tracker, and Traffic Signalization Detector, which are required to reliably
detect the traffic situation and the vehicle’s own role in that situation [39].
It is critical that the system run in real-time in order to detect changes as
quickly as possible.

The Localizer subsystem is responsible for pose estimation of the AV,
which consists of its position and orientation. Initially, it might appear
promising to use GPS sensors for pose detection, but these are not reliable
in urban areas, do not work in tunnel systems, or between tall buildings,
and would be unsuitable for use even in rural areas due to the inaccuracy of
the position information. In the literature, LIDAR and camera systems or a
combination of both are primarily used for localization. While LIDAR sen-
sors remain expensive in mass production, the pose estimation they enable
is very reliable and accurate. [40, 41, 42]. A combination of both primarily
utilizes LIDAR-data to build a map of the environment and camera images
to estimate the pose within that environment [43, 44]. Solutions solely based
on camera are less expensive, though also less precise [45, 46]; Some also
utilize Neural Networks (NNs), though with poorer performance [47, 48].

The Mapper is a subsystem that operates both online and offline and
computes the operating environment of the vehicle. It helps to prevent colli-
sions but also to navigate within the environment according to the relevant
traffic rules. Topological representations of the environment often describe
it in graphs of nodes and edges. Nodes are features/objects of the map,
such as traffic lights or other important objects, that are relevant for AD.
Edges describe relationships between nodes with position, orientation, and
distance between the nodes. Google Maps and Open Street Map [49] utilize
similar approaches. The resolution of a topographic map can be very low
in rural areas with very straight highways, for example, and very high in
cities with many roads, intersections, and possibly even tunnels. In-depth
information about HD Feature Maps are given in Section 2.1.2. Typically, an
offline (static) map is merged with local data from environmental detection
sensors (a combination of LIDAR, RADAR, and camera) and the vehicle’s
state [13, 39].

Another essential task consists of tracking moving objects and estimat-
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ing their position in relation to the vehicle. This task is performed by the
Moving Objects Tracker, which detects and tracks the velocity, location, and
orientation of pedestrians, other vehicles, and other moving objects [50].

Some features of the Traffic Signalization Detector are already installed
in mass-produced vehicles in the form of a traffic signage recognition. This
is an example of a assistance system (level 1) that supports the driver with
information, such as speed limits. To succeed with higher levels of AD,
horizontal traffic signage such as road markings are of great relevance for
decision marking and must be present in the vehicle map. The detector needs
to either recognize various signage as well as identify the exact position, class,
and status [51, 39].

The described components can be summarized as the VPS. In the next
sections, we explain the remaining systems that are required to drive au-
tonomously.

2.1.2 HD Feature Maps

Humans can successfully apply maps with low information density to navi-
gate complex environments because of their experience and depth perception.
However, the multitude of information from the sensor systems of the CAV
cannot be accommodated in a structured way on a conventional map. As a
consequence, AVs demand a new map structure from which they can obtain
information that is required to perform the driving task.

On-board sensor systems (e.g., Camera, LIDAR, RADAR) perceive traf-
fic objects which need to be stored in a local environment consisting of a
semantic structure, enabling AVs to store environmental information accu-
rately, which allows for the construction of HD Feature Maps directly from
3D sensory data. Such a map is called an HD Feature Map and is both the
endpoint of the AV’s environmental perception system and the starting point
for the motion planning task. Rather than a full 3D map of the environment,
HD Feature Maps include all the key geometric features of the road network
and semantic information about, for example, the lanes of a road, speed lim-
its, traffic signs, and traffic lights. The condition of the road can be precisely
stored via a grid or via markings, which are two different approaches that
are discussed later in Section 2.2 [52, 53, 54].

HD Feature Maps commonly compose three types of map features: static
objects, traffic control devices, and roadway geometry. Static objects repre-
sent objects of interests for the vehicle to be considered in motion planning
due to their size or position. Static objects can be trees, buildings, barriers,
walls, or, relating to this dissertation, significant road damages.

Traffic control devices guide the vehicle on their supposed behavior by
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establishing traffic rules for a designated location or area. This include but
is not limited to road surface markings, traffic signs, and traffic lights. The
roadway geometry is represented by polylines, polynomial curves, or splines,
crucial to understand the designated path to be followed for the AVs. Sec-
tion 2.1.2 displays a picture of a road course including a highway and a
highway exit. The below polylines describe the road curse. The lines are
often considered as edges, while the fixed points are often stated as nodes.
Both can be applied with specific properties. AVs must perform their self-
localization in the environment to utilize the information provided by the
HD Feature Map. This was previously introduced as the localizer (cf. Sec-
tion 2.1.1).

Besides the local HD Feature Map, representations of the environment
are stored in online HD Feature Maps. The combined use of both local and
online maps entails many opportunities. The online HD Feature Map is a
joint map, generated from a high number of individual vehicles through ag-
gregation processes. Individual vehicles contribute to an online map while
being able to gain information from the map for preceding road segments
[54, 55]. In our expert workshops conducted in Publication I, the experts
considered the online HD Feature Map as an additional sensor system to in-
crease confidence for static objects, traffic control devices and the roadway
geometry.

Figure 2.1: A road course including nodes and edges [55]

Further details on HD Feature Maps are included in Publication I. Liu
et al. 2020 [56] perform a comprehensive overview of HD Feature Maps in
AD, while Jo et al. 2018 [57] propose a concept on updating the online map
based on crowd sourcing from AVs.
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2.1.3 Perception-Planning-Action Pipeline

The VPS represents the first part of the perception-planning-action pipeline
in AD and is explained in detail above (cf. Section 2.1.1). The VPS perceives
the environment and enables the planning tasks based on the structured data
gathered in the HD Feature Maps. The remaining planning and action tasks
are explained in the following.

Motion planning can be split into high- and low-level path planning.
High-level path planning, commonly called route planning, is performed
through graph search algorithms in a road network. The calculated route is a
sequence of waypoints represented by coordinates. Suppose the road network
is represented by a weighted directed graph, whose vertices are waypoints.
In that case, edges connect pairs of waypoints, and edge weights denote the
cost of traversing a road segment defined by two waypoints. Computing the
best route can then be reduced to finding the shortest path in a weighted
directed graph [13, 39]. The performance of algorithms for route planning in
road networks has improved significantly in recent years, resulting in more
complex calculations than those explained above. Even for routes that cross
continents, newly developed algorithms can compute driving directions in
milliseconds or less. Bast et al. (2016) provide a review of route planning
algorithms in road networks that are suitable for self-driving cars [58]. The
second task within high-level path planning is the actual path planner sub-
system that finds the proper path in the selected route. Input values for the
planning task are the AV’s state, the perceived environment, and the traf-
fic rules. A path is composed of a sequence of poses (the vehicle’s position
and orientation). The path planning is typically executed for several tens to
hundreds of meters ahead [59].

Low-level path planning also consists of two subsystems, the behavior
planner and the motion planner. Selecting the proper behavior in a given road
traffic situation is mandatory to successfully perform AD. The subsystem
is responsible for selecting the right behavior in the perceived environment
by, for example, keeping the lane, changing the lane, stopping the vehicle,
or accelerating to pass another vehicle. Within the allowed decision time
frame, the behavior planner selects a goal based on current driving behavior
and input from the collision avoidance system regarding static and moving
objects in the environment. From this step onwards, not solely technical
issues are of relevance for the subsystems. As 100% safety can probably never
be achieved, moral decision making is a research topic under investigation
[7, 9]; however, that research is beyond the scope of this dissertation. Classic
solutions for selecting a behavior are heuristics, decision trees, and finite state
machines [60], however single techniques perform poorly in complex traffic
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scenarios. Combinations of finite state machines and other techniques are
applied to improve the decision making (e.g., Aeberhard et al. 2015 [61],
Okumura et al. 2016 [62]) while also focusing on lowering the uncertainty of
moving objects in the environment by utilizing partially-observable Markov
decision processes (e.g., Galceran et al. 2017 [63]).

The motion planner calculates the vehicle trajectory in the selected path
with the chosen behavior, constrained by the vehicle kinematic and dynamic.
Two different approaches are discussed in the literature and practice, one
using a sequence of commands that includes a velocity, a steering angle, and
a command duration or sequence of states (poses to be achieved in a specified
time frame). The ultimate goal of the motion planner is to comfortably and
safely move the vehicle from its origin to the desired destination. Several
methods for motion planning are discussed in González et al. 2015 [59] and
Paden et al. 2016 [64].

The action part of the perception-planning-action pipeline is responsible
for the execution of the planning results. This includes commands to the
respective actuators of the vehicle, the steering wheel, throttle, and brakes
of the AV. As this is less relevant to the content of this dissertation, we refer
to Ziegler et al. 2014 [51] and Paden et al. 2016 [64].

The influence of road damage considerations on the perception-planning-
action pipeline is explained in detail in Publication I, as our goal is to actively
contribute to these planning tasks in order to improve passenger comfort and
safety.

2.2 Road Condition Metrics

Analyses of road conditions arise from different motivations: (1) to assess
the quality of the infrastructure for road authorities and (2) to record road
damages to avoid dangerous and uncomfortable situations based on road
evaluations. In order to successfully implement both use cases, metrics are
needed that can be applied to compare road analyses with a defined stan-
dard. The literature offers two different types of metrics, the first of which is
the detection and evaluation of a single instance of road damage at an exact
geo-position. The second is an evaluation of road sections via representa-
tive grading. The left side of Figure 2.2 visualizes the evaluation of single
damages, while the right side represents possible gradings of road sections.

Case (I) focuses on detecting and evaluating the type, severity, and loca-
tion of single damages. In our research, we apply the type classification of
the Japanese Road Maintenance and Repair Guidebook 2013 [65], which was
also utilized by Maeda et al. 2018 [66]. The relevant damage classifications
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for our research are D00 for longitudinal crack, D10 for lateral crack, D20
for alligator crack, and D40 for pothole. Further classifications are listed in
Table 2.1 in Section 2.4.3.

In case (II), various options exist for the analysis of road segments. In
1973 a method evolved to interpret the elevation profile of a road. If we
consider the road profile as a curve, each curve can be broken down into
a set of sinusoids [67]. The analysis results in wave numbers that indicate
whether a road is more likely to have roughness due to ground waves or
high-frequency damages [68]. A second standard was introduced with the
International Roughness Index (IRI) by Sayers et al. 1982 [69]. Sayers used
the IRI to measure the longitudinal road profile by accumulating deviations
between the sprung and unsprung masses of a vehicle at a velocity of 80 km/h
over a specific distance (a section). This and further road condition metrics
are explained in the Little Book of Profiling [67].

The green color in Figure 2.2 indicates a very good rating for the road
segment, while the red color indicates a very poor rating. Case (II) is not
further adopted in our research, though the QVM-based calculation, subject
to Publications II to V, delivers a an elevation profile of the road, which can
be used to calculate the described metrics.

D10

D40

D00

D20

Evaluation of single damages Evaluation of road sections

Figure 2.2: Damage and section classifications of a road’s condition

2.3 Modeling in Vehicle Dynamics

The vehicle dynamics describes the behavior of a vehicle under the influence
of forces, for example, those caused by cornering, acceleration, and braking
processes. Road unevenness also acts on the vehicle via forces and affects its
behavior. Predicting the motion of a vehicle, which consists of about 10,000
individual parts, is a challenging task. In many cases, it helps to combine a
limited number of components into subsystems. Simplifying a mathematical
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model facilitates understanding in many situations or can even enable state-
ments to be made with sufficient accuracy in the first place. However, these
models are subject to limitations that are defined by the model boundaries.
The factors affecting vehicle dynamics can be grouped into five categories:
drivetrain and braking, suspension and steering, distribution of mass, aero-
dynamics, and tires [70].

In order to describe the motion of vehicles, various substitute vehicle
systems focus on the target variables that must be simulated. This includes,
for example, the full vehicle model (e.g., Kruczek and Stribrsky 2004 [71]),
the single track model (e.g., Schramm et al. 2014 [72]), and the QVM [73].

As our target is to assess road condition, we build a novel modeling
approach calculating the road elevation that utilizes the QVM. This model
is particularly suitable due to the isolated analysis of the vertical forces of a
single wheel mass and the respective quarter of the chassis mass. The model
is described in detail below.

Another reason to model the quarter vehicle is the presence of the sensors
introduced in Section 2.3.2. These are able to record physical quantities
within the model and therefore operate within the model boundaries.

2.3.1 Quarter-Vehicle Model

Two different kinds of QVMs are reported in the literature, a multi-body sus-
pension model [74] and a simpler model with two degrees of freedom [75, 76].
Figure 2.3 displays each of these models. The multi-body suspension model
expresses the non-linear geometry of the mechanical system as well as the
dynamics in a more realistic manner. The second kind of QVM is particularly
suitable for examining vertical forces in the system. The full suspension sys-
tem is represented by the sprung(/chassis) mass ms, the unsprung(/wheel)
mass mu, the spring-damper system, and the replacement system for a wheel,
which is also a spring-damper system. Hence, there are a total of two spring
constants (cs, cu) and two damper constants (ds, du). Due to the very small
damping influence of the wheel, du is neglected in most research [77, 78]. The
motion of the chassis mass zsptq results from the underlying motions of the
wheel mass zuptq and the elevation of the road profile zrptq. Publications II
to VI contain all steps for the realization of the calculation, including the
intersection of the masses and the differential equations. We conduct the
parameterization of a representative design of a QVM in a laboratory setup
and in a real test vehicle (cf. Publication V).

Our QVM approach (cf. Table 1.2) is distinguished from the commonly
conducted research on the QVM in which given forces from the road profile
zrptq are used to calculate the behavior of the wheel and chassis masses from
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bottom to top. In contrast, we turn the computed path upside down by
acquiring sensor data for the wheel and chassis masses and back-calculating
to the road profile. In combination with the sensor technology used in the
subsequent section, we can calculate the model and obtain the road elevation
zrptq. The calculation of the QVM is described in Publications II to V. In
the following, we introduce the utilized sensor technologies, which are located
within these model boundaries.

ms

ms

zs (t)

(a) (b)

ds

ds

cscs
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mu

mu

zu (t)

cu du

zr (t)zr (t)

Figure 2.3: (a) Multi-body QVM [79], (b) simplified QVM

2.3.2 Sensors in Vehicle Dynamics

To enable the back-calculation of the QVM, data regarding the motion of
the wheel and chassis masses are required. Here we rely on the use of pre-
installed sensors in common vehicles: the Vehicle Level Sensor (VLS) and
the Acceleration Sensor (AS). The combined use of both sensors allows us
to calculate the elevation profile of the road using the parameterized QVM.
Despite the fact that our research only uses the data from these sensors, we
will briefly discuss their operating principles so that the VLS and the AS do
not appear to be black boxes in the further course of the work.

Vehicle Level Sensor

The sensor is widely used to measure the front to rear tilt of vehicles, due
to the mandatory implementation of headlight range control for xenon- and
LED-based headlamps in many countries, especially those in the European
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Union [80]. The headlight range control enables adaptive adjustments of the
luminosity based on the vehicle’s tilt angle in order to avoid blinding oncom-
ing traffic and to maintain the best possible vision. A further application
requiring the VLS sensor data is the adaptive chassis and suspension sys-
tem that enables vehicles to adjust their suspension system to current road
conditions [81, 82].

Figure 2.4: Vehicle Level Sensor: Rotatable lever and fixed base housing

The housing of the VLS contains a Contactless Inductive Position Sen-
sor (CIPOS) that consists of two essential parts, the stator and the rotor.
The stator consists of the Printed Circuit Board (PCB) and an electronic
assembly in which the exciter and receiver coils are shaped as PCB traces.
The electronics for evaluation as well as the interface to the control unit are
located in the electronic assembly. The rotor is a trace formed in a specific
geometry, as illustrated in Figure 2.5. An alternating current flows perma-
nently through the excitation coils and thus generates an electromagnetic
field which reaches the traces of the rotor. The induced alternating current
in the rotor then induces a second electromagnetic field, and both electro-
magnetic fields act on the three receiver coils located on the stator and induce
an alternating current that is dependent on the rotor position. Due to the
excitation coil’s geometry, the rotor’s induction is independent of the posi-
tion angle inside the case. In contrast, induction in the receiver coils depends
on the rotor distance and thus on the angle of the sensor level position (cf.
Figure 2.4). The electronic assembly is responsible for the calculation as well
as for the signal processing of different interfaces (e.g., PSI5, Pulse-Width
Modulation (PWM)).

The VLS is mounted on the chassis mass and the wheel mass with one fix
point at the body of the VLS and one at the lever. The mounting geometry
allows the offset of the chassis and wheel masses to be determined based on
the lever position. Thus, the VLS measures the displacement between wheel
and chassis mass in real-time based on the angle generated in the CIPOS.
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Exciter coil Receiver coil Circuit board

Electronic assembly

Figure 2.5: Design of the Contactless Inductive Position Sensor (CIPOS) [83]

Acceleration Sensor

Micro Electro Mechanical System (MEMS) ASs are commonly used in the
spring-damper system of modern vehicles. MEMS techniques create mechan-
ical sensing micro structures that are often based on silicon. When paired
with microelectronic circuits, MEMS sensors can measure physical quantities
such as acceleration [84]. ASs are usually mounted at the wheel mass and
frequently at the chassis mass and are utilized for active chassis control sys-
tems. They generate data for active shock absorbs which allows the driver
to utilize various driving styles (sport, urban traffic, etc.). The ASs used
in vehicle dynamics must operate in low-power with a reasonable accuracy
while being robust in harsh environments [85]. Publication V delivers fur-
ther information on the AS used in our QVM-based calculation of the road
elevation.

In our test vehicle, the AS fits in a 3D printed housing, mounted with
a pipe clamp on the axle rod of the wheel mass (Figure 2.6). The inner
attachment in the housing compensates the angle of the axle rod to enable
one direction of the AS to fully measure vertical acceleration.

Figure 2.6: Mounting of the AS’s housing (yellow box) at the wheel mass
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2.4 Deep Learning in Object Detection

This section is intended to provide the research background regarding the
adopted DL notations, concepts, and algorithms. The central theme is the ex-
ploratory study of DL models and their performance in the detection of road
damages and their severity. We outline the building blocks of Convolutional
Neural Networks (CNNs) for object detection, which are primarily explained
in CV. Section 2.4.1 and 2.4.2 lead over to our application, the detection
of road damages. Here we explain the DL algorithms FRCNN and YOLO,
which are applied in Publications I, VII, VIII, and IX.

DNNs are a specific class of Artificial Neural Networks (ANNs) that are
inspired by the visual cortex of humans and consist of a collection of con-
nected cells [86, 87]. These cells are called neurons, and each of them pro-
cesses the sum of incoming signals using a defined, often non-linear function
before passing on the output (e.g., Figure 2.7). Equation 2.1 displays the
heavyside step function that transforms to zero any incoming signals that
are less than or equal to zero and transforms to one any that are above zero:

Θpxq “

"

1, x ą 0
0, x ď 0

(2.1)

Neurons of the same depth are aggregated in layers that perform different
transformations on the input signals and thus are responsible for fulfilling dif-
ferent tasks according to the use case. The connections between the neurons
are called weights and represent the strength of the signal. A higher strength
leads to a bigger impact of the connection in the output of the DNN.

DL is a subset of ML and is largely based on ANN. The success of ANN
in object detection is due to the rapid development since the introduction of
AlexNet in 2012 where the CNN solution surpassed hand-crafted ML solu-
tions in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
[88]. Improvements in computation power have also enabled the application
of this demand-heavy technology [89]. ANN utilizes a large amount of data
for training rather than expert knowledge of rule-based solutions, which is
why transparency is not always granted and has increasingly become a sub-
ject of investigation [90].

DNNs are a specific kind of ANNs with multiple layers between input and
output layers, for which reason they are also referred to as “deep”. The layers
in between are called hidden layers. Every neuron has a bias that is added
to the sum of inputs and acts as a sort of offset. As training proceeds, these
weights increase or decrease the strength of signals, leading to adjustment of
the biases.
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Figure 2.7: Example structure of a simple ANN with input layer, hidden
layer, and output layer

The network has to be trained over time from training data to learn the
suitable weights and biases for a given task. The model presents a subset
of the available data as a training set, and the rest is kept separate for
validation and testing purposes. In the beginning, all weights and biases are
initialized randomly, and with each training step, they are corrected to better
fit the desired output. The different weights and biases influence the outputs,
and the errors are calculated using the gradient of the cost function, which
incorporates the weights and biases. This method is called backpropagation
[91]. This gradient is also used for the gradient descent. Various optimization
algorithms can be used, each with its own set of advantages and disadvantages
[92]. However, on high-dimensional data, common gradient descent with no
modifications struggles to converge; therefore, further adaptations have been
introduced to develop new techniques as Stochastic Gradient Descent (SGD)
with momentum [91] or Adaptive Moment Estimation (Adam) [93].

CNNs are a subcategory of ANNs that are used to create most modern
object detectors [94]. With the introduction of AlexNet [95], the authors
achieved a considerable performance boost in the image classification chal-
lenge ImageNet [96]. As a result of this achievement, CNNs may now replace
hand-crafted feature extractors in image classification and object detection
processes. Advances in computational power and data availability [97] have
further enabled CNNs to improve in recent years.

The essential parts of the CNN are the convolutional layers. An input, in
our case an image, becomes increasingly abstracted in deeper layers, resulting
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in a features map that represents the input image. These layers perform the
binary operator called Frobenius inner product, that takes two matrices and
returns a number as illustrated in Equation 2.2 of the convolutional kernal
B and part of its input matrix A.

xA,ByF “
ÿ

ij

AijBij (2.2)

The size of the kernel defines the input of a neuron by its restricting area
(called receptive field). These shared weights of one kernel across a layer
of neurons result in a translation equivariant feature map [98]. The stride
s defines the step size of the convolutional kernel, which is used to slide
over the image to create a feature map. A stride s “ 1 preserves the input
dimensions, while s “ 2 would downsample the input to 0.5.

Pooling layers are commonly used to reduce the data dimensions and are
frequently located in CNNs. Pooling layers use clusters to combine the inner
values to one neuron. In practice, max pooling, in which the largest number
of the cluster is transferred to the subsequent neuron, and average pooling, in
which the average of the cluster is transferred, are most commonly applied.

Hereafter we detail two popular and cutting-edge CNN frameworks, the
multi-stage FRCNN (Section 2.4.1) and the single-stage detector YOLO (Sec-
tion 2.4.2).

2.4.1 Faster R-CNN Algorithm

The FRCNN algorithm contains two individual modules. The first module,
Region Proposal Network (RPN), is a CNN with the task to generate region
proposals with an objectness score. Each proposal is recognized as a Region
of Interest (RoI). A Fast R-CNN [99] is the second module and investigates
the RoIs. Both modules share computation via a common set of convolutional
layers. FRCNN is considered as a DNN with attention [100], with the RPN
suggesting the Fast R-CNN to investigate the RoIs.

The shared convolutional layers are responsible for the feature map of
the original input, and utilized by the RPN. It creates k, anchor boxes
each position, while a classification layer derives 2 ¨ k scores including the
presence of an object and a regression layer calculates 4 ¨ k as the bounding
box coordinates. The anchor is placed at the center of the sliding window,
going over the feature map. Every anchor is associated with a scale and an
aspect ratio. This method ensures translation invariance for the proposals
and detections, and multi-scale anchors eliminates the need for feature maps
of different sizes and aspect ratios [101, 102] to identify objects of different
scales and proportions.
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Only anchor boxes with a high enough overlap with the ground-truth
boxes are counted as correct predictions. To measure this, the Intersection
over Union (IoU) is needed, which is the division of area of overlap by the
area of union. With predicted box A and ground-truth box B, the IoU is:

IoU “
|AXB|

|AYB|
(2.3)

Anchors achieve a positive label if they have the highest IoU with a ground-
truth box or if the IoU is greater than 0.7. They achieve a negative label
with an IoU of 0.3 or lower. Every other anchor is not considered for the
calculation of the loss. The Loss function for the RPN is defined as:

L ptpiu, ttiuq “
1

Ncls

ÿ

i

Lcls ppi, p
˚
i q ` λ

1

Nreg

ÿ

i

p˚i Lreg pti, t
˚
i q , (2.4)

where i denotes the index for anchors in a mini-batch and pi the probability
for being an object. Ground-truth labels p˚i are 1 if the anchor is positive
and 0 if negative. With these parameters a log loss over two classes Lcls
is computed and normalized with the mini-batch size Ncls. Bounding box
coordinates are represented in the vector ti, with ground-truth coordinates
for positive anchor as t˚i . The regression loss Lreg from [99] is only activated
for a positive anchor (p˚i “ 1) and is normalized with the number of anchor
locations. To roughly equal out the impact of both loss functions, λ “ 10 is
chosen, because of the different values for the normalizing terms.

Mini-batches are created from single images to train the RPN. Each mini-
batch consists of 256 randomly sampled anchors (using all anchors would
bias toward negative samples, which are dominant). The ratio of positive to
negative samples is up to 1 : 1.

A Fast R-CNN takes an image and a set of object proposals as an input.
With the assistance of a CNN, the image gets processed and a feature map
is created. This step is performed by the shared convolutional layer in the
Faster R-CNN architecture. The ZF model from Zeiler and Fergus [94],
which has five shareable layers, and the VGG16 model from Simonyan and
Zisserman [103] with 15 shareable layers were originally tested and used for
this purpose.

The object proposals are generated by the RPN, and for every proposal a
RoI pooling layer extracts a feature vector from the feature map. RoI pool-
ing is a special case of the spatial pyramid pooling layer [101] that includes
sub-window calculation. The proposals are fed forward into a sequence of
fully connected layers that branch into two sibling output layers. One com-
putes a softmax probability estimate over K objects plus a background class,
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Image Conv Feature Map

RPN Proposals

RoI Pooling

Classifier

Figure 2.8: Faster R-CNN as a single network for object detection with an
attention mechanism [99]

generating a confidence score for every possible object. The other outputs
four coordinates for the location of the object.

A softmax function σ transforms all components of a M -dimensional vec-
tor z into the value range p0, 1q, which allows them to be summed.

σ : RÑ

#

z P R | zi ě 0 ,
M
ÿ

i“1

zi “ 1

+

(2.5)

σpzqj “
ezj

řM
k“1 e

zk
, forj “ 1, ...,M (2.6)

A combination of the two modules works and detects like one single net-
work structure. The structure of a Faster R-CNN can be seen in Figure 2.8.

2.4.2 YOLO Algorithm

Contrasting the two-stage FRCNN framework, YOLO operates in a single
stage. YOLO considers object detection as a regression problem of bounding
boxes and associated class probabilities. YOLO has been evolving since
its invention in 2016 [104], and due to its great success, both official and
unofficial versions have since then been released. In this dissertation we use
YOLOv4 [105, 106] in Publications I and VIII and YOLOv5, an unofficial
version by Glenn Jocher1, in Publication IX. The latter v5 version is a parallel
development to YOLOv4 with marginal differences in detection performance
and runtime.
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The great attention paid by other scientists to the YOLO framework
is due to the fact that, in contrast to previous state-of-the-art frameworks,
no RPN is required (cf. FRCNN). As detailed above, RoIs in the image
previously had to first be proposed and then followed by a classifier that
runs over these regions. Subsequently, duplicates had to be removed via
postprocessing. Instead of iterating the process of classifying different regions
of the image, the YOLO framework computes all the image features. By
making predictions for all objects at the same time with a single NN of
multiple CNNs, YOLO predicts vectors corresponding to each object in the
image.

The processing steps of YOLO are illustrated in Figure 2.9. Entire images
are divided into a SˆS grid (default: 7ˆ 7). If an object is located in parts
or in a grid cell, it is responsible for its detection. Bounding boxes are
predicted simultaneously over all classes for each grid in the image, including
a confidence score. The confidence score reflects the probability of an object
being in the calculated bounding box, as shown in Equation 2.7.

confidence score “ Prpobjq ¨ IoUtrue
pred. (2.7)

Prpobjq reflects the probability of an object being in the cell, while IoUtrue
pred

is the intersection over union of the predicted box. When it is necessary to
detect more classes of objects, an S ˆ S ˆ pB ¨ 5`Cq tensor of class specific
confidences PrpClassi | objq is created from each cell.

PrpClassi | objq ¨ Prpobjq ¨ IoUtrue
pred “ PrpClassiq ¨ IoUtrue

pred (2.8)

Besides the confidence scores, each bounding box additionally is defined
by the center coordinates px, yq of the box as well as the height h and width
w. In total, five parameters correspond to each bounding box [104].

The YOLOv1 framework essentially consists of the Darknet architecture2

and two following fully connected layers. The Darknet architecture can be
either 24 convolutional layers for normal-YOLO or 9 convolutional layers in
fast-YOLO depending on the complexity of the object detection task.

The loss function Lyolo includes three parts, being the bounding box loss
Lbb, the objectness loss Lobj, and the classification loss Lcls (cf. [104]). For
more information on the individual losses, see Redomn et al. 2016 [104].

Lyolo “ Lbb ` Lobj ` Lcls (2.9)

With the introduction of YOLOv2 [107], batch normalization was estab-
lished as a feature improve the training of DNNs by stabilizing the distribu-

2Darknet and Scaled-YOLOv4 Framework: https://pjreddie.com/darknet/

54



Figure 2.9: YOLO decision making process, including 7ˆ 7 grid cells [104]

tion of the input layers [108]. Batch normalization reduces the training time,
increases generalization and make dropouts to prevent overfitting unneces-
sary. A new Darknet architecture was introduced with Darknet-19 including
19 concolutional layers and five max pooling layers for improved detection
performance and runtime.

YOLOv3 [109] establishes a new network part between the backbone and
head, named the neck (cf. Publication IX). The neck is responsible for feature
extraction of different scales from the backbone, similar to a Feature Pyramid
Network (FPN) [110]. Darknet-19 is replaced by Darknet-53 which consists of
53 convolutional layers and shortcut connections, delivering improved results.
Graphics Processing Units (GPUs) can be better utilized with the novel
network structure [109]. YOLOv4 and YOLOv5 are detailed in Publication
VIII, and Publication IX respectively.

2.4.3 Datasets and Labeling

In this section, we illustrate the two datasets used in this dissertation, road
images and any damages. We address the labels, the characteristics of the
images, and the placement of the camera in the vehicle as well as the differ-
ences in the datasets.
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Figure 2.10: Road damages drawn from the example images in Appendix A

Road Damage Dataset 2020

The RDDS was the data basis of the IEEE GRDDC3 2020 and builds on pre-
vious datasets from Japan [66, 111]. It includes images of roads from Japan,
India, and the Czech Republic. The GRDDC divided the data into three
groups, one for training and two iterations of test sets to evaluate the results
of the challenge participants. Only the training data was released with dam-
age annotations according to the Japanese Road Maintenance and Repair
Guidebook 2013 [65], also proposed in Maeda et al. 2018 [66]. Table 2.1
displays the annotation classes of the guidebook, although the GRDDC in-
cludes only four classes D00 (longitudinal cracks), D10 (lateral cracks), D20
(alligator cracks, and D40 (potholes). The other annotation classes are not
considered to be significant road damage and differ greatly from country to
country, which makes them less applicable in DL [24, 24]. Section 2.4.3 dis-
plays an aligator crack, a longitudinal crack and a pothole drawn from the
RDS. In Appendix A full scene of different damages are displayed in various
countries representative for the ADS.

Figure 2.11 shows the number of damages in the training set for each
class. With a total of 8381 damages, aligator cracks are the most common,
followed by longitudinal cracks (6592), potholes (5627), and lateral cracks
(4446).

A smartphone is mounted on the windshield in the inner cabin of the
vehicle to capture images of the road ahead. The majority of the images
have a resolution of 600 px ˆ 600 px at a frame rate of 1 fps. The images in
India are captured in 720 px ˆ 960 px and resized to 720 px ˆ 720 px to gain
a squared aspect ratio. About 50% of the damages are located in Japan, 37%
in India, and 13% in the Czech Republic.

The data annotation enables a dataset to be used in CV. Bounding boxes

3Official IEEE GRDDC website: https://rdd2020.sekilab.global/
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Table 2.1: Road damage classes according to the Japanese Road Maintenance
and Repair Guidebook 2013 utilized in Maeda et al. 2018 [66]

Damage Type Detail Class Name

Crack
Linear Crack

Longitudinal
Wheel-marked part D00
Construction joint D01

Lateral
Equal interval D10
Construction joint D11

Alligator Crack Partial pavement D20

Other Damage
Pothole D40
Manhole Cover D50
Storm Drain D51

over individual damages mark their location in the image. A damage is fully
annotated when defined with a class label and the bounding box coordinates,
being xmin, xmax, ymin, and ymax.

The RDDS is employed in the Publications VII, VIII, and IX of this
dissertation. In Publications VIII and IX, it is applied in conjunction and
comparatively with the ADS explained in the following.
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Figure 2.11: Distribution of road damage classes in the Road Damage Dataset
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Automotive Dataset

The videos from which the images for ADS are derived were captured by
HELLA Aglaia Mobile Vision GmbH and were entrusted to us for the purpose
of RDD. The frame rate of the videos is 30 fps, and we extract three images
a second from the videos for labeling. Due to the research setting of the work
in the E-LAB of HELLA GmbH & Co. KGaA, the dataset is not publicly
available.

It contains 10,421 images from Germany (40%), the USA (28%), the
United Kingdom (10%), South Korea (10%), Poland (4%), France (3%),
Latvia (3%), and Finland (2%). An automotive-grade camera from Sony
Corporation was used to capture the images in 3504 px ˆ 1072 px resolution.
The camera is installed flush with the windshield and oriented at the scene
in the direction of travel.
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Figure 2.12: Video sequences from which the images of the ADS are derived
with regard to their country of origin

We completed the image labeling ourselves. Based on our previous re-
search and work with the RDD dataset in Publication VII, we were able to
label subjectively better in comparison, but we did not find a way to quantify
this statement. Besides the above mentioned classes of the GRDDC, we ad-
ditionally labeled longitudinal construction joints (D01), lateral construction
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joints (D11), manhole covers (D50), and storm drains (D51). Figure 2.13 dis-
plays the quantity of all classes used in our research in cyan and the classes
left for future work in red (cf. Future Research). Construction joints (D01,
D11) are the classes that occur most often. Of the annotations we use, lon-
gitudinal cracks occur most frequently with a number of 3693. The other
three classes, D10, D20, and, D40 range between 1500 and 2000 occurrences.

In addition to the higher resolution, these images are of much better qual-
ity than those in the other dataset. No dirty windshields are recorded and the
angle to the road is also improved. The data set is of critical importance to
the development of AV-tailored DL algorithms that are capable of detecting
road damage.
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Figure 2.13: Quantity of all damage classes in our self-labeled ADS, including
those used in our research (cyan) and those for future work (red)
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Chapter 3

Contributions

Regarding a fatality in context with Tesla’s autopilot in 2016, Mary Cum-
mings, professor at Duke University and director of the Humans and Auton-
omy Laboratory, stated that AVs are “absolutely not ready for widespread
deployment.” To date, many fields of application for autonomous driving
systems have been introduced, but we still agree with the statement made
five years ago, as a widespread use is given when AVs have a lasting impact
on people’s mobility in their daily lives. This has not yet been achieved.
Instead, AD is gradually being introduced in scenarios of limited complexity.

“These accidents are inevitable because the technology really has not
been tested across the wide span of people and road conditions.”

Mary Cummings, Professor at Duke University, 2016

All contributions of this dissertation share the common goal to improve
AD regarding safety and comfort by appropriately detecting road damages
and consider them in vehicle motion planning. As a result of the applied
research topic, the theoretical contributions lead to practical implications
in most cases. We highlight specific areas where this deviates. In the fol-
lowing, we describe our contributions in detail to answer the RQs raised in
Section 1.3.

The first contribution of this work is the end-to-end concept that utilizes
on-board sensor technology to detect road damages, which can be put to
immediate use in the VMPS. Our approach, detailed in Publication I, rep-
resents what we believe to be a necessary level of integration, through the
sensor fusion of Artificial Intelligence (AI) and analytical methods. Often,
time-to-market is much more important for the success of products and fea-
tures than is the quality of the solution, which is a danger in our use case if
we, for example, solely rely on AI to be quickly applied [112]. Our end-to-end
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concept therefore offers a lightweight solution that requires no new hardware
components to be implemented and, through utilization of the QVM, deliv-
ers more safety by validating detected damages. Proposing the concept, we
provide a contribution to theory with direct implications for practice.

The second part of the contributions deal with our technology inventions.
We propose technology to successfully detect road damages from a moving
vehicle. We answer RQ1 by developing a novel model-based calculation of the
QVM, utilizing the VLS and an AS. Both sensors are pre-installed in modern
vehicles and are, in combination, capable of detecting road conditions. Only
additional software is required. The model-based calculation of the QVM
that is used to measure road elevation is described in Publications II to
V. Additionally, Publication VI elaborates on the use of the VLS and AS
to detect potholes, speed bumps and distinguishes between different road
coatings, such as concrete, asphalt, and gravel, by utilizing classic ML. The
novel approach is a contribution to the theory, since based on the quarter
vehicle no road heights have been calculated using the VLS. The use of the
VLS allows engineers to measure road conditions by vehicles in daily use.
The practical implications for vehicle safety and infrastructure planning are
manifold.

For the second technology to detect road damages, we, like many others,
apply CV using DL with front-facing automotive cameras in the vehicle,
answering RQ1 through a different approach than those used in previous
studies. We were able to improve the training of the DNNs by effectively
applying modern DL tools to the use case. The influences of individual
tools (e.g., Data Augmentation (DA), Test Time Augmentation (TTA), and
Hyperparameter Evolution (HE)) are analyzed and evaluated with regard to
the impact on detection performance and on the runtime of the models based
on the results reported in Publications VII to IX.

AVs require lightweight detection algorithms because a large number of
tasks have to be performed in parallel in the VPS and powerful hardware
is a strong energy consumption and cost driver. Our proposed algorithms
evolved to become increasingly applicable between Publications VII to IX
and are valuable contributions to RQ2, focusing on the applicability of AI on
edge devices. Our contributions to theory can be applied to other application
domains. Finding a sweet-spot between performance and runtime is of great
relevance for many applications, which is why we have given a comprehensive
overview of how to execute DL training in Publication IX, which brings
numerous advantages for practitioners. Our expectation is that this analysis
will assist developers in other domains with optimizing their models.

While research focuses on detecting road damages, the classification of
the severity have not been addressed in DL. We contribute two approaches
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on how to assess damage severity utilizing DL in Publications I and VIII.
The use of the ADS, our self-labeled dataset of more than 10,000 images

(cf. Appendix A), in DL offers many benefits when applied in AD. Despite
the significant effort involved in labeling such a high number of images, the
object detection performance of DNNs is closely related to the quality of the
training data. We present the notable impact of new data in Publications
VIII and IX. The selection of different traffic scenarios, daytime, and weather
conditions in the ADS further increases the generalizability. In this way, we
contribute to research by demonstrating the great influence of the dataset on
the performance of object detection.
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Chapter 4

Limitations

Designing technology, proposing concepts, or building frameworks imposes
limitations that are always related to the utilized research method and design
itself. An obvious but nevertheless major limitation of all the publications in
this thesis was the lack of time. The topics that would have been desirable
to investigate further are listed in the next section, Future Research.

All models are always simplifications of the reality. Limitations result
from the model boundaries. Although model boundaries are desired, often
to constrain the complexity of a technology or issue and thereby make it
calculable, the limitations must be made transparent.

Below, we separately discuss the limitations for the QVM-based calcula-
tion and those for CV approaches. Afterwards, we explain the limitations of
the end-to-end (E2E) concept proposed in Publication I.

QVM.1. The isolated analysis of the quarter-vehicle is a limitation of the
approach, as the influences of the remaining three quarters of the vehicle on
the sprung mass are not taken into account.

QVM.2. In our modeling, the test vehicle and the laboratory demonstrator
are parameterized. This includes the vehicle and wheel mass, as well as spring
and damper constants. As vehicles age, these parameters change, sometimes
considerably (e.g., tires). We do not take this into account.

Despite the acknowledged limitations, the elevation profile qualitatively
and quantitatively (including errors) represents the profile and strives for
pragmatism over truth [26].

Object detection in CV includes limitations of a general nature and spe-
cific, framework-dependent limitations. We acknowledge these in the follow-
ing:
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CV.1. In principle, DNNs can only be as good as the database on which
they are trained. This applies especially to our use case, as two-thirds of the
training data consists of the RDDS provided from the GRDDC. Though, we
are grateful for the public dataset, the image quality suffers from rather poor
viewing angles, dirty windshields, missing variance of weather conditions,
and in parts, poor label quality. In addition, the resolutions of the smart-
phone cameras used are very different from our automotive-grade cameras.
We acknowledge that these preconditions are not ideal, which negatively in-
fluences and limits the results. By adding our ADS (cf. Section 2.4.3 and
Appendix A), we were able to achieve improved results and lay the founda-
tion for further optimization.

CV.2. Despite significant research efforts to improve object recognition, it is
assumed that 100% object detection cannot be realized. This is especially
true when developing DL models that have to run under limited resources
and therefore require trade-offs between detection performance and runtime.

The proposed end-to-end concept in Publication I is a valuable contri-
bution because it combines CV-based RDD and QVM-based RDD to be
applied for increased effectiveness. However, as the word “concept” implies,
it is still a first approach that needs to be shaped. Further, the interfaces
of the components need to be defined. This results in the following three
limitations:

E2E.1. Despite the proposed concept being end-to-end, the details given for
implementation are quite low regarding the aggregation components (cf. C3
and C4 in Publication I). Our pragmatic approach of DSR resulted in a
T-shaped research structure: a high-level end-to-end concept and in-depth
algorithm designs for C1.

E2E.2. The implementation of the road damage features designed for the
HD Feature Map remains unclear regarding the exact semantic structure of
the HD Feature Map in the vehicle and online.

E2E.3. The sensor fusion of the QVM and CV approaches to calculate the
damage type, severity, and location is not designed to the end. This includes
whether a detected damage is passed through to be evaluated by the QVM
approach.
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Chapter 5

Future Research

Many different adjustments, tests, and experiments were left for future re-
search, as the experiments carried out in this work are very time-consuming.
This affects both approaches for detecting road conditions with the model-
based calculation (Publications I-VI) requiring vehicle conversion, signal pro-
cessing, sensor data filtering, and real-world testing. In our CV-related re-
search (Publications VII-IX), high time expenditures occurred in training
and the labelling process of new data in particular.

With regard to the QVM approach, investigation of the following topics
will lead to an improvement of the approach and an optimized application
in vehicles.

QVM.1. An automatic detection of road damage from the obtained elevation
profile of the QVM-based calculation. In this context, it is necessary to
investigate how crowd sourcing can compensate for measurement errors, as
each drive will pass through a damage differently (e.g., centered, touched).

QVM.2. A comparison of analyses of other vehicles with different QVM pa-
rameterizations using the model-based calculation should be performed to
prove similar outcomes. Deviating outcomes could be assessed to improve
the model design by disclosing influences that lead to measurement errors.

QVM.3. A segment-by-segment evaluation of road sections on the basis of
the calculated elevation profile. It would be particularly exciting to exchange
ideas with and receive input from infrastructure planners in order to define
a target for a platform that is fed from our QVM-based calculation of road
conditions (this also includes dealing with crowd data).

In the field of CV technology, especially in object detection of road dam-
ages using DL, the following topics are of particular interest to us:
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CV.1. The addition of further damage classes or other classes often associ-
ated with misclassification of damages (e.g. construction joints, fading road
markings) in training. This could potentially avoid misclassifications of such
elements when they are labeled as background in the training data. If a
DNN has a higher confidence that a manhole cover is a pothole as opposed
to background, adding the class manhole cover could make the confidence
for this class even higher than for potholes, thus preventing misclassification
(diversification of the feature space).

CV.2. At present, we use individual images, but in the vehicle we do have
sequences of images that are related to each other, because we are driving
toward damages. It would be exciting to use Long Short-Term Memory
(LSTM) networks to predict future positions of initially detected damages.
If damages recurrently occur in the expected area, the presence of the damage
should be marked with a higher confidence, thus increasing the likelihood of
immediate use in the VMPS.

CV.3. Currently, the application of the YOLO frameworks for our use case
leads to impressive results. Transfer Learning (TL) seems to be very power-
ful. Despite our failed attempts, not discussed in this dissertation, to develop
a specifically designed DNN for the use case, a DL model redesigned from
scratch should still be a future topic of investigation.

Apart from the two RDD approaches, potential research topics open up at
a higher level of abstraction. The application domain demands an end-to-end
concept including solutions for RDD and RDS classification:

E2E.1. Lightweight semantics that can be implemented with sufficient granu-
larity to account for road damage in the HD Feature Map should be discussed
and developed as a standard.

E2E.2. The aggregation of road damages in the cloud, transmitted by a
large number of vehicles, as “many to one” algorithms will be studied and
researched. Here, special attention must be paid to the case of damage repairs
by infrastructure works.

E2E.3. At the edge level in the AVs, the aggregation of predictions from the
CV algorithms and actual QVM-model calculations must be realized in a
central processing unit (C3 in Publication I).

E2E.4. For a successful integration of the features, the cost functions in the
VMPS of the high-level (route) and low-level (behavior, motion) have to be
adjusted. The influence on the planning tasks has to be evaluated depending
on the type of damage and its severity and tested in field studies.

68



Bibliography

[1] C. Pakusch, G. Stevens, A. Boden, and P. Bossauer, “Unintended ef-
fects of autonomous driving: A study on mobility preferences in the
future,” Sustainability, vol. 10, no. 7, p. 2404, 2018.

[2] S. D. Gleave, R. Frisoni, F. Dionori, L. Casullo, C. Vollath, L. De-
venish, F. Spano, T. Sawicki, S. Carl, R. Lidia, J. Neri, R. Silaghi,
and A. Stanghellini, “Eu road surfaces: Economic and safety impact of
the lack of regular road maintenance–study,” Transport and Tourism,
pp. 1–5, 2014.

[3] T. Adams, “Self-driving cars: From 2020 you will become a permanent
backseat driver,” Sep 2015.

[4] O. Garret, “10 million self-driving cars will hit the road by 2020 – here’s
how to profit,” Mar 2017.

[5] L. P. Robert, “Are automated vehicles safer than manually driven
cars?,” AI & SOCIETY, vol. 34, no. 3, pp. 687–688, 2019.

[6] U. Di Fabio, M. Broy, R. Brüngger, U. Eichhorn, A. Grunwald,
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praxisnahe Einführung. Springer Science & Business Media, 2009.

[35] M. Beaudouin-Lafon and W. E. Mackay, “Prototyping tools and tech-
niques,” in Human-Computer Interaction, pp. 137–160, CRC Press,
2009.

[36] T. Ritchey, “General morphological analysis (gma),” in Wicked
problems–Social messes, pp. 7–18, Springer, 2011.
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Abstract

While autonomous driving technology made significant progress in the last
decade, road damage detection as a relevant challenge for ensuring safety and
comfort is still under development. This paper addresses the lack of algo-
rithms for detecting road damages that meet autonomous driving systems’
requirements. We investigate the environmental perception systems’ archi-
tecture and current algorithm designs for road damage detection. Based on
the autonomous driving architecture, we develop an end-to-end concept that
leverages data from low-cost pre-installed sensors for real-time road damage
and damage severity detection as well as cloud- and crowd-based HD Feature
Maps to share information across vehicles. In a design science research ap-
proach, we develop three artifacts in three iterations of expert workshops and
design cycles: the end-to-end concept featuring road damages in the system
architecture and two lightweight deep neural networks, one for detecting road
damages and another for detecting their severity as the central components
of the system. The research design draws on new self-labeled automotive-
grade images from front-facing cameras in the vehicle and interdisciplinary
literature regarding autonomous driving architecture and the design of deep
neural networks. The road damage detection algorithm delivers cutting-edge
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performance while being lightweight compared to the winners of the IEEE
Global Road Damage Detection Challenge 2020, which makes it applicable
in autonomous vehicles. The road damage severity algorithm is a promis-
ing approach, delivering superior results compared to a baseline model. The
end-to-end concept is developed and evaluated in and with experts of the
application domain.

I.1 Introduction

AVs are on the verge of being introduced into our daily lives. While many
steps have been taken towards the goal of full automation in recent decades,
several technical problems related to functional safety [1] and socio-economic
issues remain unsolved, primarily in the field of AI [2].

AI claims to have a transformational influence in Information Systems
(ISs) across sectors and industries, accelerating ”as people get used to the
reduced human element in all levels of society and the increased use of au-
tomation” [3]. As a result, the development of ISs is increasingly intertwined
with the development of AI algorithms.

Leading car manufacturers already offer systems involving AI that are
far ahead of human-guided driving in terms of safety (S). “People are so
bad at driving cars that computers don’t have to be that good to be much
better”, stated Andreessen in 2011. However, despite AVs being safer, AD
systems systems are not yet widely available on the market, as much of the
intelligence is based on learned knowledge and thus cannot easily deal with
unexpected situations — situations not present in the training data [4].

The AD task can be divided into two sub-areas: recognition of the envi-
ronment (perception system) and the motion of the vehicle in this environ-
ment (decision-making system, [5]). Levels of AD range from no automation,
level 0, to full automation, level 5 [6]. As the level increases, the involvement
of the human decreases, while responsibility of the AD system increases.
AD functions of various automation levels require representations of the real
environment to navigate based on the situation. Perception algorithms are
used to create an environment model, represented by HD Feature Maps.

According to [7], the detection of the road surface has already been an es-
sential part of environment detection in the development of Advanced Driver
Assistance Systems (ADASs), automation level 1–3, and is even more im-
portant with increasing automation [8]. The condition of the road plays a
decisive role in this regard. Subjects of investigation include the type of road
coating (e.g., concrete, cobblestone, asphalt), the weather conditions on the
road (e.g., dry, wet, icy), and significant road damages such as cracks and
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potholes [7, 9].
As in manual driving, information about road conditions will be required,

especially considering poor infrastructure in developing countries and even
high-tech countries such as the USA. Claims amounting to $217 billion per
year alone are connected to poor road conditions in the USA. 42,000 deaths
occur each year, with road conditions being the cause or at least a factor
in 52% of the cases [10]. The vehicle’s mechanical components are subject
to greater wear and tear in bad conditions, which accounts for a significant
portion of the costs. AVs have to deal with aging and dilapidated road net-
works, because the global infrastructure is unlikely to improve in the coming
years. To ensure that countries with poor infrastructure also experience the
positive effects of AD on society, the vehicle must actively respond to poor
conditions, especially significant road damages.

Car manufacturers seem not to be concerned with poor road conditions
yet as early mass-produced AVs will offer AD only in scenarios of low com-
plexity such as highways with a tendency to good road quality. However, in
response to a Twitter user, Elon Musk, the CEO of Tesla, replied in 2020,
“We’re labeling bumps & potholes, so the car can slow down or steer around
them when safe to do so”. Despite early solutions with a low level of in-
tegration into the AD task such as the Volvo’s Hazard Light Alert (2016)
and Slippery Road Alert (2019) [11], no end-to-end solution yet exists in re-
search and industry to tackle road damages in AD. In addition to the impact
on AD, the monitoring of road conditions for road maintenance is of great
importance due to its high economic impact on society [12].

Previous IS research in the domain of road damages dealt with decision
support systems for road agencies [13]. In contrast to systems that support
people, we are engaged in systems for systems in order to improve automation
and thereby increase the still missing acceptance [3].

Academia though primarily discusses single technical solutions for a lim-
ited problem (e.g., object detection, segmentation) rather than a holistic ap-
proach to how road conditions can be utilized to actively support AD. The
impact of RDD algorithms proposed in research remains mostly unexplained
on AD (cf. section Theoretical Review). Original equipment manufacturers
are less and less willing to add new hardware components for new features in
the vehicle as this development has already been a major cost driver in recent
decades. A low-cost solution is therefore being sought to reliably detect road
conditions and classify their severity (RDS), if possible using existing sensor
systems.

We strive to develop an end-to-end and low-cost concept that enables
AVs to detect road conditions and properly act according to them. Due to
our ambition for a practical contribution, we refer to the DSR paradigm.

86



Supported and validated by expert workshops, we address the following re-
search objectives with the focus on creating added value in a targeted and
application-oriented manner:

1. We strive to propose an end-to-end concept that enables AVs to account
for road damages in their motion planning task while making use of
built-in sensor technology.

2. We strive to develop novel modules for RDD and RDS classification
applicable in the end-to-end concept for AD.

I.2 Theoretical Review

Approaching the objectives from an information system’s perspective is of
great benefit since an end-to-end solution must be embedded in the actual
process of dealing with environmental data in AD. As a solution consist-
ing of many components with application in the AD architecture, we must
define an “as it is” architecture based on leading research so that we can
explain the effect of the components regarding the architecture. AD requires
complex and high-tech modules that interact with each other to succeed
driving autonomously. Due to their great relevance for our concept of an
end-to-end solution of utilizing road damages for AD, we will first discuss
the Autonomous Driving System and especially the Environment Modeling
in the next subsections.

Subsequently, we will cover two approaches of recognizing road damages,
one to predict road damages ahead of the vehicle and another to validate the
damages according to the vehicle feedback caused by the damage. Following
our motivation, the technical concepts of both approaches merely require the
use of pre-installed vehicle sensors.
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Behavior Planning
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Motion Planning
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Figure I.1: Vehicle Planning System for AD according to [14]

I.2.1 Autonomous Driving System

AD has undergone many developments in the last 30 years. Although the first
AVs were developed in the 1980s [15], vehicle automation continues to be a
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major area of research. Most driving scenarios are relatively simple and have
already been realized by early prototypes, but solutions to borderline cases
in an arbitrarily complex world have proven to be elusive. A 99.9% safety
rate is not sufficient in an application that is critical to one’s life and the
lives of other road users. Hence, research in this area is expected to continue
even if the products are already on the market. AD systems in academia
and industry differ in design and complexity but all share a division into
perception and decision-making systems [5].

The perception system is responsible for self-localization and recognition
of the environment. Typically, on-board sensors, including camera, LIDAR,
RADAR, and Global Positioning System (GPS) sensors create an ad-hoc
model of the surrounding environment, including but not limited to the road
network, the traffic situation, pedestrians, and traffic signage/lights.

The decision-making system is responsible for the navigation of the vehicle
within the environment. It manages the navigation task of the passenger,
starting from the initial position and considering established traffic rules and
the safety of all traffic participants while providing a comfortable driving
experience [5]. The decision-making system executes multiple planning tasks
to appropriately evaluate the vehicle’s route, path, behavior, and motion.
As AVs advance toward realistic road traffic, they will be confronted with
road scenarios in which the dynamics of other road users must be explicitly
considered. These situations include everyday driving maneuvers, such as
merging into the flow of traffic, overtaking oncoming traffic, changing lanes,
or avoiding other vehicles.

Cost functions are ideally suited to solve this problem. With the help of a
cost function understandable and representative for humans, the forecasted
traffic scenarios can be evaluated and the best trajectory can be selected
based on the lowest cost [16]. In most cases, safety, compliance with traffic
regulations, comfort, and route efficiency play a decisive role in the order
of listing [17]. In their survey, [14] define the hierarchy of decision-making
processes.

Route Planning, also called high-level path planning, performs the selec-
tion of a route through the road network, from the initial position to the
desired destination. Optimal route planning is formulated as the search for a
minimum-cost path on a road network, while the crossing of a road is always
charged with a specific cost based on the road’s properties. The optimiza-
tion problem is addressed in many scientific studies, distinguishing between
human-driven and self-driving vehicles [18]. The architecture of the road
network is described in detail in the Environment Modeling section. A pre-
requisite for route planning is up-to-date information about the road network
and the capacity to utilize this information.
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Behavior Planning is the first part of the low-level path planning and
takes place within the selected route. The general task involves executing
maneuvers according to traffic rules and behavior conventions to pass through
the route. The selection of maneuvers is based on the underlying road and
lane network and the current traffic situation [19], considering other road
users, obstacles, and infrastructure signage. The real-time data must be
obtained from the vehicle’s perception system. Possible maneuvers include
maintaining a lane, changing lanes, turning, or stopping the vehicle.

In the second part of the low-level planning, Motion Planning, the selected
maneuver is planned in such a way that the vehicle is guided safely and
comfortably to the desired position with a dynamically feasible trajectory.
In this processing stage, standard methods of motion planning are drawn
from the robotic literature. State-of-the-art path planning methods include
but are not limited to visibility graph-search methods [20] and incremental
search [21].

The Local Feedback Controller is used to select appropriate actuator in-
puts to execute the planned motion and correct tracking errors. The tracking
errors generated during the execution of a planned motion are partly due to
the inaccuracies of the vehicle model. Therefore, great emphasis is placed on
the robustness and stability of the control loop.

The described AD system is needed to understand where road damage
features can potentially add value for AD. The section End-to-end Concept
closes with how road damage features will be utilized to improve the route,
behavior, and motion planning.

I.2.2 Environment Modeling

The perception system of AVs is responsible for understanding the vehicle’s
environment, which involves estimating its pose (position and orientation)
in the 3D world and the perception of its local surroundings. In contrast to
standard GPS navigation system maps, HD Feature Maps usually contain
much richer environmental information, such as roadside objects (e.g., signs,
barriers) and lane-level information (e.g., markings, widths). Exploitation of
these features enhances the perception system, enabling precise localization
with centimeter-level accuracy. [22] provide a comprehensive overview of
HD Feature Maps for automated driving.

Vector HD Feature Maps contain precise geometric descriptions of road
elements and retain higher-level semantic information, such as road topology,
lane type, and speed limit, allowing them to have a significantly smaller data
size and to scale to more vehicles and larger regions [23]. According to
Ovum’s Location Platform Index, the leading service vendor in the location
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platform market is HERE, followed by Google, Mapbox, and TomTom. Most
of them are based on OpenDRIVE [24]. To be more specific, we adopt the
HERE HD Live Map structure and terminology in this section.

The HERE HD Map is a multiple-layered hierarchical arrangement com-
posed of the road model, the HD lane model, and an HD localization model.
The road model network contains the road topology and can be represented
as a directed graph consisting of a set of intersections and a set of road seg-
ments [19]. The nodes represent the start and end of road segments (i.e.,
intersections or dead ends), and the edges depict the course of the road [22].
Different road-related information and semantic information can be encoded,
such as travel direction, type, speed limits, elevation, slope, and curvature.
An optimal road-level route (i.e., a sequence of road segments from start to
goal) can be calculated using edge weights that correspond to the cost of
traversing a road segment and then applying a shortest path algorithm [14].
While the road model’s smallest modeling unit is the road segment, the lane
model provides a more precise representation of the environment and con-
tains the lane topology [19], including lane-level features such as lane lines,
lane width, and lane markings.

As the real-world environment around vehicles is constantly changing and
emerging, a once-built offline HD Feature Map is not sufficient for accurate
environment perception — road conditions deteriorate over time, speed lim-
its and road markings change, construction sites and road hazards come and
go. Thus, online updates to the map are necessary to account for the dy-
namic environment changes. HD Feature Maps are transitioning from the use
of systematic industrial capture with LIDAR-equipped vehicles to a crowd-
sourced model that can perform map maintenance in near real-time. As the
participating vehicles (i.e., the crowd) differ in size, travel path, and sen-
sor setups, the aggregation algorithms must incorporate sensor-fusion and
DL approaches that accommodate the different sensor data. The resulting
HD Feature Map can be viewed as an extended vehicle sensor and comple-
ment the local perception setup [22]. While the road model alone can only
support high-level route planning by evaluating road-related information, be-
havior planning requires powerful real-time perception and decision systems
inside the vehicle. However, an updated lane-level map with precise localiza-
tion provides an exact trajectory and reduces the in-vehicle computational
burden [23], as the perception system is also able to utilize the crowd-based
map knowledge to initiate appropriate maneuvers.
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I.2.3 Camera-based Detection of Road Damages

Recognizing road damages ahead of the vehicle is crucial for AD to actively
execute low-level path planning according to the situation. This is especially
important if a damage is not yet present in the online HD Feature Map. But
even if it is already featured, a local perception increases the probability of
existence.

Primarily, camera and LIDAR-based approaches are reported in research
to assess road conditions in advance. Recent LIDAR solutions of assessing
the road surface focus on grading road damages [25], detecting cracks [26, 27],
assessing the flatness of the road [28], estimating roughness [29] and detecting
potholes [30].

However, as environment recognition in AD is performed using a combi-
nation of camera, LIDAR and RADAR sensors, different sensor combinations
always include front-facing cameras but not always LIDAR sensors, which is
our reasoning to focus on camera-based RDD only.

The utilization of camera sensors for RDD has been subject of consider-
able research, primarily in engineering. A substantial amount of research has
been conducted on RDD utilizing rule-based algorithms and ML methods.
[31], [13], [32] summarize ML- and rule-based approaches, though we focus on
RDD with DL methods due to their general superiority in object detection.

From an academic perspective, camera-based detection of road damages
reached its preliminary peak in the GRDDC 2020 [33, 34]. The RDDS
2020 was shared among researchers with solely focusing on detection perfor-
mance, not accounting for speed/applicability. The provided datase consists
of 21,041 labeled images from India, Japan, and the Czech Republic [34].
The research content and the techniques used are shown in Table I.1.

In total 121 teams submitted their RDD approaches to the GRDDC which
were then rated by an evaluation server through the F1 metric. The test data
set includes 5,295 images of longitudinal, transverse, and alligator cracks,
as well as potholes. The top-12 ranked teams are displayed in Table I.1
including their solutions, all applying transfer learning with established DL
object detection frameworks. Since the only metric of the challenge was
detection performance over the F1 score, most of the better teams applied
ensemble models, which includes #1, #2, #3 and #6. DA is a common
tool to extend the database which is successfully applied by most teams,
while the application of TTA leads to varying results, with #1 resulting in
an upgrade, but #11 in a downgrade. Likewise, different results occur when
applying road segmentation to focus on the relevant image area (#3, #6
reporting an upgrade, #10 a downgrade).

YOLO-based models reach superior results compared to FRCNN models
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(#9-#12), regardless of the YOLO version utilized (#1, #2, #4-#6 and
#8). Another finding of the challenge is that expert models from different
countries can help to improve detection performance. However, this requires
a prior country classifier (#4, #10, #12).

DL solutions proposed in research still lack real-time capability, as most
research focuses on performance over speed, which is not sufficient for a
lightweight application in the vehicle [31].

Table I.1: GRDDC 2020 Literature and proposed DL techniques

Articles Techniques
Hegde et al. [35] YOLO-v5, Data & TTA, Ensembles
Doshi et al. [36] YOLO-v5, Data & TTA, Ensembles
Pei et al. [37] Cascade R-CNN, Data Aug., Ensembles
Mandal et al. [38] YOLO-v5, Data Augmentation
Dongjun [39] YOLO-v5, Data Augmentation
Liu et al. [40] YOLO-v4 & Faster RCNN, Data Aug.
Naddaf-sh et al. [41] EfficientDet
Xiaoguang et al. [23] YOLO-v4, Data Augmentation
Hascoet et al. [42] Faster R-CNN, two stage detection
Vishwakarma et al. [43] Faster R-CNN, multi-stage
Pham et al. [44] Detectron2 and Faster R-CNN
Kortmann et al. [45] Faster R-CNN, regional experts

The detection of road damages is just one step of the CV task for AVs.
Another critical aspect is the severity of a damage as not all damages are
relevant for the vehicle dynamic and we seriously want to prevent vehicles
from avoiding all non-relevant damages. [32] and [42] report a lack of severity
algorithms to be applied in practice. [46] proposed a close range method
to measure a potholes size and depth, not applicable while driving and for
longer range. [47] also captures 2D images for 3D reconstruction, using visual
and spatial characteristics of potholes. [48] whereas applies Support Vector
Machine (SVM) and random forest ML approaches to assess the severity,
including just 65 miles of road. All approaches have not been tested on
automotive grade front-facing cameras in a driving scenario.

Despite the many strengths of the camera, images do not give feedback
on how AVs are influenced by damages and what actual impact damages
have on the vehicle dynamics.
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I.2.4 Road Damage Detection with Vehicle Feedback

Besides predicting the presence of a damage, the influence on the vehicle
needs to be measured to validate whether the damage is of importance for
motion planning of AVs. For this reason, we present technical solutions
of measuring road damages from on-board sensors located within the vehicle
dynamics. Although the information about the damage is then only available
after driving through them, this analysis provides the true impact on the
vehicle. The gathered in-depth information can be shared via the Online
HD Feature Map to impact motion planning of vehicles driving the same
route.

[49] utilize retrofitted ASs to access the IRI, a metric to describe the
roads’ condition over a specified distance. [50] employs similar sensors, but
takes a different approach in detecting potholes from the sequential sensor
data. Other attempts involve the use of smartphones and their ASs in the
driver’s cabin for detecting potholes [51, 52]. Due to the strong suspension
and damping of the driver’s cabin and that for different types of vehicles, [53]
and [54] apply the evaluations of different smartphones in a crowd sensing
scenario to compensate for uncertainties of individual measurements. [55]
estimate road damage severity by making use of the relation between vertical
acceleration and relative vertical displacement of the vehicle.

[56] employ the VLS, pre-installed in modern vehicles as part of the auto-
matic headlamp levelling, and an AS to consistently measure road elevation
by modelling the QVM. The output is a accurate elevation profile of the
road from which damage can be detected and assessed.

I.3 Research Approach

In this chapter, we first describe the underlying DSR approach, followed our
iterative description of the research process (cf. Table I.2) for designing the
end-to-end concept. Besides the end-to-end concept, the Section I.3.2 repre-
sents the process for revealing research gaps in RDD and RDS classification,
being our second and third objective to be designed.

I.3.1 Design Science Research

This chapter describes our epistemological position on DSR as a research
paradigm. Despite partly contrary views on DSR in the literature [57, 58],
we support the understanding of DSR being pragmatic in delivering utility
in a defined application domain rather than focusing on truth [59, 58, 60].
Actions are motivated by a purpose (relevance) and are enabled by knowledge
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(rigor) to achieve environmental change [58]. Pragmatism focuses on how new
artifacts designed in DSR can drive outcomes, given limited resources.
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Figure I.2: Three cycles of DSR according to [61]

We utilize the DSR framework of [61] for our investigation, which is
adapted to our use case in Figure I.2. It comprises three research cycles
to effectively conduct DSR: relevance, rigor and design.

The relevance cycle connects the design activity with the occupied appli-
cation domain, thus with the real-world problems drawn from the environ-
ment. The origin of the problems can be people, organizations or technology.
The results of the research should be novel to the application domain and
pragmatic and valuable in nature.

The contrasting rigor cycle deals with knowledge from research of the
occupied field. In DSR, researchers simultaneously draw from the existing
knowledge, as well as extending it by their designed artifacts. The rigor
cycle consists of both, technical foundations as well as methodologies used
in research.

The actual design takes place in the design cycle, influenced by the rel-
evance and rigor cycle. The design cycle includes an iterative process of
building artifacts of different kind to solve the problems of the environment.

I.3.2 Research Implementation

We conduct three iterations, following the DSR paradigm. Each iteration
includes a relevance, a rigor, and a design cycle. Table I.2 describes the
iterations’ inputs, methods, steps and results respectively for all cycles.

An iteration, thus the discussion with the experts via a workshop (rele-
vance cycle), the investigation of the knowledge base (rigor cycle) and the
design phase (design cycle), spans four weeks each.
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Table I.2: Overview regarding the implementation of DSR including three
iterations over three cycles

Design science research implementation
Relevance Cycle Rigor Cycle Design Cycle

Input
Iteration 1-3

• Application scenario
• Expert demands, knowledge

and feedback

• Literature on AD
• Literature on RDD:

• Analytical solutions
• GRDDC solutions

• Literature
• Expert experience in AD
• Experience in DL

Method
Iterations 1-3

• Literature review
• Expert workshop

• Literature review
• Design science research

• Literature review
• Prototyping & field study

Step

Iteration 1

• Conduct workshop 1:
• Review AD architectures
• Propose AD subsystems

drawn from literature
• Discuss the modules of

the end-to-end solution
• Discuss on the lack of

lightweight RDD modules

• Gather relevant literature:
• Vehicle perception system
• Decision-making system
• RDD techniques
• DL state-of-the-art in CV

• Analyze literature
• Determine design cycle inputs

for end-to-end solution and DL

• Designing the “as it is”
architecture

• Examine required tools for
the end-to-end concept

• Fit tools in the AD
architecture and explain
impact on motion planning

• Design final end-to-end
architecture

Iteration 2

• Conduct workshop 2:
• Propose end-to-end solution
• Discuss the sub-modules
• Propose our RDD module
• Discuss RDS importance

• Select YOLO DL Framework
• Select DL tools for training
• Conclude a lack of RDS

modules in research

• Analyze DL frameworks
and tools for RDD

• Analyze DL tools to keep
real-time capability

• Design final base and
expert models

Iteration 3

• Conduct workshop 3:
• Propose our RDS module
• Discuss the RDS module

• Document end-to-end solution
• Document RDD and RDS
• Publication writing

• Analyze DL domain
for RDS

• Testing RDS concepts
• Design final RDS

prototype

Result

Iteration 1
• Agreement on an AD

architecture
• Requirements for a

cost-efficient
end-to-end solution on RDD

• A research gap in
applicable RDD modules

• Knowledge on AD subsystems:
• Vehicle Perception System
• Vehicle Motion Planning
• Online Map System

• Knowledge on RDD techniques
• Knowledge on HD Feature

Maps

• Low-cost end-to-end
concept on RDD and
RDS classification

Iteration 2
• Validation of the sub-modules

of the end-to-end concept
• Validation of the

lightweight RDD module
• A research gap in RDS

• Knowledge on DL tools
• Identification of useful tools

in DL to reduce runtime

• Lightweight and
performant RDD
algorithm

Iteration 3
• Validation of the RDS module

as a promising approach
• This paper

• Lightweight RDS
prototype

We consult three experts in our workshops. One expert is dealing with
environmental perception of autonomous vehicles in his daily business, pri-
marily utilizing LIDAR sensors. The second expert is responsible for the
appropriate use of the environment by developing functions for AD in the
decision-making system, while the third expert manages projects in this very
area.

As illustrated in Table I.2, we were able to develop the concept on how to
utilize road damages in AD in the first two iterations leveraging the knowl-
edge base and the domain know-how of the experts. Beforehand, we had to
define an architecture of AD, consisting of three subsystems (cf. Section I.4.1)
due to the high complexity of the topic.

Based on the workshops and the evaluation of existing research, we iden-
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tified a research gap in the field of RDD. Existing approaches are mostly fo-
cused exclusively on detection performance in CV for RDD (cf. Section I.2).
The GRDDC focused on improving road management systems, while we
learned that RDD is still hardly considered in AVs. Though, the CV solu-
tions lack applicability due to high computational demands of the DL models.
When applying such models in AVs, it is of great importance to consider the
limited resources in the vehicle. RDD is just an incremental part of succeed-
ing with AD in harsh environments. The AV must perform multiple object
detection and tracking tasks solely in the VPS being just one component to
succeed with AD. Thus, RDD can just take an incremental part of the total
computing power available. Another, yet insufficiently examined topic, is
RDS classification as depicted in Section I.2.4. The research gap is spotted
in workshop 2 and evaluated in workshop 3.

I.4 Results
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Figure I.3: The subsystems VMPS, VPS and OMS in a joint architecture of
AD

I.4.1 Common Research Ground

Due to the complexity of AD, it became necessary to establish common
ground with the experts and problematize the lack of architectural vision.
Figure I.3 shows the AD architecture “as it is”, drawn from the expert work-
shops/knowledge and authors perspective. We distinguish and divide the AD
system into three subsystems, being the VMPS, the VPS and the OMS. The
VPS and the OMS consist of a process and data layer to distinguish between
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the inherent operations of the system to create valuable data for the VMPS
as well as defining data objects required for motion planning.

The first of two vehicle sub-systems is the VMPS, explained in Figure I.1.
The second sub-system VPS located within the vehicle is responsible for
gathering environmental information to create a fundamental database for
motion planning [62]. The process layer depicts the procedure in the VPS
on how the sensor data finally process to traffic objects with a determined
position. The data layer whereas shows the deliverables drawn from the
process for the below VMPS. The traffic objects are stored in the local
Vehicle HD Map, the entry point for motion planning.

The third system, the OMS, is stored on an online server accessible via the
vehicle’s telecommunications unit. The OMS must aggregate all the informa-
tion gathered from the local VPSs by performing “many to one” aggregation,
with increasing amounts of redundant detections increasing the probability
of existence of objects. When detecting new features, a map update must
align the semantic layer with the new data. The Online HD Feature Map
is thus capable of self-healing. It can be considered as an additional sensor
to validate local perceptions faster. The process layer depicts the procedure
from aggregation to the map update.

I.4.2 End-to-end Concept

This subsection presents our concept for factoring road damages and their
severity in AD. As we cannot rely on the front-facing camera only, especially
in high-speed driving situations, we adopt two divergent technical solutions
for RDS and RDD and apply them in a crowd sensing scenario. The use case
we deal with is visualized in Figure I.4. It shows a vehicle that detects road
damages and their severity using on-board sensors. We distinguish between
the camera-based approach that detect road damages ahead (C1) and the
QVM-based road analysis (C2) (cf. [56]) that detect the area under the tires
that has already been traversed. Both analysis are merged in C3, the Edge
Aggregation, in the local HD Feature Map and updated with the OMS.

The component C1 is responsible for RDS classification and RDD. Both
information can be utilized immediately in the VMPS, though, both consist-
ing of predictions ŷ with a specified probability for each damage class and
respectively each severity class.

ŷ “

¨

˝

predicted type
predicted severity
predicted location

˛

‚“

¨

˝

t̂
ŝ

l̂

˛

‚ (I.1)
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Figure I.4: Use case for camera- and QVM-based RDD and RDS classification

Most damages are detected by a single pass through with the camera
system including an initial confidence value based on the detection algorithm
C1. The synchronization with the OMS is of great importance in this case, as
damages should have been recognized by other vehicles before. Furthermore,
damages that were initially recognized only by object recognition (via C1)
can be validated by passing through the damage via component C2, utilizing
the QVM-based analysis. The aggregation of both analyses generated in C1
and C2 takes place in C3, Edge Aggregation. Predicted damages ŷ that are
passed through are validated utilizing C2 to become y, a much more reliable
representation of the damage calculated from the elevation profile generated
from the QVM response. This leads to some damages being transmitted as
ŷ and some as y to the OMS.

The OMS is responsible for “many to one” Aggregation (C4) as lots of
local VPSs feed the OMS continuously with data (many ŷ and y) to specify
a single 9y including a fixed type, severity and location.

The end-to-end concept proposed is an information system for the AD
system, similar to decision support systems for humans (e.g., [13]). The
unique feature of this concept is the description of the required modules for
integration into the existing system (cf. Figure I.3). The complexity is higher
compared to the human-supporting systems, since the interfaces have to be
defined precisely.

The design and evaluation of the concept with the experts revealed two
research gaps. While the edge aggregation (C3) and the cloud aggregation
(C4) can be similarly implemented as for example traffic lights or road sig-
nage, we uncover (1) a lack of lightweight RDD algorithms and (2) a lack
of lightweight RDS classification algorithms. Utilizing the freedom given in
DSR, we consistently and pragmatically develop algorithms to enhance the
knowledge base and deliver value for the application domain. To accom-
plish this, we labeled supplemental data in addition to the RDDS data, as
described below.
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Figure I.5: End-to-end concept for the utilization of road damages in AD

I.4.3 Extended Data Set

About three-quarters of our database consists of the RDDS 2020 [34], the
foundation for the GRDDC 2020 (cf. Section I.2.3). The RDDS considers
four damage categories: longitudinal, horizontal and alligator cracks, and
potholes.

As an addition to the RDDS, we labeled 10,260 images from automotive-
grade front-facing cameras recorded in Germany (40%), the USA (28%), the
United Kingdom (10%), South Korea (10%), Poland (4%), France (3%),
Latvia (3%), and Finland (2%) applying the same labels. To build the ADS,
we select different regions to enhance the generalization of the algorithms re-
flect different road conditions in various countries. The images also contain
night, snow, and rain situations. The images are collected by HELLA Aglaia
Mobile Vision GmbH across countries and continents, using identical mea-
surement vehicles and an automotive-grade camera from Sony Corporation.

The addition of ADS is particularly important as the RDDS only uses
images from smartphone camera sensors. The images differ greatly in terms
of quality, aspect ratio and viewing angle. While the smartphone is mounted
on the windshield of the inner cabin, the automotive camera is properly
installed flush with the windshield. The image size of the RDDS is 600 px
ˆ 600 px, respectively 720 px ˆ 720 px for India, whereas the ADS contains
images of 3504 px ˆ 1072 px. Incorporating the self-labeled data, we aim to
tailor the algorithms optimally for application in the AVs, as good results
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Table I.3: Tools for increasing RDD performance

Method Description

Training Data
Photometric Transforms
Geometric Transforms
Moasic Augmentation [63]
Synthetic Samples [64, 65]

Random hue, saturation, brightness values
Random perspective transform, left/right flip
Mixing4 different images as 1 training sample
New data with class-conditional VAE-GAN

Classification Loss
Class Weighting [66]

Smooth Class Labels [67]

Weighting according to inverse frequency of
classes
Turning hard one-hot encoded into soft labels

Weight Initialization
Transfer Learning/
Fine Tuning

Using pre-trained weights/features learned on
another problem as starting point

Anchors
Optimized Anchors [68] Generation of custom anchors with k-means

Training Strategy
Image Weighting [69]

Multi-Scale Training [68]

Weighting data sampling according to classes’
inverse performance of previous epoch testing
Varying image size randomly by +/- 50%

are more likely with using similar images in training and application.

I.4.4 Road Damage Detection

Given a frame captured by a front-facing vehicle camera, the damage detec-
tion system should decide:

1. Does that frame contain any road damages?

2. If yes, localize each damage on that image with a bounding box.

3. Determine the damage type(s) by classifying each detected damage.

The GRDDC indicated the superiority of YOLO architectures in this do-
main. Meanwhile, the state-of-the-art object detection framework for fast
and accurate object detectors Scaled-YOLOv4 [70] was released. The au-
thors proposed a compound network scaling approach along with five net-
work architectures that optimally trade-off speed and accuracy. We picked
the two smallest neural network structures from the Scaled-YOLOv4 frame-
work: YOLOv4-Tiny and YOLOv4-CSP. YOLOv4-Tiny achieves real-time
performance on embedded devices like the Jetson NANO, and YOLOv4-
CSP is a medium-sized architecture, which is still fast, with an inference
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speed of 93FPS on a GPU V100. We used the Mish activation function [71]
for both network designs. The three-part loss functions are composed of a
bounding box regression loss (Generalized Intersection over Union (GIoU)
[72] for YOLOv4-Tiny, Complete Intersection over Union (CIoU) [73] for
YOLOv4-CSP), and cross-entropy losses for objectness and classification.
The actual choice of model depends on the specific hardware setup and the
desired performance (e.g., YOLOv4-CSP has higher accuracy but is slower
than YOLOv4-Tiny). Yang et al. [74] address the challenge of having embed-
ded hardware constraints in autonomous vehicles and conduct an industrial
design study to improve throughput for CNN-based systems.

Numerous design options exist to increase the accuracy of object detec-
tion. However, many of the methods that achieve the highest accuracy in
challenges (e.g., remarkable model upscaling, TTA, and ensemble models)
are accompanied by significantly increased inference speed. While increasing
the accuracy, such strategies typically fall short of the vehicle’s processing
speed requirements. Nevertheless, we can still resort to an extensive collec-
tion of best practices that can improve test accuracy without increasing the
inference time in practical deployment by influencing the training process.
Such methods include standard tricks like image transformations and trans-
fer learning, but also more complex techniques like the artificial generation
of additional data (cf. Table I.3).

We considered the four classes from the damage detection challenge: lon-
gitudinal cracks, transverse cracks, alligator cracks, and potholes. Our end
goal is to maximize the predictive performance of damage detection with
front-facing automotive cameras. We split the ADS into 70% training (7,287
images), 15% validation (1,561 images), and 15% test samples (1,561 images).
In addition to the ADS, we used the challenge dataset to improve the feature
learning process and to provide a comparable test score. Our approach for
both the YOLOv4-CSP and YOLOv4-Tiny architectures is given as below:

1. Build a base model using TL from MS COCO pre-trained weights
using a combined training set composed of the challenge and ADS.

2. Build an AD expert model by fine-tuning the base model solely using
the ADS.

We determined the hyperparameters (e.g., the learning rate, amount
of data augmentation, and objective function parameters) using a random
search [75] followed by a genetic algorithm [76] utilizing the validation set of
the first step. The ADS validation set was employed to determine the opti-
mal number of epochs and the non-maximum suppression threshold for step

101



two, and was added to the training set for final training. We used Stochastic
Gradient Descent (SGD) with Nesterov momentum [77] as our optimizer.
The YOLOv4-CSP base model was trained for 30 epochs with a learning
rate of 0.016. We reduced the learning rate by a factor of 0.1 to fine-tune the
expert for 80 epochs. The Tiny base model was trained for 90 epochs with a
learning rate of 0.006, followed by optimizing the expert for 150 epochs with
a decreased learning rate of 0.001.

RDD Performance Evaluation

Table I.4: RDD performance and runtime of the base models on the RDDS

Rank Model mAP F1 Speed

#9 Tiny 42.1 54.4 5.5ms

#4 CSP (512px) 51.1 58.4 26.0ms

#4 CSP (640px) 51.0 58.8 29.9ms

Table I.4 shows the results of the base models, while Table I.6 depicts the
autonomous driving expert models. We measured the inference speed on a
GTX 1080 Ti GPU for a batch size of one.

The base models are evaluated on the GRDDC evaluation server results
(cf. Table I.4, [33]). The YOLOv4-CSP model is the best non-ensemble
solution with #4 on the leaderboard, utilizing the tools applied in Table I.3
with a runtime of 26ms. The YOLOv4-Tiny base model reaches #9 with a
runtime of only 5.5ms.

High-cost base models are displayed for comparison in Table I.5. Apply-
ing TTA in a YOLOv4-CSP model enhances the F1-score to 63 (+4.6 com-
pared to no TTA), while also the runtime increases significantly to 71.5ms
(+175%). Applying ensembles as a single tool increases the runtime even
more to 135.4ms while delivering poorer results than just applying TTA,
which indicates, that ensembles are not at all useful when searching for a
sweet-spot between detection performance and runtime.

The GRDDC’s high-ranked solutions applied ensembles with large YOLO
architectures such as L or XL, which exorbitantly increases the runtime and
decreases the likelihood of application in AVs even further compared to the
models displayed in Table I.5.

The evaluation of our AD expert models, optimized for the automotive-
grade images is displayed in Table I.6. As the F1-score was utilized in the
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Table I.5: High-cost base models utilizing TTA and ensembles

Rank Model F1 Speed

#2 CSP (TTA) 63.0 71.5ms

#4 CSP (512px) Ensemble 60.3 135.4ms

#2 CSP (512px) Ensemble & TTA 64.1 370.6ms

Table I.6: RDD performance and runtime of the AD expert and base
models on the automotive dataset

Model mAP Speed

AD expert Tiny 31.1 5.3ms

Base Tiny 24.5 5.5ms

AD expert CSP (512px) 48.7 24ms

Base CSP (512px) 0.418 26.0ms

AD expert CSP (640px) 50.7 25.1ms

Base CSP (640px) 0.442 29.9ms

GRDDC, we considered this metric. Though, in object detection, the mAP
has become increasingly important over the last years, as it mirrors the en-
tirety of the precision-recall curve much better than the F1 score, which only
provides information on a defined confidence score. The YOLOv4-Tiny ex-
pert model performs much poorer than the YOLOv4-CSP expert models.
The YOLOv4-Tiny model suffers from a lower depth. We examined that
primarily smaller images are not recognized by the algorithm. If we assume
that small damages have less influence on the vehicle dynamics, it remains
to be judged whether these very damages must not be taken into account at
all.

The performance of the latter two algorithms differs only slightly in per-
formance (+4%) an runtime (+4.5%). The use of a larger input size should
therefore be weighed up according to the available resources.

The improvement in detection performance using our self-labeled dataset
(cf. Section I.4.3) is impressive. The base models perform significantly worse
on the validation dataset of the automotive data (cf. Table I.6), which jus-
tifies the enormous effort to add further data, much closer related to the
application field.
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Figure I.6: Applied Variational Autoencoder (VAE) architecture

I.4.5 Road Damage Severity Classification

Besides localization and classification (i.e., damage detection), assessing dam-
age severity is a relevant factor to accomplish the AD task, as confirmed by
the expert interviews. However, we do not possess any severity labels for the
damages. Therefore, we leveraged unsupervised learning and then subjec-
tively labeled 120 potholes from the challenge and ADS to train a classifier
on top of the learned features, making this a semi-supervised approach. The
reasoning for being able to train a generalizable classifier even with a small
subset of supervised examples is that we also include information from the
large surplus of unlabeled data in the learning process, thus already obtaining
a highly nonlinear feature extractor for the damages. Similar observations
(e.g., in terms of severity) will be encoded at a similar location in the feature
space, facilitating the process of finding an accurate discriminator thereafter.
We confine ourselves to potholes, as they are the most critical type of damage,
and used VAEs [78] for feature learning. Note that the proposed approaches
can be easily extended to more damage classes by additionally conditioning
the VAE encoder and decoder on the damage type.

Autoencoders are unsupervised approaches to uncover latent feature rep-
resentations from data. Typically, they are composed of a neural network en-
coder epxq “ z, responsible for encoding the original image data x into lower-
dimensional features z and a neural network decoder dpepxqq “ dpzq “ x̂,
which maps from the latent space back to the image space. The dimension-
ality of the z-space is typically chosen to be much smaller than the image
space, forcing the model to learn a meaningful encoding. By minimizing
a reconstruction error (i.e., making x̂ close to x), we implicitly maximize
the information contained in the feature representation z, as it needs to
be sufficiently helpful to approximately reconstruct the original data point.
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However, standard autoencoders often fail at learning continuous and inter-
pretable latent spaces, as they rely on deterministic mappings.

VAEs are a probabilistic version of autoencoders that regularize the latent
variables and thus learn a valid space of z. Instead of compressing the input
image into a fixed embedding with a deterministic encoder epxq “ z, VAEs
turn a single image into the mean and variance parameters of a diagonal
Gaussian, which is forced to be close to a standard normal distribution.
The resulting latent variables typically encode continuous, independent, and
interpretable factors of variation in the data x, and meaningful interpolation
based on the resulting z-space is feasible. For example, if x represents the
image of a pothole, z should encode factors of variation in potholes, such as
shape, color, surface characteristics, or depth.

Formally, the encoder represents an approximate posterior distribution
qpz|xq over the latent variables z, and the forward propagation of an image
x is given as follows:

1. Encode x through epxq “ pµ, σq to obtain
qpz|xq “ N pz;µ, diagpσqq.

2. Sample a latent vector z from qpz|xq through
z “ µ` σ ˝ ε, where ε „ Np0, Iq and ˝ is an element-wise product.

3. Decode the feature vector z through dpzq “ x̂.

The sampling step (step 2.) is carried out by applying the reparameteri-
zation trick [78] to render backpropagation through the normal distribution
tractable.

Our encoder–decoder VAE structure is illustrated in Figure I.6, where
c depicts the number of image channels, d is the dimensionality of the la-
tent space, and ConvT denotes a transpose convolutional layer. We used the
Rectified Linear Unit (ReLU) LeakyReLU activation function and batch nor-
malization [79] for all hidden convolutional layers and identity activation for
the fully connected layers (log σ2 ensures σ2 ě 0), and the last layer applies
a sigmoid activation function, as pixels are normalized to the 0–1 range.

The objective of VAEs is the maximization of a lower bound on the in-
tractable data likelihood given by Ezrlog ppx|zqs ´KLrqφpz|xq||ppzqs, where
KL denotes the Kullback–Leibler divergence and x is one image sample. Sup-
pose we use the analytical solution of the KL divergence for two Gaussians
and assume a pixel-wise Bernoulli decoder. In that case, we can equivalently
minimize the following two-part loss function consisting of reconstruction
and regularization loss:
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Lpx, x̂q “ ´
s2
ÿ

i“1

xi log x̂i ` p1´ xiq logp1´ x̂iq `
1

2

d
ÿ

j“1

µ2
j ` σ

2
j ´ log σ2

j ´ 1

(I.2)

where s denotes the height and width of the input image (in our case s “ 64),
d is the dimensionality of the z-space, i is the pixel index, and j denotes the
element index of the mean and variance vector. The first term represents
the decoding part from the latent space to the image space and aims to
reconstruct the original image as closely as possible (i.e., maximizing the
likelihood of the reconstruction). The second part is a regularization term
to avoid ill-formed latent spaces and overfitting by making the approximate
Posterior qpz|xq resemble the standard normal Prior ppzq “ N p0, Iq (i.e.,
minimizing the KL divergence between the two distributions).

Figure I.7: Examples of high, medium and low severity potholes

We created the training set for unsupervised feature learning by crop-
ping out the bounding boxes of the potholes and resizing them to 64 ˆ 64
pixels, resulting in a dataset of 6,895 samples. We transformed the samples
from RGB into grayscale (c “ 1), used a two-dimensional embedding space
(d “ 2), and trained the VAE for 5,000 epochs using the RMSProp optimizer.
Figure I.8 shows the resulting 2D data manifold created by linear interpo-
lation through the latent space from 2 to -2 in steps of 0.2 and decoding
the respective z-vectors. We can interpret z1 as a color feature, with lighter
potholes having values above zero. The feature z2 can be loosely interpreted
as a depth feature, with less severe potholes near z2 “ 0, while the corners
of the space represent serious damage. We then subjectively selected 15 low
severity potholes and 15 high severity potholes and visualized their encoded
mean z-vector in latent space (cf. Figure I.9), which confirmed the above
interpretation.

Given the promising results with only two dimensions, we wanted to
build a classifier that distinguishes between three severity levels. Hence,
we assigned low, medium, and high labels to 120 potholes (cf. Figure I.7).
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Figure I.8: Decoded potholes by in-
terpolation through 2D latent space

Figure I.9: Encoded severe (yellow) &
non-severe (purple) potholes

Approximately half of the samples originated from the Challenge Dataset
(CDS) and half from the ADS. We ensured high inter-class heterogeneity in
terms of shape, color, and distance and split the 120 samples into 90 training
samples (30 per class) and 30 validation samples (10 per class). This time,
we trained the VAE with c “ 3 and d “ 16 for 5,000 epochs to learn a higher
dimensional feature representation accounting for the increased complexity
of the task. The features for the classifier were obtained by sampling the
approximate Posterior zi „ qpzi|xiq@xi, i “ 1, ..., 90 utilizing the trained
encoder. The classifier comprises two hidden fully connected layers with
16 units and ReLU activation and a softmax output layer. It was trained
with the Adam optimizer [80] for 1,500 epochs using a cross-entropy loss
function. Note that the approach of first training a VAE to learn a feature
representation and then training a classifier on it is described as the M1 model
by [80]. To evaluate this semi-supervised scheme, we also train a baseline
classifier that takes the damage x instead of the features z as input.

RDS Performance Evaluation

The accuracy of the classification in three severity levels on 30 validation
examples amounts 80% and just 53% with our baseline model. This indicates
that our VAE learns a viable latent space facilitating the classification task.
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Table I.7: Results of the severity classification

Model Accuracy

Baseline (x) 16/30 (53%)

VAE (z) 24/30 (80%)

I.5 Discussion

This paper addresses the lack of AVs in dealing with road damages. The
application of the DSR paradigm allows us to follow an iterative process
to develop the end-to-end concept, execute gap spotting, and proceed in
designing the RDS and RDD algorithms, answering the revealed research
gaps.

Referring to research objective 1 (cf. Section I.1), we provide researchers
and practitioners with an end-to-end concept on how to utilize built-in sen-
sor technology in AVs to actively respond to road damages in the vehicle’s
decision-making-system. The concept enables the implementation of various
use cases. The first consists of the real-time processing of road damages for
the immediate adjustment of the trajectory. The second use case allows de-
tected damages to be matched with the local HD Feature Map via the online
HD Feature Map. The preventive information can help to consider damages
that have not been detected locally, as well as to increase the confidence of
the environment model in case of redundant local detection. Further, but
outside the scope of our paper, the information is usable for road agencies
seeking greater real-time transparency of their road conditions and to opti-
mize action planning.

An essential step in the development of the concept is the definition of
the “as it is” AD architecture in collaboration with the experts, which is nec-
essary to create a common basis for the export workshops due to the highly
complex topic of AD. Our proposed concept is a contribution to theory and
practice. The topic have not been investigated in research before and offers
a novel combination of modules for an effective use of available sensor tech-
nology for RDD and RDS classification in the complex AD architecture. The
DSR approach is thereby very pragmatic and application-oriented, which is
why the end-to-end concept also provides a valuable contribution for devel-
opers to implement such a solution and to effectively integrate the obtained
features into the motion planning task of the VMPS.

The end-to-end concept proposed enables the AV to enhance the VMPS
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(cf. Figure I.4) in the following way:
1. Impact on High-Level Path Planning: In route planning, cost func-

tions that prioritize different properties are applied. By default, routes can
be optimized according to the shortest possible travel time and the short-
est possible distance. Among other things, research is also concerned with
considering the air quality in the areas to be traversed. In addition to these
considerations, road segments with severe road damage can be factored in.
The cost of passing the road segment increases or could decrease if damages
are repaired. The importance of this feature will increase with automation
level, as the interior of the vehicle can be used for leisure time as well as
sleeping time. Thus, the features should help to increase driving comfort
through improved route planning in areas with good road quality. To grade
road segments, the feature should include the type of damage, the damage
size, and its location and severity.

2. Impact on Behavior Planning: In behavior planning, the AV decides on
the maneuvers to be executed based on the current traffic situation. Road
damages do not yet have a cost in this segment, although it could affect
maneuver planning if the road damage is severe. In extreme cases, severe
damage over a wide area of the road could trigger a full stop. It is also
conceivable that the lane needs to be changed, if the traffic situation permits,
in order to avoid damage leading to a loss of comfort or safety. A lane-level
map can also guide the vehicle to initiate proactive maneuvers and thus avoid
dangerous situations due to damages.

3. Impact on Motion Planning: Road damages are not yet considered in
the cost function when calculating the to be executed trajectory. Although,
for small damages, it is conceivable that, within a maneuver, the trajectory
could be planned in such a way that the damage is not passed through (e.g.,
avoid the damage to the right or left or drive over it in such a way that
the tires do not pass through it). Many AD systems also include collision
avoidance systems. Severe damages that are critical threats to driving safety
can be considered and treated in a similarly to an object on the road that
must not be hit.

Contributing to research objective 2, we deliver a mature RDD algorithm
with significant improvements in runtime and cutting-edge road damage de-
tection performance compared to the top-ranked solutions proposed at the
GRDDC 2020. This is a major step towards successful in-vehicle applica-
tion considering limited computation resources. The results show that it
was worth the effort to label the automotive-grade camera data ADS. We
were able to achieve considerable improvements from this and through the
intelligent use of DL tools in training (cf. Table I.3).

The RDS classification algorithm is a promising first approach. The initial
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results show a significant improvement over the baseline model. An improve-
ment in classification performance would be likely when introducing more
severity-labeled damages due to a greater generalization. However, it must
be further investigated whether this approach also works for other damage
types.

I.5.1 Limitations

The limitations must be split in analogy to the three artifacts designed in
this work.

We make a valuable contribution introducing the end-to-end concept
which features road damages for AVs’ motion planning (high- and low-level,
cf. Section I.4.2), though the exact implementation details remain unad-
dressed. These include the aggregation steps on edge (C3) and the many-to-
one aggregation in the OMS (C4). In addition, we do not provide a detailed
description of the semantics of the HD Feature Map to account for road dam-
ages, what must be discusses regarding what level of severity damages should
be considered and data granularity. Thus, it remains to be judged whether
these are distributed to exact positions or, e.g., to segments to save data
volume.

Furthermore, due to the great change in the electronic and electrical
architecture of modern vehicles from distributed control units to centralized
computers, it has to be problematized as to where the algorithms (C1 and
C2) as well as the aggregation of the data (C3) run and how they are included
in the local HD Feature Map.

Despite the achievements regarding an RDD algorithm that delivers great
detection while being as much lightweight as possible, it remains to be eval-
uated which resources are actually free in the VPS of AVs to accomplish
this task. This would make it possible to optimize a model exactly for the
intended resources. Optimization can also be carried out with regard to the
installed hardware.

Our proposed Road Damage Severity Classification algorithm is a promis-
ing approach, however, these results must be viewed with caution when com-
pared to our RDD algorithm, as the results are based on only 30 validation
images of potholes. More potholes labeled according to their severity would
be desirable for a more meaningful assessment. Ideally, severity labeling
should not be based on subjective criteria, but on a recognized standard
for road damage assessment. However, this would require us to measure
each pothole considered, which was not achievable in our research approach.
Furthermore, it is of particular interest whether the same approach can be
successfully applied to other damage classes (e.g., cracks).
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I.6 Conclusions & Future Work

Regarding the research objectives formulated in the Introduction, we con-
tribute to 1. in proposing an end-to-end concept that utilizes two sensors
technologies for RDD and RDS classification. Moreover, we describe mod-
ules to enable AVs to actively respond to road damages while paying respect
to the modern architecture of AVs (cf. “as it is” Architecture, Figure I.3).
The algorithms developed represent a novel and in-depth contribution to
the knowledge base. The RDS algorithms delivers cutting-edge performance
while being as lightweight as possible, paying respect to limited computation
resources in AVs, and the RDS algorithm being a promising approach on how
to assess the severity with images from front-facing cameras.

Many different adjustments, tests and experiments were left for the future
due to lack of time. This applies to the end-to-end concept as well to the
RDD and RDS algorithms.

The biggest and most exciting challenge for us lies in the complete design
of the end-to-end concept, taking into account all the requirements of a
vehicle with centralized computing capabilities. The implementation would
require going one level deeper in the aggregation components C3 and C4 and
implementing a solution. To accomplish this, existing aggregation procedures
for other features of the HD Feature Map should be applied. The RDD and
RDS algorithms should be adapted based on the assigned computational
capacities. The design of the road damage layer of the HD Feature Map
needs to be discussed regarding information depth needed and data volume
available to provide a reasonable layout.

It is also advisable to examine the potential of this approach for improving
the infrastructure planning of cities and states. What is certain is that the
end-to-end solution provides transparency about road conditions in real-time.
This could be used to react more quickly and depending on the degree of
severity. [13] proposed a decision support system, though utilizing feature-
based ML approaches.

The camera-based RDD and RDS algorithms designed in this work are
yet not aligned with the QVM-based calculation of the road elevation. This
is a sensor fusion topic, which needs to be examined in detail to enable
the predicted damages ŷ to become validated by a vehicle feedback-based
system. Furthermore, the RDS approach represents an exciting approach,
which should be further investigated. However, this requires a much larger
database with damages not only labeled in terms of damage type, but also
in terms of severity.
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Abstract

This paper reports a novel approach for assessing the surface profile of roads
utilizing the vehicle level sensor. The sensor is already legally binding in-
stalled in modern vehicles with headlights including LED and Xenon lighting
sources in Europe due to the automatic luminaire width control. The effec-
tive application of the presented sensor setup is validated within a laboratory
setup displaying and simulating the quarter-vehicle-model for known surface
profiles while comparing the simulated results with measured values from the
sensor setup. The results show that the measured data are in accordance to
the general characteristic of the signals frequency and slope. The amplitudes
deviate slightly due to inertia in the laboratory setup. This paper shows that
the approach of utilizing the vehicle level sensor for road condition monitor-
ing works in principle. It is the first step towards a real-time modelling of
road conditions from common vehicles utilizing given sensors.
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II.1 Introduction

Huge amounts of various sensor data are already existent within the E/E
architecture (electric and electronic architecture) of vehicles. The data is
transferred via communicating bus systems to steer and control most func-
tionalities of the vehicle. At present, the human controls the velocity and
steers the vehicle by his control loop using his eyes, hands and feet. When in-
vestigating automated driving, environmental influences such as current traf-
fic situation, road conditions and the road network are regarded as control
variables. A novel road condition sensor setup is presented to preventatively
adjust the vehicle velocity and control the active chassis [1, 2].

Various solutions of determining road conditions are already known within
the literature. Utilizing smartphone ASs inside vehicles [3, 4], retrofitting ASs
between wheel and spring-damper system [5] or even camera-based road con-
dition detection methods have been published in the past [6, 7, 8]. Instead
of a cost-intensive on-board solution for road condition monitoring with ad-
ditional hardware components or a cost-effective determination by mobile
phones in a largely unknown position in the driver’s cab, the vehicle could
fall back on data from built-in automotive level sensors.

In this paper, we investigate the effectiveness of simulating the quarter-
vehicle-model to characterize the surface profile below the tires. Although,
the measuring vehicle cannot benefit from the computed information as it
already passed through the road segment, it could benefit from a centralized
platform approach where every vehicle in its common use contributes data
for a road condition cloud platform.

II.2 Experimental Setup

The experimental setup subdivides into three Parts: (A) The Vehicle Level
Sensor as it is part of the Sensor Setup; (B) The Quarter-Vehicle-Model as
it is the substitute model for the vehicle and utilized in the simulation; (C)
The Laboratory Setup to explain the functioning of the sensor setup in the
constructed replica of the Quarter-Vehicle-Model.

II.2.1 Vehicle Level Sensor

The VLS is a commonly used sensor in the automotive industry to measure
the tilt from the vehicle front to the rear. Its first application occurred due
to the automatic luminaire width control for headlamp systems to ensure
proper illumination and prevent glare for preceding and oncoming vehicles.
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Figure II.1: Contactless inductive position sensor in the VLS

This function is mandatory in the EU for all newly registered vehicles [9]. The
sensor data is furthermore used within the adaptive chassis and suspension
system which enables vehicles to adjust to heterogenous road conditions with
respect to safety and comfort [10, 11]. The contactless inductive position sen-
sor inside the VLS displays in Figure II.1 The sensor measures the rotation
angle and essentially consists of the moving rotor and the fixed stator. The
stator implies an exciter coil operated by alternating current. The resulting
electromagnetic field induces current into the rotor, which in turn generates
another second electromagnetic alternating field. Both electromagnetic fields
act on the three receiver coils also located on the stator and induce an alter-
nating current dependent on the rotor position. Due to the geometry of the
excitation coil, the induction in the rotor is independent of the position angle
inside the case. In contrast, the induction in the receiver coils depends on
the distance to the rotor and thus on the angle position of the sensor lever.
The electronic assembly performs the induction to angle data provided via
pulse width modulation. The rotor is connected to the actuating lever and
rotates when the VLS moves. The displacement in the spring damper system
can be calculated from the length and angle.

II.2.2 Quarter-Vehicle-Model

To describe the vehicle dynamics, various in its complexity differentiating
substitute models ranging from a single-mass oscillator to a full-vehicle-model
are considered. The quarter-vehicle-model is a modelling concept used to
describe the dynamic behavior as vertical oscillation, wheel stroke and chassis
stroke of one wheel including the spring-damper system and a quarter of the
vehicle mass [12]. This model provides sufficient accuracy for our sensor
setup. Figure II.2 shows the physical relationship in the quarter-vehicle-
model on the left side and the constructed replica in component form on the
right side. The yellow vehicle cage and the weights represent the sprung mass
msprung (ms) while the wheel and suspension system represent the unsprung
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Figure II.2: Substitute model and replica of the Quarter-Vehicle-Model

ms 592.7 g cs 530.5 N/m ds 115.46 kg/s
mu 305.7 g cu 6573.8 N/m du 0, negligible [13]

Table II.1: Laboratory Setup Parameters

mass munsprung (mu). The parameters are as shown in Section II.2.2.

From the VLS angle data, the displacement in the spring-damper-system
between ms and mu can be calculated. Additional to the use of the VLS, an
AS is used within the sensor setup to solve the differential equations following
in the next chapter.

II.2.3 Laboratory Setup

The laboratory setup contains of two replicas of the quarter-vehicle-model
which are fixed in width and depth and movable in height by linear ball bear-
ings (Figure II.3). An electronic drive rotates the 3D-printed road elements
on a slewing ring. The rotary motion results in a rotation of the wheels
of the replicas. The circumference of the full surface profile is 1.5 m. The
yellow vehicle cages, representing the chassis, have a sufficient clearance of
+/-30 mm in vertical direction. Limited by the damper travel of +/-20 mm,
the vehicle model can swing freely without hitting the upper end plate or the
bottom of the box.
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Figure II.3: Vizualization of the laboratory setup including the surface profile

II.3 Surface Profile Calculation

First and foremost, the ability of the laboratory setup to represent the
quarter-vehicle-model must be demonstrated. Forces arise when springs
are compressed or stretched from their rest position Equation (II.1), when
dampers move Equation (II.2) and when masses accelerate Equation (II.3).

Fc “ c ¨ z (II.1)

Fd “ d ¨ 9z (II.2)

Fa “ m ¨ :z (II.3)

For the application of the intersection principle, the forces within the
previously introduced Quarter-Vehicle-Model are listed in Figure II.4. Ac-
cording to Newton, the following differential equations result for the chassis
mass Equation (II.4) and wheel mass Equation (II.5).

0 “ ´mu :zu ` dup 9zr ´ 9zuq ` cupzr ´ zuq

`dsp 9zs ´ 9zuq ` cspzs ´ zuq
(II.4)

0 “ ´ms :zs ` dsp 9zu ´ 9zsq ` cspzu ´ zsq (II.5)

The double derivation of the displacement zs of the chassis ms displays the
acceleration of ms Equation (II.6). The VLS however measures the absolute
distance within the spring-damper system Equation (II.7). Consequently, the
displacement of mu calculates from the double-integrated acceleration data
as subtracted by the VLS data ∆s Equation (II.8).
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Figure II.4: Application of the intersection principle for the quarter-vehicle

as “ :zs (II.6)

∆s “ zs ´ zu (II.7)

zu “

ĳ

as ´∆s (II.8)

The simulation results show the excitation of the model using the known
3D-printed surface profile. The simulated values are compared to the mea-
sured values from the sensor setup.

II.4 Results

In this chapter, the displacement the wheel mass mu is simulated and com-
pared with the measured and calculated values from the sensors of the labo-
ratory setup. The experimentally collected vehicle parameters for the simu-
lation are listed in Section II.2.2. Figure II.5 shows the surface profile of the
3D-printed road element extracted from the CAD-environment in red color.

The tire always hits the unevenness orthogonally in the direction of
rolling. The surface profile is extracted in the center of the tire width. The
blue curve displays the simulated displacement of the wheel zu. The green
curve displays zu in the laboratory setup calculated from :as and ∆z. As the
velocity of the laboratory setup is not controlled, there are temporal devi-
ations in x-axis. However, the obstacles within the red surface profile lead
to changes in the altitude for the measured displacement of mu. Compared
to the simulated results, the measured displacement in maximum amplitude
match with an exception at 2 s and from 3.3 s to 3.8 s. The frequency however
matches despite the temporal deviations.
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Figure II.5: Calculated displacement of the sprung mass on the road

Figure II.6: Calculated displacement from sprung to unsprung mass

The displacement of the sprung mass zs is not displayed in this paper.
The spring-damper system is quite hard compared to the masses used, which
leads to just a slight difference to the unsprung mass. This must be adjusted
in future investigations. Furthermore, the absolute distance in the spring
damper system ∆z of the simulation, calculated from zs and zu (6), and the
real measured values of the VLS are compared. The characteristic shape
of the simulated curve in Figure II.6 can be found again in the measured
values. The frequency and amplitudes of the curves do also match but the
amplitudes from 2.8 s do turn which need to be further investigated. The
measured VLS data also show a slight upswing from 1.5 s to 2.6 s, which can
be reduced by filters.

Figure II.7 performs a comparison of the simulated and measured accel-
erations of the chassis mass ms. The simulated displacement of the chassis is
derived twice and compared with the measured acceleration values from the
laboratory setup.
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Figure II.7: Calculated acceleration of the sprung mass

The results show that the characteristic shape of the simulations mostly
agree with the measured data. The amplitudes show differences which could
be caused by inertia in the laboratory demonstrator and the sampling fre-
quency. For example, at 1 s the cut curve shows that the sampling frequency
is not always able to measure the maximum amplitudes. Even though, in
average it can be seen, that the bigger the obstacle, the bigger the accelera-
tion. The frequencies of the simulated and measured results do also match
for Figure II.7.

Furthermore, in the later application of the simulation, the transfer func-
tion must be inverted so that an unknown surface profile can be calculated
from the sensor data. Therefore, the improper differential equation must be
inverted which will be executed in future works.

II.5 Conclusion and Future Works

The purpose of this paper is the validation of the described sensor setup
to calculate the surface profile. In contrast to previous methods of deter-
mining the surface profile, the demonstrated solution represents a lean and
automotive-grade approach without additional hardware efforts. Despite the
advantages of camera-based methods to be forward-looking, our approach
of enabling common vehicles to measure road quality gains importance with
the rise of connected cars where the data can be joined to ensure a proper
penetration rate of calculated road conditions in a platform.

Between the capability of recovering the surface profile in its height, the
calculated profile can be used to determine national and international road
condition indicators as the International Roughness Index [14, 15] or the
Power Spectral Density [14, 16] which will be calculated in future works
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utilizing the presented sensor system in the laboratory setup and in a test
vehicle on the road.

While the measurement area in the setup is limited to the contact surface
of the tire, the capability of the sensor setup needs to be evaluated for more
realistic road imitation as the 3D-printed synthetic road profile currently
includes a homogenous surface profile in direction of the tire width.

By the simulation of the improper inverse differential equation, future
works need to evaluate whether different vehicle parameterizations simulate
the same surface profile.
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Abstract

In the past years, automated driving has become one of the most important
research fields in the automotive industry. A key component for a successful
substitution of human driving by vehicles is a real-time model of the cur-
rent environment including the traffic situation, the guide-way, and the road
itself. Although, most of the information for the environment model are pro-
vided via in-vehicle generated data based on camera, LIDAR, and RADAR
sensors, we propose a solution of classifying road quality within the spring-
damper system of the vehicle. In this paper, we utilize the VLS, which is a
standard component in modern vehicles, for road condition assessment. We
present a simulation of the QVM for road elevation measurement to enable
each connected vehicle to provide valid data for a potential crowd sensing ap-
proach where every vehicle contributes data for past and consumes data for
upcoming segments. The generated data is capable of providing the environ-
ment model with real-time data of upcoming road segments. The simulation
results are validated on a test bench including a review of the errors.
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III.1 Introduction

The increasing automation of vehicles offers many opportunities, such as
reducing traction congestion, improving comfort for vehicle occupants and
increasing safety, as the vast majority (about 90 %) of accidents are caused by
human error [1]. Recent technological advances in the automotive industry
have contributed to a holistic environment model for CAVs to reach automa-
tion (level 3-5, SAE J3016 [2]). While LIDAR, RADAR and camera-based
environmental recognition has been explored extensively and has also already
been applied in practice [3, 4, 5], digital services play a subordinate role in
current prototypes of automated driving [6]. With the further improvement
of internet connectivity and the evolution of 5G, digital services offer great
potential to provide reliable information for the automated driving task and
environment model in the future.

The Vienna Conventions on Road Traffic [7] in 1968 define behavioral
rules for drivers in 80 countries around the world. Article 13 formulates that
the vehicle speed must be adjusted to road and weather conditions, speed
limits, and the presence of other vehicles. In recent research, the required
environmental model for automated driving does consider the road surface
as one influencing factor for vehicle control. Based on Donges [8] chassis
support system model for ADASs, Winner and Hakuli [9] (cf. Figure III.1)
describe a modified version of a hierarchy model for automated vehicles. The
hierarchy model, visualized in Figure III.1, consists of the vehicle and the
environment. While in automated driving, the remaining task of the driver
consists only in the transfer of the transport task to the vehicle, the vehicle
takes over the navigation, guidance and stabilization. The road surface is
part of the environment and is necessary for the actual trajectory and speed
of the vehicle motion.

Navigation

Guidance

Stabilization

Road Network

Traffic Situation

Road Surface

Driver Vehicle Environment

Alternative Routes

Range of Safe Motion States

Actual Trajectory and Speed

Transport Mission

Vehicle

Motion

Figure III.1: Hierarchy model for automated driving according to Winner [9]

Despite the numerous possibilities of measuring road surfaces, which are
going to be explained in detail in the Related Work Chapter (Section III.2),
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our proposed approach of measuring road roughness makes use of already
build-in hardware and enables a crowd sensing solution in the future. The
employed VLS measures the displacement of the vehicle chassis mass and the
wheel mass. This enables the automatic luminary width control for headlamp
systems to ensure proper illumination and prevent glare for preceding and
oncoming vehicles. The penetration rate of the sensor on the market is very
high due to a 2013 regulation of the United Nations Economic Commission
in which an automated adjustment is marked as mandatory for Xenon and
LED-based lighting systems with a certain intensity [10]. Between the au-
tomatic luminary width control, the sensor data is furthermore used within
the adaptive chassis and suspension system which enables vehicles to adjust
to heterogeneous road conditions with respect to safety and comfort [11, 12].

Figure III.2 shows a road with different road hazards. The turquoise
vehicle only measures road areas it has driven on and only those areas im-
mediately under the tires. This is visualized with transparent turquoise lines
behind the vehicle. The road height profile can be properly calculated by
our sensor setup. The red vehicle also moves over the road in longitudinal
direction and measures the height, though for different road damages as it is
driving on a different horizontal position. The yellow vehicle in turn stands
for n drives through the same road segment. Due to the large number of
drives, almost all uneven areas can be identified. Instead of a topology along
and across the road, international and national road quality indices (cf. Sec-
tion III.2) are to be calculated over route discrete segments (1st Seg., 2nd

Seg.) and transferred to a cloud. In the cloud, it is essential to ensure that
the results of all vehicles are not averaged, as vehicles tend to dodge hazards.

Using existing data for the application prevents further growth of com-
ponents and additional sensors in the vehicle for the purpose of road condi-
tion assessment. Furthermore, a crowd sensing approach allows for a large
amount of data to be used to implement an integrated digital service solu-
tion. Another feature is the measurement in the spring damper system as it
is also related to ride quality and applicable to vehicle dynamics in contrast
to vision-based methods.
Our contributions can be summarized as follows:

• We prove the applicability of the VLS for measuring road conditions.

• We present a viable test bench for road quality assessment including
the VLS.

• We introduce a simulation for the successful calculation of a road height
profile for different QVM configurations.
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Figure III.2: Schematic overview describing the measuring surfaces of single
vehicles and data merging opportunities

III.2 Fundamentals and Related Work

This chapter will first present the procedure of calculating common indicators
for road roughness based on a road height profile. Secondly, we show the state
of the art for individual technical implementations of determining the road
height profile while dissociating from our solution.

As an important part of the environment model, it is crucial to under-
stand how road surfaces are calculated in detail. The aim of road surface
measurements is the extraction of the surface elevation profile and the clas-
sification in discrete roughness sections.

In 1982, the World Bank introduced the IRI as a standard [13]. Sayers
used the IRI for measuring the longitudinal road profile [14] by accumulating
deviations measured in vertical inches per mile or millimeter per meter. In his
1989 publication, Sayers considers the IRI as an accumulation of the motion
between sprung and unsprung masses of a vehicle at a velocity of 80 km/h
over a specific distance [15].

Another method of describing road roughness was introduced by Dodds
and Robson [16] in 1973 on the basis of the Power Spectral Density (PSD)
of the elevation profile. It displays the importance of various wave numbers
of the elevation profile as each road profile can be composed of a set of sinu-
soids [14]. Regardless of the index used for classification, various solutions
has already been described in the literature for measuring road elevation,
which is the first step for all classification indexes.

The common road classification technique in Germany was standardized
in 1991 by the Federal Ministry of Transport and Digital Infrastructure (Ger-
man: Bundesministerium für Verkehr und digitale Infrastruktur - BMVI) and
is based on four triangulation laser sensors. The lasers are mounted vertically
pointing downward on a grid measuring beam and process the longitudinal
road profile in 10 cm intervals [17, 18]. This process is very stable and highly
accurate as it is carried out by special measuring vehicles. Federal roads and
motorways are supposed to be measured in a four-year interval which makes
it non-real-time. Furthermore, the hardware is expensive and not applicable
for common vehicles.
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Camera-based approaches primarily focus on defect detection (e.g crack,
patch) on road surfaces. Chatterjee describes a visual decision system which
processes 2-D images acquired by front-facing cameras utilizing machine
learning [19, 20]. Rajab et al. [21] examined the applicability of camera-
based road defect detection for cracking and potholes compared to tradi-
tional road survey methods. While camera-based solutions could potentially
also be applied without extensive new hardware investments as front-facing
cameras will be standard hardware for CAVs, the applications struggle with
real depth information to calculate the elevation profile. Its strengths occur
primarily in detecting defects as patches, cracks and potholes, which could
make it a great opportunity for sensor fusion with our proposed approach.

Crowd sensing solutions make use of smartphones in vehicles to measure
road roughness and defects. The research project SmartRoadSense analyzes
smartphone acceleration data in the inner cabin of vehicles. Between the
actual calculation of road roughness [22], the project addresses speed depen-
dencies for sensor signals [23, 24] and geospatial aggregation techniques of
crowd-sensing data [25]. Despite of the elegance of using smartphones, which
comes with a great penetration rate on the roads, this approach makes use
of the collaborative approach as the data of a single device is subject to un-
certainty in the position and cushioning (e.g. seats, beverage storage area)
of the smartphone in the inner cabin and the intermediate spring damper
system of different vehicles.

In contrast to the aforementioned solutions, our proposed approach mea-
sures within the spring damper system of vehicles, utilizing the QVM. Kan-
janavapastit [26] propose a simulation of the elevation profile with two ASs
for just one excitation of the system by an artificial speed bump. Based on
Kanjanavapastit [26], we demonstrate the practical suitability in a real test
bench with a varying sensor setup including the VLS while we build on a
similar simulation of the QVM.

III.3 Measurement Setup

In this paper, the results obtained from the simulation are validated in a
test bench. The test bench reproduces the QVM, which reflects the dynamic
behavior of a quarter of the vehicle. This model is particularly suitable for
road condition evaluation, as it just absorbs the vertical forces and our sensor
setup is located within these system limits, between the sprung mass and
the road profile. Figure III.3 shows two quarter vehicle models with different
specifications. Varying parameters are the spring and damper coefficient
and the substitute mass for the vehicle body. The detailed specifications can
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Figure III.3: Visualization of the laboratory test bench [27]

be found in Table III.1. Two models were implemented to show that similar
results can be generated by modeling under different specifications. In reality,
this is equivalent to different vehicles and their capability of measuring road
quality.

III.3.1 Sensor and Simulation Setup

This section describes the implementation of the quarter vehicle simulation
– thus, the calculation of the elevation profile of the road. The sensor sys-
tem consists of a common MEMS acceleration sensor and a VLS which is
a contactless inductive position sensor measuring tilt from the vehicle front
to rear. It measures displacement within the spring-damper system, which
will be explained in more detail in [27]. We sample both sensors every 6 ms
which results in a measuring frequency of 166, 6 Hz. Figure III.4 displays the
quarter vehicle model, including the sensor setup and a visualization of it
in the test bench. The masses of the vehicle are split into two parts - the
sprung mass ms including the vehicle body and everything inside and the
unsprung mass mu, also called wheel mass, including the wheel, bearing and
brake. The tyre is associated with the spring coefficient cu and the damper
coefficient du. The actual suspension system of the vehicle is represented
by the spring coefficient cs and damper coefficient ds. The road height zr
is the indicator that is to be measured. Finally, zu and zs represent the
displacements of the wheel mass mu and chassis mass ms resulting from the
suspension system and road profile.

To understand the measurement of the elevation profile utilizing VLS and
an additional acceleration sensor (AS), the intersection principle of Newton
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must be applied for the quarter vehicle model, cf. [27]. The forces applied
to the unsprung mass and sprung mass are detailed in Equation (III.1) and
Equation (III.2).

0 “ ´mu :zu ` dup 9zr ´ 9zuq ` cupzr ´ zuq

`dsp 9zs ´ 9zuq ` cspzs ´ zuq
(III.1)

0 “ ´ms :zs ` dsp 9zu ´ 9zsq ` cspzu ´ zsq (III.2)

The additional acceleration sensor is mounted at the sprung mass. The
displacement of the sprung mass zs is calculated based on the double inte-
grated acceleration data Equation (III.3). Whereas zu must be calculated
utilizing the VLS data which is named as ∆z and measures the distance
between unsprung mass zu and sprung mass zs Equation (III.4).

zs “

ĳ

:zsdt
2
“

ĳ

asdt
2 (III.3)

zu “ zs ´∆z “

ĳ

asdt
2
´∆z (III.4)

To calculate the road height zr, Equation (III.1) and Equation (III.2)
are rearranged and the displacements zs and zu are exchanged with terms
measurable with our sensor system. Thus, zs is represented by the double
integrated acceleration sensor data

ť

asdt
2 Equation (III.3) and zu by the

double integrated acceleration data minus the VLS data ∆z Equation (III.4).
Equation (III.5) represents the solvable differential equation by the sensor
system used, converted to zr.

zr “
1

cu

„

mu

´

as ´ :∆z
¯

`msas ` du

´

ż

asdt´ 9∆z
¯

`cu

´

ĳ

asdt
2
´∆z

¯

´du 9zr

 (III.5)

The simulation was implemented in Matlab following the example of
Kanjanavapastit [26]. Figure III.5 displays the implementation in Matlab
Simulink adjusted to our sensor input representing Equation (III.5). The
input values from the VLS and the AS are displayed on the left side. In the
middle, the derivations and integrations for the realization of Equation (III.5)
are performed. The calculation results in the road elevation.
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Figure III.4: QVM as a substitute model and in components [27]

III.3.2 Quarter Vehicle Configuration

The configuration of the quarter vehicle models examined are essential for
the simulation. Based on the quarter vehicle configuration given to Equa-
tion (III.5), the current elevation in road profile is measured. To obtain a
valid configuration for our test bench, where model building components are
used in a scale of one-eighth to conventional vehicles and road anomalies,
the dampers and springs are adjusted to guarantee proper parameters. In its
original state, the relative proportions of the masses and the damper/spring
coefficients were far from those of the GCM [14, 28].

For adjusting the damper coefficient, various damper oils with low viscos-
ity are used to trim the damper coefficient. The damper and spring coefficient
are determined experimentally. The parameter evaluation of the two model
ts result in progressive spring characteristic curves that can be simplified as
linear in the efficient spring range from one to two millimeters. The damper

mass unsprung

mass sprung

spring unsprung

slope of road

damper unsprung

1
s

integration to v

1
s

integration to z

deriv to a

1

VLS

2
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1

road elevation

deriv to v

spring unsprung

damper unsprung
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displace m_u

displace m_s

acceler m_u

acceler m_s

Figure III.5: Matlab Simulink model for calculating road elevation profile
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Table III.1: Parameterization of the consulted QVMs in comparison with the
Golden Car Model (GCM)

Model

Param.
ms{kg mu{kg mu

ms
cs{

N
m

cs
ms
{ N

mkg
cu{

N
m

cu
ms
{

Nkg
m

ds{
kg
s

ds
ms
{

kg2

s

GCM ´ ´ 0.15 ´ 63.3 ´ 653 ´ 6

C1 1.444 0.307 0.213 530.5 367,382 2517 1743.075 46.376 32,116

C2 1.184 0.283 0.239 530.5 448,057 2265 1913,007 26.66 22.517

coefficient of the tires are assumed to be zero according to [14]. For the
adjustment of the sprung mass (chassis mass), weight plates as illustrated in
Figure III.3 and Figure III.4 are applied.

Table III.1 displays the configuration of both QVMs C1 and C2. The
relative values in Table III.1, mu/ms, cs/ms, cu/ms and ds/ms, can be con-
sulted to perform a comparison to the GCM. The spring coefficients of both
C1 and C2 models are the only parameters that have not changed. C1 is
more damped, has a higher sprung substitute mass and a tire with a lower
spring coefficient compared to C2. The unsprung masses deviate only very
slightly. While the relation of the unsprung mass mu to the sprung mass
ms lies close to the reference GCM, the relative values including spring and
damper coefficient to the sprung mass factor trowel differences from three
to seven. The deviations are the result, despite adaptations, of damper and
spring coefficients that are too high. In spite of the differences, realistic re-
sults can still be expected due to the physically solvable simulation model,
which will be shown in Section III.4.

III.3.3 Road Elements

The detachable 3D-printed road elements are shown in Figure III.6. Nine dif-
ferent road elements and road anomalies are mounted onto the moving ring.
The blue curve of Figure III.7 displays the elevation of all road elements in
one diagram. From left to right in Figure III.7 and from the bottom counter-
clockwise in Figure III.6, a speed bump, a flat element without anomalies, a
rail crossing in two elements, another flat element without anomalies, a pot-
hole, cobblestone road, a raised round manhole cover and a lowered square
manhole cover are shown in scale one-eight. Each segment is a miniaturiza-
tion of existing street conditions in the city of Lippstadt in Germany. The
scale is identical to the miniaturization of the tires at one-eight.

The tire-adjusted elevation profile, however, reflects the comparative value
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Figure III.6: The nine mounted road elements on the slewing ring
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Figure III.7: Elevation of the 3D-elements compared to the tire-adjusted
elevation

for our measurements, as the profile is not measured by a point excitation
on zr, but must be adjusted by the circular arc of the tire. The orange curve
displays the tire-adjusted road profile.

Between the mechanical design, a PWM-based speed control of the elec-
tric motor is implemented within the laboratory test bench to regulate the
desired speed at different loads on the ring resulting from the two configurable
QVMs.
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Figure III.8: Input data from the sensor setup for the Matlab Simulink
model

III.4 Evaluation

This chapter discusses the results of the calculation from the test bench with
the input values from the VLS and the AS. Section III.4 displays the input
signal for the Matlab Simulink model shown in Figure III.5. The VLS
measures the absolute distance between ms and mu.

Section III.4, however, pictures the acceleration at ms. The standard de-
viation of the AS in idle mode is 0.052 m/s2. With the engine for rotating the
road ring in operation and jacked-up QVM, the standard deviation amounts
to 0.121 m/s2.

Applying the simulation for C1, Figure III.9 displays the calculation result
of the road height in petrol, while the reference profile remains in orange.
The actual elevations of the anomalies are calculated well by the simulation
model. The first three anomalies, the speedbump, the railway crossing and
the pothole, can be recognized accurately. The manhole covers from 2.2 s
to 3 s can also be represented well, but the transitions of the anomalies are
comparatively worse, which may be due to the fact that there is no smooth
road element between the elements. The calculated height of the anomalies
differs in a range of about one to two millimeters maximum. The Root
Mean Square Error (RMSE) of one turnaround amounts to 1.485 mm with
a standard deviation of 1.4739 mm and a mean deviation of the error of
1.002 mm. The higher frequency share in the calculated elevation is brought
about by the sensor noise of the acceleration sensor.

The calculation results of C2 are shown in Figure III.10 and are not that
different to the results of C1. This is very important because we want to
show that we are able to determine the height differences in the road pro-
file despite different vehicle models. The maximum elevation do not exceed
two millimeters and the sensor noise was smoothed by the slightly increased
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Figure III.9: The tire-adjusted elevation in comparison to the result for C1

spring coefficient of the tire. In comparison, the error analysis of C2 is slightly
better, but in a comparable range with the RMSE being 1.354 mm, the stan-
dard deviation being 1.344 mm and the mean deviation of the error being
0.861 mm.

The error analysis leads to similar values for both simulation results,
which supports the applicability of the modeling performed. Despite the
miniaturization of the QVMs, the calculation result in a proper representa-
tion of the road conditions. As the sensor accuracy is not scaled to miniatur-
ization, a significantly lower error percentage can be expected for real vehicle
conditions, as the road anomalies are much more significantly recorded by
the sensor system.

While we already introduced the tire-adjusted elevation profile to be
the reference, it is still worth mentioning that the results shown in Fig-
ure III.9 (from 1.75 s) and Figure III.10 (from 2 s) do not allow to distinguish
between sensor noise, cobblestone, and manhole covers due to the suspension
system and tires.

Whether the manhole covers are recessed or protrude can again be ver-
ified via the elevation profile. However, new detection methods need to be
examined to differentiate between various road coatings as cobblestone, con-
crete or asphalt and anomalies that contain smaller holes, slightly protruding
elements or fine perfection.

III.5 Conclusion

In this paper, we studied the capability of the VLS and an additional AS
of measuring the elevation on road surfaces. The utilized sensor system is
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Figure III.10: The tire-adjusted elevation in comparison to the result for C2

used in a laboratory setup reflecting a quarter of a vehicle. In a true to scale
setup, we showed that the elevation profile of the road can be reconstructed
by a physical model in Matlab Simulink. Based on existing car data and
components, we successfully measured road elevation. The applicability in
a crowd sensing scenario was achieved by comparing the two configurations
C1 and C2 representing to different types of vehicles.

Besides the advantages of the application, a limitation occurs due to the
excitation via the tires, road anomalies with large differences in height over
a small distance cannot be optimally recorded. It is questionable, however,
whether these unevennesses are highly relevant in automated driving tasks.
The measurement in the spring damper system seems to be extremely useful
here, as the measurement is performed directly in the relevant safety and
comfort system of the vehicle and the hardware utilized is commonly used in
current vehicle generations.

In future works, a test scenario with a vehicle is to be set up to prove the
applicability for vehicles during conventional driving.

Furthermore, in comparison to road data from the laser-based measure-
ment method used by road authorities in Germany, a bench-marking with
the approach we propose would be interesting.

Between the actual height information, varying road coatings, the pres-
ence of moisture, water and ice also result in varying friction values. Thus, it
must be investigated weather our sensor system is capable of detecting these
influences.
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Chapter IV

Live Demonstration: Passive Sensor
Setup for Road Condition Monitoring

Note: This publication is a brief description of our live demonstration session
at IEEE Sensors 2020. It is included in the proceedings of the conference.
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IV.1 Introduction

The automation of vehicles is a major challenge and subject to many pub-
lications focusing on sensor systems, capable of receiving environmental in-
formation. As stated in the Society of Automotive Engineers (SAE) Vehicle
Standard [1], automated driving level four to five requires observations of the
environment to establish a continuous environment model, including road
conditions. In our paper presented at IEEE Sensors 2019 [2], we propose a
solution of measuring road conditions with vehicle on-board data utilizing
a VLS and an AS. The VLS is a standard component for vehicles with an
automatic luminary width control for headlamp systems to ensure proper
illumination and prevent glare for preceding and oncoming vehicles. Along
with internet connectivity, the sensor system enables every vehicle of mea-
suring road condition to potentially provide it to a cloud platform.
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IV.2 Demonstration Setup

The demonstration setup incorporates a laboratory test bench including two
QVMs [3] with different specifications (Named C1 and C2) of the tyres (spring
coefficient wheel cu, damper coefficient wheel du) and the spring-damper sys-
tem (spring coefficient chassis cs, damper coefficient chassis ds). The variable
chassis mass is represented by aluminium weight plates while the wheel mass
consists of the weight of the spring-damper system, linear bearings for ver-
tical guidance and a 3D printed frame. The VLS is a contactless inductive
position sensor and measures the displacement between the chassis and wheel
masses. The dimensions of the test bench are 60 cm x 60 cm with an inner
ring driven by an electric motor. 3D-printed road elements with different
road surfaces and anomalies are mounted onto the ring, which are to be cal-
culated by our sensor system. In contrast to reality, the road surface moves
under the tyres allowing to isolate the force exerted by the road profile on the
vertical axis to realize the application of QVM for road condition monitoring.
A photography of the test bench can be seen in Figure IV.1 with a pothole
starting from the left, cobblestone and two different manhole covers closing
on the right.

Figure IV.1: Visualization of the laboratory test bench [2]
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IV.3 Visitor Experience

• The observation of a QVM, stimulated by the road profile and the road
height output if the calculation.

• The application of our model-based calculation [2] and the comparison
of the calculated road height with the reality (cf. Figure IV.2).

• The calculation of international road quality indices for the considered
road profile.
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Abstract

In recent years, automated driving has become one of the most important
research fields in the automotive industry. A key component for a success-
ful substitution of human driving by vehicles is a real-time model of the
current environment including the traffic situation, the guide-way, and the
road itself. We propose a solution for measuring road conditions within the
spring-damper system of the vehicle. In this paper, we utilize a VLS and
an AS, both of which are standard components in modern vehicles, for road
condition monitoring. Our model-based approach therefore consists purely of
additional software. We present a calculation of the QVM for road elevation
measurements to enable each connected vehicle to provide valid data for a
potential crowd-sensing approach, where every vehicle contributes past data
and consumes data for upcoming segments. The generated data are capable
of providing the environment model with real-time data. Our calculations
are first validated in a laboratory setup, representing a down-scaled Quarter-
Vehicle. The knowledge gained it then applied to a real vehicle. For this
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purpose, the measurement setup is explained, the model-based calculation
and the parameters are adjusted, and the results are compared.

V.1 Introduction

The increasing automation of vehicles offers many opportunities, such as
reducing traction congestion, improving comfort for vehicle occupants, and
increasing safety, as the vast majority (about 90 %) of accidents are caused
by human error [1]. Recent technological advances in the automotive in-
dustry have contributed to a holistic environment model for CAVs to achieve
automation (level 3-5, SAE J3016 [2]). While LIDAR, RADAR, and camera-
based environmental recognition have been explored extensively and have
also been applied in practice [3, 4, 5], digital services play a subordinate role
in current automated driving prototypes [6]. With the further improvement
of internet connectivity and the evolution of 5G, digital services offer great
potential for providing reliable information for automated driving and the
environment model in the future.

The Vienna Conventions on Road Traffic [7] in 1968 defined behavioral
rules for drivers in 80 countries around the world. According to Article 13,
the vehicle speed must be adjusted to road and weather conditions, speed
limits, and the presence of other vehicles. Indeed, in recent research the
environmental model needed for automated driving considers the road surface
as one factor influencing vehicle control. Based on Donges’ chassis support
system model for ADASs [8], Winner and Hakuli [9] (cf. Figure V.1) describe
a modified version of a hierarchy model for automated vehicles. The hierarchy
model consists of the vehicle and the environment. In automated driving,
the task of the driver is only related to the transfer of the transport task to
the vehicle, as the vehicle takes over navigation, guidance, and stabilization.
The road surface is part of the environment and is necessary for determining
the actual trajectory and speed of the vehicle.

Despite the numerous possibilities for measuring road surfaces, which will
be explained in detail in the related work chapter (Section V.2), our proposed
approach of measuring road roughness makes use of built-in hardware and
will enable a crowd-sensing solution in the future. We utilize a combination
of an AS, at either the wheel or the chassis mass, and a VLS, measuring
the displacement of the vehicle chassis mass and the wheel mass. The VLS
is primarily used to enable automatic luminary width control for headlamp
systems to ensure proper illumination and to prevent glare for preceding and
oncoming vehicles. The penetration rate of the sensors on the market is very
high due to a 2013 regulation of the United Nations Economic Commission,
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which made automated adjustment mandatory for Xenon- and LED-based
lighting systems with a certain intensity [10]. In addition to automatic lumi-
nary width control, the sensor data are used within the adaptive chassis and
suspension system, which enables vehicles to adjust to heterogeneous road
conditions, improving safety and comfort [11, 12].

Navigation

Guidance

Stabilization

Road Network

Traffic Situation

Road Surface

Driver Vehicle Environment

Alternative Routes

Range of Safe Motion States

Actual Trajectory and Speed

Transport Mission

Vehicle

Motion

Figure V.1: Hierarchy model for automated driving according to Winner [9]

Figure V.2 shows a road with different road hazards. The turquoise ve-
hicle only measures road areas it has driven on, and only those areas imme-
diately under the tires. This is visualized with transparent turquoise lines
behind the vehicle. The road height profile can be properly calculated by
our sensor setup. The red vehicle also moves over the road in a longitudinal
direction and measures the height, although for different road areas, as it is
driving on a different horizontal position. The yellow vehicle in turn repre-
sents the nth drive through the same road segment. Due to the large number
of drives, almost all uneven areas can be identified. Instead of measuring the
topology along and across the road, international and national road quality
indices (cf. Section V.2) are to be calculated over discrete route segments
(1st Seg., 2nd Seg.) and transferred to a cloud. In the cloud, it is essential
to ensure that the results of all vehicles are not averaged, as vehicles tend to
dodge hazards.

Patch Ground Wave Pothole

1st
2nd

nth

1st Seg. 2nd Seg.

Figure V.2: Schematic overview: Measuring surface and data merging

Using existing data for the application reduces the need for additional
components and sensors in the vehicle for road condition assessment. Fur-
thermore, a crowd-sensing approach allows a large amount of data to be
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used to implement an integrated digital service solution. Another feature is
the measurement in the spring-damper system, which is also related to ride
quality and is applicable to vehicle dynamics, in contrast to vision-based
methods. Our contributions can be summarized as follows:

• We present a laboratory setup for road quality assessment including
the VLS and an AS.

• We prove the adaptability of the model-based calculation to measure
road elevation in different QVM configurations.

• We apply the model in a real vehicle setup and validate the results.

V.2 Fundamentals and Related Work

This chapter will first present common indicators for road roughness. Second,
we will show the state-of-the art individual technical implementations for
determining the condition of the road.

As an important part of the environment model, it is crucial to under-
stand how road surfaces are calculated in detail. The aim of road surface
measurements is the extraction of the surface elevation profile and subsequent
classification into discrete roughness sections.

In 1982, the World Bank introduced the IRI as a standard [13]. Sayers
used the IRI for measuring the longitudinal road profile [14] by accumulating
deviations measured in vertical inches per mile or millimeter per meter. In
his 1989 publication, Sayers considered the IRI as an accumulation of the
motion between sprung and unsprung masses of a vehicle at a velocity of
80 km/h over a specific distance [15].

Another method of describing road roughness was introduced by Dodds
and Robson [16] in 1973 based on the PSD of the elevation profile. It em-
phasizes the importance of various wave numbers of the elevation profile,
as each road profile can be composed of a set of sinusoids [14]. Regardless
of the index used for classification, various solutions have been described
in the literature for measuring road elevation, which is the first step for all
classification indexes.

The common road classification technique in Germany was standardized
in 1991 by the Federal Ministry of Transport and Digital Infrastructure (Ger-
man: Bundesministerium für Verkehr und digitale Infrastruktur - BMVI) and
is based on four triangulation laser sensors. The lasers are mounted vertically,
pointing downward on a grid-measuring beam and processing the longitudi-
nal road profile in 10-cm intervals [17, 18]. This process is very stable and
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highly accurate, as it is carried out by special measuring vehicles. Federal
roads and motorways are supposed to be measured in four-year intervals,
which results in non-real-time data. Furthermore, the hardware is expensive
and not applicable for passenger vehicles.

Camera-based approaches primarily focus on defect detection (e.g, crack,
patch) on road surfaces. Chatterjee is a visual decision system that pro-
cesses 2-D images acquired by front-facing cameras utilizing machine learn-
ing [19, 20]. Rajab et al.[21] examined the applicability of camera-based
road defect detection for cracking and potholes compared to traditional road
survey methods. In 2020, the IEEE introduced the ’Global Road Damage
Detection Challenge 2020’, with further deep learning solutions for classify-
ing road damages to be published by December 2020 at the IEEE BigData
2020 Conference utilizing data from Japan, India, and Czech [22]. While
camera-based solutions could potentially also be applied without extensive
new hardware investments since front-facing cameras will be standard hard-
ware for CAVs, the applications struggle with real depth information to cal-
culate the elevation profile. The strengths primarily lie in detecting defects,
such as patches, cracks, and potholes, which could be useful for sensor fusion
with our proposed approach.

Crowd-sensing solutions make use of smartphones in vehicles to measure
road roughness and defects. The research project SmartRoadSense analyzes
smartphone acceleration data in the inner cabin of vehicles. In addition
to the actual calculation of road roughness [23], the project addresses speed
dependencies for sensor signals [24, 25] and geospatial aggregation techniques
of crowd-sensing data [26]. Despite the elegance of using smartphones, which
have a large penetration rate on roads, this approach is collaborative, as data
from a single device are subject to uncertainty with regard to the position
and cushioning (e.g., seats, beverage storage area) of the smartphone in the
inner cabin and the intermediate spring-damper system of different vehicles.
Sayers described these approaches as invalid profilers that obtain a ’wiggly
line’ over the road profile without an established physical relationship [14].

In contrast to the aforementioned solutions, our proposed approach mea-
sures within the spring-damper system of vehicles, utilizing the QVM. Based
on the results of Kanjanavapastit and Thitinaruemit [27], who proposed a
solution of calculating the elevation profile with two ASs, we demonstrate its
practical suitability in a laboratory setup with a different array of sensors,
including the VLS and a single AS. In addition, we present real-world mea-
surements from our Volkswagen Passat passenger vehicle for significant road
anomalies.

160



Table V.1: Parameterization of the laboratory setup QVMs and the GCM

Model

Param.
ms{kg mu{kg mu

ms
cs{

N
m

cs
ms
{ N

mkg
cu{

N
m

cu
ms
{ N

mkg
ds{

kg
s

ds
ms
{ 1

s

GCM ´ ´ 0.15 ´ 63.3 ´ 653 ´ 6

C1 1.444 0.307 0.213 530.5 367.382 2517 1743.075 46.376 32,116

C2 1.184 0.283 0.239 530.5 448.057 2265 1913.007 26.66 22.517

VW [28] 495 45 0.091 78000 157.576 260000 525.253 2276.5 4.599

V.3 Measurement Setup

In this paper, the results obtained from a model-based calculation are vali-
dated in a laboratory setup and in a real passenger vehicle. Both the labora-
tory setup and the passenger car are described as QVMs, which reflects the
dynamic behavior of a quarter of the vehicle. This model is particularly suit-
able for road condition evaluation, as it absorbs the vertical forces, and our
sensor setup is located within these system limits, between the sprung mass
and the road profile. Varying parameters include the spring and damper
coefficient and the substitute mass for the vehicle body. The detailed speci-
fications of the two laboratory QVMs as well as the passenger vehicle QVM
can be found in Table V.1. Two models were implemented in the laboratory
setup to show that similar results can be obtained by modeling under differ-
ent specifications. In reality, this is equivalent to different vehicles and their
varying capabilities of measuring road quality.

As a passenger vehicle, we used a Volkswagen Passat to check the re-
sults from the laboratory setup in reality. The configuration of the quarter
vehicle models examined is essential for model-based calculation. The cur-
rent elevation in the road profile was measured based on the quarter vehicle
configuration used in our model-based calculation.

Following, the measurement systems of the laboratory setup (Figure V.3)
and the passenger vehicle setup (Section V.3.2) are described. The common-
alities and differences in the modeling are described, and the corresponding
differential equations are established. Furthermore, the configurations of the
QVMs from Table V.1 are discussed. Subsequently, the measured road ele-
ments and the respective scaled-down 3D printed elements in the laboratory
setup are listed. [28]
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Figure V.3: Picture of the laboratory setup, including two QVMs

V.3.1 Laboratory Setup

This section describes the implementation of the Sensor Setup and Modeling;
hence, the calculation of the elevation profile of the road from our sensor
system. It consists of a common MEMS AS and a VLS, which is a contactless
inductive position sensor measuring tilt from the vehicle front to rear. It
measures displacement within the spring-damper system, which is explained
in more detail in Kortmann et al. [29].

We sample both sensors every 6 ms, which results in a measuring fre-
quency of 166, 6 Hz. Figure V.4 displays the quarter vehicle model, including
the sensor setup and a corresponding visualization of the laboratory setup.
The masses of the vehicle are split into two parts – the sprung mass ms,
including the vehicle body and everything inside, and the unsprung mass
mu, also called the wheel mass, including the wheel, bearing, and brake. The
tire is associated with the spring coefficient cu and the damper coefficient
du. The actual suspension system of the vehicle is represented by the spring
coefficient cs and damper coefficient ds. The road height zr is the indicator
to be measured. Finally, zu and zs represent the displacements of the wheel
mass mu and chassis mass ms resulting from the suspension system and road
profile.

To understand the measurement of the elevation profile utilizing VLS and
an additional acceleration sensor (AS), the intersection principle of Newton
must be applied to the quarter vehicle model, cf. [29]. The forces applied
to the sprung and unsprung mass are detailed in Equation (V.1) and Equa-
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tion (V.2).

0 “ ´mu :zu ` dup 9zr ´ 9zuq ` cupzr ´ zuq ` dsp 9zs ´ 9zuq ` cspzs ´ zuq (V.1)

0 “ ´ms :zs ` dsp 9zu ´ 9zsq ` cspzu ´ zsq (V.2)

The additional acceleration sensor is mounted at the sprung mass. The
displacement of the sprung mass zs is calculated based on the twice integrated
acceleration data (Equation (V.3)). Meanwhile, zu must be calculated uti-
lizing the VLS data, which is named ∆z and measures the distance between
the unsprung mass zu and sprung mass zs (Equation (V.4)).

zs “

ĳ

:zsdt
2
“

ĳ

asdt
2 (V.3)

zu “ zs ´∆z “

ĳ

asdt
2
´∆z (V.4)

To calculate the road height zr, Equation (V.1) and Equation (V.2) are
rearranged, and the displacements zs and zu are exchanged with terms that
are measurable with our sensor system. Thus, zs is represented by the
double-integrated acceleration sensor data

ť

asdt
2 (Equation (V.3)) and zu

by the double-integrated acceleration data minus the VLS data ∆z (Equa-
tion (V.4)). Equation (V.5) is the solvable differential equation used by the
sensor system, converted to zr.

zr “
1

cu

”

msas`mupas´ :∆zq` cu

´

ĳ

asdt
2
´∆z

¯

`du

´

ż

asdt´ 9∆z
¯

´du 9zr

ı

(V.5)

The model was implemented in Matlab following the research of Kan-
janavapastit [27]. Figure V.5 displays the Matlab Simulink implementation
adjusted to our sensor input, representing Equation (V.5). The input values
from the VLS and AS are displayed on the left side. In the middle, the
derivations and integrations for the realization of Equation (V.5) are shown.
The calculation results in the road elevation.

To obtain valid Quarter Vehicle Configurations for our laboratory setup,
where model building components are used at a scale of one-eighth of con-
ventional vehicles and road anomalies, the dampers and springs are adjusted
to guarantee proper parameters. In its original state, the relative proportions
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Figure V.4: QVM as a substitute model and in components [29]

of the masses and the damper/spring coefficients were far from those of the
GCM [14, 30].

To adjust the damper coefficient, various damper oils with low viscosity
are used to trim the damper coefficient. The damper and spring coefficients
are determined experimentally. The parameter evaluation of the two models
results in progressive spring characteristic curves, which can be simplified
as linear in the efficient spring range of one to two centimeters. For the
adjustment of the sprung mass (chassis mass), weight plates are applied, as
illustrated in Figure V.3 and Figure V.4.

Table V.1 displays the configurations of both QVMs C1 and C2. The
relative values in Table V.1, mu/ms, cs/ms, cu/ms, and ds/ms can be used
to perform a comparison to the GCM. The spring coefficients of both the
C1 and C2 models are the only parameters that have not changed. C1 is
more damped, has a higher sprung substitute mass, and has a tire with a
higher spring coefficient compared to C2. The unsprung masses deviate only
slightly. While the relation of the unsprung mass mu to the sprung mass
ms is close to the reference GCM, the relative values, including spring and
damper coefficients to the sprung mass factor trowel, deviate from three to
seven. The deviations are the result, despite adaptations, of damper and
spring coefficients that are too high. In spite of these differences, realistic
results can still be expected due to the physically solvable model, which will
be shown in Section V.4.

The detachable 3D printed Road Elements are shown in Figure V.6. Nine
different road elements and road anomalies are mounted onto the moving
ring. The blue curve of Figure V.7 displays the elevation of all road elements
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Figure V.5: Matlab Simulink model for the laboratory setup

in one diagram. From left to right in Figure V.7 and from the bottom counter-
clockwise in Figure V.6, a speed-bump, a straight element without anomalies,
a rail crossing in two elements, another element without anomalies, a pot-
hole, a cobblestone road, a raised round manhole cover, and a lowered square
manhole cover are shown at a one-eighth scale. Each segment is a miniatur-
ization of existing street conditions in the city of Lippstadt in Germany. The
scale is identical to the miniaturization of the tires (one-eighth).

Figure V.6: The nine mounted road elements on the slewing ring

The tire-adjusted elevation profile, however, reflects the comparative value
for our measurements, as the profile is not measured by a point excitation
on zr but must be adjusted by the circular arc of the tire. The orange curve
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displays the tire-adjusted road profile.
In addition to the mechanical design, a PWM-based speed control is used

with the electric motor in the laboratory setup to regulate the desired speed
at different ring loads resulting from the two configurable QVMs.
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Figure V.7: Elevation of the 3D elements compared to the tire-adjusted
elevation

Figure V.8 shows the measurement setup in the vehicle. The Arduino is
responsible for the signal processing of the sensor data from VLS and AS
and the CAN Shield on it, which reads the CAN Network of the vehicle to
determine the current speed. Furthermore, the GPS sensor is shown, which
takes over the localization of the vehicle, and a labeling box, which allows the
marking of road sections to be viewed. The notebook is used to evaluate the
data from the micro-controller and to store the raw data and measurement
results.

V.3.2 Passenger Vehicle Setup

In the passenger vehicle, the Sensor Setup and Modelling needs to be slightly
adjusted. The factory-fitted VLS is used, which is also accessed every 6 ms
via PWM before the control unit in the vehicle. We attached the AS to the
wheel mass using a pipe clamp and a 3D printed housing, which compensates
for the tilt of the axle rod. By changing the positioning of the AS from the
vehicle mass to wheel mass, we hope to reduce the influence of the other tires
on the vehicle.

Due to the changed positioning of the AS, the displacement of the sprung
mass in the vehicle ζs and the displacement of the unsprung mass in the
vehicle ζu are calculated slightly differently. Equation (V.6) calculates ζs as
the double-integrated AS signal from mu summed with the output of the
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VLS in the vehicle ∆ζ. ζu, however, is calculated by the double integration
of the AS

ť

αudt
2, as shown in Equation (V.7).

ζs “ ζu `∆ζ “

ĳ

αudt
2
`∆ζ (V.6)
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2
“

ĳ
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Despite the unchanged differential equation, this results in a modified
calculation of the road elevation ζr resulting from Equation (V.6) and Equa-
tion (V.7).

ζr “
1

cu

”

mspαu ` :∆ζq `muαu ` cu
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2
` du

ż

αudt´ du 9ζr

ı

(V.8)

The Matlab Simulink model must be consistently adapted according
to Equation (V.8). In this paper, just the front-left QVM in the passenger
vehicle is examined.

In order to validate the measurement results of the laboratory setup,
we investigate Road Elements from the real world rather than 3D printed
elements. A speed bump displayed in Figure V.12 is measured by hand to
obtain a reference profile for the comparison with our model-based calculation
results. The height profiles of the speed bump are shown in Section V.4 and
Figure V.14, together with the measurement result. We focus on a short-to-
medium wavelength anomaly, as long wavelengths in the road profile are of
little relevance for comfort and safety in the vehicle.

The Quarter Vehicle Configurations of our Volkswagen Passat are also
displayed in Table V.1.

V.4 Evaluation

This chapter discusses the results of the calculation from the laboratory setup
with the input values from the VLS and the AS in Section V.4.1. Then, the
result of the vehicle in reality is discussed for a speed bump in Section V.4.2.
Due to the specific noise and drift characteristics of ASs, filters based on
Hofmann [32] are used in the double integration process. This includes,
adapted to our application, a bandpass filter for the raw data and a bandpass
filter after the first integration. Despite identical interference frequencies, the
laboratory demonstrator shows factorially different measurement quantities
in frequency and amplitude compared to the real measurement system in

167



GPS Sensor
Labeling

Box

CAN Network
AS

VLS

CAN Shield

+ Arduino

Notebook

Figure V.8: System Setup in the Vehicle [31]

the vehicle, leading to differences in filter design. We discuss the results of
the laboratory setup in Section V.4.1, and then we compare the calculated
height of a speed bump with the reference profile to prove qualitatively that
our sensor system also works in reality.

V.4.1 Laboratory Setup Results

Figure V.9a displays the input signal for the Matlab Simulink model shown
in Figure V.5. The signal is considered as absolute motion differences be-
tween ms and mu. Figure V.9b, however, shows the acceleration at ms. The
standard deviation of the AS in idle mode is 0.052 m/s2. With the engine
rotating and the road ring in operation and jacked-up QVM, the standard
deviation amounts to 0.121 m/s2.

Applying the model-based calculation to C1, Figure V.10 displays the
calculation result of the road height in petrol color, while the reference profile
remains in orange color. The actual elevations of the anomalies are calculated
well by the model. The first three anomalies, the speed bump, the railway
crossing. and the pothole are all recognized accurately. The manhole covers
from 2.2 s to 3 s are also represented well, but the transitions of the anomalies
are comparatively worse, which may be due to the fact that there is no
smooth road element between the elements. The calculated height of the
anomalies differs in a range of about one to two millimeters maximum. The
RMSE of one turnaround amounts to 1.485 mm, with a standard deviation
of 1.4739 mm and a mean deviation of the error of 1.002 mm. The higher
frequency share in the calculated elevation is due to the sensor noise of the
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Figure V.9: Input data from the sensor setup for the Matlab Simulink
model

acceleration sensor.

The C2 calculation results are shown in Figure V.11 and and do not differ
considerably from the results of C1. This is important because we want to
show that we are able to determine the height differences in the road profile
despite different vehicle models. The maximum elevation does not exceed
two millimeters, and the sensor noise was smoothed by the slightly increased
spring coefficient of the tire. In comparison, the error analysis of C2 is slightly
better, but in a comparable range, with an RMSE of 1.354 mm, a standard
deviation of 1.344 mm, and a mean deviation of the error of 0.861 mm.

The error analysis leads to similar values for both model-based calcu-
lation results, which supports the applicability of the modeling performed.
Despite the miniaturization of the QVMs, the calculation results in a proper
representation of the road conditions. Since the sensor accuracy is not scaled
to miniaturization, a significantly lower error percentage can be expected in
real vehicle conditions, as the road anomalies are much more significantly
recorded by the sensor system.

While we already introduced the tire-adjusted elevation profile as a refer-
ence, it is still worth mentioning that the results shown in Figure V.10 (from
1.75 s) and Figure V.11 (from 2 s) do not allow us to distinguish between
sensor noise, cobblestone, and manhole covers due to the suspension system
and tires.

Whether the manhole covers are recessed or protruding can be deter-
mined by the height profile. However, new detection methods are needed to
differentiate between various road coatings, such as cobblestone, concrete, or
asphalt, and anomalies that contain smaller holes, slightly protruding ele-
ments, or fine imperfections.
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Figure V.10: The tire-adjusted elevation in comparison to the result for C1
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Figure V.11: The tire-adjusted elevation in comparison to the result for C2

V.4.2 Passenger Vehicle Results

To transfer the laboratory setup results to our passenger vehicle, we decided
to use a manually measurable speed bump.

The elevation profile of the speed bump shown in Figure V.12 is displayed
in orange color in Figure V.13. The length in the longitudinal direction is
1.7 m with a height of 6.5 cm. We passed the speed bump at 25 km/h.

Further graphs presented in Figure V.13 are the double integration of the
AS (displacement of the wheel mass ζu) and ∆ζ, the displacement between
the wheel mass ζu and chassis mass ζs, calculated from the VLS signal.

The displacement of the wheel mass ζu is displayed in red color. While the
general height of the speed bump can be calculated effectively, the oscillating
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Figure V.12: Validation anomaly: speed-bump
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Figure V.13: Road Elevation with the double-integrated AS and VLS

influence of the chassis can be clearly seen when jumping on top of the speed
bump at 0.7 m and jumping off the speed bump at 2.2 m. Hence, using
double integration for road elevation measurements is not possible with a
single sensor setup.

The purple graph represents ∆ζ, describing the displacement change of
the two masses in relation to each other (VLS Displacement). The difference
becomes apparent during the speed bump crossing. At 0.7 m, the spring-
damper system is compressed −5.9 cm, bringing the wheel and chassis mass
an equal amount closer to each other. At 2.2 m, the spring-damper releases
the pressure to press the wheel back from the bump to the road, with an
absolute length of 9.5 cm.

In Figure V.14, the displacement of ms (Chassis Displacement) is dis-
played in blue color, showing a delayed reaction of the chassis mass in time
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compared to the wheel mass mu (red color, Figure V.13). The height change
per time is than for the wheel mass due to the effect of the spring-damper
system.
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Figure V.14: Model-based calculation result and chassis displacement

The petrol-colored graph in Figure V.14 shows our model-based calcula-
tion. By calculating the terms of differential Equation (V.8), a significantly
reduced oscillation behavior is obtained compared to the double integration
of the acceleration, while the height ratios of the speed bump are measured
correctly with 6.5 cm. However, the corners of the speed bump are less pro-
nounced, which could be due to the plastic material of the speed bump. The
calculated speed bump occurs from 0.4 m to 2.2 m, which is a total of approx-
imately 1.9 m and quite close to the reference of 1.7 m. The earlier rise and
delayed descent of the speed bump in our calculation is due to the circular
excitation of the tire.

V.5 Conclusion

In this paper, we studied the capability of the VLS and an additional AS
in measuring the elevation on road surfaces. The sensor system utilized was
first used in a laboratory setup reflecting a quarter of a vehicle. Then, the
modeling in a real vehicle on the road was tested on a significant speed bump
to qualitatively verify the results of the down-scaled laboratory setup.

In a true-to-scale setup, we showed that the elevation profile of the road
can be reconstructed by a physical model in Matlab Simulink. Based on
existing car data and components, we successfully measured road elevation.
Applicability in a crowd-sensing scenario was achieved by comparing the
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two configurations, C1 and C2, representing vehicles with varying properties
in terms of masses and spring-damper systems. The calculations can be
included in environment models to enable automated driving and other safety
and comfort systems.

The measurement in the spring-damper system is useful, as it is performed
directly in the relevant safety and comfort system of the vehicle, and the
hardware that is utilized is commonly used in current vehicle generations.

Despite the advantages of the application, there is a limitation due to the
excitation through the tires. It is questionable, however, whether uneven-
nesses with very high frequencies is relevant to vehicle driving behavior.

The results with the real vehicle highlight the applicability of the sensor
system for this task in addition to its actual functionality: headlamp leveling.
However, in addition to strong anomalies on different road surfaces (e.g., con-
crete, asphalt, gravel, brick), investigations are needed to determine whether
or not other anomalies, such as alligator cracking and manhole covers, can
be detected. For this, a detailed reference profile is required, for example,
from road authorities in Germany using laser-based measurements, to enable
benchmarking with our proposed approach.

Our work provides a foundation for a cloud platform that makes road
quality measurable without additional hardware. The development of such
a platform could be implemented and investigated in the future.

In addition to the actual height information, the presence of moisture,
water, and ice also results in varying friction values. Thus, it must be inves-
tigated whether our sensor system is capable of detecting these influences or
should be used in sensor fusion systems.
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Abstract

An important component for the realization of the automated driving task
is a holistic environment model. CAVs must be capable of detecting other
vehicles, road markings, dangerous obstacles and upcoming road conditions.
Apart from the comfort dependency on the road condition, friction values
are calculated on the basis of road properties, which in turn are relevant for
e.g. breaking and safety distances of CAVs. Due to the substitution of the
human control task by the machine, this information must in future be de-
tected by the vehicle itself. Based on the existing VLSs and ASs data, which
are standard components in modern vehicles, a machine-learning approach
of determining road surface materials and road hazards is presented. Our
software solution of determining different road surface materials as asphalt,
concrete, cobblestone or gravel with a total accuracy of 92.36 % is presented.
Furthermore, the results of the road hazards detection as potholes and speed
bumps with a total accuracy of 92.39 % is stated. Additionally to the edge
calculations in the vehicle, our idea resolves in connected vehicles being ca-
pable of classifying road conditions enabling them to provide road analyses
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to a cloud platform. The goal is to establish a holistic cloud solution for
road conditions to enable CAVs for the consumption of road condition data
of upcoming road segments and empower them to adjust to those.

VI.1 Introduction

Automated driving is one of the most researched topics within the automo-
tive industry in recent years. The automated driving task can fundamentally
disrupt traffic as we know it today. Besides the creation of new leisure time,
working time or rest time, the transfer of the driving task to a computer
enables a great improvement in driving comfort and safety. The realization
of this task requires a holistic environment model, in which the vehicle is sit-
uated, so that it can move adapted to outer conditions. Most environmental
information such as the position of other vehicles, road markings and possi-
ble obstacles are usually recorded by an on-board sensor system consisting of
a combination of LIDAR, RADAR and camera components. In addition to
on-board recognition, the improved development of radio technologies (e.g.
5G) allows information from the internet to be provided as digital services.
These services can provide previously unknown information, create redun-
dancies for existing on-board data and, in bad weather situations, provide
information that may no longer be covered by on-board systems.

The Vienna Convention on Road Traffic [1] of 1968 defines rules of conduct
for drivers in 80 countries around the world. Article 13 states that vehicle
speed must be adapted to road conditions, among other things. Based on
Donges’ [2] Chassis Support System Model for ADASs, Winner and Hakuli
[3] describe a modified version of a hierarchy model for automated vehicles,
as shown in Figure VI.1. The hierarchy model is divided into driver, vehicle
and environment. While in automated driving the driver’s remaining task
consists only of transferring the transport task to the vehicle, the vehicle
takes over navigation, guidance and stabilisation. The road surface is part
of the environment and is necessary for the actual trajectory and speed of
vehicle movement.

In addition to the height profile of the road, which in practice and litera-
ture is covered by route-discrete evaluation indices, the road surface materials
and strong anomalies are of great interest for the driving task as they lead
to potential danger in terms of safety and comfort. Friction values depend
on the specific vehicle, the road surface materials, the height profile and any
moisture and wetness on the road.

Instead of an additional hardware system for recording preceding road
surfaces and anomalies, we rely on the use of data already in the vehicle.
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Primarily the data from the VLSs and AS at the wheel mass are used for
this purpose. The VLS measures the displacement of the chassis mass and the
wheel mass, thus the influence of the road to the spring-damper system [4].
We want to enable each vehicle to contribute to a cloud platform of road
conditions, surface materials and anomalies by our software approach. The
overall goal is to provide a worldwide online road condition map.

Our contributions can be summarized as follows:

• We investigate in-vehicle data for supervised road surface monitoring
and anomaly detection.

• We propose new features and investigate the importance of those for
the use case.

• We prove the applicability of machine learning for road surface and
hazard recognition.

Navigation

Guidance

Stabilization

Road Network

Traffic Situation

Road Surface

Driver Vehicle Environment

Alternative Routes

Range of Safe Motion States

Actual Trajectory and Speed

Transport Mission

Vehicle

Motion

Figure VI.1: Hierarchy model for automated driving according to Winner [3]

VI.2 Fundamentals and Related Work

There are different measurands for the investigation of road conditions. One
measurand is the complete recording of road height differences in longitudinal
and transverse direction. The information obtained is then broken down into
discrete segments and evaluated by a road quality index. In this paper we
describe this as road roughness. The second measurand is the detection of
the road surface and material such as gravel, cobblestone, asphalt or concrete
- road surface material. The latter measurand deals with the detection of
anomalies like potholes and speed bumps - road hazards.

For standardizing road quality, specifically road roughness, the World
Bank introduced the IRI in 1982 [5]. Sayers used the IRI for measuring the
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longitudinal road profile [6] by accumulating deviations measured in vertical
inches per mile or millimeter per meter. He specifies the IRI as an accumu-
lation of the displacement between sprung and unsprung masses of a vehicle
at 80 km/h over a discrete distance [7]. Dodds and Robson [8] also described
road roughness in 1973 on the basis of the PSD of the elevation profile.
Each elevation profile can be decomposed in a set of sinusoids to gather the
importance of different wave numbers [6].

The Federal Ministry of Transport and Digital Infrastructure (German:
Bundesministerium für Verkehr und digitale Infrastruktur - BMVI) devel-
oped a road roughness classification index by utilizing four triangulation laser
sensors. The technique is capable of measuring road elevation in intervals of
10 cm along the longitudinal road profile [9, 10]. The measurement procedure
is very reliable and accurate but also expensive due to the high investments
in hardware. The system is not applicable for common vehicles. Special
measuring vehicles drive over country roads and motorways in a rhythm of
about 4 years.

In the literature, camera-based approaches of detecting road hazards are
described. Chatterjee et al. [11, 12] utilize frontal cameras and machine
learning for the detection of road defects as cracks and spots. Rajab et al.
[13] whereas investigated cameras for the detection of crackings and potholes.
Islam et al. [14] use images and a histogram analysis for surface detection.

A commonly used crowd sensing approach utilizes smartphones in the
inner cabin of the vehicle. In the research project SmartRoadSense [15], the
acceleration sensors of smartphones analyze road roughness or defects from
the inner cabin. The project focus, between the actual calculation of road
roughness [15], on speed dependencies for the sensor signals [16, 17, 18, 19, 20]
and geospatial aggregation techniques of crowd-sensing data [21]. The use
of smartphones comes with a great penetration rate on the roads. Even
tough, a single device is subject to uncertainty in the position and cushioning
(e.g. seats, beverage storage area). A collaborative approach is needed to
obtain reliable results. Sattar et al. [22] perform a review onto road surface
monitoring using smartphones.

Our presented solution includes the machine-learning based detection of
road hazards and road surfaces. The paper describes how the road elevation
and therefore the road roughness can be calculated using the setup explained
in Section VI.3. The solution covers road hazards and road surface material
detection.
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VI.3 Experimental Setup

This chapter presents the experimental setup of the road surface material
and road hazard detection. Between the actual edge architecture of the test
vehicle, the cloud architecture of the use case is explained. Furthermore,
the pre-processing of the data and the labeling through supervised machine
learning are presented. We utilize machine learning based on SVM, as we
wish to create our own features, listed in Table VI.1 and Table VI.2. Further-
more, the appealing solution of utilizing neural networks is accompanied with
an insufficiently clarified situation to ensure functional safety in automated
driving.

VI.3.1 Edge Architecture

The VLSs are pre-built into the vehicle and additional ASs are retrofitted
onto the unsprung masses of the two front wheels by a pipe clamp and a
3D-printed housing. The ASs is a common MEMS sensor capable of mea-
suring accelerations in three dimensions. Depending on the vehicle and the
actual receiver functions of the VLS data in the vehicle, the data is conven-
tionally distributed in the vehicle network via the Controller Area Network
Bus (CAN-Bus) every 20 ms or 40 ms. To achieve an improved data rate,
resulting in more survey points in a discrete segments on the road, the VLS
data is read directly from the sensor via PWM. Due to the adoption, we
realize a data rate of 6 ms.

More information on the functional description of the CIPOS inside the
VLS can be found in Bartscht et al. [23] and Hobein et al. [24]. The dis-
placement of the chassis mass (sprung mass) and the wheel mass (unsprung
mass) can be derived from the angular position of the VLS. The body of
the vehicle sensor is fixed on the chassis and the lever is fixed on the spring
strut of the suspension system at the wheel mass. The vertical displacement
in the spring-damper system caused by the irregularities of road profiles can
be further determined with the measured angle and the lever length through
(1). Where d is the displacement of the chassis to the wheel, r is the length
of the lever of the sensor and α is the measured angle.

d “ 2r ¨ sinp
α

2
q (VI.1)

In addition, a GPS sensor which detects the current localization of the
vehicle and enables the mapping explained in detail in Section VI.5.3 is in-
stalled. A micro-controller takes over the signal processing and sends the
data to a Linux computer.
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In addition to the already mentioned sensors, a CAN shield mounted
on the top of the micro-controller is used to obtain further data from the
vehicle CAN network. The current velocity is needed for the later domain-
transformation from time to space. The measurement setup explained is
shown in Figure VI.2 as a schematic view and in Figure VI.3 in real life.
In the real life representation the connections on the micro-controller that
receive the raw data from the sensors are described with AS and VLS.
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Vehicle CAN-
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Figure VI.2: Edge architecture including all hardware components
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+ Arduino
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Figure VI.3: Real life system setup in the test vehicle

VI.3.2 Cloud Architecture

Figure VI.4 displays the functional blocks of the prototyping cloud architec-
ture. The data transmitted by the edge device in the connected car ends up
in the device gateway (Connection) of the cloud platform. In the integra-
tion step, the edge device elevations are mapped to the external source map
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data of Open Street Map (OSM)1 by merging the GPS-based elevations to
nodes at OSM. As a result, the road data from the edge devices is processed
together with the real road network data in a central storage solution. The
central storage solution is a relational database, which is particularly suitable
for position-based applications.

In the batch layer, the data of the different connected cars and their
evaluations are aggregated in order to provide a holistic solution of road con-
ditions. Since different evaluations of vehicles for identical road sections are
available, this process will become very important, but is fairly underutilized
in its present maturity. The speed layer handles the recent contributed data
from one vehicle/edge device to enable users checking their data contribution.
Both can be displayed on a web application based on OSM and Leaflet2, a
JavaScript library for mobile-friendly interactive maps.

The cloud architecture, including the device gateway, serverless functions,
the object storage and the relational database utilized in our prototype was
build with Amazon Web Services (AWS).

Edge
Devices

External
Sources

Connection

Integration Central
Storage

Aggregation
Batch

Data Access

Real-time
Data Access

Batch Layer

Speed Layer
Road-Map

Service LayerEdge Layer

Figure VI.4: Cloud architecture design including its functional blocks

VI.3.3 Pre-processing

Figure VI.5 displays the processing steps for feature creation and the predic-
tion. Starting from the raw data, the speed dependency of the VLS and AS
data must be filtered out as well as possible. In order to achieve the most
realistic possible speed dependency of the data, we are driving over a 2 km
long road with extremely heterogeneous road conditions at varying velocities
of 20 km/h to 100 km/h in steps of ten. A linear regression rpvq as a function
of velocity v allows us to realize first adjustments (3).

1https://www.openstreetmap.org/
2https://leafletjs.com/
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rpvq “ a ¨ v ` b (VI.2)

Furthermore, we extend this to include the re-scaling of all raw senor data
yraw to a reference velocity vref . The adjusted sensor data yadj is calculated
by yraw multiplied by the ratio between the linear regression at reference
velocity rpvref q and the linear regression at the current velocity from the
CAN-Bus rpvCANq.

yadj “ yraw ¨
rpvref q

rpvCANq
(VI.3)

Following, the time sequential data must be transferred from time to space
domain to enable road roughness and road surface materials being displayed
on discrete road segments. Thereby the current velocities from the CAN-Bus
are used. For road hazard detection, the signals are kept in time domain as
road hazards are mapped as GPS points instead of segments. In addition
to the purely physical sensor data, further physical and statistical features
are created, the process of which is described in detail in Section VI.4 and is
named in Figure VI.5 as Feature Engineering. In the following, the trained
ML model is applied. The model used was the SVM with the Radial Basis
Function (RBF) kernel [25, 26].
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Signal Pre-
processing

Windowing
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Results
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SVM model
application
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Hazards Roughness
Road
Surface
Material

F1 , …, Fn F1 , …, Fn

Figure VI.5: Pre-processing steps from raw data via features to predictions
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VI.3.4 Labeling

The labeling process was included in the test drives. In order to make the
process as accurate and convenient as possible, a labeling box was set up,
which can be found in Figure VI.3. To label the road surface materials, the
respective buttons are pressed when changing to a new pavement. To label
the road hazards, the buttons are pressed for the duration of the anomaly.
This is prone to errors, which is why labeling can be checked by recording
video data in parallel to adjust the hazard windows.

VI.4 Feature Engineering

Table VI.1: Physical Quantities of the measurement setup

Phys. Quantity Description

vehicle level Displacement of unsprung and sprung mass

tilt Inclination between front and rear axle due to VLSs measurements

slope Derivation of the VLS data

acceleration(z) Acceleration value of the vertical z axis

roll Rotation angle around the vehicles heading direction x “ atanpax, azq

pitch Rotation angle around the vehicles transverse direction y “ atanp´ay ,
a

a2
x ` a

2
zq

To prepare the data for the classification tasks, the features are extracted
for road surface material detection in space and for road hazard detection
in time window. The time windows are always of 1 s duration while with
half a second overlap to prevent hazards from being found only in the edge
areas of a window and therefore not being detected. The individual sensor
signal can be used directly as a feature or can be combined with each other
through mathematical operations to create new features. The relevant phys-
ical quantities derived from the sensor signals are listed in Table VI.1. A
fundamental approach for pattern recognition draws on established concepts
in statistical decision theory to differentiate data from different classes based
on quantitative features of the data. There are a variety of statistical tech-
niques that can be used for feature extraction. The usual statistical functions
are applied to each signal channel including mean, range, RMS, standard de-
viation, skewness and kurtosis. Other functions such as Signal Magnitude
Vector (SMV), Correlation of Acceleration along Gravity and Heading Di-
rection (CAGH) and Eigenvalues of Dominant Directions (EVA) are applied
on the acceleration signals.
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These characteristics are extracted both for road surface classification and
for hazard detection. In addition, some features in the frequency domain are
extracted from spatial domain windows only, including PSD, PSD in different
bandwidths, peak frequency, peak band and spectral entropy. The features
are listed in Table VI.2.

Table VI.2: Statistical Features derived from the physical quantities

Features Description

Mean Average value of the signal in the window

Max, min Maximal and minimal value of the signal in the window

Range Difference between the maximum and minumum in the window

RMS Quadratic mean value

Standard deviation Mean deviation of the signal compared to average

Skewness Degree of the asymmetry of the signal distribution; neutral, positive-biased
or negative-baised

Kurtosis Degree of the peak of the signal distribution; the distribution is wide or
concentrated

Signal magnitude vec-
tor (SMV)

Sum of the euclidean norm over the three axis over the entire window nor-
malized by the window length

ř

b

a2
x ` a

2
y ` a

2
z{n

Eigenvalues of domi-
nant directions (EVA)

Eigenvalues of the co-variance matrix of the accelerations along x, y, z axis.
It refers to the variance along the dominant acceleration directions

CAGH Correlation of the acceleration vectors in x and z axis, corrpax, azq

Total power spectral
density

Total power of the PSD

Relative band power Band power at 5 different bandwidths in percentage, bandwidth: [0 - 0.2] ,
[0.2 - 0.5] , [0.5 - 1] , [1 - 2] , [2 - 5]

Peak frequency The frequency the peak appears

Peak band The band the peak appears

Power entropy The distribution of frequency components

VI.5 Results

VI.5.1 Road Surface Material Prediction

This chapter presents and explains the results of the SVM on the prediction of
road surface materials in Figure VI.6. The results are based on the evaluation
of 9.8 km of test data from various road surfaces at varying road roughness
levels. The segment length is 10 m. From our data set, 60 % are used as
training set and 40 % as test set. The total accuracy of the presented model
is 92.36 %. The biggest deviation is in the detection of asphalt with just
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88.46 % accuracy. In total 40 segments are either wrong classified as asphalt
(false positives - 19 segments) or wrong classified as another surface material
despite being asphalt (false negative - 21 segments).

It can be assumed that the method of labeling via the labeling box results
in inaccuracies in the exact position of the pad changes. To a large extent,
there are road surface changes within the segments, which are only classified
by one surface material in the labeling, but can be perceived as a different
road surface by contracting the features into 10 meter segments.
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Figure VI.6: Confusion matrix of the road surface material prediction

VI.5.2 Road Hazard Prediction

The results of the SVM prediction for road hazard detection can be found
in Figure VI.7. The complete data set is split again in 60 % training and
40 % test data. The data was collected on a parking lot with many potholes
and speed bumps. The total precision of the hazard detection is 92.39 %
with over 93 % in pothole and bump detection. The confusion matrix also
shows that the true positive rate of windows without anomaly is with 91.13 %
slightly lower. 13 potholes and 5 speed bumps are detected despite normal
road conditions.
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Figure VI.7: Confusion matrix of the road hazard prediction

VI.5.3 Visualization

Table VI.3: Road Roughness levels based on PSD evaluations [6]

Roughness Level PSD

very high roughness PSD ě 3

high roughness 1.5 ď PSD ă 3

low roughness 0.5 ď PSD ă 1.5

very low roughness PSD ă 0.5

By the definition of OSM, a road is a sequence of nodes which form a
polyline. The nodes are defined to approximate the curve of a road. A long
straight road may only contain two nodes, while a curvy road may contain
many nodes aligned narrowly. The length of the road segments varies from
several meters to a few kilometers. The road segments are taken as reference
storage units, so road segments that are too long are not desirable. In order
not to change the geometry of the roads, they are divided into smaller seg-
ments by simply inserting additional nodes in between to keep each segment
below a certain threshold length. To give an overview, the road conditions
are visualized on the map. The visualization is realized with Leaflet, an open
source JavaScript Library for the development of mobile friendly interactive
maps, which allows different drawing layers to overlap on the map. After
all information is matched to the roads, the road quality is displayed with
different colors according to its roughness index. The roughness is divided
into four levels, as shown in Table VI.3.
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Figure VI.8: Map visualization of the road roughness including pop-up win-
dows for surface material predictions

The road surface materials can be found in special pop-up windows by
clicking onto the segments. The anomalies are visualized separately, shown
in Figure VI.9. The green points represent the irregular points constructed
on purpose, such as speed bumps. The red ones show the anomalies that
require repair, such as potholes.

Figure VI.9: Map visualization of the road hazard prediction for potholes
and bumps including a zoomed picture on the right
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VI.6 Conclusion

In this paper, we presented a machine-learning based solution of detecting
road surface materials and road hazards with data from standard sensor
components as the VLS and the AS of modern vehicles. The technical and
experimental setup in our test vehicle have been described as well as the
labeling procedure. We furthermore investigated the applicability of various
features for the two use cases.

Between the actual results explained in Section VI.5, we proposed so-
lutions for equalizing speed dependencies and domain transformations from
time to space. The paper presented the prototype from sensors to digital
service in form of the visualization.

Subsequently, significantly more labeled data should be recorded to im-
prove accuracy for use. Also different machine-learning methods should be
applied in the future. In addition, it will be investigated to what extent the
results of different vehicles match and how these can be taken into account
in case of deviations in the cloud database.
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Abstract

Information about road damages are of great interest for federal road author-
ities and their infrastructure management as well as the automated driving
task and thus safety and comfort of vehicle occupants. Therefore, the in-
vestigation of the automatic detection of different types of road damages
by images from a front-facing camera in the vehicle is of utter importance.
Here we show a novel deep Learning approach utilizes the pre-trained Faster
Region Based Convolutional Neural Networks (R-CNN). The data basis of
our work is provided by the ’IEEE BigData Cup Challenge’ and its dataset
’RDD-2020’ with a large number of labelled images from Japan, India and
the Czech Republic. In the first step, we classify the destination of the im-
age followed by expert networks for each region. Between the explanation
of our applied Deep Learning methodology, some remaining sources of errors
are discussed and further, partly failed approaches during our development
period are presented, which could be of interest for future work. Our results
are convincing and we are able to achieve an F1 score of 0.487 across all
regions for longitudinal and lateral cracks, alligator cracks and potholes.
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VII.1 Introduction

Due to its connecting characteristic, the transport infrastructure is an im-
portant factor for the society. It links all areas of public and private life,
including the health care system, social contacts, education and work. In
addition to the general importance of infrastructure, we are experiencing a
sharp increase in the complexity of individual traffic, also due to new tech-
nical developments in the automotive industry. The rise of the automated
vehicle entails many opportunities, among them are the reduction of traf-
fic congestion, optimized individual mobility, enhanced driving comfort and
greatly increased safety for passengers and other traffic participants. 90 % of
all traffic accidents are still caused by human error [1]. Besides the primary
use of current road condition information by road construction authorities for
the maintenance and repair of road infrastructure, up-to-date data on road
conditions are also becoming increasingly important for automated driving
tasks. According to Miller and Zaloshnja [2], the road infrastructure has an
immensely high value for transportation safety and economic growth.

Recently, automated driving is emerging rapidly. The SAE Vehicle Stan-
dard defines a taxonomy for motor vehicle automation with ascending levels
of automation from no automation (level zero) to fully automated driving
(level five). For the realization of the fully automated driving task, a holistic
environment model is required, which in current prototypes is powered by
a combination of LIDAR, RADAR and camera data. According to Winner
and Hakuli [3], that environmental model includes the road surface as a con-
trol variable. Thus, the task of road surface observation, traffic situation
and road network analysis are transferred from the driver to the vehicle (cf.
Figure VII.1).

Cognition of the environment and road surface assessments are primarily
based on visual perception, and breakthroughs in the field of Deep Learn-
ing allowing the increasing replacement of human supervision by computer
vision. The resulting ameliorations of vision-based ADASs are a central con-
tribution to the automation of vehicles. They capture high-resolution texture
data of upcoming road segments, while vibration-based detection methods,
for instance, need the vehicle to cross the specific road area for detection.
Hence, real-time camera evaluations enable the vehicle to take preventive
actions. However, variations in illumination and environmental conditions
(e.g. weather, surface conditions, other vehicles, buildings, road markings)
and other disturbances like motion blur or specific sensor noise can lead to
different image features for the same surface, which may cause erroneous
recognitions and machine decisions.

We report on a novel deep learning solution for the classification of various
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road damage types using smartphone camera sensors aimed at the road ahead
of a vehicle, making our research very important due to its predictive and
real-time characteristics. Our research uses the Road Damage 2020 dataset
provided by the ’IEEE Global Road Damage Detection Challenge 2020’ with
in-depth conditions explained in Arya et al. [4] and later in Section VII.3.1.
In her paper, Arya et al. [5] describes the exact background of the challenge
and summarizes the solutions of the 12 winners.
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Road Network

Traffic Situation

Road Surface

Driver Vehicle Environment
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Range of Safe Motion States

Actual Trajectory and Speed

Transport Mission

Vehicle

Motion

Figure VII.1: Hierarchy model for automated driving according to Winner [3]

Our contributions can be summarized as follows:

• We present our solution of detecting road damages utilizing FRCNN.

• We introduce regional expert networks to increase the performance of
neural networks by eliminating regional differences.

• We show a clear superiority of the regional experts over the single
predictor.

VII.2 Related Work

Automated road assessment systems are mostly based on technologies like
RADAR, LIDAR, laser, remote sensors, ultrasonic sensors and image sensors.
The different technologies for the detection of road conditions can be divided
into different sub-categories. The first distinction is made between profilers
that want to create a topology, a real elevation profile in vertical and hor-
izontal, and those that are limited to detecting road defects. The creation
of a holistic topology is usually very expensive and requires standardized
measurement vehicles. The road classification procedure commonly used in
Germany was standardized in 1991 by the Federal Ministry of Transport
and Digital Infrastructure (BMVI) and is based on four triangulation laser
sensors. The lasers are mounted on a grid-shaped measuring beam directed
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vertically downwards and process the longitudinal road profile at a distance
of 10 cm [6], [7]. According to Sayers [67], such a system is a valid profiler
with a real physical relationship to the road profile, invalid profiles instead
just create a ’wiggly line’ over the road profile without an established relation
to the road elevation. Based on calculations of valid profilers, road quality
indices can be calculated from the topology data to gain immediate insight
about the considered profile. To be mentioned here are the IRI, introduced
by the World Bank in 1982, and the PSD. The IRI displays the accumula-
tion of the distance between sprung and unsprung masses of a vehicle at a
velocity of 80 km/h over a defined distance [8, 9, 10]. The introduction of
the PSD enabled the importance of different wavelengths in the road profile
to be considered, which made it much easier to assess the road profile and
its significance for the vehicle in motion [11, 9].

This does not mean, however, that invalid profilers are not usable, because
they can still detect relevant wavelengths in the road profile and are often
attractive in the crowd sensing scenario. Accelerometers in smartphones
are frequently proposed to measure road roughness or to detect defects, in
particular by Song et al. [12], Tai et al. [13], Perttunen et al. [14], Yi et al.
[15], Seraj et al. [16] and Alessandroni et al. [17]. Despite of the uncertainty
of single measurements due to inaccuracy of positioning in the vehicle, in
disregard of the spring-damper systems of the vehicle and imprecision due to
the smartphone sensors themselves, these approaches benefit from an already
high distribution of hardware in the market and therefore low additional
costs. Another crowd sensing scenario involves citizens to report anomalies
to the public sector [18].

Many publications focus on visual road anomaly detection, however, the
requirements of the solutions are often not identical and the tools to imple-
ment the application are extensively different. One category deals with the
detection of cracks (e.g. [19, 20, 21]) as they are one of the most common
road distresses and are a primary indicator of deterioration patterns [22].
Besides cracks, there also exists extensive research in visual pothole detec-
tion [23, 24] and visual multi-class anomaly detection [25, 26]. Some make
use of a mix of machine classifiers and image processing, involving techniques
for filtering and extracting useful features from images manually. Afterwards
applying a machine classifier, while Chatterjee et al. [20] used a SVM to clas-
sify image regions into crack/no crack, Azhar et al. [27] classified the image
first, following a segmentation/localization technique to detect the anomaly.
Though, the application of feature extraction with image processing tech-
niques in real-life scenarios is difficult [28], which is why research in visual
anomaly detection has lately increasingly used DL, especially CNN architec-
tures. Zhang et al. [29] proposed a DL approach in 2016 for automated crack
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detection, learning from manually annotated smartphone images. Gopalakr-
ishnan et al. [19] used a CNN trained on the ’Big Data ImageNet’ database
[30] and proved the application of cross-domain transfer learning for vision-
based crack detection. Mandal et al. [31] also used transfer learning by
training an existent, real-time CNN detection system to obtain a model that
locates cracks on images and classifies them into one out of eight crack cat-
egories in real-world situations. Fan et al. [21], trained a CNN for the
classification of crack/non-crack; smoothed the crack-containing images to
remove noise and applied an adaptive threshold technique to extract cracks.

Pereira et al. [32] proposed a CNN approach that outperformed con-
ventional SVM based approaches in classifying an image into pothole/non-
pothole, but the performance still suffered for varying illumination conditions
and the data contained only severely potholes. An et al. [33] tested various
CNN architectures on frames obtained by a front-facing smartphone camera
to classify a road region into pothole/non-pothole. A transfer learning CNN
approach to detect and locate potholes on images was proposed by Suong
and Kwon [34], similar to Mandal et al. [31]. Maeda et al. [35] applied deep
CNNs to locate anomalies on smartphone images by a bounding box and
classify them into anomaly classes. The model can be run on smartphones.
This was the first time a large-scale road damage dataset was prepared. Xia
[25] used a CNN based object detection method to locate and classify cracks
and potholes from camera videos in complex background. The detection
accuracy decreased with the increasing speed of the vehicle.

To optimize the automated driving task, the road surface material is also
crucial, as this is the basis for friction values. Most publications in this re-
search category, named terrain classification (e.g. concrete, asphalte, gravel),
do utilize DL [36]. Roychowdhury et al. [37] examined different CNNs to
learn region-specific features on vehicle front-camera road images to classify
into dry, wet, slush or snow road. Valada and Burgard [38] combined a CNN
with recurrent LSTM units to train a model that captures both the spatial
and temporal dynamics of road surface type classification (asphalt, mowed
grass, high grass, paving, cobblestone, wood, dirt, linoleum, and carpet).
Nolte et al.[39] trained two standard CNN architectures, which achieve high
performance across many different domains, on frontal vehicle camera data to
classify the road surface region into asphalt, cobblestone, wet asphalt, grass,
dirt or snow. Their model is suitable for control algorithms of autonomous
agents, as their sensor provides a look-ahead in front of the vehicle.

Our solution, in contrast to the aforementioned approaches, makes use
of regional experts and is therefore applicable in different countries. The
transferability to other countries is very well possible through transfer learn-
ing with our basic network, trained on images of all countries, which makes
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our approach expandable. Due to the extremely good performance of the
Country-Classifier we hardly get any disadvantages due to the two-stage
process.

VII.3 Experimental Setup

In this section we have a closer look at our experimental setup including the
training conditions, our DL methodology and further approaches of interest,
nevertheless they did not end up in our final solution.

VII.3.1 Dataset RDD-2020

Our solution makes use of the Road Damage Dataset 2020 introduced in the
IEEE BigData Cup Challenge ’Global Road Damage Detection Challenge
2020’ [4]. The dataset is based on two iterations of a previous dataset from
Japan; RDD-2018 Maeda et al. [35] in 2018 with 9,053 images and 15,435
annotations and RDD-2019 Maeda et al. [40] in 2019 with 13,135 images
and 30,989 annotations. In its current state, the RDD-2020 consists of a
total amount of 26,620 images while additional pictures from India, Czech
Republic and few from Slovakia have been added. A major difference between
the datasets lies in the number of used damage categories. RDD-2020 consist
of four categories including longitudinal cracks (D00), lateral cracks (D10),
alligator cracks (D20) and potholes (D40). The other datasets included road
marking deteriorations such as cross walk blur and white line blur which
differ immensely in different countries, which is the reason to exclude those
in the challenge.

For further information on the distribution of road damages, the stan-
dardization of road damage in other countries and more detailed information
on the study area, we refer to Arya et al. [4].

VII.3.2 Deep Learning Methodology

Our work is based on the Tensorflow Object Detection API [41]. We used
this API to train FRCNN networks with transfer learning from the given
Detection Model Zoo. The pre-trained model is ’Faster R-CNN ResNet152
V1 800x1333’. All images were split 80/20 to get training and test data sets.
From each, the needed TFRecord files for the input pipeline, containing all
the annotation information, were created.

Figure VII.2 shows the basic structure of a FRCNN. It consists of two
modules, a fully convolutional network for proposing the RoI and a Fast
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Figure VII.2: Basic FRCNN structure [42]

R-CNN detector [43], which works within the proposed regions. The given
feature maps from the convolutional network are getting pooled by a max-
pooling approach. Therefore out of every 2ˆ 2 sub-matrix of a feature map,
only the maximum value is kept. Through shared convolutional features
between the region proposal and object detection task, compelling speed
and accuracy can be achieved. Our approach consists of the training of a
classifier to distinguish between the countries and an Expert FRCNN for each
country respectively as the images inhabit immense differences in vegetation,
light and dust conditions. The object detection is performed within each
Expert Network. This model is called ’Regional-Expert’ and illustrated in
Figure VII.3.

Country Classifier

Passes the image to

the corresponding

Regional Expert

Object Detector

Object Detector

CzechRepublic

Object Detector

India

Object Detector

Japan

Input Output

Figure VII.3: Illustration of the Regional-Expert model

We created another FRCNN to classify the country. For the annotation
a bounding box with the same dimensions as the image and a label for the
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country were created. The same images from the data challenge were used
for this and split in a 80/20 training-test-split.

In Figure VII.4 the loss for the RPN and box classifier for the so-called
Country-Classifier is shown. Box classifier loss and RPN loss are adding up
together to the total loss, displayed in the plot. The RPN loss converged
quickly near to zero and the classifier loss reaches values below 0.1.
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Figure VII.4: RPN and classifier loss with total loss for the Country-Classifier

The Single-Predictor was trained on the above mentioned pre-trained
model from the Detection Model Zoo with the best set of hyper-parameters
found by different learning approaches. This network serves as a starting
point for the three different detection networks for Czech, India and Japan.
Based on this network we fine-tune every network for the three regions to
learn their specific road conditions and frequency of damage type on top of
the basic Single-Predictor. In Section VII.4 we look at the improvement of
the Regional-Expert in comparison with the Single-Predictor. Every expert
network ran over 100 000 steps of transfer learning from the Single-Predictor.
One step included an update via gradient descent with a maximum batch
size of ten. The used images were sorted by countries and split into 80/20
training-test-split.

The loss of the Indian expert network in Figure VII.5 shows a converging
trend with the box classifier loss being the main influence for the total loss,
ending at a value around 0.3. Czech Republic and Japan expert networks
show similar trends and a slightly lower loss for Czech at around 0.1 and a
higher loss for Japan at around 0.4.
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Figure VII.5: RPN and classifier loss with total loss for the Indian expert
network

VII.3.3 Further Approaches

The following approaches were attempted during the preparation of our so-
lution, but could not improve the results under the given training.

Arya et al. [4] describe the heterogeneous distribution of road damages
within the dataset. To test the importance of a homogeneous road damage
distribution, the provided images were sorted for every country. The result-
ing dataset is composed of 1 000 samples of every damage and 1 000 images
completely free of damages. If certain damages are underrepresented in a
country, the category is supplemented by images from other countries up to
an amount of 1000 images. Although this approach yields a worse result, the
importance of equally represented damages to avoid overfitting can not be
underestimated. The statistics in the given dataset show a good reflection of
the real world distribution of different road damages. A more homogeneous
distribution is not feasible for the current training setup.

Further improvements of the Expert Network method can be achieved
by reducing the incorrectly detected damages. Some detected damages are
no road damages at all and lower the precision of our object detector. To
reduce this negative influence a classifier was trained. It takes the detected
region of a certain damage as input and ensures if there is a damage in the
road. The single damage classifier did not improve the overall performance,
due to its insufficient correctness in decisions. However, while some wrongly
detected damages were removed, even more correctly detected damages were
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eliminated. This diminishes the score of our model. A better classifier could
be trained With more time and a stronger GPU to be possibly beneficial for
the project.

VII.4 Results

VII.4.1 Evaluation methods

To evaluate and compare different models precision, recall and F1-scores
are used. Our presented evaluations are based on a different set of images
than the calculated F1-score from the leaderboard of the challenge as the
ground truth labels of the leaderboard testset were not published. Our in
depth evaluation shows comparative results while containing further analysis.
Precision is the percentage of correctly detected damages (True Positives
(TP)) out of the total number of predicted damages (TP and False Positives
(FP)). Recall is the percentage of correctly detected damages out of the total
number of actual damages (TP and False Negatives (FN)). Sample outputs
for TP, FP, True Negatives (TN), FN can be seen in Figure VII.6. To be
counted as a TP the area of the detected damage has to overlap at least a
defined amount with the true area of the damage. This is calculated with
the IoU, which is the division of area of overlap by the area of union. The
threshold is set to 0.5, if a correct detection only yield an IoU of under 0.5
it is considered a FP. Detection results of an image are compared with the
annotations in the following fashion:

• Calculate the IoU of every detection with the first road damage

• Compare the predicted class, of the detection with the highest IoU,
with the road damage label

• If the classes match, check if the IoU is above the threshold of 0.5

• If the IoU is high enough, the detection is a TP, else it is a FP

• Continue this until there are no more damages

Every road damage more, than detected damage, is a FN and every de-
tected damage more, than a road damage, is a FP.

Precision and recall usually counter each other. The F1-score is used
because of the balance between precision and recall. With a high F1-score it
is ensured to get a reasonably high precision and recall. It is calculated as
follows:
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Predicted True Label

(a) TP for a vertical crack

Predicted True Label

(b) FP for a horizontal crack

Figure VII.6: Example images for TP and FP

F1 “ 2ˆ
precisionˆ recall

precision` recall
(VII.1)

We will use three different approaches on the F1-score, which will be
macro F1-score, micro F1-score and the weighted F1-score.

The macro F1-score is the arithmetic mean of the F1-scores of every
damage category.

The micro F1-score is calculated by, counting every TP, FP and FN over
all damage categories as displayed in Equation (VII.1).

The weighted F1-score, whereas, utilizes the number of occurrences of the
different damage types as weights for a weighted sum. The arithmetic mean
of the weighted sum is then calculated.
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Every detection is given with a score. This score states how certain the
model is, that the detection is correct. For different thresholds of this score a
precision-recall curve can be created. Averaging the precision values results
in the mAP.

VII.4.2 Evaluation Results

The classifier performs with a F1-score of 0.98 and an mAP of about 0.95,
displayed in Figure VII.7. The gray lines represent discrete F1-scores and
every area above it has a higher score. Figure VII.8 shows the result of our
Country-Classifier. Just a small amount of Czech and Indian images are
miss-classified.
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Figure VII.7: ROC-Curve for Country-Classifier with average precision and
F1-score

Both, the confusion matrices and the precision-recall curves show a clear
superiority of the Regional-Expert over the Single-Predictor. Figure VII.10
shows a trend to correctly detect the damages, but with a lot of FP and
FN. The elements on the diagonal are the correctly detected damages (TP)
The last diagonal element is the number of all images without a damage and
without a predicted damage (TN). The other parts of the confusion matrix
are falsely or not detected damages and are counted as FP and FN. A large
quantity of not detected damages, are shown in high counts on the rightmost
column. The last row shows the number of detected damages in regions with-
out real road damage. 288 of these detections are caused by a too low IoU.
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Figure VII.8: Confusion matrix for the Country-Classifier with a score
threshold of 0

The damage category is correct, but the overlap of the predicted with the
real damage was not sufficient enough. Within the categories, incorrect clas-
sifications occur much less frequently. Only horizontal and alligator cracks
are more commonly mistaken for each other.

The more advanced Regional-Expert detector in Figure VII.9, with the
Country-Classifier, increases the performance compared to the Single Predic-
tor. The counts in the last column have decreased by a good amount. There
are now only 209 cases with correct label and too small IoU. But the number
of not detected damages is still high and has to be improved in future work.
The improvement of the Regional-Expert over the Single-Predictor is seen
in the direct comparison of the precision-recall curves in Figure VII.11. An
mAP of 0.386, with a weighted F1-score of 0.487 is achieved for the Regional-
Expert model, while the Single-Predictor only yields an mAP of 0.345 and a
F1-score of 0.433. Although the Single-Predictor achieves single higher pre-
cision and recall values, the Regional-Expert can deliver a noticeably better
overall performance with a better balance of precision and recall. Different
variants of the F1-score with our test-set of images for Single-Predictor and
Regional-Expert and the leaderboard scores are shown in Table VII.1. The
different metrics deviate a bit from each other, but are giving overall similar
results and are in harmony with the generated scores from the leaderboard.
The enhancement is clearly visible, the Regional-Expert model reaches a
higher performance.
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Figure VII.9: Confusion matrix for the Regional-Expert model with a score
threshold of 0.90

Table VII.1: Macro, micro and weighted F1-score for Single-Predictor and
Regional-Expert

Single-Predictor Regional-Expert

Macro 0.41569 0.4700

Micro 0.4141 0.4668

Weighted 0.4335 0.4865

Leaderboard 0.4086 0.4720

An overview of the performance of our model on every single damage
category, the precision, recall and F1-scores are found in Table VII.2. Al-
ligator cracks, with the label D20, are the easiest to detect for our model,
because they are much larger and and have more distinct deteriorations than
just small longitudinal cracks. The recall is lower in every category than the
precision. This tendency is seen within the confusion matrices.

VII.4.3 Evaluation Discussion

After training, some test routines were performed and the time needed for a
single processing of an image was measured (processing time). Along with
this the time for initializing all the components of the model was registered.
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Table VII.2: Per class precision, recall and F1-score, Regional-Expert

Precision Recall F1-score

D00 0.5173 0.3536 0.4200

D10 0.5333 0.2471 0.3377

D20 0.6779 0.5402 0.6012

D40 0.6856 0.4067 0.5105
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Figure VII.10: Confusion matrix for the Single-Predictor with a score thresh-
old of 0.74

Table VII.3 shows the time per inference in ms and total time to load a model
in s. The average time to load the Country-Classifier and the Regional-
Expert is about 175.68 s and average time per interference is about 135.2 ms.
After a loading time of about three minutes around seven images per second
can be processed on the utilized hardware. To process an image every three
meter, the velocity of the vehicle can be as high as 3 m{0.1352 s « 22.2 m{s.
With a more powerful GPU this speed can be greatly enlarged and a mapping
of the street in short intervals would be even possible at highway speed.
Though our model could be optimised in terms of real-time application in
future works.

To successfully train the model with GPU acceleration, the batch size
must be dramatically reduced in future work. This was due to our semi
state-of-the-art GPU. With a more powerful GPU and thus a higher batch
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Figure VII.11: ROC-Curve for Single-Predictor and Regional-Expert with
average precision and weighted F1-score

size, computation could be paralleled and the training could be accelerated
to stable the gradient. After reviewing some evaluation images displayed in
Figure VII.12, Figure VII.13 and Figure VII.14, some remaining issues in the
network are detected. One problem consists in a missing label for manhole
covers. In some cases manhole covers are miss-classified and detected as
potholes. Other hard to detect features are small cracks phasing out of big
alligator cracks, displayed in Figure VII.13. The detector counts the cracks as
part of the bigger structures and loses some performance by gaining more FN.
Similar to this problem many small cracks near each other in Figure VII.14
are sometimes detected as one bigger crack. This is a very logical problem, as
there is no hard line in the manual labelling process between the accumulation
of vertical and horizontal cracks and alligator cracking.

VII.4.4 Future Work

To decrease the impact of wrongly detected manhole covers as potholes, an
extended dataset, containing a large enough amount of labeled manhole cov-
ers, is considered. With this larger dataset the current versions of Regional-
Expert can be fine-tuned. A success in this minor problem should generate
less FP and hence improves the scores of our model. In the future, the scope
of this project will be to detect major road damages in real time and generate
a general condition of the driven road. The importance of detecting every
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Table VII.3: Time measurement for processing with NVIDIA GeForce GTX
1080 Ti

Loading the models [s] Time per inference [ms]

165.50 138.0

182.88 136.9

173.55 135.5

180.72 135.3

181.59 135.8

169.82 129.8

Figure VII.12: Many small cracks, correctly detected

crack depends on the use case. For automated driving though, greater struc-
tures and anomalies with the potential to decrease the vehicle ride comfort
and safety are of greater interest.

VII.5 Conclusion

This Paper presents our work on the proposed dataset ’RDD-2020’ of 26620
road images collected from Japan, India and the Czech Republic within the
IEEE BigData Cup Challenge ’Global Road Damage Detection Challenge
2020’. The described model works great for a general detection of road
conditions in different countries. Some minor flaws have to be corrected for
precisely detecting even more single cracks in the street and to prevent miss-
classification of manhole covers. A stronger GPU could improve our results
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Figure VII.13: Cracks phasing out of alligator cracks can not be sufficiently
detected

Figure VII.14: Many cracks overlapping each other. Not every crack can be
detected

significantly by enlarging the batch size. With the given Single-Predictor
detection model it is simple to expand the Regional-Expert model for other
countries. Because of the great variety of road materials, the Single-Predictor
generalizes the structural properties of cracks and potholes and with some
new images from other countries their own Regional-Expert can be trained
via transfer learning. We recommend our well performing Regional-Expert of
the three existing countries in this dataset and using one of these as starting
point of the transfer learning.

Another field of research opens up through the fusion of a camera-based
solutions with the proposed approach of Kortmann et al. [44] where pre-
installed on-board sensors are used to evaluate the elevation profile of road
areas already passed through. The solution consists of a physical model-based
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calculation of the QVM. It should be investigated how these two solutions
together can lead to improved results. Since the model-based approach is
a real calculation of the height of the road profile, it could be attempted
to train the camera data to the height information to further enhance the
outcome of the DL solution.
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nen, “Detection of vertical pole-like objects in a road environment us-
ing vehicle-based laser scanning data,” Remote Sensing, vol. 2, no. 3,
pp. 641–664, 2010.

[8] M. W. Sayers, “Guidelines for the conduct and calibration of road rough-
ness measurements,” tech. rep., 1984.

214



[9] M. W. Sayers, “The little book of profiling: basic information about
measuring and interpreting road profiles,” tech. rep., University of
Michigan, Ann Arbor, Transportation Research Institute, 1998.

[10] M. W. Sayers, “Two quarter-car models for defining road roughness: Iri
and hri,” Transportation Research Record, no. 1215, 1989.

[11] C. Dodds and J. Robson, “The description of road surface roughness,”
J. of sound and vibration, vol. 31, no. 2, pp. 175–183, 1973.

[12] H. Song, K. Baek, and Y. Byun, “Pothole detection using machine learn-
ing,” Advanced Science and Technology, pp. 151–155, 2018.

[13] Y.-c. Tai, C.-w. Chan, and J. Y.-j. Hsu, “Automatic road anomaly de-
tection using smart mobile device,” in Conf. on technologies and appli-
cations of artificial intelligence, Citeseer, 2010.

[14] M. Perttunen, O. Mazhelis, F. Cong, M. Kauppila, T. Leppänen, J. Kan-
tola, J. Collin, S. Pirttikangas, J. Haverinen, T. Ristaniemi, et al., “Dis-
tributed road surface condition monitoring using mobile phones,” in Int.
Conf. on ubiquitous intelligence and computing, pp. 64–78, Springer,
2011.

[15] C.-W. Yi, Y.-T. Chuang, and C.-S. Nian, “Toward crowdsourcing-based
road pavement monitoring by mobile sensing technologies,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 16, no. 4, pp. 1905–
1917, 2015.

[16] F. Seraj, B. J. van der Zwaag, A. Dilo, T. Luarasi, and P. Havinga,
“Roads: A road pavement monitoring system for anomaly detection
using smart phones,” in Big data analytics in the social and ubiquitous
context, pp. 128–146, Springer, 2015.

[17] G. Alessandroni, L. C. Klopfenstein, S. Delpriori, M. Dromedari,
G. Luchetti, B. D. Paolini, A. Seraghiti, E. Lattanzi, V. Freschi,
A. Carini, and A. Bogliolo, “SmartRoadSense: Collaborative road sur-
face condition monitoring,” in Int. Conf. on Mobile Ubiquitous Comput-
ing, Systems, Services and Technologies, pp. 210–215, IARIA, 2014.

[18] S. F. King and P. Brown, “Fix my street or else: using the internet to
voice local public service concerns,” in Int. Conf. on Theory and practice
of electronic governance, pp. 72–80, 2007.

215



[19] K. Gopalakrishnan, S. K. Khaitan, A. Choudhary, and A. Agrawal,
“Deep convolutional neural networks with transfer learning for computer
vision-based data-driven pavement distress detection,” Construction and
Building Materials, vol. 157, pp. 322–330, 2017.

[20] S. Chatterjee, P. Saeedfar, S. Tofangchi, and L. M. Kolbe, “Intelligent
road maintenance: a machine learning approach for surface defect de-
tection.,” in ECIS, p. 194, 2018.

[21] R. Fan, M. J. Bocus, Y. Zhu, J. Jiao, L. Wang, F. Ma, S. Cheng, and
M. Liu, “Road crack detection using deep convolutional neural network
and adaptive thresholding,” in 2019 IEEE Intelligent Vehicles Sympo-
sium, pp. 474–479, IEEE, 2019.

[22] C. Koch, K. Georgieva, V. Kasireddy, B. Akinci, and P. Fieguth, “A
review on computer vision based defect detection and condition assess-
ment of concrete and asphalt civil infrastructure,” Advanced Engineering
Informatics, vol. 29, no. 2, pp. 196–210, 2015.

[23] A. Dhiman and R. Klette, “Pothole detection using computer vision
and learning,” IEEE Transactions on Intelligent Transportation Sys-
tems, 2019.

[24] S. Lee, S. Kim, K. E. An, S.-K. Ryu, and D. Seo, “Image processing-
based pothole detecting system for driving environment,” in IEEE Int.
Conf. on Consumer Electronics, pp. 1–2, IEEE, 2018.

[25] W. Xia, “An approach for extracting road pavement disease from hd
camera videos by deep convolutional networks,” in 2018 Int. Conf. on
Audio, Language and Image Processing (ICALIP), pp. 418–422, IEEE,
2018.

[26] L. Huidrom, L. K. Das, and S. Sud, “Method for automated assessment
of potholes, cracks and patches from road surface video clips,” Procedia-
Social and Behavioral Sciences, vol. 104, no. 2013, pp. 312–321, 2013.

[27] K. Azhar, F. Murtaza, M. H. Yousaf, and H. A. Habib, “Computer vi-
sion based detection and localization of potholes in asphalt pavement
images,” in IEEE Canadian Conf. on Electrical and Computer Engi-
neering, pp. 1–5, IEEE, 2016.
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Abstract

Initiatives such as the 2020 IEEE Global Road Damage Detection Challenge
prompted extensive research in camera-based road damage detection with
Deep Learning, primarily focused on improving the efficiency of road man-
agement. However, road damage detection is also relevant for automated
driving to optimize passenger comfort and safety. We use the state-of-the-
art object detection framework Scaled-YOLOv4 and develop two small-sized
models that cope with the limited computational resources in the vehicle.
With average F1 scores of 0.54 and 0.586, respectively, the models keep pace
with the state-of-the-art solutions of the challenge. Since the data consists
only of smartphone images, we also train expert models for autonomous driv-
ing utilizing vehicle camera data. In addition to detection, severity assess-
ment is critical. To classify detected damage into different severity levels, we
propose a semi-supervised learning approach based on the encodings learned
by combining a class-conditional Variational Autoencoder and a Wasserstein
Generative Adversarial Network.
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VIII.1 Introduction

The increasing automation of vehicles entails many opportunities, such as
reducing traffic congestion, improving overall mobility, and increasing safety,
as the vast majority (about 90%) of accidents result from human error [1].
To enable comfortable, safe, and efficient passenger transportation, the self-
driving agent necessitates a reliable perception system for precise vehicle lo-
calization and understanding of the surrounding 3D environment. To make
sense of the constant stream of sensor data from environment detection sen-
sors like cameras, LIDARs, and RADARs, DL is usually applied.

Understanding and modeling the environment for ADASs or AVs necessi-
tates evaluating the road surface [2]. Relevant road criteria include detecting
and assessing road hazards and damage (e.g., potholes and cracks), particu-
larly relevant in countries with mediocre road infrastructure. The relevance
is emphasized by companies such as Tesla, striving to integrate bump and
pothole detection into their AV environment perception systems [3]. In this
context, we build DL-based road damage detection models and a severity
classifier. Instead of utilizing expensive hardware like sophisticated camera
systems or lidars, the models only require conventional cameras (e.g., smart-
phones, dashcams, or automotive cameras), making them applicable to a
large crowd. The road surface analyses of the individual vehicles can be for-
warded to a cloud platform, where the data is aggregated in a map, utilizing
crowdsourcing. The key technology in this regard is High Definition (HD)
maps, which usually contain much richer semantic information than standard
navigation maps. Each connected car could provide and consume accurate
road condition information to/from the cloud HD map in near real-time,
enabling them to benefit from the crowd-based model of the environment [4].

Automatic road damage assessment systems that leverage standard hard-
ware like simple front-facing cameras also represent an excellent opportunity
to complement expensive road management systems without the need for
additional financial expenditure by authorities. By aggregating the percep-
tions in an accurate map with a semantic road assessment layer, responsible
institutions have an early and automatic up-to-date assessment of the road
network, enabling them to take preventive steps to reduce maintenance costs
and increase road sustainability and safety. This is particularly relevant for
developing countries with insufficient financial resources and positively affects
a country’s economic growth [5].

This paper examines DL-based road damage detection models based on
front-facing smartphone and automotive cameras. The detection process in
vehicles requires to be performed at a fast processing speed, best at the
camera sensor frame rate (30FPS), and cars often utilize embedded devices
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with limited processing power. Therefore, the exploration is carried out
along a tiny and a medium-scale model architecture from the state-of-the-
art object detection framework Scaled-YOLOv4 [6], which optimally trades-
off speed and accuracy. Additionally, we investigate methods to increase
the accuracy of road damage detection. Many techniques that achieve the
highest accuracy are accompanied by increased inference cost. Therefore, we
divide the methods that reduce the inference rate (’Bag of Investments’) and
those not affecting the inference time (’Bag of Presents’). We demonstrate
that we can build accurate detection models even with limited computational
resources while maintaining real-time speed. Since assessing severity is also a
relevant factor for road management agencies and AV companies, we provide
a primer for camera-based severity classification using semi-supervised DL.

Our contributions can be summarized as follows:

1. We build accurate real-time road damage detection models for practical
application in vehicles considering limited computing resources.

2. We design a generative model based on VAEs and Wasserstein Gener-
ative Adversarial Networks (WGANs) capable of generating new dam-
age samples conditioned on the damage type and classifying damage
severity.

VIII.2 Related Work

With the advent of modern DL object detectors, end-to-end learning-based
damage detection pipelines emerged. However, such approaches remained
limited until Maeda et al. [7] prepared a large-scale road damage dataset
for the first time, which was composed of 9,053 images collected with a
front-facing smartphone inside a vehicle and included eight damage classes
according to the Japanese road maintenance guidelines. The data underwent
consistent improvement and received high research interest. For instance,
Angulo et al. [8] modified the dataset and added samples for minority classes.
Maeda et al. [9] released a new version of the dataset in 2019 and proposed
a GAN to augment it synthetically.

In 2020, the dataset was extended again, and the Global Road Dam-
age Detection Challenge (GRDDC) 2020 [10] was held as part of the IEEE
International Conference on Big Data 2020. In this challenge, 121 teams
participated in building road damage detection systems based on data from
three countries: Czech Republic, India, and Japan. The images were ob-
tained from front-facing smartphones installed in vehicles, and the objective
was to perform as accurately as possible, measured by the F1-Score on two
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provided test data sets. The training set is composed of 21,041 images, and
the test data has 5,295 samples (publicly available here). The labels of the
test sets were not released, and the comparison of results was made via an
evaluation server, which is still accessible at the time of writing. Four dam-
age classes were considered: longitudinal crack, transverse crack, alligator
crack, and pothole. Bounding boxes (BBs) mark the damages in the image,
which makes this a classical supervised object detection problem.

Arya et al. [10] summarize the challenge solutions. The top-12 ranked
teams used established DL object detection architectures and adopted some
data augmentation (e.g., random photometric or geometric transforms).

Zhang et al. [11] trained a Conditional GAN (CGAN) to augment the
data with synthetic road damages, which improved performance. Their ap-
proach is similar to Maeda et al. [9], but instead of using a GAN only
creating potholes, the CGAN produces all four damage types. Also, all sub-
missions used Transfer Learning (TL) based on MS COCO or ImageNet.
The top-performing teams (ranked #1-#3) applied an ensemble of models
at inference time, common in challenges to achieve the most accurate perfor-
mance on test data without other requirements (e.g., speed/applicability).
YOLO-based models (rank #1, #2, #4-#6, #8) outperformed the Faster-
RCNN approaches (rank #9-#12). Test Time Augmentation (TTA) pro-
duced mixed results, with Hedge et al. [12] observing benefits, while the
performance declined in Pham et al. [13]. Several teams [14, 15] applied
DL-based semantic segmentation to help the network focus on the road area.

Our work differs from GRDDC 2020 in the following ways. First, we em-
ploy the new state-of-the-art object recognition framework Scaled-YOLOv4
and introduce several additional methods to improve accuracy without com-
promising inference speed. We achieve comparable performance to GRDDC
2020 solutions while our models run at a remarkably high inference rate. Sec-
ond, in addition to the challenge smartphone data, we leverage car camera
data to build expert models for AVs. Finally, we propose a severity classifier
created with semi-supervised learning using the damage BBs.

VIII.3 Methodological Setup and Approach

VIII.3.1 Automotive Dataset

The base data for our analyses is the Challenge Data (CD), consisting of
21,041 labeled front-facing smartphone images from Japan, India, and the
Czech Republic of size 600 ˆ 600 or 720 ˆ 720. As an addition, we labeled
10,421 images from automotive-grade front-facing cameras recorded in Ger-
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Figure VIII.1: Example from the Automotive Dataset

(a) CD labels (b) AD labels

Figure VIII.2: The damage type distributions of the considered data

many (40%), the USA (28%), United Kingdom (10%), South Korea (10%),
Poland (4%), France (3%), Latvia (3%), and Finland (2%). We considered
the four classes from the CD. In contrast to the CD, the Automotive Data
(AD) contains a vast number of different situations (e.g., night drives, snow,
rain) and includes damages far away from the car (e.g., Figure VIII.1) since
AVs should detect potential obstacles as early as possible. The image size
(3504ˆ 1072) and label distributions (Figure VIII.2) also differ significantly.
As the automotive camera is in a fixed position, the AD has a stable front-
facing view, while the CD contains images that significantly differ in the
viewing angle.

VIII.3.2 Scaled-YOLOv4

The related work indicated the superiority of YOLO over other object de-
tection frameworks, which is why we focus on the current state-of-the-art
object detection framework Scaled-YOLOv4. We chose two neural net-
work structures from Scaled-YOLOv4: YOLOv4-Tiny and YOLOv4-CSP.
YOLOv4-Tiny achieves real-time performance on embedded devices (e.g.,
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Jetson NANO), and YOLOv4-CSP is a medium-sized architecture optimized
for general GPU. The networks follow the archetypal structure of modern
object detectors, having a backbone to extract features, a head to detect the
objects, and a neck between backbone and head.

The backbone of YOLOv4-CSP is a modified version of CSPDarknet53
[16]. The neck consists of SPP [17] as additional blocks to enhance the re-
ceptive field and a modified PAN [18] for feature integration from different
backbone levels. The predictions are realized across three different heads,
and three scale-dependent anchors are utilized for each of the output ten-
sors. YOLOv4-CSP uses the Mish activation [19]. YOLOv4-Tiny possesses
a much smaller network architecture. Its backbone is composed of a CSP-
ized VoVNET [20] for high computational and energy efficiency. As part of
the neck, YOLOv4-Tiny utilizes an FPN [21] but does not use SPP or PAN.
It has two instead of three prediction heads and takes smaller input images
(size 416 instead of 512 or 640 as in CSP). YOLOv4-Tiny applies the Leaky
ReLU [22].

The total loss function comprises a classification loss, objectness loss,
and BB regression loss. The responsibility for detecting an object obj is
determined via:

Iobjij “

#

1 if anchor j in cell i has IoUanchor
obj ě T

0 otherwise
(VIII.1)

where the Intersection Over Union (IoU) threshold T is a hyperparameter.
The classification loss is the sum of independent binary crossentropy losses
for each class:

Lcls “ ´
S2
ÿ

i“1

B
ÿ

j“1

Iobjij

ÿ

cPC

rwclspijpcq log p̂ijpcq

` p1´ pijpcqq logp1´ p̂ijpcqqs

(VIII.2)

where S is the size of the respective output tensor, C is the set of damage
classes, and B “ 3 is the number of anchors per grid cell. The standard way
is to use one-hot encoded labels. The hyperparameter wcls adds a weight to
positive examples enabling to trade off the per-class precision and recall.

For BB regression loss, the default approach is to use Complete IoU
(CIoU) [23], which considers three geometric factors to compare BBs, namely
the overlap area (i.e., IoU), the distance between the centers, and the aspect
ratios:

LBB “
S2
ÿ

i“1

B
ÿ

j“1

Iobjij p1´ CIoU
BBlabel
BBpred

q (VIII.3)

225



In contrast to classification and BB loss, the objectness loss incurs for all
grid locations and BB predictions:

Lobj “ ´
S2
ÿ

i“1

B
ÿ

j“1

rwobjcij log ĉij ` p1´ cijq logp1´ ĉijqs (VIII.4)

where the hyperparameter wobj P R is a weighting factor for positive exam-
ples, now trading off precision and recall related to the existence of an object
at the respective location.

If the predicted BB is not similar to the ground truth (measured with an
IoU-based metric), the confidence should also be lower. Thus, the labels for
the objectness are:

cij “

#

CIoU
objij
predij

if Iij “ 1

0 otherwise
(VIII.5)

The total loss to optimize the parameters is given by:

Lyolo “ γclsLcls ` γobjLobj ` γBBLBB (VIII.6)

where the hyperparameters γcls, γobj, γBB determine the relative importance.
At inference time, we apply confidence thresholding to remove BBs not con-
taining an object and Non-Maximum Suppression (NMS) to remove dupli-
cates.

VIII.3.3 Class-conditional VAE-WGAN

Previous work [11, 9] used (C)GANs to augment the data set artificially.
In addition to generating highly realistic damages conditioned on a dam-
age type, we want to learn valuable representations for each damage type to
use the feature representation for training a severity classifier with limited
data. To achieve both objectives, we optimize a hybrid model combining a
class-conditional VAE and WGAN, which we name CVAE-WGAN. In the
following, x denotes a cropped BB, y the one-hot-encoded damage type la-
bels, and ysev the severity label (i.e., low, medium, or high).

VAEs [24] concurrently optimize a generative model pθpx|zqppzq “ pθpx, zq
of the data x and the latent variables z, and a corresponding inference model
qφpz|xq [25]. We can additionally include the damage type labels by con-
ditioning the model components on y. The loss function of the CVAE is a
pixel-wise reconstruction error and the KL divergence between the inference
model and a defined prior distribution:

Lcvae “ ´Eqφpz|xqrlog pθpx|z, yqs `KLrqφpz|x, yq||ppz|yqs (VIII.7)
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We define the prior ppz|yq to be a standard normal distribution for all label
values y, the inference model qφpz|x, yq to be a diagonal Gaussian parameter-
ized by an encoder Neural Net eφpx, yq, and the generative model pθpx|z, yq
a factorized Bernoulli parameterized by a decoder/generator gθpz, yq.

GANs [26] define a generator gθpzq and a discriminator network dψpxq P R.
The generator ’fools’ the discriminator (i.e., to generate realistic samples),
and the discriminator aims to distinguish between real and fake images to the
best of its ability. CGANs [27] conditions the generator and discriminator
on extra information y. For learning, generator and discriminator play a
minimax game:

min
g

max
d
V “Epx,yq„prpx,yqrlog dpx, yqs

` Ez„ppzq,y„ppyqrlogp1´ dpgpz, yq, yqqs
(VIII.8)

We define ppyq to be the empirical categorical distribution. The generator
gpz, yq implicitly defines a conditional density model pgpx|yq, and is combined
with ppyq to get pgpx, yq [28].

The vanilla CGAN/GAN described above often runs into problems like
mode collapse and unstable training in practical settings. These problems
are often attributed to the fact that formally the GAN loss function, given
an optimal discriminator, is the Jensen-Shannon Divergence between real
and generative data distribution JSrprpx, yq||pgpx, yqs. To circumvent the
problems, the WGAN [29] introduces the Wasserstein distance to measure
the dissimilarity. An improvement to WGAN was given by Gulrajani et al.
[30] by adding gradient penalization into the objective to ensure K-Lipschitz
continuity of the discriminator (or ’critic’):

min
g

max
d
V “ Ex„prrdpxqs ´ Ex̃„pg rdpx̃qs

´ λEx„pxrp}∇xdpxq}2 ´ 1q2s
(VIII.9)

where λ determines the strength of the constraint, and x is obtained by
sampling along a straight line between x and x̃.

For our hybrid model, we extend the WGAN objective to include y. The
loss function of the critic is therefore:

Ldis “Epx̃,ỹq„pg rdpx̃, ỹqs ´ Epx,yq„prrdpx, yqs
` λEpx,yq„px,y rp}∇xdpx, yq}2 ` }∇ydpx, yq}2 ´ 1q2s

(VIII.10)

We follow Larsen et al. [31] and replace the inappropriate pixel-wise recon-
struction loss of the VAE with a reconstruction loss based on learned features
of the discriminator:

Lfrec “ }d
l
ψpx̂, yq ´ d

l
ψpx, yq}

2
2 (VIII.11)
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where dlψpx̂, yq is the output of the lth layer, which we define to be the output
of the convolutional feature extractor. The encoder parameters φ are learned
via the sum of the reconstruction loss and the KL loss. If we use the analytic
solution of the Gaussian prior and inference model, we get:

Lenc “ α
D
ÿ

j“1

pµ2
j`σ

2
j ´ log σ2

j ´ 1q

` }dlψpx̂, yq ´ d
l
ψpx, yq}

2
2

(VIII.12)

where α is a weighting hyperparameter. The loss of generator with parame-
ters θ contains a VAE and GAN component:

Lgen “ }d
l
ψpx̂, yq ´ d

l
ψpx, yq}

2
2 ´ βdpx̃, ỹq (VIII.13)

where β is a weighting hyperparameter. The discriminator with parameters
ψ aims to minimize Ldis. We train the model similar to WGANs by alter-
nating the critic and the generator training, now also including an encoder
(Algorithm 1).

Algorithm 1: CVAE-WGAN training

1 Set hyperparameters ncritic, α, β, λ
2 Initialize the network parameters θ, φ, ψ
3 while termination criterion is not met do
4 for ncritic iterations do
5 Random minibatch of data px, yq „ prpx, yq
6 Fake data pz̃, ỹq „ ppzqppyq, gθpz̃, ỹq “ x̃
7 Gradient penalty samples ε „ U r0, 1s, x “ εx` p1´ εqx̃,

y “ εy ` p1´ εqỹ
8 Discriminator outputs dψpx, yq, dψpx̃, ỹq
9 Update parameters based on ∇ψLdis

10 end
11 Random minibatch of data px, yq „ prpx, yq
12 Fake data pz̃, ỹq „ ppzqppyq, gθpz̃, ỹq “ x̃
13 Reconstruct the data eφpx, yq “ pµ, σq,

z „ qpz|x, yq “ N pz;µ, diagpσqq, x̂ “ gθpz, yq

14 Calculate dlψpx̂, yq, d
l
ψpx, yq, dψpx̃, ỹq

15 Update parameters based on ∇θLgen
16 Update parameters based on ∇φLenc
17 end

After model training, we test the applicability in damage severity classifi-
cation with 120 subjectively labeled pothole examples. We freeze the encoder
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Figure VIII.3: Flow through CVAE-WGAN with severity classifier

Figure VIII.4: Road occupies the majority of the pixels by cropping

feature extraction and extend the CVAE-WGAN by a small, fully connected
classifier cωpzq. This semi-supervised approach is inspired by the M1 model in
[32]. Figure VIII.3 summarizes this section by showing the data flow through
the CVAE-WGAN with severity classifier.

VIII.3.4 Bag of Presents

This section describes methods that can boost damage detection accuracy
without altering the inference time. We call those Bag of Presents (BoPs,
overview in Table VIII.1) as we do not have to ’pay’ inference cost to get
better.

Previous work segmented the road area with DL. However, this signif-
icantly increases inference costs due to sequential processing through two
DL models. We instead consider image cropping to focus on the road area.
The transformations are dataset-dependent. While the Czech and AD im-
ages maintain a constant view of the street, we must account for different
angles for Japan and India. Examples are given in Figure VIII.4. Additional
training data can be generated using the trained CVAE-WGAN as follows:

1. Create artificial damage x̃ with label y by z „ ppzq, using the trained
generator gθ˚pz, yq “ x̃.

2. Sample a training image that does not contain damages.

3. Sample a road pixel location and a damage size.

229



Table VIII.1: Bag of Presents

Influence Method

Training Data Random photometric transforms

Random geometric transforms

Mosaic data augmentation [33]

Image cropping for road focus

Additional synthetic data

Additional data from related dataset

Objective Function Class weighting

GIoU instead of CIoU loss

Label smoothing

Weight Initialization Transfer Learning / Fine Tuning

Anchors Optimized Anchors [34]

Training Algorithm Image weighting

Multi-scale training [34]

4. Set x̃ onto the road pixel location with the ’seamlessClone’ function
from OpenCV.

We also create new training data by leveraging related datasets. We crop
the BBs of the longitudinal, transverse, alligator cracks, and potholes from
the Pavement Image Dataset [35] containing Google Streetview images and
apply the same procedure as described before, excluding step two.

We further consider class weighting, which changes the classification loss
Lcls (VIII.2). Instead of giving equal importance to all classes, we apply
a weighted sum over the classes in the loss function, and each weight is
proportional to the inverse frequency of a particular class. Class weighting
is a common technique to attenuate class imbalance problems [36]. Class
label smoothing [37] is a regularization technique that turns hard one-hot
encoded class labels into soft labels. We also investigate whether using GIoU
loss [38] instead of the default CIoU is superior for BB regression. Instead of
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weighting each image equally during training, image weighting samples data
proportional to the inverse performance of a class to the validation result
of the previous epoch. We follow Jocher’s implementation (in his Github
repository).

VIII.3.5 Bag of Investments

This section describes methods that usually increase accuracy but are ac-
companied by an increase in inference cost. We call those methods Bag
of Investments (BoIs), as we have to ’invest’ inference speed. Whether an
investment is worthwhile depends on the use case. The inference cost (Ta-
ble VIII.2) is the additional inference time (in ms) on a GTX 1080 Ti GPU
(batch size 1) by using the respective BoI.

While the Mish activation function is default for YOLOv4-CSP, YOLOv4-
Tiny applies LeakyReLU, as Mish takes more time per epoch. However,
a CUDA-based implementation in PyTorch increases inference cost only
slightly (about 1.1x for YOLOv4-Tiny). A trained model works well on
multiple input image sizes at inference time when trained with multi-scale
training. A larger input image size can increase accuracy but decrease infer-
ence speed (about 1.25x for YOLOv4-CSP increasing from 512 to 640). TTA
involves augmenting the test image several times (left-right flip and three
different resolutions) and processing each augmentation through the network
before merging the prediction. The inference cost increases by about 2.7x
with YOLOv4-CSP.

Table VIII.2: Bag of Investments

Description Inference Cost

Mish Activation instead of LekyReLu +

Input Image Upscaling ++

Test Time Augmentation (TTA) ++++

VIII.3.6 Implementation Details

We split the CD and AD into 80% training and 20% validation set. We
adopt SGD with Nesterov momentum [39] as our optimizer for all road dam-
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age detection experiments. We also experimented with the adaptive opti-
mizer Adam, causing performance reduction. We use TL on MS COCO and
Optimized Anchors, following the described workflow:

1. Train baseline models for YOLOv4-Tiny (50 epochs) and YOLOv4-
CSP (20 epochs) with default settings.

2. Conduct preliminary experiments relative to the baseline to verify/deny
Mish, Mosaic, and image cropping.

3. Conduct random search [40] for 150 iterations, followed by genetic al-
gorithm search [41] for 150 iterations. We did ten epochs per iteration
for Tiny and five for CSP.

4. Verify/deny the addition of (synthetic) data (BoPs).

5. Test final model on validation server (test1, test2).

The search algorithms (step three) are executed to find the optimal hyperpa-
rameter configurations measured by the mAP on the validation set. While
increasing the accuracy of the damage detection models, the algorithms do
not negatively impact the inference cost. However, we only train for a small
number of epochs per iteration to limit the execution time of the search al-
gorithms, assuming that performance after ten/five epochs correlates with
overall performance. Random search involves all objective function (c˚, γ˚,
T ), Momentum-SGD, BoI, and BoP hyperparameters, except the ones explic-
itly named above. Genetic search requires float values; thus, we fix all binary
hyperparameters based on the preceding steps. The choice of 150 iterations
is reasonable because we observed a significant drop in marginal utility as
the number of iterations increased above 75. To train an automotive expert
model, we compare three approaches:

1. Train a baseline with the AD by TL from MS COCO.

2. Train a base model by using the CD and the AD. Then, build an
automotive expert only using the AD and TL from the base model.

3. Same as step two but with cropping for road focus.

Training an expert model by finetuning a base model trained with all related
data is inspired by Kortmann et al. [42].

The CVAE-WGAN (Algorithm 1) is trained with α “ 2.5, β “ 10, λ “ 10,
and Adam [43] for 5,000 epochs. The training data are the cropped BBs of the
CD and AD. The critic does five steps (ncritic “ 5) per epoch, as it is crucial
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to perform well for the CVAE-WGAN’s overall performance. The encoder
and critic are composed of strided convolutional layers for downsampling and
take an input image of size 64 ˆ 64 as input. We choose a 64-dimensional
latent space, and the generator applies transpose convolutional layers for
upsampling. Encoder and generator utilize batch normalization [44], but
the critic does not, as recommended in the WGAN papers. For damage
classification, we split the samples into 90 training (30 per class) and 30 (10
per class) validation samples. Our classifier cω is comprised of two hidden
layers with 64/32 units. We also construct a baseline classifier with the same
structure that takes x as input instead of z. We train both classifiers for
2,000 epochs with RMSProp.

The CVAE-WGAN with severity classifier was implemented in Python
using Tensorflow 2.4.0, and the road damage detection models utilized Py-
Torch 1.7.1. The training was deployed on an NVIDIA GTX 1080Ti GPU.

VIII.4 Experimental Results and Discussion

VIII.4.1 CVAE-WGAN Results

Our CWGAN-VAE generates damages with high visual fidelity and inter-
class variance for every damage class (e.g., Figure VIII.5). We generate
3,500 additional samples for road damage detection with the procedure de-
scribed in section VIII.3.4 and manually pick 717 realistic-looking ones (e.g.,
Figure VIII.6 left). We can generate as many damages as we want; however,
it requires tedious manual work to assess the generated samples. We addi-
tionally create 433 samples using the Streetview images. We call the 1,150
additional samples Generated Data (GD).

Figure VIII.5: Generated transverse cracks and potholes
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We evaluate the severity performance based on the validation set accu-
racy. The baseline model scores 16/30 (0.53), and the trained classifier cω˚

achieves 25/30 (0.83). To get insight into the latent space, we visualize the
encoded mean latent vector of every (real) pothole x. We use t-SNE [45] to
transform the 64-dimensional µ-vectors into two dimensions (Figure VIII.6
right). Given a damage type (here: pothole), similar examples (e.g., in terms
of severity) are encoded at a similar location, and we get clusters of points.
This allows us to find a generalizable classifier even with a small number of
severity labels.

Figure VIII.6: Generated pothole on road / t-SNE potholes

VIII.4.2 Road Damage Detection Results

We use the mAP [46] on the validation set to compare models because it pro-
vides precision and recall performance across all confidence levels, whereas
the F1 score changes with different confidence levels. Our preliminary exper-
iments for Tiny show a performance increase of about 2.1% relative to the
baseline with Mish instead of LeakyReLu. Since the inference cost increase
is marginal, we see the investment as worthwhile. Mosaic boosts mAP by
about 1.1%, and deterministic image cropping for road focus by about 2.4%.
The search algorithms additional verify GIoU instead of CIoU, multi-scale,
image weights, label smoothing, and class weights. Regarding YOLOv4-
CSP, we confirm Mosaic, image cropping, multi-scale training, GIoU, label
smoothing, and image weights. We train YOLOv4-CSP for 20 epochs with
a learning rate of 0.0055, YOLOv4-Tiny 80 epochs with a learning rate of
0.0047 to attain the highest validation accuracy. The results are given in the
upper half of Table VIII.3. Figure VIII.7 depicts the per-class performances
of the best-performing Tiny and CSP model. On the evaluation server, the
models obtain F1 scores of 0.552/0.596 (test1) and 0.528/0.580 (test2) for
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Table VIII.3: Road damage detection results on validation sets

Training Data YOLOv4-CSP -Tiny

CD GD AD mAP Speed mAP Speed

X 50.8/49.0/51.2 27.0/34.0/73.8 42.0 5.0

X X 51.0/49.1/51.3 42.1

X X 51.1/49.9/51.7 41.4

X X X 51.2/51.1/51.9 41.3

X1 48.7/50.8 23.0/24.1 31.2 4.4

X2 X2 52.6/54.8 33.7

X3 X3 52.9/54.9 21.9/25.3 36.0 4.1

mAP & speed (in ms) of CSP is given with img-size 512/640/TTA.

1Approach 1 2Approach 2 3Approach 3 (described in Section VIII.3.6)

YOLOv4-Tiny/CSP(512). TTA boosts F1 up to 0.639/0.624 for test1/test2.
We also train the three automotive expert models with the same optimized
hyperparameters. The results are given in the lower half of Table VIII.3.

VIII.4.3 Discussion

The ranking of the GRDDC 2020 papers can be found in Arya et al. [10].
Compared to the GRDDC 2020 non-ensemble solutions, we achieve first place
with the CSP model (average F1 of 0.588 without TTA), and the trained Tiny
model keeps pace with the state-of-the-art solutions while being extremely
fast. Thus, we can reach cutting-edge accuracies even with diminutive mod-
els, which is a valuable contribution to application and practice. Notably,
the Tiny model performs comparably worse than CSP for the AD, which
could be related to the high number of small objects in the AD. Fixed cam-
era setups in cars enable efficient road pixel focus for increasing accuracy
and constant inference speed, while TTA significantly reduces the inference
rate, making it unsuitable for real-time processing. We cannot conclusively
assess the performance of severity classification due to the small validation
dataset, but it is indicated that the learned encodings significantly help find
a generalizable decision boundary. However, the model is not yet mature
enough to be used in practice. Though, our unique design is a contribution
to theory.
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Figure VIII.7: Damage detection results for each damage type

VIII.5 Conclusion and Future Work

Our objective was to enable road damage detection and assessment for ve-
hicles based on single front-facing cameras. We extended previous work
based on smartphone cameras by using the tiny and medium-sized Scaled-
YOLOv4 architectures and produced resource-efficient and highly accurate
detection models that also work with automotive cameras. We pioneered
several methods to improve detection accuracy without affecting the speed
at inference time. Examples include cropping images for road focus, using
related datasets, and creating a generative model called CVAE-WGAN. We
opt to extend the accuracy-improving methods for future work and include
sequence processing with recurrent nets and sensor fusion. In addition to
damage localization and classification, severity assessment is a critical part
of road perception. Thus, we complemented the CVAE-WGAN with a sever-
ity classifier, working with only a few subjectively labeled images. In the
future, we want to develop a more sophisticated semi-supervised model in-
volving expert labels, bird’s eye view, damage size, and an extension to more
classes.
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Abstract

We describe the design process of deep learning models trimmed towards
runtime and detection performance for road damage detection using front-
facing camera sensors of conventional vehicles. We distinguish between deep
learning tools that improve detection performance while suffering on runtime
(’Bag of Investments’) and those that will enhance detection performance not
increasing runtime (’Bag of Presents’). For our investigations, we utilize the
state-of-the-art deep learning framework YOLOv5. Our ultimate goal is to
provide autonomous vehicles of varying automation levels with information
on upcoming road damages to improve vehicle motion planning. As current
road damage detection algorithms demand high computational power, we
focus on real-time applicability deployed on edge devices. We analyze isolated
tools for the object detection task and proceed with three deep learning
models that provide (1) the maximum performance, (2) the fastest runtime,
and (3) the optimal trade-off between detection performance and runtime.
Our investigations are designed to help researchers and practitioners dealing
with other object detection tasks.
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IX.1 Introduction

use of autonomous vehicles is about to enter our daily lives. Much of the
recent achievements have to do with the application of artificial intelligence
in environment recognition. The stated goal of attaining functional safety is
currently only reached in limited application scenarios [1], such as on high-
ways in high-tech countries. The autonomous driving task can be divided
into two parts: perception system and decision-making system [2]. In en-
vironment perception, the road’s condition is a crucial measurand [3], how-
ever, autonomous and partially automated vehicles do not yet respond to
road damages. Responding to a Twitter users question, Elon Musk, CEO of
Tesla, Inc., states: ”We’re labeling bumps & potholes, so the car can slow
down or steer around them when safe to do so”. In the USA alone, claims
amounting to $217 billion per year are connected to poor road conditions.
42,000 deaths occur each year, with road conditions being the cause or at
least a factor in 52 % of the cases [4]. The infrastructure of a country is con-
sidered to be of considerable importance in terms of its social and economic
significance [5]. Cameras of conventional vehicles thus have the potential to,
on the one hand, deliver real-time data for the vehicle’s motion system and,
on the other hand, to provide authorities responsible for road conditions with
transparency to improve infrastructure repairs.

The topic is of social relevance due to autonomous driving’s great poten-
tial to change mobility, for example by improving shared mobility solutions
and using driving time for alternative activities. Successful detection of road
damage therefore plays a major role in achieving automation especially in
developing countries with poor road conditions.

The research field of CV is being revolutionized since 2012 with the in-
troduction of the CNN AlexNet [6] and is currently experiencing a boom
in science and multiple application domains. Key was the superior perfor-
mance of AlexNet in the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) in comparison to previous state-of-the-art machine learning ap-
proaches for object recognition [7]. Despite previous achievements such as the
introduction of the backpropagation feature in 1985 [8], visual pattern recog-
nition CNNs in 1988 [9], and the Hinton Lab proposing a training method
for DNNs [10, 11] in 2006, AlexNet represents the breakthrough in technol-
ogy and the starting point for immense research activities to advance the
development of DNNs.

Our research objective is twofold: (1) We train a DL algorithm that is as
optimal and balanced as possible for our domain. Images from front-facing
smartphone and automotive cameras in vehicles are being used. The detec-
tion process in vehicles needs to be performed at a high processing speed,

243



preferably at the frame rate of the camera sensor (30 fps), and cars often
use embedded devices with limited processing power. (2) Many application
domains require CV operations such as image classification and object detec-
tion. The successful application of DL algorithms is strongly dependent on
the type of NN and the tools used to develop the algorithm though. In the
object detection task, this concerns for example not only the detection perfor-
mance, but also the operability on computers or edge devices with regard to
the runtime. To this end, we exploit the possibilities of the cutting-edge DL
framework YOLOv5 [12] in order to provide users with guidance as to which
application of tools can be expected to produce improved results. However,
many tools that are suitable for increasing the performance also increase the
computational effort. Computing power is a limited resource in many appli-
cation fields, which is why we divide the tools that reduce the inference time
(’Bag of Investments’) and those that do not affect the inference time (’Bag
of Presents’) in two groups. Our contributions can be summarized as follows:

• We deliver an overview of multiple tools in DL and their isolated impact
on model performance and model runtime by utilizing the YOLOv5
framework.

• We develop design principles for models aiming on maximum perfor-
mance, maximum speed and the best trade-off between both (Sweet-
Spot).

IX.2 Related Work

In this section, we provide an overview of research activities carried out in
the area of automated road damage detection, primarily utilizing camera
sensors.

The most recent major research initiative in this field is the GRDDC 2020
[13, 14], which is part of the IEEE International Conference on Big Data 2020.
121 teams have built an automated road damage detection system based on
data gathered in the Czech Republic, India, and Japan. The motivation
for the challenge is to support local infrastructure agencies with automated
road damage assessment, thus reducing tedious and expensive manual labor.
The offered dataset includes images from front-facing smartphone cameras,
mounted on the windshields of vehicles. The objective of the challenge is
to obtain the best possible object detection performance for two sets of test
data.

The CDS consists of 21,041 images, the test data has 5,295 samples. The
labels of the test set were not released, and the comparison of the results
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was executed via an evaluation server, which is still accessible at the time of
writing. Four damage classes are considered: longitudinal cracks, transverse
cracks, alligator cracks and potholes. The twelve best scoring teams were
invited to submit a paper. The algorithms and tools used by these teams
are summarized in Table IX.1. The table additionally contains our assess-
ment of a feasible application in vehicles in terms of the computing capacity
requirements of the individual solutions.

All winning participants used TL based on either MS COCO or ImageNet,
exclusive Hascoet et al. [15]. Since the only metric of the challenge was
detection performance over the F1 score, most of the better teams applied
ensemble models, which includes #1, #2, #3 and #6. The results also
show that YOLO-based models are superior to Faster RCCN models (#9-
#12), regardless of the YOLO version (#1, #2, #4-#6 and #8). Another
finding of the challenge is that expert models from different countries can help
to improve detection performance. However, this requires a prior country
classifier (#4, #10, #12). The application of TTA is inconsistent, in #1
resulting in an upgrade, in #11 in a downgrade. Likewise, different results
occur when applying segmentation to focus on the road surface, #3 and #6
reporting an upgrade, #10 a downgrade.

Between the assessment of road damages via DL models, previous work
focused on image processing techniques such as histograms. Bello-Salauet al.
[16] delivered a survey on this topic in 2015. Whereas Koch et al. [17] focus
on different components of road conditions as road pavement analysis, defect
analysis and the process of automation during assessment. They offer a com-
prehensive survey including an evaluation of the present status in 2015 and
future research. Cao et al. [18] in contrast survey the ML-based road defect
detection methods, primarily with hand-crafted features in 2020. The latter
two highlight the insufficient real-time capability of the methods surveyed in
their paper [18, 17]. The topic of road condition assessment and interpreta-
tion via indices and metrics is very well summarized in Sayers’ Little Book
of Profiling [19] but is not subject to this paper.

In contrast to the GRDDC, we discuss the impact of individual tools
on detection performance and model runtime on two different hardware sys-
tems. Furthermore, we are labeling another dataset of automotive-quality
images to optimize the applicability for autonomous vehicles. Based on our
results, we propose three different models with the respective goals of max-
imum detection performance, minimum runtime, and a Sweet-Spot model
that provides the best trade-off.
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Table IX.1: GRDDC 2020 DL models and our estimate for their real-time
application in the vehicle

Source Solution Applicability

#1 [20] YOLOv5 Ensemble with TTA W/ powerful GPU & w/o Ensembles - inefficient

#2 [21] YOLOv4 Ensemble W/ powerful GPU & w/o Ensembles - inefficient

#3 [22] Ensemble with cascade R-CNN No - optimized in detection performance

#4 [23] YOLO on CSPDarknet53 W/ powerful GPU - non-efficient

#5 [24] YOLOv5x W/ powerful GPU - still non-efficient

#6 [25] YOLOv4 & Faster R-CNN Ensemble W/ powerful GPU & w/o F R-CNN - inefficient

#7 [26] EfficientDet The small model (20 fps, F1:0.521)

#8 [27] YOLOv4 and Conditional GAN W/ powerful GPU - inefficient

#9 [15] Faster R-CNN with ResNet-101 No - optimized in detection performance

#10 [28] Multi-stage Faster R-CNN No - optimized in detection performance

#11 [29] Detectron2 and Faster R-CNN No - optimized in detection performance

#12 [30] Faster R-CNN & Regional Experts No - optimized in detection performance

IX.3 Experimental Setup

IX.3.1 Methodical Approach

Our research approach is inspired by Hevner’s Design Science Research [31,
32]. The research paradigm is driven by the desire to improve the application
environment by introducing novel artifacts and the process of building them.
The research approach includes the application domain, which is necessary for
assessing the relevance of the research subject. Furthermore, the knowledge
base is considered as an instance. We build on existing knowledge, such as
the DL framework YOLOv5, and solve the problem with existing tools and,
if necessary, adapt the tools according to the requirements.

We have applied and combined various tools in DL training with regard
to resource requirements and performance in many iterations. Our first goal,
of course, is to develop the best possible DL model for solving the detection
problem of road damages for autonomous vehicles. In addition, we investi-
gate the isolated influence of individual DL tools on detection performance
and runtime. We want to deal with the complexity in DL in order to achieve
satisfying results, depending on the need for real-time capability and detec-
tion performance. Finally, we develop three algorithms with different goals:
one algorithm with maximum performance, one with maximum speed, and
one that, according to our results, provides a good trade-off between power
and runtime (Sweet-Spot). We are convinced that through our evaluation
of the tools, our quantitative results and design principles we are able to
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positively influence the design process of DL models of other scientists.

IX.3.2 DL Datasets

Our training data consists of two separate datasets. The first is the RDD-
2020 dataset offered in the GRDDC 2020 and consisting of 21,041 labeled
images from front-facing smartphone cameras sensors in the inner cabin of
the vehicle, mounted at the windshield. The images are from Japan, India,
and the Czech Republic. The RDD is labeled regarding longitudinal cracks
(D00), lateral cracks (D10), alligator cracks (D20) and potholes (D40). The
majority of the images have an image size of 600 px ˆ 600 px, whereas those
from India have an image size of 720 px ˆ 720 px.

The second dataset is named ADS. HELLA Aglaia Mobile Vision GmbH
has entrusted us the data for the purpose of RDD. We chose the locations
of the dataset subjectively to represent different road conditions in other
countries to increase the generalization of the algorithms in the long run. It
contains 10,421 images from Germany (40 %), the USA (28 %), the United
Kingdom (10 %), South Korea (10 %), Poland (4 %), France (3 %), Latvia
(3 %) and Finland (2 %). Besides being country-specific, the images also
represent night drives, snow and rain situations. The images are obtained
from identical measuring vehicles and the identical camera systems across the
continents and countries. To suit the requirements of our use case, HELLA
Aglaia Mobile Vision GmbH used an automotive-grade camera from Sony
Corporation with an image size of 3504 px ˆ 1072 px.
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Figure IX.1: The number of damages in the classes D00, D10, D20 and D40
in the two datasets RDD and ADS
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The labeling of the images was done by ourselves. Due to our in-depth
work with theRDD-2020 and several years of research in the field of RDD,
we can label the data on an educated basis. We applied the same labels D00,
D10, D20, and D40 to be consistent with the RDD-2020. In comparison,
the datasets are of significantly different quality. This includes a superior
viewing angle, image quality and resolution in the ADS to account for the
application in autonomous driving.

However, we were aware from the GRDDC results, that construction
joints are often misinterpreted as longitudinal or transverse cracks and re-
spectively manhole covers as potholes which is why we labeled 10677 con-
struction joints and 2624 manhole covers for further investigation in the ADS.

IX.3.3 Evaluation Metric

Object detection models are commonly evaluated utilizing the mAP metric
[33]. We use the mAP over the F1 score since it includes a range of confidence
scores. This allows us to include the detection performance of the algorithm
over the entire precision-recall curve instead of choosing a selective point. The
IoU threshold is set to 0.5. To compare our models to the state-of-the-art
solutions of the GRDDC 2020 [14], we provide F1-measures in conjunction.

IX.3.4 YOLO Deep Learning Algorithm

Our utilized DL algorithm for the object detection task is YOLOv5 [12],
which is an extension of the YOLOv3 [34] PyTorch repository by Glenn
Jocher.

Object detection is a subarea of computer vision. It deals with detecting
objects of a certain class in images and videos. Object detectors generate
features from an input image and pass them through a prediction system
to obtain bounding boxes and classes. Methods for this tasks fall into two
categories. Non-neural and neural network-based approaches. Non-neural
methods need hand-crafted features before classifying objects with techniques
such as a SVM [35] while neural network-based methods such as YOLO, are
able to perform the detection end-to-end without the need of hand-crafted
features, and they are typically based on CNN [36].

The three main parts of YOLO networks are the backbone, neck and
head. The backbone network aggregates and crafts features based on the
input images. In the neck, these properties are mixed and combined to be
passed on to the head. The head takes these features and determines the
bounding boxes, as well as the class predictions.
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A Cross Stage Partial Network (CSPN) is used as the Backbone network.
This structure addresses gradient problems and requires less parameters and
fewer Floating Point Operations Per Second (FLOPS) for comparable accu-
racy to other state-of-the-art approaches such as DenseNet [37] and ResNet
[38, 39]. Based on DenseNet, it alleviates the problem of vanishing gradients
and boosts feature propagation. To prevent computational bottlenecks and
improve learning, the feature map is passed to the network and an unpro-
cessed copy is forwarded to the next stage.

A Path Aggregation Network (PANet) is used as a neck. As the image
passes through the different layers, the complexity of the features increases
and their spatial resolution decreases. In contrast to the previously used
FPN, where just a top-down pathway is used to combine the features from
the backbone, the PANet introduces an extra bottom-up path as a shortcut.
In the FPN, the fine-grained features have a long way to go through all layers
of the backbone, but PANet can provide a faster algorithm. In addition,
PANet fuses all feature layers of the backbone with RoI and fully connected
layers to be used for prediction [40].

The head of YOLOv5 is similar to the head of YOLOv3, but the loss
function is implemented with GIoU-loss [41]. This process is anchor-based
with three levels of granularity (stride of 8, 16 and 32). To predict objects
in different sizes and aspect ratios, YOLO applies anchor boxes and adjusts
them with predicted offsets to fit the detection. Consecutively, a loss is
calculated from the overlap of the candidates with the real objects. With
sufficient overlapping, a prediction is passed into the loss. By penalizing and
rewarding predicted boxes, the model becomes more confident in localizing
objects. Stride is a component of the CNN for the compression of images.
It defines the movement of the filter over the image for every step. In the
latest release of the repository, a head with four levels of granularity was
introduced, with an additional stride of 64, trained on larger input sizes.

Sigmoid Linear Units (SiLU) [42] is used as an activation function in
the middle layers and sigmoid in the final detection layer. The sigmoid
function restricts its output between zero and one and the SiLU is superior
in activation of neural networks over ReLU [42].

Hyperparameters (e.g. batch size, learning rate, augmentations) can be
configured in a separate file. For all layers, certain arguments have to be
configured. The layer index from which layer the output is taken as input is
passed. Finally, the required arguments for this module are entered, starting
with the number of channels. The depth-gain (gd) affects all layers that have
a number n greater than one.

n “ Maxproundpn ¨ gdq, 1q if n ą 1 (IX.1)
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The width-multiple, or width-gain gw, affects the number of channels ch, if
the layer is not an output layer. As the first argument for the convolution
layers in the .yaml file, the number of channels is passed.

ch “ ceilpch ¨ gw{8q ¨ 8 (IX.2)

With the depths and width-multiple, different versions of the basic struc-
ture were created. From YOLOv5s to YOLOv5x becoming deeper and wider
as displayed in Table IX.2.

Table IX.2: Performance and Speed of pretrained YOLOv5 models evaluated
on Common Objects in Context (COCO) with a batch-size of 32 [12]

Model mAP@0.5 Runtime (ms) depth-gain width-gain

YOLOv5s 55.4 2.0 ms 0.33 0.5

YOLOv5m 63.1 2.7 ms 0.67 0.75

YOLOv5l 66.9 3.8 ms 1 1

YOLOv5x 68.8 6.1 ms 1.33 1.25

With Extra Detection Head (Stride: 64)

YOLOv5s6 61.9 4.3 ms 0.33 0.5

YOLOv5m6 68.7 8.4 ms 0.67 0.75

YOLOv5l6 71.1 12.3 ms 1 1

YOLOv5x6 72.0 22.4 ms 1.33 1.25

In the training process, the augmentation of base data is used to provide
the model with a broader semantic variation. Data augmentation techniques
are scaling, color space adaptation and mosaic augmentation. An augmented
dataset is more robust against overfitting [43]. Some feature removal tech-
niques have been proposed to improve the generalization and localization of
the model. These include methods such as regional dropout [44], where parts
of the image are removed and filled with zeros or noise. This allows a CNN
to focus on the entire object region rather than just the most discriminate
features [44]. CutMix advances this technique by filling the gaps from the
input images with patches from other images and adjusting the ground-truth
label accordingly. YOLOv5 utilizes a new variant of CutMix, called mosaic
data augmentation. It combines four training images into one. This allows
the model to learn how to identify objects at a smaller scale than normal.

250



It also encourages the model to localize different types of images in different
parts of the frame.

Similarly, the precision of the model and detection of small objects bene-
fits from automatically adjusted anchor box sizes. In YOLOv5, based on the
distribution of ground truth boxes in a dataset, k-means clustering is used
to adjust the anchor box settings. The loss is calculated via GIoU and for
classes and object loss using the Binary Cross-Entropy (BCE) with Logits
loss from Pytorch [45]. This leads to a numerically more stable solution. The
total loss is the sum of all three losses.

L “ LGIoU ` Lcls ` Lobj (IX.3)

The GIoU [41] is an improvement from the simple IoU, which compares
the similarity of two boxes. While the IoU is always zero for non-overlapping
bounding boxes, the GIoU includes the empty space between the two boxes.
Thus, the loss increases for boxes with a larger distance. As optimization
algorithms Adam [46] and SGD [47] with momentum and cosine learning rate
decay are available. Gradient descent minimizes an objective function Qpwq,
parameterized by a model’s parameters w, by updating the parameters in the
opposite direction of the gradient of the objective function. SGD updates
the parameters for each training example, with a learning rate η.

w “ w ´ η∇Qipwq (IX.4)

Frequent updates make SGD fast, but leave the objective function fluctu-
ate heavily. Fluctuation can be beneficial, because it enables it to jump to
potentially better local minima, but it complicates convergence to the exact
minimum. With a slowly decreasing learning rate, the converging to a local
or global minimum is almost certain [47]. When the surface is curved steeply
in one dimension, than in another, SGD has difficulties to navigate to the
local optima. Momentum [48] accelerates in the relevant direction and re-
duces oscillations. It remembers ∆w at each iteration. The next update is
calculated by a linear combination of the previous update with the gradient.

∆w “ α∆w ´ η∇Qipwq (IX.5)

w “ w `∆w (IX.6)

ñ w “ w ´ η∇Qipwq ` α∆w (IX.7)

Convergence can be achieved faster while oscillation reduces [47]. Adam is
storing exponentially decaying averages of past squared gradients vt and of
the gradients mt.

mt “ β1mt´1 ` p1´ β1qgt (IX.8)

vt “ β2vt´1 ` p1´ β2qg
2
t (IX.9)
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As the estimates of the mean mt and the uncentered variance vt are bi-
ased towards zero, a bias-corrected mean and uncentered variance estimate
is computed.

m̂t “
mt

1´ βt1
, v̂t “

vt
1´ βt2

(IX.10)

This yields the Adam update rule.

w “ w `
η

?
v̂t ` ε

m̂t (IX.11)

β1 “ 0.9, β2 “ 0.999 and ε “ 10´8 are the proposed default values [46].
ε is used to prevent a division by zero and β1 and β2 are the factors for the
mean and uncentered variance, respectively. It compares favorably to other
adaptive learning-method algorithms and works well with noisy/sparse data
[46].

IX.3.5 DL Tools

In this subsection, we elaborate on the DL tools used in our work. These are
tools that contribute to improvements in the detection performance as well
as tools that can contribute to a desirable reduction of the model runtime.

We distinguish the applied tools into those that can be expected to deliver
improved detection performance without a loss in runtime (we call them
’presents’) and those for which a worsening of the runtime for a gain in
detection performance is to be expected (we call those ’investments’).

Our analysis is carried out on two hardware configurations. The first one
is our computer which is used for training and testing, it has a GTX 1080 Ti.
The second hardware is representative for the application in the vehicle. It
is the Jetson Nano edge device from Nvidia. All our analyses are conducted
with Python 3.8.5, PyTorch 1.7.1, CUDA 11.0, and cuDNN v8.0.4.

Bag of Presents

Hyperparameter Evolution: As one of the few adjusting screws that can be
modified before training, hyperparameters are a factor to be considered .
Due to their large number and unknown correlation, it is difficult to im-
possible to set optimal starting parameters, which is why Hyperparameter
Evolution is a suitable method. In contrast to a grid search, a genetic al-
gorithm is a suitable candidate to overcome this difficulty and find the best
possible starting parameters. Genetic algorithms are used to generate top
results for optimization problems. Mutation, selection and crossover are the
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main biologically inspired operators used [49]. Starting from a set of hy-
perparameters, an iterative process is applied, where every step is called
a generation. In each generation the performance of the current setup is
evaluated. More fit parameters are stochastically selected and are modified
according to above-mentioned operators. After a maximum number of 300
generations the algorithm terminates. In YOLOv5 each hyperparameter is
bound by a lower and upper limit while mutating and can be excluded from
mutating by giving it a gain of zero. Every parameter is mutated with a
probability of 80 %. If a random gerated number r1 between zero and one
is below 0.8, the gain g multiplies with a random number, generated by a
standard normal distribution N , a random number r2 between zero and one
and a sigma σ of 0.2. After this a one is added and everything is clipped to
a range of 0.3 to 3. We receive a new gain-vector v and multiply it with the
hyperparameter values [12].

vi “ pgi ¨N ¨ r2 ¨ σ ` 1q.clipp0.3, 3q if r1 ă 0.8 (IX.12)

vi “ 1 else (IX.13)

All results are recorded in a text file and the best offspring is saved after
each generation.

New Data: One of the most essential aspects of deep learning is a large
and well-labeled dataset [50]. To extend the dataset from the Road Damage
Detection Challenge, new data were evaluated and labeled based on the dam-
age classes in the challenge (c.f., Section IX.3.2). Dealing with poor labels
is a huge problem in Deep Learning. It is fair to argue that a DL algorithm
can only become as good as the label of the dataset allows it to be. A work-
around for new data is the use of data augmentation to artificially extend
the dataset. The impact of our labeled ADS is explained in Section IX.4.1.

Due to the error potential and miss-classification of construction joints
(D01, D11), manhole cover (D50) and street drains (D51) all these objects
are labeled in the extended dataset ADSP. This data can not be merged
with the set from the GRDDC, because these labels are not present in it and
serves only for analysing the impact of extended labels.

Floating Point Format : By default, a model is loaded at single-precision
and used in single-precision floating-point format (FP32). FP32 is the rep-
resentation of floating-point numbers with 32 bit. half-precision floating-
point format (FP16) reserves only 16 bits of computer memory, being a
Single-Precision Floating-Point format. Different hardware works with vary-
ing FLOPS at FP16 and FP32. The GPU from the Jetson can work almost
twice as fast with up to 1 TFLOPS at half precision, compared to single
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precision. In contrast, the processing power from the GTX 1080 Ti slows
down when switching to the FP16 representation.

Bag of Investments

Test Time Augmentation: Usually, DA techniques are utilized to deal with
a dataset that is too small to deliver a satisfactory generalization and ro-
bustness. Yet it can be beneficial to be used during test-time as well to
increase robustness and accuracy. In TTA, the predictions are pooled from
various transformed versions of one test image to achieve an averaged pre-
diction [51]. All the predictions are rescaled to fit the original image size
and orientation, and concatenated to be returned [12]. This improvement
in performance costs inference time because the images would have to be
augmented before detection and multiple instances of the same image pass
through the network. The benefits of TTA decrease with an increasing size
of available training data, with more training data a model is more invariant
to augmentations. Most rewarding is TTA with limited training data [51]. In
the YOLOv5 repository, one test image is forwarded through the network in
the original version, a left-right flipped and scaled down version by a factor
of 0.83 and a scaled down version by a factor of 0.67.

Input Image Size: A smaller image size reduces the computational load,
since image pixels have to be aggregated, no matter which method is used.
A dataset with many small objects can benefit from training in higher reso-
lutions. For best results, the YOLOv5 model should be trained and tested
with the same image size [12]. Our results on this can be reviewed later (c.f.,
Table IX.4).

Model Size: In general, a larger YOLOv5 model size provides better
results, with a longer inference time as shown in Table IX.2. When the speed
of detection becomes important, a good compromise between performance
and inference time must be found. With the method of pruning, a specified
percentage of weights are set to zero when testing a model. The selection
is done using an unstructured L1-norm [52], the units with the weakest L1-
norm are pruned. This allows estimating how many parameters could be
omitted before a significant drop in performance occurs.

YOLOv5 offers different model sizes from scratch, which is superior over
pruning a larger model. Table IX.3 displays different model sizes including
their depth and width-gain.

Head Modification: Adjusting the head of the model to the specific needs
of the objects to be detected has great potential of increasing the perfor-
mance, as stated in the latest release of the GitHub repository and Table IX.2.
The reason for the strong improvements is the addition of stride 64 to the
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Table IX.3: Depth- and width-gain for our YOLOv5 models

Model Size depth-gain width-gain

YOLO5xxxs 0.001 0.125

YOLOv5xxs 0.165 0.375

YOLOv5xs 0.22 0.417

YOLOv5xl 1.66 1.5

head. This benefits large images the most and the model becomes bigger
and requires more memory. The same approach can be used to create a layer
with a smaller stride of 4. This would not make the model much bigger,
but the convolution must be applied over a larger, denser grid. Witch such
a small stride it improves detection for small images but needs significantly
more FLOPS and increases the inference time. Furthermore, one can reduce
the detection head of the model, by removing one of its layers.

Ensembles : Composite models consisting of several base models used to
obtain a single outcome are called ensembles. The models use diverse training
data or various training settings, as long as the base models are independent
and diverse enough, the ensemble will potentially reduce the prediction error
[53, 54]. Even with many base models, an ensemble acts and performs like a
single model. With more and more models, the performance increases, but
the detection speed of the ensemble decreases significantly with increasing
numbers of base models.

IX.4 Results & Discussion

In this chapter, we address the influence of the tools described in Sec-
tion IX.3.5 on performance and runtime. The isolated influence of all tools
is presented in Table IX.4. For reasons of comparison, the top row shows a
basic YOLOv5 model without additional tools with the properties indicated.
First, the tools in the bag of presents are discussed, followed by those in the
bag of investments.

IX.4.1 Bag of Presents Impact

Hyperparameter Evolution Impact : As the first tool in the Bag of Presents,
HE can be applied in the training process. The tool is very time consuming

255



Table IX.4: Impact of single tools on the runtime and performance of
YOLOv5s

ID Tools Tool Properties RtJetson RtGTX mAP

B Nothing YOLOv5s, 140 Epochs, 640 px input 320 ms 11.2 ms 0.486

Bag of Presents

P1.1
Hyper. Evo. (HE)

10 Epochs, 300 Generations 320 ms 11.2 ms 0.467

P1.2 40 Epochs, 50 Generations 320 ms 11.2 ms 0.499

P2 New Data Aglaia Data 320 ms 11.2 ms 0.494

P3 Floating Point For. 16 Bit representation 231 ms 11.3 ms 0.485

Bag of Investments

I1 T. T. Aug. (TTA) Scale[1, 0.83, 0.67] Flip[/, left-right, /] 775 ms 28 ms 0.504

I2.1
Input Size

Smaller Input Size 416 px 150 ms 9.3 ms 0.471

I2.2 Larger Input Size 864 px 551 ms 13 ms 0.482

I3.1
Model Size

Smaller Model Size XXS 310 ms 9.3 ms 0.446

I3.2 Larger Model Size XL 3510 ms 92 ms 0.511

I4.1

Head Modification

Extra stride 64 338 ms 15 ms 0.467

I4.2 Removed stride 32 305 ms 9.1 ms 0.448

I4.3 Removed stride 8 350 ms 10.1 ms 0.447

I5.1

Ensemble

XXXS-XL / 221.5 ms 0.530

I5.2 416 px + 640 px + 864 px @416 px 446 ms 24 ms 0.489

I5.3 416 px + 640 px + 864 px @640 px 955 ms 26.1 ms 0.478

I5.4 416 px + 640 px + 864 px @864 px 1650 ms 32.3 ms 0.429

I5.5 Czech + India + Japan 955 ms 26.1 ms 0.423

I5.6 ADS + RDD 639 ms 17.6 ms 0.432

I5.7 Joint dataset (ADS+RDD) + RDD 639 ms 17.6 ms 0.498

to apply, though having great potential impact on the model’s detection per-
formance. In P1.1, we applied HE with 10 epochs and 300 generations to our
base model B, resulting in a negative impact -0.019mAP (c.f., Table IX.4).
The combination of 40 epochs and 50 generations in P1.2 increase the mAP
to 0.499 (+0.013mAP) while having the same short runtime. It should al-
ways be investigated how many epochs and generations are useful to find the
right hyperparameters for an application. When used correctly, the tool is
very powerful, especially considering that it does not require any additional
resources in application.

New Data Impact : Well labeled and large amount of data increases ro-
bustness and generalization. Our additional dataset ADS can be valuably
utilized to increase the detection performance while remaining the runtime
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with an increase of 0.008mAP (P2). It works even though the datasets are
very different in regard to resolution, image quality and angle to the road. In
Section IX.4.2, we furthermore examine the impact of new data in ensembles.

Comparing the results of YOLOv5xxxs, YOLOv5s and YOLOv5m mod-
els trained on the ADS with models trained on the ADSP, the positive
influence of more label categories can be derived. For YOLOv5xxxs the
mAP rises from 0.429mAP to 0.450mAP, for YOLOv5m from 0.677mAP to
0.683mAP and YOLOv5s does not profit and experiences a minimal perfor-
mance drop from 0.650mAP to 0.649mAP. A closer look at the individual
Average Precisions (APs) for each class reveals the benefit: D00 (+0.035AP),
D10 (+0.040AP), and D40 (+0.022AP) with YOLOv5xxxs by labeling the
common miss-interpreted construction joints and drainages. Only D20 is
yielding worse results (-0.016AP).

Floating Point Format Impact : We consider the Floating Point Format to
be set to 16 bit a present as our results show, that the loss in detection perfor-
mance is very marginal with -0.001mAP (P3). A noticeable performance gap
of the models with the different floating-point representations is not present.
Adjusting the Floating Point Format to your hardware is of great importance
as displayed in Table IX.4. While the Jetson runtime decreases significantly
with -28 %, the runtime at the 1080 TI occurs no meaningful difference.

As the Jetson stands representative for possible hardware in autonomous
vehicles in contrast to the 1080 TI being rather a training setup, a change of
the Floating Point Format is a great Tool to deal with runtime issues.

IX.4.2 Bag of Investments Impact

Test Time Augmentation Impact : Test-Time augmentation leads to a higher
generalization. It is a useful tool especially for smaller datasets [51]. With
increased data volume the expected improvement through TTA decreases,
which results in the model being more invariant to augmentation. Thus, our
basic model B (0.486mAP) gains 0.018mAP by applying TTA, whereas the
model trained with RDD and ADS data (0.494mAP) gains just 0.012mAP.
Practitioners must be aware that the use of TTA leads to significant increase
in runtime (+455 ms ,+142 %), which is why we consider it an investment
that is recommended to use. Especially with a poor data base, the use of TTA
can increase from mediocre improvements to considerable improvements. An
important advantage is the simplicity of use, which makes the application of
the tool very straightforward in prototyping.

Smaller/Larger Input Image Size Impact : It is certainly debatable whether
this tool should be evaluated as an investment or a present. The input size
must fit to the dataset and application, depending on the size and structure
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of the objects to be detected. Contrary to what may be assumed ad hoc, a
smaller input size can lead to improved results (not in our case) while always
decreasing runtime. By analogy, a larger input size does not always lead to
better results and inevitably leads to poorer runtimes. The final Table IX.4
displays, that the initial image size of 640 px provides the best detection
performance, so a larger image size, in addition to an increase in runtime
(+231 ms ,+72 %), actually leads with -0.004mAP to slightly worse results.
On the other hand, a reduction of the input size can lead to a significant
runtime improvement with just 47 % of the runtime needed compared to the
base model B. Not to be neglected, however, is the loss of detection perfor-
mance of -0.017mAP. We have primarily taken into account the effects on
the Jetson, as we can assume productive use in the vehicle on comparable
edge devices.

A closer look at the mAP values for each damage class shows that alligator
cracks benefit greatly from smaller images and all other road damage benefits
from larger images. Alligator cracks are an accumulation of many cracks; at
higher resolution, these structures with more widely spaced cracks can be
evaluated by the model as individual longitudinal or lateral cracks and no
longer as a union. At the same time, single cracks and potholes benefit
from a larger input image size. With a smaller image size, it is less likely to
detect single cracks within the alligator cracks, but already small cracks and
potholes are more likely to be overlooked. For the best possible performance,
the appropriate choice of the input image size is important.

Table IX.5: mAP scores for specific damage classes with different input image
size

Class mAPs 416 px 640 px 864 px

D00 mAP@0.5 0.428 0.461 0.464

D10 mAP@0.5 0.363 0.365 0.382

D20 mAP@0.5 0.661 0.640 0.597

D40 mAP@0.5 0.429 0.479 0.485

Smaller/Larger Model Size Impact : Consistently, smaller models lead to
poorer detection performances and larger models lead to better detection
performances. Respectively, smaller models always lead to an improved run-
time and larger models to a worse runtime. Due to the gigantic factorial
influence on the runtime of models’ different sizes, decisions should always
be made on a use-case basis. Other applications, on the other hand, are
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not cost- and runtime-critical and require the maximum possible detection
performance. Since each model has to be trained from scratch, it takes a lot
of time and effort.

It is noticeable that due to the different width and depth of the YOLOv5
models, pruning yields worse results than simply choosing a smaller model.
YOLOv5m requires only a quarter as many parameters as YOLOv5x, but
after pruning with 50 % sparsity the YOLOv5x model performed significantly
worse than the YOLOv5m model, with an mAP@0.5 of only 0.171.

Table IX.6: Performance and speed for YOLOv5 models

Model Size mAP@0.5 RuntimeJet. RuntimeGTX Params

YOLOv5xxxs 0.369 82 ms 8.8 ms 0.42

YOLOv5xxs 0.445 243 ms 9.3 ms 3.75

YOLOv5xs 0.462 310 ms 10 ms 4.92

YOLOv5s 0.486 320 ms 11.2 ms 7.06

YOLOv5m 0.493 702 ms 16.8 ms 21.05

YOLOv5l 0.502 1065 ms 26.5 ms 46.62

YOLOv5x 0.513 2353 ms 58 ms 88.41

YOLOv5xl 0.513 3537 ms 92 ms 146.31

Head Modification Impact : Head Modification Impact : An extra stride 64
(I4.1) is likely to be good for rather larger images. In our application with an
image size of 640 px, the extra stride 64 reduces the detection performance of
smaller objects in particular, since the results of the convolution of stride 64
are included in the confidence calculation of the objects on an equal footing
with the other strides. The additional stride has therefore led to a deteri-
oration of -0.019mAP in detection and an increase in runtime with 18 ms,
however, the situation may well be different in other application domains
with lager image sizes. Removing the stride 32 (I4.2) results in improved
runtime, but at the cost of a significant reduction in mAP by 0.038. This
indicates that the stride is quite valuable in combination of expected damage
and image size. The same applies to the removing of the stride 8 (I4.3),
although we cannot explain the increased RuntimeJetson, because it is lower
on RuntimeGTX, as expected.

All head modifications deliver poor results compared to the base model
B and are not recommended to be applied for both, decreasing runtime and
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improving detection performance.

Table IX.7: Recommended tools to use YOLOv5 at maximum speed, with
acceptable performance, at maximum performance and in the Sweet-Spot
between speed and performance

Tools Runtime Perform. Sweet-Spot

Model Size S X S

Test Time Augmentation NO YES YES

Ensemble / XXXS-XL /

Hyperparameter Evolution YES YES YES

Input Size 416 640 640

Head Modification NO NO NO

New Data YES YES YES

Half-Precision YES NO YES

RuntimeJetson 119 ms / 568 ms

RuntimeGTX 9.3 ms 632.5 ms 27.7 ms

mAP@0.5 0.486 0.531 0.506

F1-scoreGRDDC 0.577 (#50) 0.715 (#2) 0.653 (#34)

Ensemble Impact : The ensemble of YOLOv5 model sizes (I5.1) includes
eight models from XXXS to XL and offers by far the highest increase of an
isolated tool in detection performance with 0.044mAP gain compared to the
base model B. Since the models must be executed in parallel, this ensemble
also results in the greatest increase in runtime. The Jetson was not capable
of running the ensemble model due to excessive computational demands.

I5.2, I5.3 and I5.4 are ensembles consisting of the models I2.1 with 416 px
training image size, the base model B with 640 px training image size and
I2.2 with 864 px training image size. I5.2 utilizes input images with 416 px,
respectively I5.3 640 px and I5.4 864 px. All three ensembles deliver rather
poor results. The smallest input size 416 px barely surpases the performance
of the base model B with +0.003mAP while having a 39 % increased runtime.
Regarding our dataset downscaling is less harmful than upscaling as the very
poor score of the ensemble I5.4 indicates, though, in general utilizing models
which have been trained with different image sizes is not useful.
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I5.5 is an ensemble composed of models from only country-specific data
from the Czech Republic, India, and Japan. The results are very poor as
the single models miss generalization due to their smaller data base. Addi-
tionally, every model is equally considered for every country which results
in poor detection performance respectively. if experts in application become
interesting in the future, then utilizing all data in the first step is recom-
mended, followed by a second transfer learnig step of the specific countries.
Kortmann et al. [30] used this procedure starting with a country classifier in
the first place.

If we use an ensemble of a model trained from only the RDD and one
trained only on the ADS (I5.6), we obtain poor results with far worse than the
base model B (-0.054mAP). It shatters the performance significantly. This
is mainly due to the fact that the ADS model has a poor generalization and
is not suitable to be used for detection in RDD. The ADS is thus valuable to
use in transfer learning on top of the RDD as displayed in P2 but not as the
only data. the Aglaia model shatters the overall performance. An ensemble
of the joint dataset from ADS and RDD combined with a model trained with
only the RDD delivers superior results compared to B with +0.012mAP.

IX.4.3 Recommended Model Designs

In this section, we discuss the given tool combinations in the ’Max. Speed’,
’Max. Performance’, and ’Sweet-Spot’ models. The GRDDC leaderboards
are sustained, with one frozen leaderboard existing at the time of the chal-
lenge end (Test1) and one for the present time (Test1-2)1. Table IX.7 lists
the tools used and the performance parameters of the models in an overview.

Max. Speed : Due to the continued very active community, which is evident
from the leaderboard results, our speed network is in #50 place at the time
of paper submission. At the time the challenge ended, we would have been
in #7 with the result of our runtime-optimized ’Max. Speed’ model.

In this model, we select size S and applied four tools: Hyperparameter
evolution, smaller input size, new data and half-precision format. As shown
in section Section IX.4.2, we have made use of the application of the presents
and the reduction of the input size from the investments. The detection
performance is identical to the base model B (cf. Table IX.4) with 0.486mAP
while the runtime reduces to 37 % of B. This is a great achievement as 119 ms
on a Jetson Nano device results in 8.4 fps. The ultimate solution for real-time
detection would be 30 fps due to the frame rate of the camera, but this does
not seem achievable as a heavy loss of detection performance occurs when

1GRDDC leaderboards: https://rdd2020.sekilab.global/leaderboard/

261



D
0
0

0.43 0.00 0.02 0.00 0.23

D
1
0

0.01 0.43 0.00 0.00 0.20

D
2
0

0.02 0.00 0.66 0.01 0.27

D
4
0

0.01 0.00 0.00 0.50 0.30

B
G 0.53 0.57 0.32 0.49

D00 D10 D20 D40 BG

(a) Speed 0.486mAP

D
0
0

0.74 0.02 0.05 0.01 0.29

D
1
0

0.01 0.68 0.00 0.00 0.14

D
2
0

0.05 0.01 0.81 0.02 0.28

D
4
0

0.01 0.01 0.01 0.75 0.29

B
G 0.20 0.28 0.12 0.22

D00 D10 D20 D40 BG

(b) Perf. 0.531mAP

D
0
0

0.54 0.00 0.02 0.01 0.27

D
1
0

0.01 0.49 0.00 0.00 0.17

D
2
0

0.03 0.00 0.70 0.01 0.27

D
4
0

0.01 0.00 0.00 0.60 0.30

B
G 0.42 0.50 0.27 0.38

D00 D10 D20 D40 BG

(c) Sweet-Spot 0.506mAP

Figure IX.2: Confusion Matrices of the proposed YOLOv5 models ’Max. Per-
formance’, ’Max. Speed’, and ’Sweet-Spot’ (cf. Table IX.7)

decreasing runtime even further. An optimization of the edge hardware can
provide a relief in the future.

The confusion matrix in Figure IX.2a shows that the model has consider-
able weaknesses. Alligator cracks (D20) are best detected with 2/3 precision,
followed by potholes (D40) with half of all potholes being detected and lon-
gitudinal (D00) and transverse cracks (D10) with just 0.43 each. Overall, it
can be observed that there are negligible misclassifications. Hence, the ma-
jor issues are that our model misses damages entirely which results in them
being classified as the background (BG).

Max. Performance: Our ’Max Performance’ model reaches #2 on the
leaderboard with narrow margin to #1. The model is an ensemble of mod-
els’ different sizes. We have applied all tools capable of increasing the per-
formance without any respect paid to runtime increase as displayed in Ta-
ble IX.7. By our design, the model is no longer even executable on the
Jetson. With a runtime of 632.5 ms on the GTX 1080 TI, even this hardware
is not close of being real-time capable. In addition, it is very unlikely that
similarly large hardware capacities can be used in an autonomous vehicle to
only detect road damages.

The confusion matrix in Figure IX.2b displays major improvements over
Figure IX.2a. The precision occurs with transverse cracks (D10) being with
0.68mAP still slightly above the best detected class of the ’Max. Speed’
model. Potholes (D40) and alligator cracks (D30) are with 0.75 and 0.81mAP
very well detected. It is striking that misclassifications appear primarily in
the distinction between alligator cracks and lateral cracks. In the ADS im-
ages, we partially had difficulty to label consistently when distinguishing
between collections of cracks and alligator cracks. For practical applications,
we expect little negative impact from this misclassification, since it is rela-
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tively unimportant whether we have several cracks or one alligator crack.

Figure IX.3: Precision-Recall curve for the Sweet-Spot Model, with single
class mAP@0.5

Sweet-Spot : This model represents the, according to our results, best
trade-off between performance and runtime. Compared to the ’Max. Perfor-
mance’ model, we utilize the half-precision format as the performance loss
is negligible compared to the improvements in runtime. Furthermore, the
model size S is the same as utilized in the ’Max. Speed’ model. Opinions
differed though, especially in the application of the TTA. The model gains
0.07mAP while having significantly worse runtime. Its use is debatable,
which is why the use of the TTA must be judged according to the available
resources. With 568 ms, the model can be executed almost two times a sec-
ond on the Jetson, but we expect the hardware capabilities to improve in
the future. With 0.653mAP, the ’Sweet-Spot’ model would have been #3 at
the leaderboard when the challenge ended and is currently on #34, having
been optimized regarding runtime. Figure IX.3 illustrates the precision-recall
curve for an IoU of 0.5 which is the basis for calculating the mAP.

IX.4.4 Limitations

DL models have become an indispensable part of the vehicle environment
detection system. Despite major achievements, a truly flawless detection
performance remains a utopia, which is why rule-based systems are used in
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conjunction with it. In the following, we will discuss faulty detections of our
algorithms to show which misinterpretations can occur. Figure IX.4a demon-
strates a common classification issue in our domain. Construction joints and
repaired cracks are likely to be misinterpreted as cracks. As our self-labeled
ADS includes construction joint labels, we prove that in 41 out of 460 im-
ages, construction joints are classified as longitudinal (D00) or transverse
cracks (D10). Manhole covers being misclassified as potholes in contrast, are
a minor issue since this happens rarely (c.f. Figure IX.4b).

(a) Repaired crack misclassified as long.
crack (D00, green)

(b) Manhole cover misclassified as a pot-
hole (D40, red)

Figure IX.4: Incorrect detections inside the road surface area

Further false detections can always occur in DL. Some of these are not
comprehensible. In Figure IX.5a, for example, a detection of an alligator
crack occurs, which is probably due to similar contrast ratios of the leafless
tree in front of a dark house. Furthermore, a window of the house is rec-
ognized as a pothole. Figure IX.5b displays the false detection of a pothole
which is indeed a branch of a tree with the horizon in the background.

Due to the good detection performance of DL models, such errors are the
exception, but they illustrate the fail-safe requirement, whereby in environ-
ment perception, confidence must always be achieved by multiple systems.

IX.5 Conclusion and Future Work

This paper gives a comprehensive overview of tools which can be applied
in YOLOv5 DL and their expected impact on detection performance and
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(a) A leafless tree misclassified as aliga-
tor crack (D20, orange)

(b) A branch misclassified as a pothole
(D40, red)

Figure IX.5: Incorrect detections outside the road surface area

model runtime. In contrast to the GRDDC, which focuses solely on detec-
tion performance, we close the gap to the application of DL models in the
autonomous vehicle for the use case of road damage detection. In addition
to the isolated quantitative evaluation of the applied tool, we propose three
combinations of the tools in optimized models in terms of maximum per-
formance (’Max. Performance’), minimum runtime (’Max. Speed’), and the
best trade-off of performance and runtime (’Sweet-Spot’).

The differences between the models are substantial in regard to their
detection performance, which makes the challenges of autonomous driving
particularly clear, as the detection of road damages does not remain the only
task of the environment perception system in road traffic. Considering the
confusion matrices, we can summarize YOLOv5 by saying that it looks only
once, misses quite a bit but classifies correctly. With better and, above all,
more efficient DL models, we hope to be able to achieve even better results
in the future. It is furthermore to be desired that Moores’ law will persist
and that computing capacities will continue to improve.

Future work should be carried out on further tool to improve DNN in
their object detection task. In autonomous driving, there should be methods
to use sequences of images to contribute to an increase in detection perfor-
mance. It would be possible to achieve higher confidence of detection via
multiple subsequent detections. LSTM networks are best suited for pro-
cessing sequential data. They can be used to predict trajectories of moving
objects and enable object tracking.
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Another potential tool could be to apply more classes in a dataset. Our re-
sults show that construction joints are likely to be classified as cracks. Taking
construction joints into account in training can lead to better discrimination.
In the current state, construction joints are perceived as background.

The last thing we would like to point out is the use of segmentation
techniques. Results from the challenge suggest a negative effect of image
segmentation (street, horizon, etc.). However, new segmentation techniques
could be explored to contribute to this domain in a meaningful way.
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Abstract

Lead-acid batteries are still the cash cow in the market of energy storage
systems. Use in vehicles will continue in the next years due to several ad-
vantages over competing products. Despite the high level of maturity of
Lead-Acid Batteries (LABs), the Lead-Acid Battery (LAB) is with 40 % by
far the largest cause of short-term vehicle breakdowns. This is primarily not
due to defective products, but rather to over-aged or deeply discharged bat-
teries. The complex aging characteristics of lead-acid batteries do not allow
the health status of a battery to be easily detected, which increases the prob-
ability of short-term failures. Our paper presents a solution of monitoring the
current health status of a battery and discusses modeling opportunities in a
cloud as a digital twin to predict breakdowns in the future. We present both,
a Low Power Wide Area Network (LPWAN) based monitoring prototype and
theory for state modeling and prediction.
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X.1 Introduction

Despite the growth of lithium-ion batteries in the market and a number of
new and very promising battery technologies [1, 2], the LAB is and will
remain extremely important, and a considerable growth is predicted to con-
tinue over the next years. One of the market forecasts for power train elec-
trification shows that by 2025, about 55 % of micro hybrid vehicles will still
be equipped with LABs [3]. In automotive applications, LABs continue to
be used as starter batteries due to the high degree of maturity and specific
power density especially at low temperatures and long parking times.

Regardless the above-mentioned advantages, ADAC (Allgemeine Deutsche
Automobil-Club e.V.) statistics show that the starter battery accounts for
42 % of passenger car breakdowns in 2018 from a total of 385.955 road patrol
operations [4]. The high breakdown rate is is not due to poor products, but
rather to the following three causes [5]: (1) Deep discharge of the battery
due to defective consumers and partial charging by short trips. (2) High
temperature dependency, e.g. during cold snaps. (3) Battery ageing due to
erosion of the electrodes, sulphation, corrosion and water loss.

Short-term breakdowns are usually particularly annoying for consumers
and cost time and money. To overcome this, battery sensors are commonly
used to monitor the battery status by measuring current, voltage and tem-
perature. With the information gained, electrical consumers in the vehicle
can be optimally controlled, enabling start-stop functionality and automatic
shutdown of consumers. The subject of battery state detection by a sen-
sor suitable for automotive applications has already been examined in the
literature and will be dealt with further in Section X.2.

Whilst current product solutions in the automotive industry primarily
focus on the short-term ability of the battery to provide sufficient power, we
want to present an approach of state modeling the battery as a digital twin
in a cloud application. In addition to the theory of the battery model, whose
parameters are continuously updated in the life cycle, we present a prototyp-
ical implementation for the vehicle-infrastructure-independent transmission
of battery data via LPWAN. For this we use the Intelligent Battery Sen-
sor (IBS) by HELLA GmbH & Co. KGaA, which provides us with essential
data for modeling in the cloud. The battery model will enable us to predict
the battery state by taking further external conditions into account.

Our contributions can be summarized as follows:

• We refine an existing model for real-time monitoring of LAB for auto-
motive applications.
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• We point out further steps towards realisation of a digital LAB twin in
the cloud.

• We present an LPWAN-based prototype for the transmission of sensor
data into the cloud.

X.2 Fundamentals & Related Work

Today’s Battery Management Systems (BMSs), used for example in the auto-
motive industry, depend on the nominal capacity and the internal resistance.
The IBS is part of the BMS and measures current, voltage, temperature and
calculates, by using parametric functions, the State of Charge (SoC), the
State of Health (SoH) and the State of Function (SoF). In addition, the
IBS has a temperature model which derives the battery acid temperature
from the measured temperature at the pole [6, 7]. The calculated data is
transmitted via the Local Interconnect Network-Bus (LIN bus) to the elec-
trical system of the vehicle, which interprets the data and derives internal
functions. Thus, the sensor provides a prognosis of the current state of the
battery and not a prediction over days or even weeks.

The description and modeling of a LAB is attributable to the develop-
ment of the electrochemical storage system of Peukert [8] in 1897. The LAB
has nonlinear, interdependent reactions and cross-relations, which makes the
mathematical description of the system very complex. Conversion processes
take place in the battery, implying a transition of the active mass during
charge and discharge. The full LAB process is a composition of physical,
chemical and electro-chemical processes which results in a complex descrip-
tion. The battery is submitted to cyclical and calendrical aging, which finally
leads to a poor performance or even complete failure of the system. Dur-
ing the degradation process, the internal resistance of the battery increases.
This results in a reduction of the available capacity. Therefore, batteries are
oversized to reduce the uncertainties associated with their lifetime [9]. Nu-
merous research papers address the description of the physical, chemical and
electro-chemical process steps. For a holistic BMS a reliable specification of
these is crucial [9, 10, 11].

The modeling of batteries is divided into three groups: empirical, Electrical
Equivalent Circuit (EEC) and physio-chemical models. Thereby, a trade-off
between accuracy, computing time and flexibility has to be found.

Most research approaches focus on the parameterization of EEC diagrams
based on measurements of impedance spectra [13, 14, 15, 16]. Originating
from the spectrum, the electro-chemical processes are identified. These are
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Figure X.1: EEC for the impedance spectrum of a LAB based on Thele [12]

shown as semicircles in the Nyquist diagram. The first description as an EEC
for electrochemical storage systems was introduced by Randles [17] based on
Thévenin [18]. The EEC includes an ohmic resistor, an RC-element and a
diffusion element [16]. The RC-element includes a charge-transfer resistance
(R) and a double-layer capacitance (C). Based on this circuit, Thele [12]
describes a suitable EEC for LABs representing the electro-chemical pro-
cesses of the negative and positive active mass (cf. Figure X.1). Thele [12]
also shows an EEC which represents the side-reaction of the LAB, including
gassing effects and acid stratification effects [12]. Kwiecien [19] investigates
the impedance spectra of the LAB during ageing. She examines the change
of EEC elements over time and shows that an EEC does not represent a
battery over its entire life cycle, but is subject to major changes [19].

Blanke et al. [10] extend the EEC with physical elements to increase
the accuracy of the model. However, this is highly dependent on individual
batteries, which always differ in their chemical composition.

Salkind et al. [20] investigate Electrochemical Impedance Spectroscopy
(EIS) in combination with fuzzy-logic methods for data analysis to determine
SoH and SoC.

In addition to modeling the processes of a LAB as an EEC, other ap-
proaches exist in research. For example, machine learning and classification
approaches try to describe the process in its entirety avoiding the use of indi-
vidual replacement elements [9, 11]. Richardson et al. [9] present a bayesian
non-parametric approach of predicting the change of the battery capacity
over time. They utilize pattern-recognition enabled by an increase of com-
puting resources. However, the results of these methods depend strongly on
the pattern classifier and the type of distribution (Gauss, Binomial, Pois-
sion). Salameh et al. [11] also investigate a machine learning and classifica-
tion method for SoH calculation of LABs, showing good performance with
the same LAB specifications.

All these approaches try to reflect the current state of the battery as
accurately as possible. However, they lack prediction capability as they are
based on data already collected. In this paper we adopt the approach by
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Thele [12], extend it by a predictive capability and adjust it to the automotive
application. Our prototype (cf. Figure X.1) provides generated data from
the IBS in order to continuously update our EEC elements in the cloud over
time. Predictions are to be made possible by different artificial load cycles
and weather forecast data. The results can be delivered to consumers as a
digital service of upcoming breakdowns.

X.3 State Modeling Theory

The EEC by Thele [12] which was presented in Figure X.1, is used as the
basis for our prediction and modeling approach of LAB in the cloud. The
model for the real-time application is illustrated in Figure X.2. The input
data is sent to the cloud by our prototype in the vehicle while the output
data is calculated within the cloud and ready for use as digital service. The
input data current IIBS, state of charge SoCIBS, lifetime tIBS{cycles and tem-
perature of the acid TIBS are provided by the IBS. Our prototype transmits
the geolocation LIBS of the vehicle, enabled by LPWAN, so that position-
dependent weather forecasts TFor can be obtained from the internet as input
data for the temperature model. Virtual and artificial load profiles are pro-
vided to represent, in the future lying, consumer behavior. The main part of
the state modeling and prediction approach is the impedance model of a full
cell of a LAB.

Firstly, the elements of the EEC are parameterized by measurements from
the EIS. The measurements are recorded for different SoCs, temperatures
and superimposed DC currents. Hence, an initial lookup table is given for
the EEC.

In the next step, the network is triggered by current or power data of the
load profiles. This allows a real-time information about the actual state of
the battery and a prediction of the functionality in the future. The output
of the model is the terminal voltage Uterminal of the battery. In addition,
the expected reduced current Ired results from a subtraction of the gassing
current Igas. Igas is determined via gas model (side reaction in the LAB).
IIBS is the current measured by the IBS. The battery parameters (SoC, SoH,
SoF) are calculated from the output values of the impedance model and the
measurement data of the IBS.

The powers from the impedance model PI as well as from the gas model
PG, have an influence on the temperature model of the battery. The output
data from the temperature model are supplied to the aging model and the
impedance model. The values of the lookup table of the impedance model
are based on the temperature values of the temperature model and the SoC.
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Based on output data from the temperature model, the aging model influ-
ences the impedance model during the lifetime of the battery tIBS{cycles. The
elements of the EEC are updated by the aging model. Thus, the internal
resistance of the battery network changes in the process of calendrical, cycle
aging and sulfation. Hence, larger ohmic losses inside the battery will occur.
The results of the simulation can be used to predict the crank capability of
the vehicle for future use.

In case of a predicted, insufficient battery voltage, a warning message
can be given to the driver. The availability of location-based temperature
forecasts makes the cloud application a promising approach for predictions.
Thus, the accuracy of the state of the battery as well as the possibility of
prediction can significantly increase due to our approach.
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Figure X.2: Real-time state modeling & prediction process of LABs

X.4 Prototype Design

Our prototype (cf.Figure X.4) includes LPWAN technology which enables
low-frequency and energy-efficient data transmission. Due to our system
design, we are independent of the electrical and electronic architecture of
vehicles.

A micro-controller is the base of our prototype including an M0-processor
and an integrated radio module for LPWAN communication. For the commu-
nication with the IBS, a LIN-Transceiver is used on a custom made printed
circuit board including a voltage regulator to ensure the voltage supply of
the micro-controller directly by the LAB. Due to our application code in
the cloud, we are capable of changing the frequency and resolution of data
obtained by the IBS.
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Figure X.3: Battery voltage and temperature transmitted by our prototype

Figure X.3 displays real data from our prototype. In detail, the upper
graph represents the battery voltage measured by the IBS. From 2:00 to 9:45,
the passenger car is resting while slowly loosing voltage. In the same time,
the battery temperature, displayed in the below graph, is also decreasing
until the engine starts at 9:45. The short driving periods are displayed at
9:45, 15:00 and 17:00, showing a higher voltage level around 14.5 V due to
the alternator. An engine start also results in an increase in temperature.

Figure X.4: Components of the prototype: micro-controller, interface, IBS
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X.5 Conclusion

Our scientific contribution lies in the extension of Thele’s LAB model by a
predictive capability of the battery functionality, enabled by the cloud due
to the availability of location-dependent weather data. The goal of imple-
mentation is the predictability of failures for the customer in order to avoid
painful unforeseen failures and thus save time and money.

Besides the modeling we present a prototype that sends data directly
from IBS to the cloud via LPWAN independent of the vehicle architecture.
This serves as a data supplier for our digital twin in the cloud.

In future work, the existing monitoring of the lead battery using current
IBS data in the cloud must be expanded to include the approach presented.
For the implementation it has to be clarified in which frequency and reso-
lution the required data must be delivered by the IBS, since the LPWAN
technology has a limited bandwidth. Furthermore, it must be decided which
artificial load cycles should be applied to the battery in order to reflect con-
sumer behaviour as realistic as possible. Past cranking and resting phases
could achieve good results.
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[6] M. Schöllmann, M. Rosenmayr, and J. Olk, “Battery monitoring with
the intelligent battery sensor during service, standby and production,”
tech. rep., SAE Technical Paper, 2005.

279



[7] N. Decius, H. Klein, K.-H. Fortkort, J. Olk, W. Ruttor, and
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Appendix A

First Appendix

Table A.1: Society of Automotive Engineers (SAE) levels of automation [10]

Lvl Name
Steering &

Acceleration

Monitoring of
Driving

Environment

Fallback
Performance
Driving Task

Drive
Modes

Human driver monitors the driving environment

0
No

Automa.
Human Human Human None

1
Diver

Assistance
Human &

System
Human Human Some

2
Partial

Automa.
System Human Human Some

Automated driving system monitors the driving environment

3
Conditio.
Automa.

System System Human Some

4
High

Automa.
System System System Some

5
Full

Automa.
System System System All
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Figure A.1: Aligator crack (D20) in an example image of the ADS (Germany)

Figure A.2: Longitudinal crack (D00) in an example image of the ADS (USA)

Figure A.3: Multiple damages in an example image of the ADS (USA)
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Figure A.4: Longitudinal crack (D00) in an example image of the ADS (UK)

Figure A.5: Pothole (D40) in an example image of the ADS (USA)

Figure A.6: Pothole (D40) in an example image of the ADS (Latvia)
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Figure A.7: Pothole (D00) in an example image of the ADS (France)

Figure A.8: Pothole (D40) in an example image of the ADS (Germany)

Figure A.9: Long. crack (D00) in an example image of the ADS (Norway)
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Figure A.10: Lateral crack (D00) in an example image of the ADS (Norway)

Figure A.11: Pothole (D40) in an example image of the ADS (South Korea)

Figure A.12: Multiple damages in an example image of the ADS (Germany)
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Appendix B

Second Appendix
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ˆ ˆ ˆ
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ˆ ˆ
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Table B.5: Publication V: Authors qualitative & quantitative contribution

Publication V: Author’s contribution
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Table B.8: Publication VIII: Authors qualitative & quantitative contribution

Publication VIII: Author’s contribution
Fassmeyer Kortmann Drews Funk

Conceptual research design
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Planning of research activities
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Data collection
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Data analysis and interpretation
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Manuscript writing
ˆ ˆ

Publication equivalence value
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Table B.9: Publication IX: Authors qualitative & quantitative contribution

Publication IX: Author’s contribution
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Conceptual research design
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Planning of research activities
ˆ

Data Collection
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Manuscript writing
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Publication X: Author’s contribution
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Conceptual research design
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Manuscript writing
ˆ ˆ
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