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Abstract

Extracting meaningful representations of data is a fundamental problem
in machine learning. Those representations can be viewed from two differ-
ent perspectives. First, there is the representation of data in terms of the
number of data points. Representative subsets that compactly summarize
the data without superfluous redundancies help to reduce the data size.
Those subsets allow for scaling existing learning algorithms up without
approximating their solution. Second, there is the representation of every
individual data point in terms of its dimensions. Often, not all dimensions
carry meaningful information for the learning task, or the information is
implicitly embedded in a low-dimensional subspace. A change of represen-
tation can also simplify important learning tasks such as density estimation
and data generation.

This thesis deals with the aforementioned views on data representation
and contributes to them. We first focus on computing representative subsets
for a matrix factorization technique called archetypal analysis and the setting
of optimal experimental design. For these problems, we motivate and
investigate the usability of the data boundary as a representative subset.
We also present novel methods to efficiently compute the data boundary,
even in kernel-induced feature spaces. Based on the coreset principle, we
derive another representative subset for archetypal analysis, which provides
additional theoretical guarantees on the approximation error. Empirical
results confirm that all compact representations of data derived in this thesis
perform significantly better than uniform subsets of data.

In the second part of the thesis, we are concerned with efficient data rep-
resentations for density estimation. We analyze spatio-temporal problems,
which arise, for example, in sports analytics, and demonstrate how to learn
(contextual) probabilistic movement models of objects using trajectory data.
Furthermore, we highlight issues of interpolating data in normalizing flows,
a technique that changes the representation of data to follow a specific distri-
bution. We show how to solve this issue and obtain more natural transitions
on the example of image data.
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Zusammenfassung

Das Extrahieren sinnvoller Repräsentationen von Daten ist ein grundlegen-
des Problem im maschinellen Lernen. Diese Repräsentationen können aus
zwei verschiedenen Perspektiven betrachtet werden. Zum einen gibt es
die Repräsentation von Daten in Bezug auf die Anzahl der Datenpunkte.
Repräsentative Teilmengen helfen große Datenbestände kompakt zusam-
menzufassen. Dazu werden beispielsweise überflüssige Redundanzen
weggelassen. Diese Teilmengen erlauben es, bestehende Lernalgorithmen
hochzuskalieren, ohne deren Lösung zu approximieren. Zum anderen gibt
es die Repräsentation jedes einzelnen Datenpunktes in Bezug auf seine
Dimensionen. Oft tragen nicht alle Dimensionen sinnvolle Informationen,
oder Informationen sind implizit in einem niedrigdimensionalen Unterraum
eingebettet. Ein Wechsel der Repräsentation kann auch wichtige Verfahren
wie die Dichteschätzung und die Datengenerierung vereinfachen.

Diese Arbeit beschäftigt sich mit den oben genannten Perspektiven
zur Datenrepräsentation und leistet einen Beitrag dazu. Wir konzentri-
eren uns zunächst auf die Berechnung repräsentativer Teilmengen für die
Archetypenanalyse und auf das Setting der optimalen Versuchsplanung.
Für diese Probleme motivieren und untersuchen wir die Brauchbarkeit der
Punkte am Rand der Daten repräsentative Teilmenge. Außerdem stellen
wir neuartige Methoden zur effizienten Berechnung dieser Randpunkte vor.
Basierend auf dem Coreset-Prinzip leiten wir eine weitere repräsentative
Teilmenge für die Archetypenanalyse her, welche zusätzliche theoretische
Garantien bietet. Empirische Ergebnisse bestätigen, dass alle kompakten
Repräsentationen von Daten, die in dieser Arbeit vorgestellt werden, deut-
lich besser abschneiden als zufällige Untermengen.

Im zweiten Teil der Arbeit beschäftigen wir uns mit effizienten Daten-
repräsentationen für die Dichteschätzung. Wir analysieren raum-zeitliche
Probleme, die z.B. in der Sportanalytik auftreten, und zeigen, wie man (kon-
textuelle) probabilistische Bewegungsmodelle von Objekten anhand von
Trajektoriendaten lernt. Darüber hinaus untersuchen wir Probleme der Inter-
polation von Daten bei Normalizing Flows, einem Verfahren, das die Darstel-
lung von Daten so verändert, dass sie einer vorgegebenen Wahrschein-
lichkeitsverteilung folgen. Wir zeigen am Beispiel von Bilddaten, wie man
dieses Problem löst und natürlichere Interpolationsübergänge erhält.
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Chapter 1

Introduction

The field of machine learning provides a set of algorithms for automatically
inferring patterns and relationships in data. An algorithm learns such
patterns and relationships from experience, which is commonly a set of
data points that forms the input data set. Typically, each data point is
characterized by a number of features (or attributes) in a vectorized form.
This data set is often represented by a so-called design matrix consisting of
the stacked data points. Thus, its size is the number of data points times the
number of features.

The most common learning setting is supervised learning, where each data
point is associated with a label, denoting the output (or target). The goal is
to infer a mapping from input to output data by minimizing a loss function,
typically within the framework of empirical risk minimization (Vapnik,
1991). Typical examples are, e.g., regression and classification. While having
access to labels renders supervised learning easier to evaluate, unsupervised
learning is especially appealing as it does not rely on (possibly) expensive
labeling. Unsupervised learning is concerned with discovering structures
and/or patterns in data. Canonical examples include anomaly detection,
clustering, density estimation, dimensionality reduction, and latent variable
models.

The representation of data, i.e., the data set or design matrix, is often
sub-optimal and crucial for the quality of a learning task (Bengio et al., 2013).
For example, the data set might be too large, include a large amount of
redundant information, or the attributes lack predictive features. Thus, a
change of representation is frequently necessary. This change of representa-
tion can be done as a pre-processing step or as a part of a learning algorithm.
In general, there are two views on the data on which a change can happen.

1
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1.1 Two Views on Representation Learning

Representation learning is about finding another representation of data, usu-
ally represented as a design matrix, which is better suited for a specific
purpose. Changing the representation can be seen in two different ways.
The first one is about the number of data points and thus affects the sam-
ple size of the data set. The second one is concerned with a change of the
representation in terms of the features.

The Sample Size View

In some domains, data is available in large quantities and might carry a lot
of redundant information. In other words, the number of data points may
be too large to run specific algorithms. Hence, efficient inference becomes
difficult. This problem setting is also referred to as large-scale learning. To
scale machine learning models to large data sets, the options are usually to
either approximate the model at hand or the training data. Apart from that,
there could also be memory and computational budgets that force us to use
an approximation. Henceforth, we focus on approximating the data set.

A small subset of data that approximates its key features well is called
a representative subset or data summary, as it aims to summarize the data.
A straightforward idea is to use a uniform subset of data, where points
are sampled independently and uniformly at random. This rather ad-hoc
approach often yields an unbiased estimator of the objective function that
is being optimized.

More sophisticated ways to sample points need to exist that are (i) more
efficient and (ii) lead to a better representations. Here, (i) refers to even
smaller subsets that yield competitive results as compared to uniform sub-
sets. As a result, those subsets are more sample efficient.

The goal of representative subsets is as follows. First, a learning algo-
rithm should perform similarly on the subset as on the original data. Thus,
the subset is usually tailored to a specific algorithm. In addition, those
subsets often also provide an individual weight per data point. That way,
many similar data points might be represented by only one data point that
has a higher weight. Second, it is advantageous if the construction of a
representative subset also comes with a theoretical guarantee on the approx-
imation error. Third, a standard requirement of subset selection methods is
that they can be efficiently computed. Often, those selection approaches are
unsupervised, meaning they only consider input data (the design matrix)
and no labels.

For example, in k-means clustering (Lloyd, 1982) state-of-the-art rep-
resentative subsets (Bachem et al., 2018a) employ importance sampling
strategies and can be constructed with just two passes over the data.
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Figure 1.1: An example of learning on subsets. The full data set (top center) is
represented by uniform subset (top left) and a representative subset (top right). An
algorithm, here the computation of a convex hull, executed on the representative
subset (bottom right) performs better than a uniform subset (bottom left) when
compared to all data (bottom center).

Figure 1.1 depicts an example for the computation of a convex hull. A
small uniform subset covers a smaller area than the desired convex hull.
This is due to the fact, that the most important points for this problem
are located on the boundary of data. In comparison, the representative
subset on the right side of the figure includes more relevant points and thus
provides a better summary of the full data. As a result, it yields a much
better approximation while being of the same size as the uniform subset.

The Dimension View

Traditionally, representation learning is understood as a change of represen-
tation in terms of the dimensions of data. Often, not all dimensions carry
meaningful information for the learning task, the essential information is
implicitly embedded in a low-dimensional subspace, or the given features
are not all predictive. In the latter case, a change of representation is often
done as a part of a learning algorithm.

For example, a feature mapping is frequently used to transform the
input data into another space that is beneficial for the learning task. An
often-used approach is to use feature mappings that are implicitly defined
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Encoder

Decoder

Figure 1.2: An example of a data transformation. Left: an input space that has a
complex distribution. Right: a representation of the same data having a simpler
distribution. Transformations allow to move points from one space to another.

by kernels (Schölkopf and Smola, 2002). This allows us to leverage non-
linear relations in data. An example would be kernel principal component
analysis (Schölkopf et al., 1998), which serves as a non-linear extension
to principal component analysis (PCA) (Pearson, 1901). Neural networks
(NNs) (LeCun et al., 2015; Goodfellow et al., 2016) also serve as an example
of feature transformations. Consider, e.g., a simple feed-forward neural
network for a classification task. All layers except the last can be seen as
a non-linear feature extraction, whereas the last layer is performing, e.g., a
logistic regression on the extracted features.

Autoencoders also pursue a non-linear feature transformation (Rumel-
hart et al., 1986; LeCun, 1987). This unsupervised method consists of two
parts. The first one is called an encoder and embeds the input data into a
so-called latent space or latent representation. The second part, called decoder,
then reconstructs the input data from the latent representation. Hence, the
decoder is (approximately) inverting the transformation of the encoder. The
latent representation is often of lower dimensionality and hence forces the
autoencoder to extract useful properties of the data.

To facilitate operations such as data generation in the framework of
generative modeling, it is advantageous to enforce a specific structure on
the latent space. A variational autoencoder (VAE) (Kingma and Welling,
2014; Rezende et al., 2014) allows us to specify a desired prior distribution
on the latent representation. This allows us to easily sample from the prior
and generate new synthetic data points by decoding them back into data
space. Thus, the encoder can be seen as a transformation that changes the
distribution of data. An example is depicted in Figure 1.2. A complex
data distribution is transformed into an easier distribution. This is not only
advantageous for generative modeling but also for density estimation.
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1.2 Contributions

This thesis contributes to the area of unsupervised representation learning
and has a focus on computing efficient data summaries. The following
chapters contain ideas and contributions which belong to either of the
previously introduced views on representation learning. In this thesis, the
central research questions are:

(i) How to efficiently obtain representative subsets for learning tasks that
allow learning the same from fewer data in a more efficient way?

(ii) How to obtain data representations that facilitate the usage of specific
operations such as density estimation and interpolation?

The specific contributions are as follows.

The Frame as a Representative Subset

We introduce the concept of the frame, which consists of the data points on
the boundary of a data set. In other words, the frame is the intersection of
data with the boundary of the convex hull of data. The frame is then used
as a representative subset for specific learning tasks. The hypothesis is that
the data boundary should already contain most of the data set information
for linear models. We show this on the example of archetypal analysis
(AA) (Cutler and Breiman, 1994), an interpretable matrix factorization with
additional convexity constraints. Restricting archetypal analysis to the frame
yields very competitive results compared to computing the factorization on
the full data set. Besides, using the frame as a representative subset allows
for a much faster computation of the factorization. We also derive a novel
way to efficiently compute the frame of a data set and reveal a connection
to a well-known optimization algorithm called non-negative least squares
(NNLS) (Lawson and Hanson, 1995).

The idea of the frame as a representative subset can also be used in
optimal experimental design (OED) (Fedorov, 1972), where the input data
set describes a set of experiments. Assuming a linear dependence between
input and output data, the goal is to select some experiments to execute and
obtain their labels under a computational budget. Once again, we show that
competitive results can be obtained much faster using the frame. For OED,
we also consider non-linear designs via kernels, derive how to compute
the frame in feature space, and show theoretically that the frame is equal
to the input set under specific assumptions. This implies, the expressive
power of some non-linear functions is so immense that every data point
counts. Furthermore, we show that computing the frame can be seen as
a transposed version of LASSO (Tibshirani, 1996) that selects data points
instead of features.
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Coresets for Archetypal Analysis

Unfortunately, no theoretical analysis on the induced approximation error
of the frame for archetypal analysis can be done. As a remedy, we consider
coresets, which offer an elegant way of compactly representing large data
sets by weighted subsets. On such coresets, which can be constructed in
linear time, methods perform provably competitive compared to the full
data sets. Approximating the data set often means neglecting redundant
information and allows us to run well-known and understood methods on
large data sets to which those methods would not scale in their standard
formulation. We conduct the missing theoretical analysis, and we are the
first to derive coresets for archetypal analysis.

Probabilistic Movement Models

Changing the representation is also often beneficial in practical applications.
We show this on the example of movement models of soccer players. Via
a change of representation, from a global to a local coordinate system,
we can express the distribution of a soccer player’s next position using
kernel density estimates (KDEs). Besides, this allows us to model location-
invariance, meaning that the general ability to move should be independent
of a player’s current position. We encode contextual information such as
current velocity and time horizon for the prediction via a bag of models.
We further turn these probabilistic movement models into zones of control,
describing which part of the pitch is controlled by which player.

Due to a scalability issue of KDEs, we extend this work by modeling
the density via normalizing flows, a state-of-the-art framework for density
learning using invertible neural networks. We also incorporate contextual
information by considering a conditional distribution to maintain a single
contextual model instead of a bag of models. Our findings show that our
approach outperforms the state of the art while being orders of magnitude
more efficient with respect to computation time and memory requirements.

Interpolation in Generative Modeling

A normalizing flow consists of a chain of parametrized bijective functions
that transforms the data into a representation that follows a specific distribu-
tion, usually a Gaussian. As mentioned earlier, a change of representation,
here to a latent space, facilitates certain operations. We consider the gener-
ative aspect of normalizing flows and question the ubiquitous use of the
Gaussian distribution in latent space, especially when the interpolation of
data is of interest. Specifically, we show that interpolating Gaussian sam-
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Figure 1.3: The two views of representation learning shown on a n × d design
matrix X. Here, n denotes the amount of d-dimensional data points.

ples moves away from the implied data manifold and propose using fixed
p-norm spaces and distributions on them. Our experimental results show
superior performance in various metrics for interpolating samples while
maintaining the same sampling quality.

1.3 Outline

This thesis is organized as follows. We present prior work relevant to this
thesis in Chapter 2. More specific related work is discussed in the respective
chapters. In Chapter 3, we present the necessary notation and background
information, such as an introduction to archetypal analysis and normalizing
flows. Those concepts are then used in the remaining chapters. We introduce
the frame as a representative subset for archetypal analysis in Chapter 4. In
addition, we provide a novel and efficient way of computing the frame. In
Chapter 5, we extend the frame idea to kernel-induced feature spaces and
show that the frame also serves as a representative subset for optimal exper-
imental design. Chapter 6 improves upon the work in Chapter 4 as it intro-
duces a representative subset for archetypal analysis that comes with theoret-
ical guarantees. In Chapter 7, we derive probabilistic models for describing
movements by a change of representation. Chapter 8 improves upon this
approach and introduces a unified contextual movement model based on
normalizing flows. In Chapter 9, we use normalizing flows for changing
the representation of data and consider the problem of interpolation. We
highlight the problems of existing approaches and offer a solution. Finally,
Chapter 10 concludes this thesis. Figure 1.3 shows which chapter addresses
which of the two previously mentioned views on representation learning.
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1.4 Previously Published Work

Most chapters of this thesis are based on articles that emerged from collabo-
rations. Some of those articles have already been published as conference
papers and journal articles. Other articles are submitted and currently under
review. The following list provides a brief overview and my contributions
to those articles.

[1] Mair, S., Boubekki, A., and Brefeld, U. (2017). Frame-based data factor-
izations. In International Conference on Machine Learning, pages 2305–2313

Together with Ahcène Boubekki I worked on the scalability of archetypal
analysis from which the concept of using the frame emerged from. I had
the idea of using the NNLS algorithm to efficiently compute the frame,
which was then used as a representative subset for archetypal analysis. In
addition, I developed the theoretical analysis of the proposed approach
while the implementation and the empirical evaluation were done together
with Ahcène Boubekki.

[2] Mair, S., Rudolph, Y., Closius, V., and Brefeld, U. (2018). Frame-based
optimal design. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 447–463. Springer, Cham

This paper builds upon the frame idea which was introduced in the last
paper [1] and extends it to kernel-induced feature spaces. Just as in the last
paper, the frame served as a representative subset, this time for optimal
experimental design. I developed the theoretical foundations while Yannick
Rudolph and Vanessa Closius took care of the implementation and carried
out the experiments under my supervision.

[3] Mair, S. and Brefeld, U. (2019). Coresets for archetypal analysis. In
Advances in Neural Information Processing Systems, pages 7247–7255

In this paper, I proposed another representative subset for large-scale
learning of archetypal analysis. I derived a coreset for archetypal analysis
and showed a connection to k-means clustering. The coreset resembles a
representative subset that comes with theoretical guarantees. Those guaran-
tees were missing in the first frame paper [1]. I did all the theoretical and
experimental analyses myself.

[4] Brefeld, U., Lasek, J., and Mair, S. (2019). Probabilistic movement models
and zones of control. Machine Learning, 108(1):127–147

Ulf Brefeld had the idea of deriving data-driven probabilistic movement
models that serve as a foundation for so-called zones of control. Together
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with Jan Lasek, I worked out the details of the proposed approach. In
addition, we implemented a prototype and conducted the experiments
together. Parts of this paper have also been published as a book chapter
(Brefeld et al., 2020).

[5] Fadel, S. G., Mair, S., da Silva Torres, R., and Brefeld, U. (2021a). Contex-
tual movement models based on normalizing flows. AStA Advances in
Statistical Analysis, pages 1–22

[6] Fadel, S. G., Mair, S., da Silva Torres, R., and Brefeld, U. (2021b). Princi-
pled interpolation in normalizing flows. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 116–131.
Springer

Together with Samuel Fadel, I worked on density estimation and gener-
ative modeling using normalizing flows. In the first paper [5], we improved
the movement models proposed in [4] in terms of accuracy and scalability.
In addition, we derived a unified model which includes contextual informa-
tion such as a time horizon, current velocity, and the positions of the other
players. For the second paper [6], we looked into the problem of interpo-
lation in generative modeling using normalizing flows. For both papers,
Samuel Fadel and I contributed equally in terms of theory and experimental
evaluation.
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Chapter 2

Related Work

This chapter discusses related literature relevant to this thesis. In particular,
the two aforementioned views on representation learning are considered.
Other individual related works are discussed in the respective chapters.

The Sample Size View

Large-scale learning is ubiquitous in machine learning. To deal with large
data under computational constraints in space and/or time, one has to
either approximate the method at hand or the large data itself. Selecting
a representative subset of data is thus a fundamental problem in machine
learning. DuMouchel et al. (1999) introduced a method which is scaling
down a large data set and called the method data squashing. The goal is to
obtain a representative subset via a lossy compression of data that leads
to approximately the same results as analyses conducted on the original
data set. To be efficient, the approach is required to perform better than a
uniform subset.

In general, strategies for representative subset selection can be divided
into three classes. The first deals with unsupervised data subset selection,
which has no access to any labels. The second class deals with supervised
data subset selection, where the selection algorithm has access to a labeled
data set. Finally, the third class uses an active learning approach which uses
queries to obtain labels as feedback for the subset selection process. All
approaches proposed in the first part of this thesis belong to the first class of
unsupervised data subset selection. Hence, we put our focus on this setting
in the remainder.

Training kernel methods such as support vector machines (SVMs) (Boser
et al., 1992; Cortes and Vapnik, 1995) or Gaussian processes (GPs) (Ras-
mussen and Williams, 2006) at large scales is prohibitive as training scales
cubically and storage scales quadratically in the number of training exam-
ples. To remedy this, low-rank approximations of the kernel matrix have

11
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been proposed. Most frequently used are random Fourier features (Rahimi
and Recht, 2007) and the Nyström approximation (Williams and Seeger,
2001). The latter’s quality strongly depends on the chosen subset of data
on which the approximation is built. The points in this subset are also
called landmark points. In the standard setting, a uniform subset of data is
chosen. However, other approaches such as sampling based on the entries
of the kernel matrix (Drineas and Mahoney, 2005), an adaptive sampling
technique (Deshpande et al., 2006), greedy sampling (Farahat et al., 2011),
and a recursive sampling approach (Musco and Musco, 2017) have been
shown to produce better results.

The idea of using the frame that is the subset of minimum cardinality
that yields the same convex hull as the entire data set is motivated by ge-
ometry. Coresets and the previously mentioned landmarks also originate
from computational geometry and usually refer to subsets that approximate
the shape, extent, or other geometrical properties of data. Such geometric
properties include the diameter, width, the smallest bounding box, and
the smallest enclosing ball, among others (Agarwal et al., 2004). Coresets
are also often used in machine learning. They summarize large data sets
by small, possibly weighted, subsets on which machine learning models
perform provably competitive compared to the performance of the model
trained on all data. Coresets have been proposed for a variety of settings,
e.g., for SVMs (Tsang et al., 2005; Tukan et al., 2020b,a), logistic regression
(Munteanu et al., 2018; Tukan et al., 2020b), kernel density estimates (Phillips
and Tai, 2020), principal component analysis (PCA) (Feldman et al., 2016,
2020), and clustering approaches such as k-means (Har-Peled and Mazum-
dar, 2004; Har-Peled and Kushal, 2007; Chen, 2009; Feldman and Langberg,
2011; Lucic et al., 2016; Bachem et al., 2018a,b; Feldman et al., 2020). In
addition, Bayesian coresets have been proposed for efficient Bayesian infer-
ence on small weighted subsets of data (Huggins et al., 2016; Campbell and
Broderick, 2018, 2019; Campbell and Beronov, 2019; Manousakas et al., 2020;
Zhang et al., 2020). Comprehensive surveys about coresets are provided by
Phillips (2016) and Feldman (2020).

Another direction that is frequently followed is to select diverse sub-
sets for data summarization and as representative subsets. A well-known
approach that enforces diversity is to use determinantal point processes
(DPPs), which were originally introduced by Macchi (1975) and brought to
the machine learning community by Kulesza et al. (2012). DPPs are com-
monly used for diverse subset selection, i.e., in document summarization
(Chao et al., 2015), image search tasks (Kulesza and Taskar, 2011), pose
estimation (Kulesza and Taskar, 2010), recommender systems (Zhou et al.,
2010), and as landmarks for a Nyström approximation (Schreurs et al., 2019).
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All approaches mentioned so far use subsets of data as representa-
tive subsets. However, the generation of new, synthetic data points was
also explored. For example, in GP regression, sparse inducing points are
used for scaling up GP inference (Snelson and Ghahramani, 2005; Titsias,
2009). Recently, Manousakas et al. (2020) proposed Bayesian pseudocoresets.
Just as Bayesian coresets, they aim to make computationally demanding
Bayesian inference problems scalable by restricting the computation to a
small (weighted) subset of data. However, the difference to vanilla Bayesian
coresets is that pseudocoresets consist of synthetic points to achieve differ-
ential privacy (Dwork, 2008).

The Dimension View

The previous part was concerned with an efficient representation of data
with respect to the number of data points. However, finding an efficient
representation of data in terms of its dimensions, hence their features, is
of equal importance. The goal of representation learning is to find a good
representation of data, but what good is depends on the problem at hand.
Examples include representations that are disentangled, interpretable, low-
dimensional, sparse, yield better generalizations or useful representations
for downstream tasks, or representations that facilitate specific operations,
i.e., the generation of new data.

One class of important representation learning techniques is autoen-
coders (Rumelhart et al., 1986; LeCun, 1987). They can be seen as non-linear
extensions of linear methods such as the PCA (Pearson, 1901). The idea of an
autoencoder is to have a non-linear transformation into a latent space that is
usually of lower dimensionality than the input signal. This transformation
is realized by an encoder network. In the case of a low-dimensional latent
space, the data is being compressed, and the latent representation should
preserve important properties of data. The decoder network then trans-
forms the latent representation back into the original data space. Hence, the
decoder can be seen as an approximately inverse operation of the encoder.

A variational autoencoder (VAE) (Kingma and Welling, 2014; Rezende
et al., 2014) imposes the latent space to follow a given prior distribution.
This allows the generation of new synthetic data. Since the VAE enforces a
specific distribution on the latent space, it is possible to first sample from this
distribution and then transform those samples from the latent space back
to data space using the decoder. Hence, VAEs are probabilistic models that
allow for efficient sampling. However, their ability as density estimators is
limited since the data likelihood can only be approximated.

Nevertheless, VAEs have been shown to work well even for sequential,
symbolic data such as text. For example, Bowman et al. (2016) use a VAE
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for language modeling, embedding sentences in a continuous space, and
generating of new sentences. A similar approach is made by Miao et al.
(2016), which use the VAE for document modeling. Here, it is worthwhile to
mention that the structure of how data is represented in the latent space is
also influenced by the specific choice of the prior distribution.

Davidson et al. (2018) enforce a hyperspherical latent space in a VAE
and use a von Mises-Fisher (vMF) distribution as a prior. They show that
the change of prior is beneficial over the standard choice of a Gaussian prior,
especially for semi-supervised classification tasks and for link prediction on
graphs. In addition, Xu and Durrett (2018) also employ a vMF distribution
on a hypersphere as a prior of a VAE for document modeling and obtain
better results than using a Gaussian prior.

Changing the prior is also beneficial when working with hierarchically
structured data such as graphs. Embedding such data in Euclidean spaces
might be disadvantageous and hyperbolic spaces have proven to be a suit-
able alternative. For example, Mathieu et al. (2019) propose a Poincaré VAE
that enforces a hyperbolic latent space. As prior distributions, they consider
a Riemannian normal distribution and a wrapped normal distribution.

A related approach to VAEs are normalizing flows (NFs) (Tabak and
Vanden-Eijnden, 2010; Tabak and Turner, 2013; Rippel and Adams, 2013;
Dinh et al., 2015; Rezende and Mohamed, 2015). Like variational autoen-
coders, normalizing flows are probabilistic and generative models. New
data can be efficiently generated by first sampling from a given prior dis-
tribution and then transforming the sample using the decoder. However,
instead of having two separate networks that are approximately inverse
to each other as in the VAE, a normalizing flow uses an invertible neural
network and hence a bijective transformation as an encoder. Thus, the
decoder is simply given by the inverse of the encoder. A consequence of
the bijectivity is that the latent space in normalizing flows is of the same
dimensionality as the input space. However, this also means that there is
no reconstruction error. Normalizing flows can be trained by minimizing
the exact negative log-likelihood. We provide more details on normalizing
flows in the next chapter.



Chapter 3

Background

In this chapter, we introduce concepts that are used in the chapters that
follow. For example, we take a look at the concept of the frame which is used
in Chapters 4 and 5, archetypal analysis as we use it in Chapters 4 and 6,
and at normalizing flows, which are used in Chapters 8 and 9.

3.1 Preliminaries

Let X = {x1, . . . , xn}n
i=1 be a discrete data set consisting of n data points in

d dimensions, i.e., xi ∈ Rd for i = 1, 2, . . . , n. The convex hull conv(X ) of X
is the intersection of all convex sets containing X . Furthermore, conv(X )
is the set of all convex combinations of points in X . We now introduce the
concept of the frame as follows.

Definition 3.1. Let conv(X ) be the convex hull of a discrete data set X ⊂ Rd.
The frame F ⊆ X of X consists of points on the boundary of conv(X ), i.e.,
F = ∂ conv(X ) ∩ X .

Figure 3.1: An illustration of the frame. The frame consists of points on the
boundary of the convex hull of a data set.

15
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Hence, the frame consists of the extreme points of X . Those points
cannot be represented as convex combinations of other points rather than
themselves. An example of the frame is depicted in Figure 3.1. Note that
the frame F and the data set X yield the same convex hull, i.e., conv(F ) =
conv(X ). By q = |F | we refer to the size of the frame and we call the
portion of points in X belonging to the frame F , i.e., q/n, the frame density.
We propose an efficient and novel way of computing the frame in Chapter 4
and show how to compute the frame in kernel-induced feature spaces in
Chapter 5.

There are some straightforward consequences that we use in later chap-
ters. When the inner product between two points is maximized, one of the
points is an extreme point and thus belongs to the frame.

Lemma 3.1. Let X be a finite set of discrete points, then

∀x ∈ X : arg max
x′∈X

x⊤x′ ∈ F .

Proof. Linearity and convexity of the inner product imply that its maximum
is realized by an extreme point of the domain. Since the domain is X , the
maximum belongs to its frame F .

Note that the same holds not only for any x ∈ X , but for any fix vector
in general. In addition, every point of the domain lies in the span of some
points on the frame.

Proposition 3.1. Every point x of X can be written as a convex combination of at
most d + 1 points from the frame F of X .

Proof. For the proof, we refer to Brondsted (2012).

3.2 Archetypal Analysis for Matrix Factorization

In unsupervised learning, matrix factorizations (MFs) are used in many
different learning tasks, including clustering, classification, recommenda-
tion, text and social network analysis, image denoising, and hyperspectral
imaging. Consequently, a lot of approaches to factor a matrix into two or
more matrices have been proposed. The general setting is as follows. Let
X = {x1, . . . , xn}n

i=1 be a data set consisting of n data points in d dimensions
and X ∈ Rn×d be the design matrix. The goal is to decompose the design
matrix and represent it as a matrix product X = AZ, consisting of a weight
matrix A ∈ Rn×k and a factor matrix Z ∈ Rk×d. Here, k ∈ N denotes the
latent dimensionality. Matrix factorizations come in many variants that usu-
ally differ in the loss function which is used to quantify the reconstruction
error and their set of constraints, which are imposed on the factorization.
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Figure 3.2: A comparison of factorizations computed with NMF (blue squares) and
AA (red squares). While NMF may place the factors far away from data, AA uses
data points on the boundary of the convex hull and yields an intuitive solution.

A prominent example is the non-negative matrix factorization (NMF)
(Paatero and Tapper, 1994; Lee and Seung, 1999, 2000), where all matrices
X, A, and Z are assumed to be non-negative, and the error is typically
measured in terms of the Frobenius norm. A common limitation of matrix
factorization techniques, including NMF, is a lack of interpretability of the
resulting factors. The learned factors may lie far from other data points and
do not necessarily contribute to interpretability, as depicted in Figure 3.2.
Thus, the focus is on interpretable factors which lead to stochastic NMFs for
clusterings (Arora et al., 2011, 2013) and convexity constraints (Ding et al.,
2010).

However, computing interpretable factors is actually an “old” problem:
archetypal analysis (Cutler and Breiman, 1994) is an unsupervised learn-
ing method that represents every data point as a convex combination of
prototypes, the so-called archetypes. Every data point is represented as a
convex mixture of (a subset of) archetypes and, due to the convexity, these
mixtures are often interpreted probabilistically. A key property of archety-
pal analysis is that the archetypes are themselves convex mixtures of data
points. Consequently, archetypes lie on the boundary of the convex hull of
the data. Hence, archetypal analysis approximates the convex hull with a
given number of vertices. It follows that this approximation is equivalent
to a matrix factorization of the design matrix. Due to the convexity con-
straints, archetypal-based factorizations are not only better interpretable but
unfortunately also much more expensive than regular matrix factorization
techniques, which hinders usage at even moderate scales. An example of
archetypal analysis is depicted in Figure 3.3 for various numbers (k = 2, 3, 5)
of archetypes.



18 CHAPTER 3. BACKGROUND

k=2 k=3 k=5

data archetypes Z projection convex hull of data convex hull of Z

Figure 3.3: An example of archetypal analysis in two dimensions for various
numbers (k = 2, 3, 5) of archetypes Z. The archetypes are placed on the boundary of
the convex hull of data. The convex hull of archetypes Z approximates the convex
hull of data with a given number of corner points. All points within the convex
hull of Z are represented in a lossless way. All points outside are being represented
by points of the convex hull of Z. Thus, those points are being projected.

We now formally introduce archetypal analysis. In archetypal analysis,
every data point xi is represented as a convex combination of k archetypes
z1, . . . , zk, i.e.,

xi = Z⊤ai,
d

∑
j=1

(ai)j = 1, (ai)j ≥ 0,

where ai ∈ Rk is the weight vector of the i-th data point xi, and Z ∈ Rk×d is
the matrix of stacked archetypes. The archetypes zj (j = 1, . . . , k) themselves
are also represented as convex combinations of data points, i.e.,

zj = X⊤bj,
n

∑
i=1

(bj)i = 1, (bj)i ≥ 0,

where bj ∈ Rn is the weight vector of the j-th archetype. Let A ∈ Rn×k and
B ∈ Rk×n be the matrices consisting of the weights ai (i = 1, . . . , n) and bj
(j = 1, . . . , k), respectively. Then, archetypal analysis yields a factorization
of the design matrix as follows,

X = ABX = AZ, (3.1)

where Z = BX ∈ Rk×d is the matrix of archetypes. Due to the convexity
constraints, the weight matrices A and B are row-stochastic. By minimizing
the residual sum of squares (RSS), given by

RSS(k) = ∥X−ABX∥2
F, (3.2)
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Algorithm 3.1 Archetypal analysis (AA)

Input: data matrix X, number of archetypes k
Output: factor matrices A and Z, where Z = BX and ABX ≈ X
Z← initialization of the archetypes
while not converged do

for i = 1, 2, . . . , n do
ai = arg min

∥ai∥1=1, ai≥0
∥Z⊤ai − xi∥2

2

end for
Z = (A⊤A)−1A⊤X
for j = 1, 2, . . . , k do

bj = arg min
∥bj∥1=1, bj≥0

∥X⊤bj − zj∥2
2

end for
Z = BX

end while

the optimal weight matrices A and B can be found. Here, ∥ · ∥F denotes the
Frobenius norm. Optimizing the RSS is a non-convex problem in A and
B, but it is convex in A for a fixed B and vice versa. After initializing the
archetypes, the optimization is typically done by iteratively solving for A
and B as outlined in Algorithm 3.1.

The archetypes can be initialized using a random subset of data. How-
ever, a better way of initializing the archetypes is given by the FurthestSum
procedure of Mørup and Hansen (2010, 2012).

Due to the convexity constraints, archetypal-based factorizations are
not only better interpretable but unfortunately also much more expensive
than regular matrix factorization techniques, which hinders usage at even
moderate scales. Several approaches have been proposed to remedy the
edacious nature of archetypal analysis, proposing, e.g., efficient active-set
quadratic programming (Chen et al., 2014), projected gradients (Mørup and
Hansen, 2010, 2012), or Frank-Wolfe techniques (Bauckhage et al., 2015) for
optimization. Although these approaches are useful contributions, they
do not mitigate the inherent complexity of archetypal analysis nor provide
theoretical guarantees on the approximation quality.

Besides, there are also non-linear extensions to archetypal analysis. For
example, Mørup and Hansen (2010, 2012) propose a kernelized variant
of archetypal analysis. Another non-linear variant called AAnet based on
autoencoders is proposed by van Dijk et al. (2019). A probabilistic alternative
based on variational autoencoders (VAEs) is provided by Keller et al. (2019,
2020).
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The Geometry of Archetypal Analysis

From a geometrical point of view, archetypal analysis yields an approxima-
tion of the convex hull with just k vertices. Every point inside the induced
polytope can be reconstructed in a lossless way, and every point outside
will be projected onto it. This can be seen in Figure 3.3, where the lines
orthogonal to the red polytope denote the projections. The optimization of
the RSS will minimize the reconstruction error. The objective function can be
rewritten as a sum of projections of the data points to the archetype-induced
convex hull as follows,

∥X−AZ∥2
F = ∑

x∈X
min

q∈conv({z1,...,zk})
∥x− q∥2

2,

where conv(·) refers to the convex hull of a set. Apart from this geometrical
interpretation, there is another fact that connects archetypal analysis to the
convex hull and thus the frame, as outlined in the preliminaries. It can
be shown that, in general, the archetypes z1, . . . , zk lie on the boundary
∂ conv(X ) of the convex hull of the data X .

Theorem 3.1 (Cutler and Breiman (1994)). Let X ⊂ Rd be a discrete data set,
conv(X ) be its convex hull and µ ∈ Rd be the mean of X . Furthermore, let k ∈N

be the number of archetypes and F be the frame of X with cardinality q.

(i) If k = 1, choosing z1 = µ minimizes the RSS;

(ii) if 1 < k < q, there is a set of archetypes {z1, . . . , zk} on the boundary of
conv(X ) that minimizes the RSS;

(iii) if k = q, choosing {z1, . . . , zk} = F results in a RSS of zero.

3.3 Normalizing Flows for Density Estimation

Another common problem in unsupervised learning is density estimation.
Let X = {x1, . . . , xn} ⊂ Rd be a set of iid instances which are assumed to be
drawn from an unknown distribution px(x). A straightforward parametric
way of estimating a density of X is to assume a known distribution class
p̂x(x), parametrized by θ, and to estimate the optimal parameters θ. This
approach is known as maximum likelihood. It can be seen as moving the
distribution by changing θ to fit the static data set X best. If the assumed
distribution class p̂x(x) underfits the data set, we typically increase its
complexity. One way would be to use a mixture model such as the Gaussian
mixture model (GMM) and estimate its parameters using the expectation
maximization algorithm (Dempster et al., 1977).

Instead of increasing the complexity of the distribution and moving
it to fit the data best, we could also fix a simple base distribution and
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z0

p(z0)

z1

p(z1) p(zj)

zL

p(zL)
f1(z0)

...
fj+1(zj)

Figure 3.4: An example of a one-dimensional normalizing flow. The leftmost plot
shows an unknown data distribution px(x) which is successively transformed by a
chain of transformations f = fL ◦ fL−1 ◦ · · · ◦ f1 to follow a simple transformation
pz(z), that is depicted in the rightmost plot.

instead move the data points via a powerful parametrized transformation.
This orthogonal approach to density estimation is provided by so-called
normalizing flows (Tabak and Vanden-Eijnden, 2010; Tabak and Turner,
2013; Rippel and Adams, 2013; Dinh et al., 2015; Rezende and Mohamed,
2015), which aim to learn an accurate model of px(x). The main building
blocks of normalizing flows are bijective transformations and the change of
variable theorem, which is given as follows.

Theorem 3.2 (Billingsley (2008)). Let Z be a multivariate continuous random
variable with probability density function pz(z) and f−1 : Rd → Rd, z 7→ x a
bijective and differentiable function within the domain of z, then the probability
density of X = f−1(Z) is given by

px(x) = pz (f(x)) · |det Jf(x)| ,

where Jf(x) = ∂
∂x f(x) is the Jacobian matrix of the transformation f.

Let f(θ) : Rd → Rd be a bijective transformation parametrized by θ. The
idea of a normalizing flow is to introduce z = f(θ)(x) and using the change of
variable theorem to express the unknown px(x) by a (simpler) distribution
pz(z), defined on z ∈ Rd, given by

px(x) = pz(f(θ)(x)) · |det Jf(θ)(x)|, (3.3)

where J(θ)f (x) is the Jacobian matrix of the bijective transformation f(θ).
We refer to pz(z) as the base distribution for which typically an isotropic
Gaussian is used. We can learn the transformation f(θ) from the data to
its base representation by optimizing the parameters θ that minimize the
negative log-likelihood

min
θ
− ∑

x∈X
log px(x).

Increasing the expressive complexity of the density estimation now
corresponds to increasing the complexity of the transformation f(θ). Instead
of having just a single transformation, we use a chain of L parametrized
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bijective functions, i.e., f(θ) = f(θ)L ◦ f(θ)L−1 ◦ · · · ◦ f(θ)1 , that maps observations
x into representations z that are governed by the base distribution pz(z).
Let z0 = x be the input data point and zL = z be the corresponding output
of the chain, where every intermediate variable is given by zj = fj(zj−1),
for j = 1, . . . , L. This is illustrated in Figure 3.4. The log-likelihood can
then be expressed as the log-likelihood of the base distribution and each
log-determinant of the Jacobians of each transformation as

log px(x) = log pz(z) +
L

∑
j=1

log
∣∣∣∣det J

f(θ)j
(zj−1)

∣∣∣∣ . (3.4)

In the remainder, we drop the subscripts of the distribution p(·) and the
superscripts of the transformation f(θ), whenever it is clear from context.

Normalizing Flows as Generative Models

As introduced above and shown in Figure 3.4, a normalizing flow transforms
a sample x using the bijective transformation f into a base representation z,
which follows a specified base distribution p(z). To create a new sample x,
the inverse direction of this approach can be used. First, a sample z is being
drawn from the base distribution p(z) and then transformed into x using the
inverse chain of transformations f−1. The x generated in this way follows
the data distribution p(x).

Types of Transformations

Flow-based generative models can be categorized by how the Jacobian
structure of each transformation fj is designed since computing its deter-
minant is crucial to its computational efficiency. The Jacobians either have
a lower triangular structure, such as autoregressive flows (Kingma et al.,
2016), or a structured sparsity, such as coupling layers in RealNVP (Dinh
et al., 2017) and Glow (Kingma and Dhariwal, 2018). Chen et al. (2019) intro-
duce transformations with free-form Jacobians, which allow much higher
expressibility, by replacing the computation of the determinant with another
estimator for the log-density. For more information regarding flow-based
generative models, we refer the reader to Papamakarios et al. (2021).

As an architecture for the flow models in this thesis, we use Glow
(Kingma and Dhariwal, 2018), which is itself based on RealNVP (Dinh
et al., 2017). Glow is built from three main transformations: activation
normalization (actnorm), 1× 1 invertible convolution, and affine coupling.
Those transformations are employed in a multi-scale architecture, reshaping
the image tensors to have fewer pixels with more channels, referred to as
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squeezing. The channels are then split, and further operations are only per-
formed on half of them. This squeezing and splitting scheme is performed
several times for scalability. Squeezing, however, is not suitable for vectorial
data. We first detail on the transformations for vectorial data before we
introduce their variants for tensor data.

Transformations for Vector Data

We begin by introducing the actnorm and affine coupling transformations.
For both of them, let z, u ∈ Rd be d-dimensional vectors, where z is the
input of the current transformation, and u is its output, being directly fed
into the next transformation in the chain.

Actnorm. Let a ∈ Rd be a scaling vector and b ∈ Rd an offset vector.
The actnorm transformation (Kingma and Dhariwal, 2018), its inverse, and
log-determinant of its Jacobian are given by

u = f(z) = a⊙ z + b, (3.5)

z = f−1(u) = (u− b)/a,

log |det Jf(z)| =
d

∑
j=1

log |aj|,

respectively, where ⊙ denotes the Hadamard product. Particularly, a and
b are learned as part of the transformation and are initialized with the
first batch of data. This initialization is such that the mean and standard
deviation of u are zero and one, respectively.

Affine coupling. This transformation (Dinh et al., 2017) is slightly more
involved. The input z ∈ Rd is initially split into two parts (z1, z2), each of
which is d′-dimensional, where d′ = d/2. Then, the second part is simply
copied, u2 = z2, while z1 is transformed based on information from z2 as

(log a, b) = NNac(z2), (3.6)
u1 = exp(log a)⊙ z1 + b,

where NNac : Rd′ → Rd is a non-linear mapping, generally realized by a
neural network (NN). The output of the network can be split into the two
parameter vectors log a ∈ Rd′ and b ∈ Rd′ . The output of the transformation
is then given by u = concat(u1, u2). The inverse transformation can be
computed by first splitting u into (u1, u2), copying the second part as before,
i.e., z2 = u2, computing the log-scale and offset parameters using NNac(·) as
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in Equation (3.6), and computing the inverse affine linear transformation via

z1 = (u1 − b)/ exp(log a).

Finally, the two parts are merged with z = concat(z1, z2). The log-determinant
of the Jacobian of this transformation is

log |det Jf(z)| =
d′

∑
j=1

log |aj|.

Permutation. This type of transformation permutes the dimensions and
thus changes their order. The idea is as follows. Since the affine coupling
transformation only changes one-half of the data, the other half remains
unchanged. Hence, some permutation ensures that every dimension is
affected. Originally, this transformation simply reversed the order of dimen-
sions (Dinh et al., 2015, 2017). However, any fixed random permutation can
be used. This transformation obviously has an inverse transformation, and
the log-determinant of the Jacobian is zero.

Transformations for Tensor Data

We are now concerned with tensors, which occur, i.e., in image data. Hence,
let z, u ∈ Rd1×d2×c, where c ∈ N denotes the number of channels, z is the
input, and u is the output of the current transformation.

Actnorm. Let a ∈ Rc and b ∈ Rc be a scaling vector and an offset vector, re-
spectively. The actnorm transformation for tensor data and its inverse are the
same as introduced before. The log-determinant of its Jacobian is given by

log |det Jf(z)| = d1d2

c

∑
j=1

log |aj|.

Note that this transformation now acts on the channels and treats every
pixel in the tensor equally. As before, a and b are initialized using the first
batch of data such that the mean and standard deviation of the output u are
zero and one, respectively.

Squeezing. This transformation can be used to squeeze some dimensions.
Consider, for example, an image of width d1, height d2, and c channels. The
squeezing transformation can turn this tensor into a tensor of width d1/2,
height d2/2, and 4c channels. Note that this can be beneficial when using
the affine coupling transformation with a splitting at channel level, where
an even number of channels is then needed.
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Affine coupling. The input z ∈ Rd1×d2×c is split into two parts (z1, z2),
each of which is d1 × d2 × c′-dimensional, where c′ = c/2. Hence, the split
is done with respect to the channels of the image tensor. The rest of the
transformation is done in an analogous way as introduced earlier.

1× 1 convolutions. A generalization of the permutation transformation
is the invertible 1× 1 convolution as proposed by Kingma and Dhariwal
(2018). The transformation, its inverse, and log-determinant are given by

ui,j = [f(z)]i,j = Wzi,j,

zi,j = [f−1(u)]i,j = W−1ui,j,

log |det Jf(z)| = d1d2 log |det W|,

respectively, where W ∈ Rc×c is a c× c weight matrix and i, j are indices of
the tensor. The weight matrix W is initialized by a random rotation matrix.
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Chapter 4

Frame-based Archetypal
Analysis

In this chapter, we examine the idea of using the frame as a representative
subset for the problem of archetypal analysis (AA). We introduce Frame-AA
as a more efficient version of archetypal analysis, and leverage the observa-
tion made in Chapter 3 that archetypal analysis yields an approximation of
the convex hull of data with a predefined number of vertices. This makes the
frame a natural choice for a representative subset. Given the frame, comput-
ing the archetypes reduces to a search within the frame. We propose to go
one step further and approximate AA by restricting the whole optimization
to the frame: firstly, we compute the frame, and secondly, we compute the
archetypes on the frame (and just on the frame). Naturally, the result is a
factorization of the frame itself. The factorization can then be extended to
all data points by recomputing the weights in hindsight.

Nonetheless, computing the frame is not trivial. In general, the frame
can be computed by any convex hull algorithm that works in arbitrary
dimensions, such as QuickHull (Barber et al., 1996). However, its application
becomes quickly infeasible for dimensionalities larger than three because of
dispensable triangulations. Discarding the triangulations leads to solutions
based on linear programming (LP) (Dulá and Helgason, 1996; Ottmann et al.,
2001; Dulá and López, 2012), which test each individual point whether it is
part of the frame or not. These approaches require adequate preprocessing as
duplicates may cause false negatives. Hence, we introduce a novel method
on how to compute the frame efficiently.

In summary, the key contributions of this chapter are as follows: we (i)
show that the frame can be computed efficiently by a quadratic program
(QP), (ii) provide theoretical and empirical justifications for the developed
method, (iii) propose an efficient approximation of archetypal analysis which
uses the frame as a representative subset, and (iv) show the efficiency and
competitiveness of our proposed approach empirically on several data sets.

27
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AA on all data frame AA on frame

data frame convex hull of data AA on all data AA on frame

Figure 4.1: The frame as a representative subset for archetypal analysis. Left: AA
on a data set; center: the frame of the full data set; and right: AA computed on the
frame (green) compared to AA computed on the full data set (red).

4.1 Frame-based Factorizations

The idea of the proposal is as follows. Let X be the data set as previously
introduced and F be its frame. Due to the fact that the archetypes lie on the
boundary of the convex hull (cf. Theorem 3.1), it is possible to restrict the
search of the archetypes to the frame. However, we intend to go one step
further. Since the frame F and the data X yield the same convex hull, we
restrict the entire factorization in Equation (3.1) to the matrix H ∈ Rq×d that
consists of stacked points of the frame, i.e., the factorization becomes

H = ABH = AZ with Z = BH.

The idea is depicted in Figure 4.1. Although archetypal analysis is only
computed on the frame, it often yields almost identical archetypes as AA
computed on the whole data set, as illustrated in the right subplot of Fig-
ure 4.1. The reduction of points yields an accelerated computation.

Assuming a low frame density, i.e., q≪ n, a sufficient approximation of
the frame, and therefore the convex hull, will also cover most of the points in
the interior of its induced polytope. On the other hand, if the frame density
is high, the problem will reduce to standard AA in the limit q→ n, and the
speed-up will vanish. Based on the nature of the problem, we claim that AA
makes no sense in scenarios of high frame densities since almost all points
will be projected unless k is chosen very high, which is usually not the case.

After computing the factorization by AA, we have to recompute the
weight matrix A ∈ Rq×k for all data points using the optimized archetypes
Z. This procedure is called Frame-AA and is presented in Algorithm 4.1.
Note that the idea does not only apply for standard archetypal analysis as
presented in Cutler and Breiman (1994) but also all variants thereof (Mørup
and Hansen, 2010; Chen et al., 2014; Bauckhage et al., 2015).
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Algorithm 4.1 Frame-AA

Input: data set X , number of archetypes k ∈N

Output: factor matrices A, Z = BH (ABH ≈ X)
F = Frame(X )
H = frame matrix
A, Z = ArchetypalAnalysis(H, k)
A = 0 ∈ Rn×k

for i = 1, 2, . . . , n do
ai = arg min

∥ai∥1=1,aij≥0
∥Z⊤ai − xi∥2

2

end for

Until now, we assumed that the frame F or equivalently the frame
matrix H ∈ Rq×d, as required in the first line of the algorithm, is already
given. In the following section, we present a novel algorithm for efficiently
computing the frame of a discrete data set.

4.1.1 Representing a Single Point

Let F be the frame of X and X ∈ Rd×n be the design matrix of X . The idea
is as follows. For every x ∈ X we aim to solve the linear system Xs = x
subject to the constraints that the solution s is non-negative, sums up to one,
and uses only points from the frame, i.e.,

solve
s

Xs = x

s. t. si ≥ 0 ∧ 1⊤s = 1 ∧ si ̸= 0⇒ xi ∈ F .
(4.1)

Proposition 4.1 reduces this to a least-squares approach.

Proposition 4.1. Let F be the frame of X , X ∈ Rd×n be the design matrix of
X , x ∈ X and X̄ =

[
X⊤, 1

]⊤ ∈ R(d+1)×n as well as x̄ = (x⊤, 1)⊤ ∈ Rd+1 be
the augmented versions of X and x. Then, the following problems have the same
solutions.

(i) solve Xs = x s. t. si ≥ 0 ∧ 1⊤s = 1 ∧ si ̸= 0⇒ xi ∈ F .

(ii) solve X̄s = x̄ s. t. si ≥ 0 ∧ si ̸= 0⇒ xi ∈ F .

(iii) arg mins≥0
1
2∥X̄s− x̄∥2

2 s. t. si ̸= 0⇒ xi ∈ F .

Proof. Statement (i) is equivalent to (ii) as it integrates the constraint 1⊤s = 1
into the system of linear equations. Proposition 3.1 assures that (i) has a
solution. Hence, the minimum of 1

2∥X̄s− x̄∥2
2 is always zero and a solution

of (iii) is also a solution to (ii) and (i).
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Let f (s) = 1
2∥X̄s− x̄∥2

2. If the condition that the positive positions of s
refer to points on the frame is dropped, then the problem

s = arg mins≥0 f (s) (4.2)

is equivalent to the non-negative least squares (NNLS) problem, which is a
special case of a QP. The active-set method from Lawson and Hanson (1995)
is proven to yield a least-squares estimate of Equation (4.2). As the minimum
is zero, it also gives a solution to the linear problem up to the condition that
the points contributing to the solution belong to the frame. The method of
Lawson and Hanson (1995) called NNLS is outlined in Algorithm 4.2.

Algorithm 4.2 Lawson and Hanson’s active set algorithm

Input: design matrix X̄ and right hand side x̄
Output: solution s with si ≥ 0 ∀i
P = ∅
Z = {1, 2, . . . , n}
s = 0
w = −∇ f (s) = X̄⊤(x̄− X̄s)
while Z ̸= ∅ and ∃ w[Z ] ≥ ε do

k = arg maxj{ wj | j ∈ Z }
Z = Z \ {k}
P = P ∪ {k}
X̄P = X̄[:,P ] ∈ R(d+1)×|P|

z = arg minz ∥X̄Pz− x̄∥2
2

z[Z ] = 0
J = { j ∈ P | zj ≤ ε }
while |J | > 0 do

α = min{ sj
sj−zj
| j ∈ J }

s = s + α · (z− s)
for i = 1, 2, . . . , n do

if i ∈ P and |si| ≤ ε then
P = P \ {i}
Z = Z ∪ {i}
X̄P [:, i] = 0

end if
end for
z = arg minz ∥X̄Pz− x̄∥2

2
z[Z ] = 0

end while
x = z
w = −∇ f (s) = X̄⊤(x̄− X̄s)

end while
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However, until now, it remains unclear whether the positive elements of
the solution refer to points on the frame. The following theorem shows that
this is actually the case.

Theorem 4.1. Algorithm 4.2 from Lawson and Hanson (1995) solves the problem
in Equation (4.1).

Proof of Theorem 4.1. Let Algorithm 4.2 solve the problem in Equation (4.2).
Denote by w = −∇ f (s) = X̄⊤(x̄− X̄s) the negative gradient with respect
to s. The points { x̄i | i ∈ P } involved in the solution are selected via

k = arg maxj
{

wj | j ∈ Z
}
= arg maxj

{ [
X̄⊤(x̄− X̄s)

]
j
| j ∈ Z

}
= arg maxj

{
x̄⊤j x̄−

n

∑
i=1

si · x̄⊤i x̄j | j ∈ Z
}

.

Lemma 3.1 assures that those points belong to the frame. Since there is no
other way of selecting points, all of them belong to the frame. Hence, the
condition si ̸= 0 ⇒ xi ∈ F is satisfied. The claim follows with Proposi-
tion 4.1.

The following proposition from Lawson and Hanson (1995) characterizes
the solution of this method.

Proposition 4.2 (Kuhn-Tucker conditions). A vector s ∈ Rn is a solution for
f (s) = 1

2∥X̄s− x̄∥2
2 if and only if there exists a vector w ∈ Rn and a partitioning of

the integers from 1 to d + 1 into subsets Z and P such that with w = −∇ f (s) =
X̄⊤(x− X̄s) it holds that

si = 0 for i ∈ Z , si > 0 for i ∈ P ,
wi ≤ 0 for i ∈ Z , wi = 0 for i ∈ P .

Proposition 3.1 states that no more than d + 1 extreme points are needed
to define a point. In addition, Algorithm 4.2 chooses iteratively one extreme
point after another. It is guaranteed to lower the error in each iteration
(Lawson and Hanson, 1995) it terminates with at most d + 1 non-negative
positions and yields a sparse convex combination.

4.1.2 Computing the Frame

Until now, we represented a single point as a sparse convex combination
of points on the frame. By doing this for every point xi (i = 1, 2, . . . , n) in
the data set, we obtain the frame F of X . Algorithm 4.3 summarizes this
procedure, called NNLS-Frame, and Corollary 4.1 proves this claim.

Corollary 4.1. Algorithm 4.3 yields the frame F of X .
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Algorithm 4.3 NNLS-Frame

Input: design matrix X̄
Output: indices of ext. points E and weight matrix W
E = ∅
W = 0 ∈ Rn×n

for i = 1, 2, . . . , n do
si = NNLS(X̄, x̄i)
Pi = { j ∈ {1, 2, . . . , n} | (si)j > 0 }
E = E ∪ Pk
W[i, :] = sk

end for

Proof. Theorem 4.1 ensures that the positive positions of every solution si
(i = 1, 2, . . . , n) refers to points on the frame. Taking the union of those
positions recovers the frame indices E since every extreme point defines
itself, and therefore its index is part of the union.

Note that Algorithm 4.3 already realizes a matrix factorization for the
special case k = q. This is also stated in the following corollary.

Corollary 4.2. Let q be the frame size, k = q and E and W be the result of
Algorithm 4.3. Then it holds that

(i) X = XW = X[:, E ]W[E , :] is a factorization of the design matrix X with
W[E , :] ∈ Rk×n being a non-negative stochastic matrix and X[:, E ] ∈ Rd×k

being the submatrix of X containing only the frame of X .

(ii) the factorization above is lossless, i.e.,

∥X− X[:, E ]W[E , :]∥2
F = 0.

4.1.3 Complexity Analysis

There are two main computations within the NNLS method in Algorithm
4.2. First, the negative gradient is being computed, which has a com-
plexity of O(n(d + 1)). Second, an unconstrained least-squares problem
z = arg minz ∥X̄Pz− x̄∥2

2 is being solved. The latter can be rewritten as
z[P ] = (X̄⊤P X̄P )−1X̄⊤P x̄ and has a complexity of O((d + 1) · |P|2), where
the average size of P is 1

2 (d + 1). Since no more than (d + 1) points
are sufficient for the solution (compare Theorem 4.1), the while-loop is
being executed at most (d + 1) times. Therefore, the complexity of the
NNLS method is O(NNLS) = O((d + 1)[ 1

4 (d + 1)3 + n(d + 1)]) on av-
erage. The complexity of NNLS-Frame presented in Algorithm 4.3 is
O(n · NNLS) = O( n

4 (d + 1)4 + n2(d + 1)2). The multiplier is less than
n since points that are already known to be extreme can be omitted.
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Algorithm 4.4 Divide and conquer strategy of NNLS-Frame

Input: data X , number of splits I ∈N

Output: indices of extreme points E
X =

⋃I
ι=1 X (ι) with X (i) ∩ X (j) = ∅ for i ̸= j

E = ∅
for ι = 1, 2, . . . , I do
Ek = NNLS-Frame(X (ι))
E = E ∪ Eι

end for
E = NNLS-Frame(XE )

In contrast, the fastest LP-based approach (Dulá and López, 2012) so far
scales in O(n · LPd+1,|F |+dn|F |), where LPr,t is the runtime of a LP with r
equality constraints and t non-negative variables.

4.1.4 Computing the Frame Efficiently

One way to speed up the frame computation is a divide and conquer ap-
proach. The underlying principle is stated in the following lemma.

Lemma 4.1. Let A and B be non-empty discrete sets, then

conv(A∪ B) = conv
(

conv(A) ∪ conv(B)
)
.

The idea is as follows. Let X (1) ∪ . . . ∪ X (I) be a random partition of X .
The size nι of every subset X (ι) should be significantly smaller than the size
of X , i.e., nι ≪ n. The assumption of having a pairwise disjunction is not
necessary but reasonable. Instead of the whole data set X , Algorithm 4.3 is
now executed on every subset X (ι) for ι = 1, 2, . . . , I. Finally, the frame of X
is obtained by merging the frames of every subset and run the proposed ap-
proach again on it. The procedure is summarized in Algorithm 4.4. Besides,
the for-loops of Algorithms 4.1, 4.3 and 4.4 can be trivially parallelized.

4.2 Experiments

4.2.1 Computing the Frame

For the experiments in this section, we want to control the frame density.
Hence, use the same synthetic data1 as in Dulá and López (2012), which
was generated according to a procedure described in Lopez (2005). The
data consists of n = 2500, 5000, 7500, 10000 data points in d = 5, 10, 15, 20
dimensions with a frame density of 1, 15, 25, 50, 75 percent respectively.

1http://www.people.vcu.edu/~jdula/FramesAlgorithms/

http://www.people.vcu.edu/~jdula/FramesAlgorithms/
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Figure 4.2: Evolution of the number of discovered frame points. The lower the
frame density the faster the frame is being discovered.

Figure 4.3: Timing results of computing the frame for various frame densities.

The first experiment is about the discovery of extreme points. In contrast
to LP-based approaches (Dulá and Helgason, 1996; Ottmann et al., 2001),
which discover up to one extreme point per iteration, NNLS-Frame finds
up to d + 1 extreme points. This is a result of Theorem 4.1 and illustrated in
Figure 4.2. The graph shows the percentage of discovered extreme points
against the percentage of iterations conducted on a synthetic data set with
n = 2500 points in 5 dimensions with various frame densities. The lower
the frame density, the faster the frame is being discovered. Even for a
fairly high frame density of 75%, the discovery is faster than approximately
linear as one could expect from an LP-based approach. This is depicted as
a dashed line. Note that if an approximation of the frame is sufficient, the
computation could be stopped earlier.

In our second experiment, we show that finding the frame is faster than
using LP-based approaches. The two baselines are taken from Ottmann
et al. (2001) and Dulá and Helgason (1996). We use the implementation
by Dulá and López (2012) and implement our approach in the same pro-
gramming language for compatibility. We test on data sets of sizes n =
2500, 5000, 7500, 10000 and of dimensionality d = 5, 10, 15, 20. Figure 4.3
shows timing results for n = 10000. The figure shows that our approach is
always faster than the baselines, irrespectively of the configuration.
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Figure 4.4: Timing results for the divide and conquer approach.

The third experiment is about the divide and conquer approach intro-
duced in Section 4.1.4. As shown in Figure 4.4, the runtime is halved for
every configuration using only three partitions. The take-home message is
that even a small number of partitions can lead to a substantial speed-up.
Note that those partitions can be processed in parallel.

Table 4.1: A description of the data sets and their properties including their frame
sizes q, and frame densities q/n.

Data set n d q Frame density

Banking2 (Dulá and López, 2012) 12456 8 715 5.74%
Banking1 (Dulá and López, 2012) 4971 7 345 6.94%
USAFSurvey (Epifanio et al., 2013) 2420 6 368 15.21%
yeast (Horton and Nakai, 1996) 1484 8 242 16.31%
Banking3 (Dulá and López, 2012) 19939 11 4960 24.88%
SpanishSurvey (Vinué, 2017) 600 5 150 25.00%
swiss-heads (Cutler and Breiman, 1994) 200 6 115 57.50%
skel2 (Heinz et al., 2003) 507 10 431 85.01%
ozone (Cutler and Breiman, 1994) 330 10 308 93.33%

4.2.2 Matrix Factorization

We now compare the frame-based archetypal analysis, Frame-AA (F-AA),
to several baselines, including standard archetypal analysis (Cutler and
Breiman, 1994) (AA), ConvexHull-NMF (Thurau et al., 2011) (CH-NMF),
Convex-NMF (Ding et al., 2010) (C-NMF) and standard NMF (Lee and
Seung, 1999). The first two methods are implemented in Python. For CH-
NMF and C-NMF we use pymf 2, and for NMF we use scikit-learn (Pedregosa
et al., 2011). Table 4.1 depicts the data sets used for this experiment. The

2http://pypi.python.org/pypi/PyMF

http://pypi.python.org/pypi/PyMF
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Table 4.2: Average Frobenius norm reported on 36 repetitions with random initial-
izations for k = 6 archetypes. The symbol “-” indicates that the method could not
be executed due to negative data.

Data set F-AA AA CH-NMF C-NMF NMF

Banking2 90.08 72.35 - - -
Banking1 67.20 58.97 - - -

USAFSurvey 904.22 902.07 1239.67 2192.30 688.35
yeast 5.43 5.02 9.18 7.04 3.52

Banking3 134.30 131.81 - - -
SpanishSurvey 94.84 93.51 117.91 254.92 32.14

swiss-heads 75.05 74.67 87.06 116.07 47.16
skel2 64.84 64.87 77.78 101.73 51.75

ozone 1532.12 1669.70 - - -

frame sizes and densities are computed with our proposed NNLS-Frame
method.

Table 4.2 reports on the results for the choice of k = 6 in terms of re-
construction error measured with the Frobenius norm. We obtain similar
results for k = 8, 10, 12. The number of iterations executed per algorithm
is fixed to 100 to obtain fair results. We use random initializations for all
algorithms and report on averages over 36 repetitions. As seen in Table 4.2,
F-AA yields similar errors as AA. The lowest errors are achieved with NMF.
The baseline CH-NMF, which approximates the frame instead of computing
it exactly, yields a higher error of approximately 20%, while C-NMF is even
worse. In summary, the error of F-AA is similar to standard AA and much
better than CH-NMF and C-NMF.

Usually, it is a-priori not known how to choose the latent dimensionality
k. A standard approach is to choose k with respect to the so-called elbow
criterion, which requires several runs for different values of k to be executed.
In such a scenario, our approximative approach is particularly beneficial.
Frame-AA requires the computation of the frame F before archetypes can
be located. However, once the frame is complete, it can be used for finding
any number of archetypes. Hence, it is interesting to see the cumulative
time taken by the methods when evaluating several configurations, say
k = 4, 6, 8, . . . , 16.

This is depicted in Figure 4.5 for the USAFSurvey data. We report again
on averages as well as standard errors on 36 repetitions executed on random
initializations. Frame-AA turns out fastest at the first evaluation of k = 4
despite the computation of the frame. Since the frame is static for a data
set, it can be reused for all remaining computations, and Frame-AA clearly
outperforms its peers. Note that the divide and conquer strategy proposed
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Figure 4.5: Results on the USAFSurvey data. Cumulative time for computing
the frame and the factorization (left) and the reconstruction error in terms of the
Frobenius norm (right) for various numbers of archetypes k.

in Algorithm 4.4 leads to an additional speed-up that is not shown here.
The reconstruction error is shown on the right-hand side of Figure 4.5. Once
again, Frame-AA yields a very similar error as standard AA, computed on
the whole data set, while the C-NMF and CH-NMF baselines perform much
worse.

4.3 Autoencoders

We consider a prototypical application of Frame-AA as an autoencoder
similar to the approach of Bauckhage et al. (2015). However, instead of
focusing on the reconstruction, we are interested in the quality of the learned
embedding given by the weights of the convex combinations.

Figure 4.6: An example of the sub-
division of MNIST data into 49
patches.

For this exemplary task, we use the
MNIST data set (LeCun et al., 2010). It
consists of 60,000 training and 10,000 test
images of handwritten digits (0-9), which
are of size 28× 28, hence rendering the
problem 784-dimensional. To lower the
frame density, we split every image into
4× 4 sub-images yielding 49 patches per
image. An example is depicted in Fig-
ure 4.6. Those patches are stacked up to
form a new design matrix. For simplicity, we focus on a subtask and aim
to separate digit 1 from digit 7. The task is thus phrased as a standard
binary classification task. We sample 500 images per class. The final design
matrix is of size 49000× 16, and its frame density is approximately 14%.
The design matrix is then factorized as described in Section 4.1. After the
factorization, every patch is described by k weights contained within the
matrix A. The weights of the convex combinations are then vectorized,
yielding an embedding of size m = 49k per image.
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Figure 4.7: Predictive performance in terms of accuracy (left) and the reconstruction
error in terms of the Frobenius norm (right) for various numbers of archetypes /
embedding sizes.

As a baseline, we employ an autoencoder that uses a convolutional layer
(LeCun et al., 1989) to learn intermediate representations of images. To
perform a fair comparison, the convolutional layer learns k filters of the
same size as Frame-AA, that is, 4× 4 and stride 4× 4. This layer has a
sigmoid activation function followed by an upsampling layer that recovers
the original image size. The last layer is another convolutional layer with
one filter of size 4× 4, stride one, and sigmoid activation. We optimize the
network using a squared loss as in the matrix factorization. We compute
an embedding analogously to Frame-AA by representing an image by its
output of the first convolutional layer, yielding the same embedding size of
m = 49k.

For every obtained embedding, a support vector machine (SVM) (Boser
et al., 1992; Cortes and Vapnik, 1995) is trained on k = 2, 4, . . . , 16 filters
(archetypes), meaning that every image is now represented by a vector of
size m = 98, 196, . . . , 784. Note that the last one is identical to the origi-
nal image size. We deploy a radial basis function (RBF) kernel, and the
parameters C and γ are optimized on a 2−7, . . . , 27 grid, respectively. For
the hyperparameter search, we use a hold-out set consisting of another 500
images per class that are disjoint from the training and test sets.

To evaluate the predictive performance, we sample another 500 test
images per class and obtain their embeddings using the trained approaches
described above. The results are depicted in Figure 4.7. The right part
of the figure depicts the reconstruction errors in terms of the Frobenius
norm. The curve of Frame-AA has a typical elbow structure, as one would
expect, while the error of the neural network is almost static. Although the
autoencoder achieves smaller reconstruction errors, the left side of Figure
4.7 shows that the SVM effectively leverages the representation learned by
F-AA. The archetype-based embedding leads to more accurate classification
models.
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Figure 4.8: A visualization of the learned archetypes (left) and filters (right).

The learned filters (archetypes) are shown in Figure 4.8 for k = 8, yield-
ing an embedding of size m = 392. The archetypes in the left part of the
figure resemble edge and border detectors, while the filters on the right ap-
pear random. Moreover, every patch is represented as a convex combination
of the shown archetypes. The classification of a patch can be explained by
the corresponding weights to render the results interpretable.

4.4 Conclusion

We proposed a novel method for computing the frame of a data set. The
frame is a subset of the data set containing only the extreme points, i.e.,
the vertices of the convex hull of the data. While standard approaches like
QuickHull were infeasible for scenarios with more than three dimensions,
we computed the frame by leveraging the well known active-set method for
non-negative least squares problems called NNLS. We provided a theoretical
underpinning for our approach and conducted a series of experiments to
compare the computation of the frame with two LP-based methods to show
our competitiveness.

Moreover, we proposed an approximation of archetypal analysis called
Frame-AA by restricting the optimization of the archetypes to the frame.
We showed that if a small number of data points approximated the frame
sufficiently, the resulting approximation of AA on the whole data set was
appropriate. This approximation does not only work for archetypal analysis
but also for all variants of it, like, for instance, Mørup and Hansen (2010),
Chen et al. (2014), and Bauckhage et al. (2015).

Empirically, we showed that the error of Frame-AA is only slightly
higher than standard archetypal analysis but was often much faster once the
frame has been computed. We leveraged this observation and proposed an
efficient model selection strategy to find the optimal number of archetypes.
We proposed to compute the frame only once and then reused it for all
subsequent computations for other numbers of archetypes. We observed an
enormous acceleration in scenarios with low frame densities.
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Low frame densities were attained when only small portions of the
data were extreme. On the other hand, high frame densities diminish
this speed-up and the computational time converges to that of a standard
archetypal analysis. However, we argued that these scenarios are not suited
for archetypal analysis in the first case.

Furthermore, we compared Frame-AA to several state-of-the-art base-
lines. Frame-AA either outperformed its competitors or performed on-par.
On the example of an autoencoder, Frame-AA led to nicely interpretable
classifications in contrast to convolutional neural networks.



Chapter 5

Frame-based Optimal Design

In the previous chapter, we exploited the geometry of the data and proposed
to use the frame as a representative subset for archetypal analysis. We now
consider another setting in which the data boundary, or frame, contains
enough information for the learning task at hand. Specifically, we are
concerned with the setting of optimal experimental design (OED) (Fedorov,
1972). In a nutshell, the idea of OED is as follows. We consider a supervised
learning task with n unlabeled data points X . Obtaining labels for all
instances is assumed to be costly or time-consuming, thus prohibitive. Still,
there is a budget k allowing a small portion of k ≪ n points to be labeled.
The goal is to select the best subset of X of size k for labeling such that
the learned model is optimal with respect to some optimality measure,
which quantifies the uncertainty of the model. This selection process can
be formulated as an optimization problem over n data points. Reducing
the search space by providing a representative subset thus reduces the
computational complexity of the selection procedure. Figure 5.1 shows an
example. Choosing points from the data boundary, which is the frame,
obtaining labels for them, and training the linear regression model on those
points is better than choosing an arbitrary subset of data.

The key contributions of this chapter are as follows. We (i) show that
restricting the optimization problem to the frame yields competitive results
in terms of optimality and predictive performance but comes with a much
smaller computational cost. To leverage OED for non-linear problems,
we (ii) devise a novel approach to compute the frame in kernel-induced
feature spaces; this allows us to sample random designs for non-linear
regression models without knowing the explicit feature mapping. Our
approach of computing the frame can be seen as a transposed LASSO that
selects data points instead of features. We also (iii) discuss the relation
to LASSO (Tibshirani, 1996) in greater detail and address the connection
to active learning. Finally, we (iv) empirically verify the efficiency of our
frame-based approach to OED.

41
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Figure 5.1: Illustration of using different subsets for training. Left: model trained
on all data. Center: model trained on random subset. Right: model trained on the
frame which serves as a representative subset.

5.1 Preliminaries and Optimal Experimental Design

We consider a discrete input set X = {x1, . . . , xn} ⊆ Rd consisting of n data
points in d dimensions. As introduced in Chapter 3, F denotes the so-called
frame of X (cf. Definition 3.1), q = |F | is the size of the frame, and we call
the portion of points in X belonging to the frame F the frame density q/n.

In the classical setting of optimal experimental design (OED), the task is
a linear regression model

y = Xw + ε, (5.1)

where y is the vector of targets yi ∈ R, the design matrix X ∈ Rn×d denotes
the pool of n experiments xi ∈ Rd, the model parameters are given by w ∈
Rd, and ε ∼ N (0, σ2I) is a vector of i.i.d. Gaussian noise. The maximum
likelihood estimate of the parameters w has a closed-form and is given by

w⋆ = arg min
w

n

∑
i=1

(w⊤xi − yi)
2 = (X⊤X)−1X⊤y.

The goal of OED is to choose a subset S of size k out of the n points for
which the estimation of w is optimal in some sense. As common, we require
d ≤ k ≪ n. Optimality can be measured in several ways. One idea is
to increase the confidence of learning the parameters by minimizing the
covariance of the parameter estimation. For the regression problem stated
above, the covariance matrix is given by

CovS [w] = σ2

(
∑
x∈S

xx⊤
)−1

,



5.2. RESTRICTING OED TO THE FRAME 43

where S ⊂ X is the selected subset with |S| = k. The selection of S leads to
a combinatorial optimization problem as follows

min
λ

Λ

(
n

∑
i=1

λixix⊤i

)
(5.2)

s. t.
n

∑
i=1

λi ≤ k and λi ∈ {0, 1} ∀i.

Here, λi selects data points and Λ : S+
d → R is an optimality criterion that

assigns a real number to every feasible experiment (positive semi-definite
matrices S+

d ). The setting can be seen as maximizing the information we
obtain from executing the experiment with fixed effort. The most popular
choices for Λ are D-, E-, and A-optimality (Pukelsheim, 2006), given by

ΛD(Σ) = (det(Σ))−1/d, (D-optimality),

ΛE(Σ) = ∥Σ−1∥2, (E-optimality),

ΛA(Σ) = d−1 tr(Σ−1), (A-optimality).

Unfortunately, the combinatorial optimization problem in Equation (5.2)
cannot be solved efficiently. A remedy is to use a continuous relaxation,
which is efficiently solvable:

min
λ

Λ

(
n

∑
i=1

λixix⊤i

)
(5.3)

s. t.
n

∑
i=1

λi ≤ k and λi ∈ [0, 1] ∀i.

The following lemma characterizes the solution of the optimization problem
stated above.

Lemma 5.1. Let λ⋆ be the optimal solution of Problem (5.3). Then ∥λ⋆∥1 = k.

However, the support of λ⋆ is usually much larger than k, and the
solution needs to be sparsified to end up with k experiments. Approaches
therefore include pipage rounding schemes (Ageev and Sviridenko, 2004),
sampling (Wang et al., 2017), regret minimization (Allen-Zhu et al., 2017),
and greedy removal strategies (Mariet and Sra, 2017; Wang et al., 2017).

5.2 Restricting OED to the Frame

As introduced above, a D-optimal design minimizes the determinant of the
error covariance matrix. Its dual problem is known as minimum volume con-
fidence ellipsoid (Dolia et al., 2006). Geometrically, the optimal solution is
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Figure 5.2: An example of D-, E-, A-optimal designs and the frame. The support
of the optimal solution λ⋆ is highlighted in red. The dashed ellipsoids denote the
dual problems. Note that the support of λ⋆ is at the boundary of the corresponding
ellipsoid.

an ellipsoid that encloses the data with minimum volume. For E-optimality,
the dual problem can be interpreted as minimizing the diameter of the
confidence ellipsoid (Boyd and Vandenberghe, 2004). In A-optimal designs,
the goal is to find the subset of points that optimizes the total variance of
parameter estimation. Figure 5.2 depicts the support of the optimal solution
λ⋆ for D-, E-, and A-optimal designs as well as their confidence ellipsoids
derived from their dual problems. The right-hand figure shows the frame
of the same data. The confidence ellipsoids clearly touch the points at the
border of the data while the interior points are enclosed. Hence, we propose
to discard all interior points entirely in the optimization and restrict the
optimization to the frame, that is, to the points lying on the border of the
convex hull.

Non-linear regression can be done by applying a feature mapping ϕ :
X → X ′ to the data. The model then becomes yi = w⊤ϕ(xi), which is still
linear in parameters. Considering the dual of the regression problem, we
can employ kernels that implicitly do a feature mapping. However, the
regression is still a linear model, but in feature space X ′. Knowing the frame
inX ′ would allow us to sample random designs rendering a naive version of
non-linear or kernelized OED possible. We already showed how to compute
the frame for X in Section 4.1.1 and focus now on how to compute the frame
in kernel-induced feature spaces X ′.

Computing the Frame in Kernel-induced Feature Spaces

Let ϕ : Rd → RD be a feature mapping, Φ ∈ RD×n be the mapped design
matrix, and K be the kernel matrix induced by a kernel k(x, z) = ϕ(x)⊤ϕ(z).
As before, the idea is to solve a linear system subject to the constraints that
the solution s is non-negative, sums up to one, and uses only points from
the frame; however, this time, we aim to solve the problem in feature space
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spanned by ϕ. We obtain

solve
s

Φs = ϕ(xi)

s. t. sj ≥ 0 ∀j ∧ 1⊤s = 1 ∧ sj ̸= 0⇒ ϕ(xj) ∈ F ∀j.

The constraint 1⊤s = 1 can be incorporated into the system of linear
equations by augmenting Φ with a row of ones and ϕ(x) with a static 1. Let
ψ(x) = (ϕ(x)⊤, 1)⊤ and Ψ = (ψ(x1), . . . , ψ(xn)) ∈ R(D+1)×n, we obtain

solve Ψs = ψ(xi) s. t. sj ≥ 0 ∧ sj ̸= 0⇒ ϕ(xj) ∈ F .

The approach can be kernelized by multiplying from the left with Ψ⊤:

solve Ψ⊤Ψs = Ψ⊤ψ(xi) s. t. sj ≥ 0 ∧ sj ̸= 0⇒ ϕ(xj) ∈ F .

Since there is always a solution (cf. Chapter 4), we can equivalently solve
the non-negative least squares problem

arg min
s≥0

1
2
∥Ψ⊤Ψs−Ψ⊤ψ(xi)∥2

2

s. t. sj ̸= 0⇒ ϕ(xj) ∈ F .
(5.4)

A kernel can now be applied by exploiting the relationship between Ψ, Φ,
and K as follows

Ψ⊤Ψ = Φ⊤Φ + 1nn = K + 1nn =: L (5.5)

Ψ⊤ψ(xi) = Φ⊤ϕ(xi) + 1n1 = K·i + 1n1 = L·i, (5.6)

where 1nm ∈ Rn×m denotes the matrix of ones. The resulting problem
becomes

arg min
s≥0

1
2
∥Ls− L·i∥2

2

s. t. si ̸= 0⇒ ϕ(xi) ∈ F .
(5.7)

A standard non-negative least squares (NNLS) problem can be solved, for
example, by the algorithm of Lawson and Hanson (1995). Bro and De Jong
(1997) increase the efficiency of NNLS (cf. Algorithm 4.2) by caching the
quantities in Equation (5.5). This renders the problem in Equation (5.7)
feasible.

Theorem 5.1. The active-set method from Bro and De Jong (1997) solves the
problem in Equation (5.7).

Proof. The algorithm of Bro and De Jong (1997) selects points that contribute
to the solution s by maximizing the negative gradient of the objective. The
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Algorithm 5.1 Kernel-Frame

Input: kernel matrix K
Output: indices of frame points E = { i ∈ {1, 2, . . . , n} | xi ∈ F }
L = K + 1nn
E = ∅
for i = 1, 2, . . . , n do

si = bro-dejong(L, L[:, i])
Pi = { j ∈ {1, 2, . . . , n} | (si)j > 0 }
E = E ∪ Pi

end for

selection is implemented by the criterion j = arg maxj [L·i − Ls]j, where j is
the index of the selected point. Thus, the selection process is maximizing
a linear function and Lemma 3.1 assures that this point belongs to the
frame.

Solving problem (5.4) for the i-th data point xi yields either its index i in
case xi is a point on the frame or, if xi is an interior point, the solution is the
index set Pi of points on the frame that recover xi as a convex combination.
The entire frame is recovered by solving Equation (5.4) for all points in X as
stated in Corollary 5.1 and depicted in Algorithm 5.1.

Corollary 5.1. Let k(x, z) = ϕ(x)⊤ϕ(z) be a kernel and X = {x1, . . . , xn} be a
data set. Then Algorithm 5.1 yields the frame of {ϕ(x1), . . . , ϕ(xn)}.
Proof. Algorithm 5.1 computes the solution si for every mapped data point
ϕ(xi). Theorem 5.1 ensures that the positive positions of every si (i =
1, 2, . . . , n) refers to points on the frame. Hence, taking the union of those
positions recovers the frame indices E .

Note that the frame in kernel-induced feature space can be found without
knowing the explicit feature map ϕ. Having access to the kernel matrix is
sufficient. Besides, the for-loop in Algorithm 5.1 can be trivially parallelized.

5.3 Frame Densities for Common Kernels

We focus on radial basis function (RBF) and polynomial kernels to analyze
the frame sizes in kernel-induced feature spaces. The former is given by
k(x, z) = exp(−γ∥x− z∥2

2), where γ > 0 is a scaling parameter. The induced
feature mapping ϕ of the RBF kernel has an infinite dimensionality. Corol-
lary 5.2 shows that this kernel always yields a full frame. Thus, every point
belongs to the frame, and the frame density is consequently equal to one.

Corollary 5.2. Let X be the data set of distinct points and k be the RBF kernel
with parameter γ > 0. Then every point belongs to the frame F in feature space.
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Proof. Gaussian gram matrices have full rank (Schölkopf and Smola, 2002).
Hence, the images ϕ(x1), . . . , ϕ(xn) in feature space are linearly independent.
Thus, every image can only be represented by itself and, every point belongs
to the frame F .

The polynomial kernel is given by k(x, z) = (x⊤z + c)p with degree
p ∈ N and constant c ∈ R+

0 . A feature of the polynomial kernel is an
explicit representation of the implicit feature mapping ϕ. E.g., for the homo-
geneous polynomial kernel with c = 0, we have

ϕm(x) =

√
p!

∏d
j=1 mj!

d

∏
j=1

x
mj
j

for all multi-indices m = (m1, . . . , md) ∈ Nd satisfying ∑d
j=1 mj = p. That

is, new features consist of monomials of the input features xj, while the
multi-indices m denote their respective degrees. The condition ∑d

j=1 mj = p
assures that all possible combinations are uniquely accounted for and leads
to a feature space dimension of size

D =

(
p + d− 1

p

)
=

(p + d− 1)!
p!(d− 1)!

.

For the explicit mapping corresponding to the heterogeneous kernel (where
c ̸= 0) that realizes a feature space with dimensionality

D =

(
p + d

p

)
,

as well as for more details, we refer to Smola et al. (1998) and Schölkopf
and Smola (2002). For the polynomial kernel we obtain a full frame if the
dimension D of the feature space exceeds the number of data points n.

Corollary 5.3. Let X be the normalized and distinct data set of size n in d dimen-
sions and k be the polynomial kernel with degree p and offset c = 0. If n ≤ (p+d−1)!

p!(d−1)! ,
then every point belongs to the frame F in feature space.

Proof. The polynomial feature map yields linearly independent feature vec-
tors of size (p+d−1)!

p!(d−1)! for a data set with unique observations. Hence, if the
number of data points is lower than the dimensionality of the mapping, all
points belong to the frame F .

Although a formal proof regarding the influence of the degree p of the
homogeneous polynomial kernel is missing, we would like to provide some
intuition. We empirically apply a homogeneous polynomial kernel to a
synthetic data set with n = 2500 points in d = 5 dimensions with an initial
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Figure 5.3: Frame density for various polynomial degrees on synthetic data of size
n = 2500 in d = 5 dimensions. The initial frame density is 1%. The data set is
introduced in Section 5.5.

frame density of 1%. Figure 5.3 shows the resulting frame densities. For
odd degrees, the frame density is growing with increasing values of p. This
is due to the increasing dimensionality in feature space. However, for even
degrees, the frame is always full. We conclude with the following conjecture.

Conjecture 5.1. Let X be the normalized and distinct data set of size n in d
dimensions and k be the polynomial kernel with degree p and offset c = 0. If p is
even, then every point belongs to the frame F in feature space.

5.4 Computing the Frame and LASSO

LASSO (Tibshirani, 1996) solves regression tasks by combining a squared
loss with an ℓ1-regularizer on the parameters. Thus, LASSO simultaneously
performs a regression and variable selection such that the influence of
redundant variables is set to zero and a sparse parameter vector is obtained.
The corresponding optimization problem for a regression scenario as in
Equation (5.1) is given by

min
w
∥Xw− y∥2

2 + λ∥w∥1,

where λ ≥ 0 is a trade-off parameter. A special case is obtained by restricting
the parameters to be positive, yielding a non-negative LASSO:

min
w≥0

∥Xw− y∥2
2 + λ∥w∥1 ⇐⇒ min

w≥0
∥Xw− y∥2

2 + λ1⊤w.
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Computing the frame can be seen as a transposed version of the LASSO
problem in which not variables but data points are selected. The following
proposition shows that the problem in Equation (5.7) is equivalent to a non-
negative LASSO, if one ignores the constraint that elicits only frame points
to contribute to the solution.

Proposition 5.1. Problem (5.7) solved with the active-set method from Bro and
De Jong (1997) is equivalent to a non-negative LASSO with trade-off parameter
λ = n.

Proof. By using the identities L = K + 1nn and L·i = K·i + 1 = k + 1,
we rewrite the objective of the optimization problem in Equation (5.7) as
follows:

∥Ls− L·i∥2
2 = ∥(K + 1)s− (k + 1)∥2

2 = ∥Ks− k∥2
2 + ∥1s− 1∥2

2

= ∥Ks− k∥2
2 + n∥1⊤s− 1∥2

2 = ∥Ks− k∥2
2 + n1⊤s− n

≡ ∥Ks− k∥2
2 + n1⊤s = ∥Ks− k∥2

2 + n∥s∥1.

Hence, the objective is an ℓ1-regularized least squares problem. In combina-
tion with the non-negativity constraint, we obtain a non-negative LASSO.

5.5 Experiments

In this section, we empirically investigate frame-based optimal experimental
design. Throughout this section, we compare the performance of the follow-
ing different approaches. Uniform-data samples the subset S uniformly at
random without replacement from all data points X . A second approach
uniform-frame uses the same strategy but samples points from the frame F
instead of X . If the size of |S| exceeds the size of the frame, uniform-frame
always draws the full frame and randomly selects the remaining points from
the interior points X \ F . According to their contribution to the objective
of D-optimal design, the greedy baseline chooses the points in S one after
another. The baselines {D,E,A}-optimal use the continuous relaxations of the
{D,E,A}-optimal design criteria, respectively. After solving the optimization
problem, we sample the subset S according to a strategy outlined by Wang
et al. (2017). Analogously, {D,E,A}-optimal-frame restricts the computation
of the previous three baselines to the frame. Finally, the Fedorov baseline
selects S according to the Fedorov Exchange algorithm (Fedorov, 1972) and
optimizes D-optimality. We initialize this baseline using random samples
from X , random samples from F , and with the output of greedy.

The continuous relaxations are optimized using sequential quadratic
programming (Nocedal and Wright, 2006), and the number of iterations is
limited to 250. We report on average performances over 100 repetitions; error
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Figure 5.4: Results for D-optimal designs on Concrete data.

Figure 5.5: Results for A-optimal designs on Concrete data.

bars indicate one standard deviation, and a vertical line, when included,
denotes the frame size. The greedy algorithm is executed once, and we
conduct only ten repetitions for every Fedorov Exchange initialization due
to its extensive runtime.

5.5.1 OED Restricted on the Frame

The first experiment studies the performance of optimal designs of the pro-
posed approaches on the real-world data set Concrete (Yeh, 1998). Concrete
consists of a design pool of n = 1030 instances with d = 8 dimensions and
has a frame density of 48%. The task is to predict the compressive strength
of different types of concrete.

We measure the performance in terms of the D-optimality criterion as
well as the mean squared error (MSE), given by MSE = 1

n∥y−Xw∥2
2. For the

latter, we train an ordinary least squares regression on the selected points
and evaluate on the remaining n− k points.
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Figure 5.6: Results for D-optimal designs on Airfoil data.

Figure 5.4 (left) shows the results with respect to the D-optimality cri-
terion. Sampling uniformly from the frame (uniform-frame) performs con-
sistently better than sampling from all data (uniform-data). Thus, exploiting
the frame allows to sample better designs without solving any optimiza-
tion problem other than computing the frame. The situation changes once
the designs are optimized in addition. Frame-based approaches (*-optimal-
frame) are close to their competitors computed on all data (*-optimal) but no
longer better. Interior points thus do contribute, if only marginally, to the
optimization.

However, Figure 5.4 (right) shows that the slight improvement in the
objective function does not carry over for the predictive performance. By
contrast, the frame-based approaches (*-optimal-frame) consistently outper-
form the other approaches and lead to significantly lower MSEs. For com-
parison, the MSE trained and evaluated on all data points is shown as a
dashed horizontal line. Training only on a few points of the frame already
leads to more accurate models than using all available data.

We obtain similar results when evaluating against the A- and E-optimality
criteria. Due to their similar performance, we only report on the results for
A-optimal designs in Figure 5.5. Once again, the frame-based optimization
is only sightly worse in terms of the optimization objective (left) but clearly
outperforms the traditional approaches in predictive performance (right).

We additionally experiment on the Airfoil data (Brooks et al., 1989). The
task is to predict the self-noise of airfoil blades of different designs, and the
data comes with n = 1503 experiments describing tests in a wind tunnel
with d = 5 attributes, and the data has a frame density of 31%.

The results for D-optimal designs are shown in Figure 5.6. Once again,
the frame-based approaches perform slightly worse or on par in terms of the
optimality criterion. However, the predictive performance measured in MSE
is no longer superior. The errors are similar to those using uniform samples
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Figure 5.7: Timing results on Airfoil
data.

Figure 5.8: Results on California Hous-
ing data.

of the data. Thus, the dataset shows that even though the optimality criterion
is well approximated, an error reduction is not guaranteed. However, this
does not limit our approach as D-optimal design does not guarantee a
reduction either.

5.5.2 The Efficiency of the Frame Restriction

We now report on the efficiency of our approach on Airfoil data. Figure 5.7
illustrates the relative time of the frame-based approaches compared to
their traditional analogs computed on all data. The y-axis thus shows
time(frame)/time(all). We can report a drastically faster computation
taking only 2-5% of the time of the traditional variants. We credit this
finding to Airfoil’s frame density of 31%. That is, restricting the data to
the frame already discards 69% of the data, and the resulting optimization
problems become much smaller.

Naturally, the smaller the frame size, the faster the computation as
we leave out more and more interior points. We thus experiment on the
California Housing data (Pace and Barry, 1997), where the task is to estimate
the median housing prices for different census blocks. This data comes with
n = 20, 640 instances in d = 8 dimensions but possesses a frame density of
only 8%.

Figure 5.8 depicts the result with respect to the D-optimal criterion.
The figure again shows that naively sampling from the frame (uniform-
frame) is significantly better than drawing random samples from all data
(uniform-data). All other tested algorithms perform even better and realize
almost identical curves. The D-optimal baseline could not be computed in a
reasonable amount of time due to the size of the data. Only restricting the
computations to the frame rendered the computation feasible.
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Figure 5.9: Effect of the frame size on
synthetic data.

Figure 5.10: Results on synthetic data
using a polynomial kernel of degree 3.

5.5.3 The Impact of the Frame Density

We already mentioned that the frame density q/n influences the efficiency
of frame-based approaches. A frame density of z implies that the (1− z)-th
part of the data are interior points and can thus be ignored in subsequent
computations.

To show this influence empirically, we control the frame density on syn-
thetic data from Lopez (2005) (cf. Section 4.2). The data we use consists of
n = 2, 500 instances in d = 5 dimensions and comes in five different sets real-
izing frame densities of 1%, 15%, 25%, 50% and 75% respectively. Figure 5.9
shows the resulting D-optimality criteria for the different frame densities.
Up to a frame density of 50%, randomly sampling from the frame (uniform-
frame) performs on par with all other approaches, thus showing the efficiency
of our proposal. For higher frame densities the performance of uniform-frame
diverges towards uniform-data. Nevertheless, restricting D-OED to the frame
stays on par with its peers. This experiment suggests that the smaller the
frame density, the better the competitiveness of frame-based OED.

5.5.4 Sampling in Kernel-induced Feature Spaces

In our last set of experiments, we consider sampling random designs on
synthetic data for non-linear regression problems. We use synthetic data as
described above with a frame density of 1%. We employ a homogeneous
(c = 0) polynomial kernel with a degree of p = 3 that allows for obtaining
the explicit feature mapping ϕ, which is needed for all approaches except
uniform-*.

Figure 5.10 illustrates the results. Approaches optimizing the D-optimal
design criterion (D-*) perform equally well, irrespectively of whether they
sample from the frame or not. This result confirms the competitiveness of



54 CHAPTER 5. FRAME-BASED OPTIMAL DESIGN

restricting OED to the frame. However, both methods rely on the explicit
feature map.

Strategies that are purely based on sampling (uniform-*) do not need
an explicit mapping. Sampling at random from all data (uniform-data) triv-
ially does not rely on anything but a list of indices. Finally, sampling from
the frame (uniform-frame) uses the proposed kernel frame algorithm (Algo-
rithm 5.1) to sample in feature space. The figure shows that our approach
samples much better designs from the frame, which is only 23% in feature
space. The larger the sample size, the less relevant becomes an explicit
mapping.

5.6 Related Work

Optimal experimental design is a well-studied problem in statistics (Fedorov,
1972; Pukelsheim, 2006). Recent work focuses on efficiency and performance
and aims to devise approximation guarantees for relaxations of the com-
binatorial problems. For example, Wang et al. (2017) consider A-optimal
designs and propose sampling strategies (for the settings with and without
replacement) with statistical efficiency bounds as well as a greedy removal
approach. Allen-Zhu et al. (2017) propose a regret-minimization strategy
for the setting without replacement which works for most optimality crite-
ria. Mariet and Sra (2017) use elementary symmetric polynomials (ESP) for
OED and introduce ESP-design, an interpolation between A- and D-optimal
design that includes both as special cases. They provide approximation
guarantees for sampling and greedy removal strategies.

OED has close ties to many other problems. D-optimality, for example,
is related to volume sampling (Avron and Boutsidis, 2013; Derezinski and
Warmuth, 2018; Li et al., 2017) and determinantal point processes (DPPs)
(Kulesza et al., 2012); both are used in many applications to sample informa-
tive and diverse subsets.

Moreover, the problem setting we consider is related to active learning
(Sugiyama and Nakajima, 2009; Chaudhuri et al., 2015). Common active
learning strategies sequentially select data points based on some uncertainty
criterion or heuristic. For instance, data points are selected based on the
confidence of the model to an assigned label or according to the maximal
model update in the worst case. Usually, active learning iteratively selects
instances and then re-trains to include the newly gained label into the
model. In contrast to such iterative active learning scenarios with feedback,
OED corresponds to selecting a single optimal batch prior to labeling and
learning.

Convex hull algorithms can straightforwardly compute the frame. How-
ever, as mentioned in Chapter 4, many are motivated and limited to two- or
three-dimensional settings. Quickhull (Barber et al., 1996) works in higher
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dimensionalities but quickly becomes infeasible. If the enumeration of ver-
tices is dropped, convex hull algorithms can be turned into methods that
directly (and only) compute the frame. Common approaches for examples
include linear programming to test whether a point is part of the frame
or not (Dulá and Helgason, 1996; Ottmann et al., 2001; Dulá and López,
2012). Recent methods use quadratic programming to efficiently compute
the frame (Mair et al., 2017) (cf. Chapter 4).

5.7 Conclusion

We proposed to leverage the geometry of the data to compute optimal
designs efficiently. Our contribution was motivated by the observation that
traditional OED variants optimize enclosing ellipsoids that are supported by
extreme data points. Hence, we proposed to restrict the computations to the
frame, which is the smallest subset of the data that yields the same convex
hull as all data. We devised an optimization problem to compute the frame
in kernel-induced feature spaces and provided a theoretical foundation for
the eligibility of different kernel functions. Our contribution can be viewed
as a transposed version of LASSO that selects data points instead of features.

Empirically, we showed that restricting optimal design to the frame
yields competitive designs with respect to D-, E-, and A-optimality criteria
on several real-world data sets. Our frame-based approaches ignore interior
data points, and we observed computational speed-ups of up to a factor of
twenty. Our contribution rendered OED problems feasible on data at large
scales for moderate frame densities.
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Chapter 6

Coresets for Archetypal
Analysis

In Chapter 4, we considered the frame as a representative subset for archety-
pal analysis. Although the frame as a representative subset reduced the
computational complexity and performed competitively, it has some draw-
backs. First, the frame computation is expected to be prohibitive for high-
dimensional data sets as it scales polynomially in the dimensionality d.
Second, the size of the representative subset is fixed as it is an inherent
property of a data set. Third, there is no theoretical guarantee that the frame
actually yields a competitive performance. Despite its good performance
on the evaluated data sets, data sets that induce an arbitrary error can be
constructed.

Thus, in this chapter, we provide a remedy to those issues. A theoreti-
cally sound alternative to the frame is offered by coresets. They compactly
represent large data sets by weighted subsets on which models perform
provably competitive compared to operations on all data. Coresets have
successfully been leveraged to very different methods, including k-means
(Lucic et al., 2016; Bachem et al., 2018a), support vector machines (Tsang
et al., 2005), logistic regression (Munteanu et al., 2018), and Bayesian infer-
ence (Huggins et al., 2016; Campbell and Broderick, 2018). The idea is as
follows. A small subset of the data is selected (in linear time) according to a
strategy such that the subset approximates the original data very well. A
learning algorithm will then provably perform similarly on the original data
and the subset, but training on the subset is much more efficient. In this
chapter, we present coresets for archetypal analysis (AA). An example of
the proposed idea is depicted in Figure 6.1.

The key contributions of this chapter are as follows. We (i) show that
the objective function of k-means upper bounds the objective of archety-
pal analysis and show that every coreset for k-means is also a coreset for
archetypal analysis, we (ii) propose a simple and efficient sampling strategy

57
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AA on all data weighted coreset AA on coreset

data coreset convex hull of data AA on all data AA on coreset

Figure 6.1: Illustration of archetypal analysis on a coreset. Left: archetypal analysis
on a data set; center: coreset (weighted representative subset) with weights, where
the weights are denoted by size; and right: archetypal analysis computed on the
coreset.

to compute a coreset with only two passes over the data, so that (iii) a weak
ε-absolute-coreset is guaranteed to be obtained after sampling sufficiently
many points where (iv) the error bound does not depend on the query itself.
Finally, we (v) provide empirical results on various data sets to support the
theoretical derivation.

6.1 Preliminaries and Coresets

Let X be a data set of n points in d dimensions. Consider a learning problem
with an objective function of the form ϕX (Q) = ∑x∈X d(x, Q)2. The goal
is to learn the so-called query Q ⊂ Rd, with |Q| = k, and d(x, Q)2 is the
minimal squared distance from a data point x to the query Q. For example,
in k-means clustering (Lloyd, 1982), Q refers to the set of cluster centers and
d(x, Q)2 = minq∈Q ∥x− q∥2

2. The objective function is then given by

ϕX (Q) = ∑
x∈X

d(x, Q)2 = ∑
x∈X

min
q∈Q
∥x− q∥2

2.

A coreset is a possibly weighted subset C of the full data set X with
cardinality m≪ n, which performs provably competitive with respect to the
performance on X . Using non-negative weights wi ≥ 0 on the data points,
the objective becomes ϕX (Q) = ∑x∈X wi · d(x, Q)2. The standard definition
of a coreset is as follows.

Definition 6.1. Let ε > 0 and k ∈N. A (weighted) set C is a (ε, k)-coreset of the
data X if for any Q ⊂ Rd of cardinality at most k

|ϕX (Q)− ϕC(Q)| ≤ εϕX (Q). (6.1)
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Algorithm 6.1 Lightweight coreset construction for k-means

Input: Set of data points X , coreset size m
Output: Coreset C, weights {wi}m

i=1
µ←mean of X
for x ∈ X do

q(x) = 1
2

1
|X | +

1
2

d(x,µ)2

∑x′ d(x′,µ)2

end for
C ← sample m points from X where each point has weight 1

m·q(x) and is
sampled with probability q(x)

Note that the condition of a coreset in Equation (6.1) is equivalent to
(1− ε)ϕX (Q) ≤ ϕC(Q) ≤ (1 + ε)ϕX (Q). Hence, the performance of the
query learned on the coreset is bounded from below and above by a (1± ε)
multiplicative of the query evaluated on the full data set. Definition 6.1
defines a strong coreset since the bound holds uniformly for all queries Q. If
the condition in Equation (6.1) holds only for the optimal query, C is called
a weak coreset.

Computing a coreset for k-means may require k sequential passes over
the data (Lucic et al., 2016). Bachem et al. (2018a) introduce the notion of
lightweight-coresets, which allow for an additional additive term on the right-
hand side of the bound in Equation (6.1) and show that the solution can be
computed in only two passes over the data. The definition of lightweight-
coresets is as follows.

Definition 6.2. (Bachem et al., 2018a) Let ε > 0, k ∈N and X ⊂ Rd be a set of
points with mean µ ∈ Rd. The weighted set C is a (ε, k)-lightweight-coreset of the
data X if for any Q ⊂ Rd of cardinality at most k

|ϕX (Q)− ϕC(Q)| ≤ ε

2
ϕX (Q) +

ε

2
ϕX ({µ})︸ ︷︷ ︸

additive term

. (6.2)

The lightweight-coreset for k-means is constructed via importance sam-
pling, in order to guide the sampling procedure towards more influential
points. The sampling distribution q is a mixture of a uniform distribution
and the normalized squared distances to the mean, i.e.,

q(x) =
1
2

1
n
+

1
2

d(x, µ)2

∑n
i=1 d(xi, µ)2 . (6.3)

The underlying idea is that points that lie far away from the mean µ have a
larger impact on the objective function and should thus be sampled with
higher probability. The procedure of Bachem et al. (2018a) is shown in
Algorithm 6.1. After sampling m data points according to q, each point
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is weighted by (m · q(x))−1 such that the sampling procedure yields an
unbiased estimator of the quantization error:

EC [ϕC(Q)] = EC

[
∑
x∈C

1
m · q(x)d(x, Q)2

]

= E

[
1

q(x)
d(x, Q)2

]
= ∑

x∈X
q(x)

d(x, Q)2

q(x)
= ϕX (Q).

The following result ensures that a (ε, k)-lightweight-coreset is obtained
after sampling sufficiently many points.

Theorem 6.1 (Bachem et al. (2018a)). Let ε > 0, δ > 0 and k ∈N. Let X be a
set of points in Rd and let C be the output of Algorithm 6.1 with a sample size m of
at least

m ≥ c
dk log k + log 1

δ

ε2 ,

where c is an absolute constant. Then, with probability of at least 1− δ, C is a
(ε, k)-lightweight-coreset of X .

Bachem et al. (2018a) argue that dropping ε
2 ϕX (Q) from Equation (6.2)

is not possible for the problem of k-means. Assume, for example, that the
cluster centers (query Q) are placed arbitrarily far away from other data.
Equation (6.2) would show an arbitrary large difference on the left-hand side,
but the error on the right-hand side would be bounded by ε

2 ϕX ({µ(X )}).
Hence, C cannot be a coreset because it does not hold uniformly for all
queries Q.

While this observation applies to k-means, the situation is very different
for archetypal analysis. We assume that the mean µ of X is actually contained
in the convex hull of the query, i.e., µ ∈ conv(Q). Hence, placing some points
of the query far away from the data induces a larger convex hull and thus
a lower projection error. In the remainder, we also argue that queries of
practical interest always lie on the border of the convex hulls of either X or
C and that the mean µ is always included.

6.2 Coreset Construction

In the case of archetypal analysis, the query Q consists of the archetypes
z1, . . . , zk. The squared distance of a point x to the query Q is given by
the length of the projection of the point to the convex set conv(Q), i.e.,
d(x, Q)2 = minq∈conv(Q) ∥x − q∥2

2. Hence, the objective function can be
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data

query Q

projection

convex hull of data

convex hull of Q

Figure 6.2: Illustration of Lemma 6.1. The projection of a point x to conv(Q) (left) is
smaller than or equal to the distance of x to the closest point q ∈ Q (right). Points
within conv(Q) (red shaded area) have no projection.

rewritten in the following way:

ϕX (Q) = ∑
x∈X

d(x, Q)2 = ∑
x∈X

min
q∈conv(Q)

∥x− q∥2
2.

In the remainder, ϕX (Q) refers to the above objective of archetypal analysis.
Before introducing and analyzing the coreset construction for archetypal

analysis, we show that for a point x the quantization error of k-means upper
bounds the projection of x to the query (i.e., the archetypes z1, . . . , zk) in
archetypal analysis. Consequently, every coreset that bounds the error of
k-means must also bound the error of archetypal analysis and is thus also a
coreset for archetypal analysis.

Lemma 6.1. Let x ∈ Rd be a data point, d(·, ·) be a distance metric and Q ⊂ Rd

be any set of k ∈N points, then it holds that

min
q∈conv(Q)

d(x, q) ≤ min
q∈Q

d(x, q).

Proof. First, note that Q ⊂ conv(Q). Assume that q′ ∈ conv(Q) minimizes
d(x, q), then q′ is either in conv(Q) \Q, resulting in a smaller distance than
any other q′′ ∈ Q, or q′ is in Q, yielding the same distance as minq∈Q d(x, q).
Hence, the distance of x to the convex set conv(Q) is smaller or equal to the
distance to any q ∈ Q.

A direct consequence of Lemma 6.1, which is depicted in Figure 6.2,
is that for any choice of Q, the objective function of archetypal analysis is
upper bounded by the objective of k-means, i.e.,

∑
x∈X

min
q∈conv(Q)

∥x− q∥2
2 ≤ ∑

x∈X
min
q∈Q
∥x− q∥2

2.

Here, Q in archetypal analysis refers to the archetypes z1, . . . , zk and in
k-means, Q refers to the set of centroids. Since a coreset bounds the error of
a method on the entire set, and due to Lemma 6.1, any coreset for k-means
is also a coreset for archetypal analysis.
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Algorithm 6.2 Coreset construction for archetypal analysis

Input: Set of data points X , coreset size m
Output: Coreset C, weights {wi}m

i=1
µ←mean of X
for x ∈ X do

q(x) = d(x,µ)2

∑x′ d(x′,µ)2

end for
C ← sample m points from X where each point has weight 1

m·q(x) and is
sampled with probability q(x)

Proposition 6.1. Every coreset for k-means is also a coreset for archetypal analysis.

The proposition implies that the sampling strategy outlined in Algo-
rithm 6.1 already yields a lightweight-coreset for our problem. However,
we show in Section 6.2.1 that the term ε

2 ϕX (Q) can be dropped to obtain
a weak ε-absolute-coreset for archetypal analysis, whose bound does not
depend on the query Q.

Definition 6.3. Let ε > 0 and k ∈N. A (weighted) set C is an ε-absolute-coreset
of the data X if for any Q ⊂ Rd of cardinality at most k

|ϕX (Q)− ϕC(Q)| ≤ ε. (6.4)

The set C is called a weak ε-absolute-coreset if the bound holds only for specific
queries Q.

Due to Theorem 3.1, archetypes are guaranteed to lie on the boundary of
the convex hull of the data.1 Thus, we are interested in points lying far from
the mean µ of X . Such points increase the convex hull of the archetypes
and result in smaller projections and hence in a lower value of the objective
function. We thus discard the uniform term in Equation (6.3) and propose
the following sampling distribution:

q(x) =
d(x, µ)2

∑n
i=1 d(xi, µ)2 .

6.2.1 Analysis

We now provide a bound on the sample size m to show that Algorithm 6.2
computes a provably competitive coreset.

1Given that there is more than only a single archetype.
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Theorem 6.2. Let ε > 0, δ > 0 and k ∈ N. Let X be a set of points in Rd with
mean µ ∈ Rd and let C be the output of Algorithm 6.2 with a sample size m of at
least

m ≥ c
dk log k + log 1

δ

ε2 ,

where c is an absolute constant. Then, with probability of at least 1− δ, the set C
fulfills

|ϕX (Q)− ϕC(Q)| ≤ εϕX ({µ}) (6.5)

for any query Q ⊂ Rd of cardinality at most k satisfying µ ∈ conv(Q).

Before we prove Theorem 6.2, we introduce the concept of the pseudo-
dimension (Haussler, 1992; Li et al., 2001) and based on this a result from Li
et al. (2001).

Definition 6.4 (Haussler (1992); Li et al. (2001)). Fix a countably infinite
domain X . The pseudo-dimension of a setH of functions from X to [0, 1], denoted
by Pdim(H), is the largest d′ such there is a sequence x1, . . . , xd′ of domain
elements from X and a sequence r1, . . . , rd′ of reals such that for each b1, . . . , bd′ ∈
{above, below}, there is an f ∈ H such that for all i = 1, . . . , d′, we have f (xi) ≥
ri ⇐⇒ bi = above.

Theorem 6.3 (Li et al. (2001)). Let α > 0, ν > 0 and δ > 0. Fix a countably
infinite domain X and let P be any probability distribution over X . Let H be a
set of functions from X to [0, 1] with Pdim(H) = d′. Denote by C a sample of m
points from X independently drawn according to P with

m ≥ c
α2ν

(
d′ log

1
ν
+ log

1
δ

)
,

where c is an absolute constant. Then, it holds with probability of at least 1− δ that

dν

(
EP[ f ],

1
|C| ∑

x∈C
f (x)

)
≤ α ∀ f ∈ H,

where dν(a, b) = |a−b|
a+b+ν . Over all choices ofH with Pdim(H) = d, this bound on

m is tight.

Furthermore, the proof of Theorem 6.2 relies on bounds of the projection
of a point x to the convex hull of the query Q as shown in the following
lemma.
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Lemma 6.2. Let X be a set of points in Rd with mean µ. For all x ∈ X and
Q ⊂ Rd satisfying µ ∈ conv(Q), it holds that

d(x, Q)2 ≤ 2d(x, µ)2.

Proof. By the triangle inequality and since

(|a|+ |b|)2 ≤ 2a2 + 2b2

we have for any x and Q that

d(x, Q)2 ≤ (d(x, µ) + d(µ, Q))2 ≤ 2d(x, µ)2 + 2d(µ, Q)2.

Since µ ∈ conv(Q), the distance of µ to the query Q is zero, i.e., d(µ, Q)2 = 0,
yielding our claim:

d(x, Q)2 ≤ 2d(x, µ)2.

The proof of Theorem 6.2 can now be shown as follows.

Proof of Theorem 6.2. Let µ be the mean of X . Consider the function

gQ(x) =
d(x, Q)2

2d(x, µ)2 .

Due to the non-negativity of distances as well as Lemma 6.2, we know that
gQ(x) ∈ [0, 1] for any x ∈ X and Q ⊂ Rd satisfying µ ∈ conv(Q). Then, it
holds that

ϕX (Q) = ∑
x∈X

d(x, Q)2 = ∑
x∈X

2d(x, µ)2ϕX ({µ})
2d(x, µ)2ϕX ({µ})

d(x, Q)2

= 2ϕX ({µ}) ∑
x∈X

d(x, µ)2

ϕX ({µ})
d(x, Q)2

2d(x, µ)2

= 2ϕX ({µ}) ∑
x∈X

q(x)gQ(x) = 2ϕX ({µ})Eq [gQ(x)] . (6.6)

Following the discussion in Bachem et al. (2017), and since every coreset for
k-means is also a coreset for archetypal analysis (Proposition 6.1), we use
the result Pdim(G) ∈ O(dk log k). Hence, we can choose d′ = 1

log 2 dk log k.

Let α = ε
6 , ν = 1

2 , c′ be an absolute constant and c = 72c′. By using

m ≥ c′

α2ν

(
d′ log

1
ν
+ log

1
δ

)
=

72c′

ε2

(
d′ log 2 + log

1
δ

)
= c

dk log k + log 1
δ

ε2 ,
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Theorem 6.3 implies that with probability of at least 1− δ

dν

(
Eq[gQ(x)],

1
|C| ∑

x∈C
gQ(x)

)
≤ ε

6

uniformly for all sets Q of cardinality at most k including µ in their convex
hull. Since both arguments of dν are in [0, 1], the denominator of dν is
bounded by 3. Hence, we have∣∣∣∣∣Eq[gQ(x)]−

1
|C| ∑

x∈C
gQ(x)

∣∣∣∣∣ ≤ ε

2
.

We now multiply both sides by 2ϕX ({µ}) yielding∣∣∣∣∣2ϕX ({µ})Eq[gQ(x)]−
2ϕX ({µ})
|C| ∑

x∈C
gQ(x)

∣∣∣∣∣ ≤ εϕX ({µ}).

The first part is equal to ϕX (Q) due to Equation (6.6) and the second part
can be rewritten as follows:

2ϕX ({µ})
|C| ∑

x∈C
gQ(x) =

2ϕX ({µ})
|C| ∑

x∈C

d(x, Q)2

2d(x, µ)2 = ∑
x∈C

ϕX ({µ})
|C|d(x, µ)2 d(x, Q)2

= ∑
x∈C

1

|C| d(x,µ)2

ϕX ({µ})
d(x, Q)2

= ∑
x∈C

1
|C|q(x)d(x, Q)2 = ϕC(Q).

Finally, we obtain our claim:

|ϕX (Q)− ϕC(Q)| ≤ εϕX ({µ}).

Note that the bound on the right-hand side of Equation (6.5) is inde-
pendent of the query Q and corresponds to the scaled variance of the data.
For a normalized data set, Algorithm 6.2 yields an ε-absolute-coreset as the
following corollary shows.

Corollary 6.1. Let ε > 0, δ > 0, k ∈N, and X be a set of points in Rd with mean
µ ∈ Rd. Denote by X̄ the standardized set of points with x̄i = (xi − µ)/ϕX ({µ}).
Let C be the output of Algorithm 6.2 on X̄ with a sample size m of at least

m ≥ c
dk log k + log 1

δ

ε2 ,
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where c is an absolute constant. Then, with probability of at least 1− δ, C is an
ε-absolute-coreset of X̄ , i.e., it holds that

|ϕX (Q)− ϕC(Q)| ≤ ε

for any query Q ⊂ Rd of cardinality at most k satisfying µ ∈ conv(Q).

Corollary 6.1 can be interpreted in the following way: as we decrease ε,
the performance gap of archetypal analysis on the full (standardized) data
set and archetypal analysis on the coreset closes for a query Q satisfying
µ ∈ conv(Q). One might ask whether this restriction on the choice of Q is
a drawback. The assumption within the various definitions of coresets that
the bound has to hold for any choice of Q is very strong. For the problem
of k-means, this makes sense as the centers could be anywhere in the space.
However, Theorem 3.1 shows that the archetypes z1, . . . , zk lie on the bound-
ary of the data, i.e., {z1, . . . , zk} ⊂ ∂C for k > 1. Hence, any meaningful
query Q will be on the boundary of the coreset ∂C as well. Such a query will
likely contain the mean µ of X , because C ⊂ X is sampled around µ.

As the following theorem shows, the optimal solution Q⋆
C computed on

the coreset C is indeed provably competitive to the solution Q⋆
X obtained on

the full data set.

Theorem 6.4. Let ε > 0 and X be a set of points in Rd with mean µ ∈ Rd. Denote
by Q⋆

X the optimal solution on X and by Q⋆
C the optimal solution on C. Then it

holds that

ϕX (Q⋆
C) ≤ ϕX (Q⋆

X ) + 2εϕX ({µ}).

Proof. Since Q⋆
C is the optimal solution on C we know that

ϕC(Q⋆
C) ≤ ϕC(Q⋆

X ) (6.7)

and by the property in Equation (6.5) we have that

ϕX (Q)− εϕX ({µ}) ≤ ϕC(Q) ≤ ϕX (Q) + εϕX ({µ}).

Inserting Q⋆
C and Q⋆

X yields

ϕX (Q⋆
C)− εϕX ({µ}) ≤ ϕC(Q⋆

C) ≤ ϕX (Q⋆
C) + εϕX ({µ}), (6.8)

ϕX (Q⋆
X )− εϕX ({µ}) ≤ ϕC(Q⋆

X ) ≤ ϕX (Q⋆
X ) + εϕX ({µ}). (6.9)

It follows that

ϕX (Q⋆
C)− εϕX ({µ})

(6.8)
≤ ϕC(Q⋆

C)
(6.7)
≤ ϕC(Q⋆

X )
(6.9)
≤ ϕX (Q⋆

X ) + εϕX ({µ}).

Adding εϕX ({µ}) to both sides yields the claim.
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6.2.2 Complexity Analysis

Algorithm 6.2 needs one full pass over the data set X of size n in order to
determine the mean µ. Then, another pass is needed to compute the distance
of each point xi to the mean µ, which is needed for the sampling distribution
q(·). Hence, the complexity of Algorithm 6.2 scales in O(nd). In addition,
since q(·) is a discrete distribution on n objects, the space complexity is also
inO(nd). The same arguments apply to the lightweight-coreset construction
of Bachem et al. (2018a) as outlined in Algorithm 6.1.

6.3 Weighted Archetypal Analysis

Algorithm 6.2 does not only produce a subset C of X but also corresponding
weights wi > 0 (i = 1, . . . , m) of the sampled data points. These weights
need to be properly incorporated into the learning procedure.

Eugster and Leisch (2011) propose a weighted archetypal analysis by
moving the weights into the Frobenius norm in Equation (3.2) as follows:

n

∑
i=1

wi∥xi − ZTai∥2
2 =

n

∑
i=1

wi

d

∑
j=1

((xi)j − (ZTai)j)
2

=
n

∑
i=1

d

∑
j=1

((
√

wixi)j − (
√

wiXTBTai)j)
2

=
n

∑
i=1

d

∑
j=1

((x̃i)j − (X̃TBTai)j)
2,

where x̃i =
√

wixi (i = 1, . . . , n) denotes the transformed data point and X̃
the corresponding design matrix. Once the data has been transformed, a
standard archetypal analysis can be computed. Before using the factoriza-
tion, the weight matrix A has to be re-computed on the original data using
the archetypes. Unfortunately, this approach has a major drawback: since
the archetypes zj live on the boundary of conv(X ), scaling X will change
the support of the archetypes. This is, however, counterintuitive in our
setting. While the weights may influence the placement of the archetypes,
their support should not be affected.

We thus propose an alternative way to include weights into vanilla
archetypal analysis as proposed by Cutler and Breiman (1994) and outlined
in Algorithm 3.1. Without loss of generality, assume that the weights are
natural numbers. Hence, having a weight wi on data point xi is equivalent to
having the data point wi times within the data set. This causes wi times the
projection ∥xi − ZTai∥2

2. In addition, we have wi times the weight vector ai.
Thus, the weight wi affects the intermediate update of the archetypes, which
is Z = (A⊤A)−1A⊤X as outlined in Algorithm 3.1. Instead of adding a
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point xi multiple (wi) times, we can incorporate the weights via the modified
update rule

Z = (Ã⊤Ã)−1Ã⊤X̃,

where Ã = WA, X̃ = WX and W is the diagonal matrix of rooted weights,
i.e., Wii =

√
wi. Note that by this change, the location but not the support

of the archetypes z1, . . . , zk is altered with respect to the weights. The
generalization to real-valued weights wi > 0 follows directly.

6.4 Experiments

We now evaluate the coreset construction for archetypal analysis (abs-cs)
and compare it to the performance of archetypal analysis on the full data
set, a uniform sample (uniform), the lightweight-coresets for k-means (lw-
cs, Bachem et al. (2018a)), another state-of-the-art coreset construction for
k-means (lucic-cs, Lucic et al. (2016)) as well as an approximate solution that
learns archetypes on the frame (frame, Mair et al. (2017), cf. Chapter 4).

6.4.1 Setup

We initialize the archetypes z1, . . . , zk using the FurthestSum procedure
(Mørup and Hansen, 2010, 2012). The termination criterion is reached when
the relative error between iterations is less than 10−3. We measure the error
in terms of the residual sum of squares (RSS) as provided in Equation (3.2)
and compute the relative error η = (RSSfull−RSScoreset)/ RSSfull with re-
spect to the performance on the full data set. We report on averages over 50
independent repetitions; error bars show standard error. The code is written
in Python using NumPy (Harris et al., 2020), and all experiments run on an
Intel Xeon machine with 28× 2.60GHz and 256GB memory.2

6.4.2 Data

We evaluate the algorithms on several data sets. Ijcnn1 refers to data from
the IJCNN 2001 neural network competition and has n = 49, 990 instances
in d = 22 dimensions.3 We adopt the preprocessing from Chang and Lin
(2001). Pose is a subset of the Human3.6M data set (Catalin Ionescu, 2011;
Ionescu et al., 2014) and deals with 3D human pose estimation and is part
of the ECCV 2018 PoseTrack Challenge.4 It consists of n = 35, 832 poses
each of which is represented as 3D coordinates of 16 joints resulting in
a 48-dimensional problem. Song is a subset of the Million Song Dataset

2https://github.com/smair/archetypalanalysis-coreset
3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
4http://vision.imar.ro/human3.6m/challenge_open.php

https://github.com/smair/archetypalanalysis-coreset
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://vision.imar.ro/human3.6m/challenge_open.php
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Figure 6.3: Results for k = 100 archetypes. Relative error η on the full data set
(top) as well as computation time in seconds (bottom). Depicted are averages and
standard errors of 50 independent runs.

(Bertin-Mahieux et al., 2011) which has n = 515, 345 data points in d = 90 di-
mensions. In this data set, the task is to predict the year of a song. Covertype
(Blackard and Dean, 1999) contains n = 581, 012 examples in d = 54 dimen-
sions. The task is to predict the forest cover type from cartographic variables.

6.4.3 Results

Figure 6.3 shows the results for k = 100 archetypes. In the top row, the rela-
tive error η of each approach is evaluated on the full data set and illustrated
for subsample sizes ranging from m = 1, 000 to m = 8, 000, depicted on
the x-axis. Unsurprisingly, the relative error decreases with an increasing
subsample size for all approaches. The uniform sampling strategy performs
almost always worse than its peers. The coreset construction of Lucic et al.
(2016) (lucic-cs) performs in a few cases on par with our proposed approach
(abs-cs); see, for example, Ijcnn1. In most other cases, the proposed core-
set construction yields the best results and outperforms its competitors,
especially on the Song data.

The bottom row in Figure 6.3 also depicts the relative error η, however,
with respect to the average runtime of a single run. Theoretically, the
lightweight-coreset (lw-cs) and the proposed coreset construction realize
complexities in O(nd). In practice, however, the proposed approach yields
consistently lower relative errors in a shorter time. We credit this finding
to a better selection of coreset points resulting in a faster convergence of
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Figure 6.4: Results for k = 25 archetypes. Relative error η on the full data set
(top) as well as computation time in seconds (bottom). Depicted are averages and
standard errors of 50 independent runs.

archetypal analysis. The method of Lucic et al. (2016) (lucic-cs) is consistently
the slowest as it requires k passes over the data for constructing the coreset.

Figure 6.4 shows the same evaluation scenario as Figure 6.3 but for
only k = 25 archetypes. Once again, our proposed coreset construction
either outperforms its peers or performs on par with the lightweight-coreset
construction of Bachem et al. (2018a) while being more efficient. Table 6.1
summarizes the achieved speed-ups. On Covertype, for example, the com-
putation of 25 archetypes with abs-cs and m = 1, 000 is 601 times faster than
computing the archetypes on the full data set. Although the error is 148.9%
higher than the error using archetypes learned on the full data set, all other
competitors are consistently outperformed. Increasing the size of the coreset
to m = 5, 000 yields a much lower relative error of 79.1% while still being
111 times faster to compute. Similar results with less speed-up but also
much less relative errors are obtained for the other data sets.

The remaining competitor frame (cf. Chapter 4) precomputes all data
points lying on the boundary of the convex hull of the data set (the frame).
We were not able to compute the frame within a reasonable amount of time
for Covertype and Song.5 On Pose, every data point lies on the boundary;
hence the performance is identical to the performance on all data. For Ijcnn1,
the number of points on the frame is about 0.57n, and the relative error η is
about 0.03 for k = 100 archetypes. While this error is much lower, the subset

5Computations take about 2,000 and 4,000 hours for Covertype and Song, respectively.
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Table 6.1: Relative error η in percent and speed-up compared to the full data set for
k = 25 archetypes. Depicted are averages and standard errors of 50 independent
runs for coreset sizes of m = 1000 and m = 5000.

m = 1000 m = 5000

Data Method Relative Error Speedup Relative Error Speedup

Covertype uniform 181.7%± 5.2% 468× 94.6%± 2.9% 126×
lw-cs 150.8%± 4.1% 553× 80.6%± 2.5% 119×
lucic-cs 162.7%± 4.8% 10× 85.4%± 2.6% 9×
abs-cs 148.9%± 4.8% 601× 79.1%± 2.9% 111×

Song uniform 54.4%± 0.6% 430× 31.7%± 0.4% 78×
lw-cs 35.8%± 0.7% 480× 17.7%± 0.4% 68×
lucic-cs 35.6%± 0.6% 2× 17.5%± 0.5% 2×
abs-cs 32.1%± 0.6% 486× 12.4%± 0.3% 39×

Pose uniform 20.9%± 0.8% 9× 5.6%± 0.4% 3×
lw-cs 14.2%± 0.5% 10× 5.6%± 0.5% 3×
lucic-cs 14.4%± 0.5% 5× 6.0%± 0.6% 3×
abs-cs 15.7%± 0.6% 14× 5.5%± 0.5% 4×

Ijccn1 uniform 7.9%± 0.5% 17× 4.5%± 0.5% 5×
lw-cs 8.9%± 0.7% 21× 3.9%± 0.5% 5×
lucic-cs 9.4%± 0.8% 5× 5.1%± 0.6% 3×
abs-cs 8.5%± 0.6% 21× 4.0%± 0.6% 6×

size is also much larger. In addition, the size of the representative subset m
is not chosen but implicitly given as a property of the data set.

6.5 Conclusion

In this chapter, we introduced the first coresets for archetypal analysis. The
derivation was grounded on the observation that the quantization error of
k-means serves as an upper bound on the projection error of archetypal anal-
ysis; hence, every coreset for k-means is also a coreset for archetypal analysis.
We devised an algorithm based on importance sampling that computes a
coreset in linear time with only two passes over the data. A theoretical
analysis showed that the proposed coreset performed competitively for a
sufficiently large sample size. The theoretical results are supported by em-
piricism. The proposed algorithm outperformed its competitors on various
data sets in terms of relative error and computation time. For some setups,
we observed improved runtimes. In summary, our contribution rendered
archetypal analysis feasible for state-of-the-art-sized data sets.
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Chapter 7

Probabilistic Movement Models
and Zones of Control

In the previous chapters, we considered the problem of selecting representa-
tive subsets to obtain efficient representations of data. As a result, we were
able to learn more efficiently and rendered large-scale problems feasible.
This chapter is the first of the second part of this thesis, in which we change
the representation of data in terms of its dimensions. The goal is to derive
efficient representations that ease the computation of specific operations or
downstream tasks.

In this chapter, we are concerned with density estimation on trajecto-
ries in a spatio-temporal setting. Specifically, we are interested in proba-
bilistic movement models. They allow us to study player coordination in
team sports (Dick and Brefeld, 2019) but also generalize to refugee migra-
tion patterns (Hübl et al., 2017), collective animal movements (McDermott
et al., 2017), and understanding dynamical systems with moving particles
(Padberg-Gehle and Schneide, 2017). The task of a movement model is to
predict all possible movements of a player (or refugee, animal, particle, etc.)
in a given situation within a certain amount of time. In the remainder, we
focus on sports analytics, and more specifically, on soccer.

Traditional movement models ground on the assumption that players
are able to move in all directions equally fast and ignore velocities (Taki et al.,
1996; Taki and Hasegawa, 2000; Fonseca et al., 2012), leading to implausible
Voronoi-like tessellations (Voronoi, 1908) of the pitch. More sophisticated
models incorporate some basic laws of physics but suffer from simplifying
assumptions (Taki and Hasegawa, 2000; Fujimura and Sugihara, 2005; Gud-
mundsson and Wolle, 2014). All existing approaches treat every player the
same by assuming that a single movement model serves all players equally
well, hence, ignoring individual differences between players.

Consequences arise for applications that build upon player movement,
such as the computation of zones of control (sometimes also called dominant

73
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regions). The zone that is controlled by a player is characterized by her
being the person on the pitch to attain any position within this region first
(Taki and Hasegawa, 2000). The underlying idea is that if the ball falls inside
a player’s zone of control, she will likely be able to bring the ball under
control after receiving it, and the more space a team controls, the more
dominant they are.

The key contributions of this chapter are as follows. We (i) propose to
estimate individual movement models from positional data. Our probabilis-
tic approach leverages positions, directions, and velocities of a player at
observed timestamps and returns a distribution of all reachable positions in
a given time. Furthermore, we (ii) show how to turn the probabilistic move-
ment models into zones of control. Compared to traditional one-serves-all
methods, our approach leads to realistic movement models, which in turn
lead to realistic zones of control. Finally, we (iii) qualitatively compare the
obtained zones of control and discuss their benefits.

7.1 Related Work

Trajectory analyses are often carried out for wearable devices like smart-
phones, accelerometers, or gyroscopes (Zheng, 2015; Mazimpaka and Timpf,
2016). Often, the trajectories serve only as proxies for a higher level re-
search question such as the identification of road defects (see, e.g., Byrne
et al. (2013); Mohan et al. (2008)), discrimination of drivers by insurance
companies (Paefgen et al., 2011), or activity recognition (Avci et al., 2010;
Lasek and Gagolewski, 2015).

Similarly, trajectory data in sports is used to identify movement patterns.
At an individual level, Zhao et al. (2016) use Gaussian processes (GPs) to
model velocity of athletes in ski races. Laube et al. (2005) propose to analyze
relative motions and different temporal patterns across many subjects. As
an exemplary application, the authors analyze positional data to retrieve
patterns from coordinated team motions. The problem of pattern identifica-
tion in groups of moving objects is also studied by Gottfried (2008, 2011).
The author proposes qualitative descriptions of motion patterns using a set
of atomic motions as building blocks to analyze and describe more complex
behaviors; Sprado and Gottfried (2009) apply this idea to RoboCup and soc-
cer games. Knauf et al. (2016) propose spatio-temporal convolution kernels
as a similarity measure over time and space and identify game initiations
and offensive patterns using a clustering approach. Similarly, Janetzko et al.
(2014) group attacking patterns of strikers. Generally, frequent patterns in
multi-trajectory data can also be found using episode mining algorithms
(Haase and Brefeld, 2014).
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Zhang et al. (2016) visualize time interval data to analyze player and
team performance. They include a variety of features ranging from player
velocities and ball possession as the team dominance metrics. Other methods
include, for example, estimating the probabilities of a shot being made
(Link et al., 2016; Harmon et al., 2016). Generally, the application of neural
networks to player trajectories, represented either as sequences or images,
render the need for engineering hand-crafted features unnecessary and may
thus be beneficial in situations where sufficient statistics are unknown or
difficult to obtain, as for analyzing player positioning. For instance, Zheng
et al. (2016) and Le et al. (2017) propose to model player trajectories with
recurrent neural networks for player positioning in basketball and soccer.
Similarly, convolutional neural networks are used by Harmon et al. (2016) to
estimate the probability of scoring opportunities. Memmert et al. (2016) and
Gudmundsson and Horton (2017) provide a general overview of positional
data applications in team sports. Other interesting applications include pass
quality evaluation (Brooks et al., 2016) or injury prediction (Rossi et al., 2017).

Taki and Hasegawa (2000) propose a movement model based on a
player’s current speed, direction, and an acceleration profile along different
directions. The authors discuss the dependency of acceleration on velocity
and direction and also emphasize that the acceleration decreases with in-
creasing speed. Unfortunately, the authors ignore physical details and focus
on a very basic and unrealistic version of their model, in which a player is
able to move in all directions with the same acceleration; hence, accepting
the consequence of unbounded velocities. Fujimura and Sugihara (2005)
extend this approach by adding a resistive force to prevent velocities from
growing infinitely. Thus, the two approaches drastically simplify physical
laws to model player movements. Note that both also constitute one-serves-
all approaches as the model is not personalized to account for individual
differences between players. Gudmundsson and Wolle (2014) sketch how
such an individual movement model could be estimated from data. They
suggest approximating a player’s reachable region at time t by constructing
a convex polygon for all historic points she reached within this time given
her actual position. However, they leave it a play of thoughts and do not
present technical or algorithmic details of their approach.

Once a movement model is established, it serves as a foundation for vari-
ous applications in the analysis of matches. Perhaps the most important one
being the computation of zones of control, or, alternatively, dominant regions.
This concept has been introduced by Taki and Hasegawa (2000) as the part
of the pitch that can be attained by a player before all others. Consequently,
zones of control are necessary to compute and evaluate pass quality and
success (Taki and Hasegawa, 2000; Nakanishi et al., 2009; Gudmundsson
and Wolle, 2014; Horton et al., 2015), pressing (Taki and Hasegawa, 2000), as
well as the analysis of team behavior and interaction (Fonseca et al., 2012),
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Figure 7.1: Illustration of a movement model (purple contour lines). The solid black
line depicts a trajectory. The last, current, and next position of an player are marked
as A, B, and C, respectively. The movement model shown in purple models the
distribution of the next position C (red dot) using the information of the past and
present (A and B). The dashed lines denote a local coordinate system centered at
the player and aligned in the current direction of movement.

or organization and positioning in both offense and defense (Ueda et al.,
2014).

7.2 Individual Movement Models

7.2.1 Preliminaries

To not clutter notation unnecessarily, we start by focusing on a single player.
Let (xt)t∈R≥0 be the trajectory of a player describing her position xt at
time t. In the remainder, we deal with two-dimensional movements, i.e.,
xt = (x(t)1 , x(t)2 )⊤ ∈ R2, but the following definitions also hold for higher-
dimensional movements. We further assume that the position is within an
area A ⊂ R2. Let vt ∈ R2 be her velocity vector at time t with its magnitude
(speed) vt = ∥vt∥2, where ∥ · ∥2 denotes the ℓ2-norm.1 The time index t is
typically discrete as samples are generated with equidistant timestamps
t1, t2, . . . , tn, where ti+1 − ti = τ > 0 is fixed. The trajectories and the
associated velocities form the data set D = {(xti , vti)}n

i=1. Our goal is to
model the distribution of the position xt+t∆ , which is t∆ > 0 seconds in the

1Note that the velocity can be estimated from positional data in case it is not provided
directly.
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future, given the current position xt and velocity vt:

p
(
x
∣∣ xt, vt, t∆

)
.

An example of a probabilistic movement model is depicted in Figure 7.1.

7.2.2 Existing Approaches

Before we introduce the estimation of probabilistic movement models from
positional data, we briefly review existing approaches. The simplest model
assumes that all players can move in all directions equally fast at a constant
speed. Thus, there is no acceleration or direction of movement, and the
resulting zones of control are equal to Voronoi tessellations (Voronoi, 1908)
of the pitch using the players as center points. We call this model Voronoi.

Taki and Hasegawa (2000) improve on this by incorporating the notion
of velocity and acceleration. Their model is based on the assumption that
every player is able to accelerate in each direction equally fast with the
magnitude of amax > 0. Thus, at time t = 0 the player begins to move with
acceleration amax in a direction given by the angle θ ∈ [−π, π). Assuming
that a player is moving with speed v in the direction of the x1-axis, in time t
her position is given by

x = (x1, x2), with

{
x1 = 1

2 amax · cos(θ) · t2 + vt
x2 = 1

2 amax · sin(θ) · t2.
(7.1)

In other words, the set of points that can be reached in time t forms a circle
centered at c ∈ R2 with radius r > 0, where

c = (vt, 0) and r =
1
2

amaxt2,

thus, allowing for unbounded velocities. We refer to this model as Taki &
Hasegawa.

Fujimura and Sugihara (2005) introduce a resistive force proportional
to the current speed to render the movement model more realistic. The
resistive force prevents the speed from growing infinitely and even clips
it at maximal value vmax > 0. Thus, at time t = 0, a player accelerates in
direction θ ∈ [−π, π) with the underlying assumption that she can exert the
maximum speed in any direction. The position x of the player at time t is
given by

x = (x1, x2) with

x1 = vmax · cos(θ) ·
(

t− 1−exp(−αt)
α

)
+ v · 1−exp(−αt)

α

x2 = vmax · sin(θ) ·
(

t− 1−exp(−αt)
α

)
,

(7.2)
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Figure 7.2: A comparison of movement models. The top row shows models for
a player running with 7 km/h in direction of the x1-axis. The bottom row shows
models for a player running with 24 km/h. Voronoi is computed like Taki &
Hasegawa but with a velocity of zero.

where v is the initial velocity in the direction of the x1-axis, and the parameter
α > 0 is responsible for the resistive force. Hence, the set of points within
reach of the player in time t forms a circle with center and radius given by

c =

(
v · 1− exp(−αt)

α
, 0
)

and r = vmax ·
(

t− 1− exp(−αt)
α

)
.

The model is referred to as Fujimura & Sugihara.

Figure 7.2 visualizes the existing movement models obtained by Voronoi,
Taki & Hasegawa, and Fujimura & Sugihara-based approaches (from left
to right). While all models realize similar circular-shaped movements for
slowly moving players, differences become significant with increasing ve-
locities. While the Voronoi-based approach yields perfect circles for any
velocity, the approach by Fujimura & Sugihara leads to a conical structure
assembled by nested circles. Finally, Taki & Hasegawa-based movement
models become drop-shaped and oblique conical. Simply by being intrin-
sically circular for arbitrary velocities, it becomes evident that the existing
models serve only as crude approximations of reality. Intuitively, one would
expect an elliptically shaped movement model, and we will show in the
next section that the data-driven models take on elliptical shapes.
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Algorithm 7.1 Computation of movement samples

Input: Data set D = {(x(ti), v(ti))}n
i=1

Output: Set St∆ of attained positions in time t∆ including initial velocities
for tA < tB < tC s.t. tA = tB − tδ and tC = tB + t∆ do

xlocal
C = g(xA, xB, xC)

St∆ = St∆ ∪ {(xlocal
C , v(tB))}

end for

7.2.3 Probabilistic Movement Models

We now describe how to compute probabilistic movement models from
positional data. Given a trajectory (or a set of many trajectories), we first
extract triplets as shown in Figure 7.1. Let (xA, xB, xC) be such a triplet of
positions at timestamps tA, tB, and tC such that tA < tB < tC. Henceforth,
we use xB as a shorthand for xtB . We denote the time difference of tA and
tB as tδ = tB − tA and the difference of tB and tC as t∆ = tC − tB. Here, xB
describes the current position, xA is used to estimate the current direction
in which the player is moving and xC denotes the position in the future.
Hence, the next position xC describes the ability to move within a given time
horizon t∆. Collecting multiple next positions xC, represented in the local
coordinate system as xlocal

C , allows for creating a movement model. Such
a model is then able to quantify the likelihood of a possible next position
relative to its current position.

To obtain the next position xlocal
C , the triplet is transformed into the

local coordinate system. The transformation realizing this first subtracts
the current position xB from all points of the triplet. This way, the triplet
is centered at the current position. Then, the triplet is rotated such that
the last position, i.e., xA, is aligned with the x1-axis of the local coordinate
system. Let g(xA, xB, xC) = xlocal

C be this transformation. Mathematically,
this transformation can be expressed using polar coordinates as

xlocal
C = g(xA, xB, xC) =

(
r · cos(θ)
r · sin(θ)

)
, (7.3)

where r is a distance given by r = ∥−−→xBxC∥2 and θ is a signed angle given
by θ = ∡(−−→xAxB,−−→xBxC). After processing multiple triplets along a trajectory
for fixed time differences tδ and t∆, we store the corresponding next posi-
tions, that are represented in the local coordinate system, in a set St∆ . This
approach is summarized in Algorithm 7.1.

Having obtained the set St∆ , it is possible to define a probability distribu-
tion over possible player whereabouts given her position and initial velocity.
This can be done with a two-dimensional kernel density estimate (KDE).
Due to practical considerations, we suggest discretizing the speed range
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Figure 7.3: An example of the set St∆ ,V with a time horizon of t∆ = 1s and a speed
range of 14-20 km/h and the corresponding kernel density estimate.

and include it in the model at a lower level of granularity. To this end, we
define a subset of points

St∆,V = {(x, v) | v ∈ V} ⊆ St∆

for a range of velocity values in the interval V = [vmin, vmax] and compute
the individual movement model using a KDE-based on samples from this
set. We obtain several KDEs depending on different velocity ranges denoted
as pKDE

t∆,V . To evaluate the likelihood of attaining a given position x ∈ R2 in
time t∆, we use

pt∆ (x | xt−tδ
, xt, vt) = pKDE

t∆,V (g (xt−tδ
, xt, x)) (7.4)

for vt ∈ V. We introduce an extra conditioning on the previous player’s
position xt−tδ

utilized to estimate the direction (angle θ) in which the player
moves. Figure 7.3 (left) presents a set of samples collected, and Figure 7.3
(right) a corresponding movement model based on a KDE.

The model relies on a particular discretization of the speed range V
denoted by Ṽ . Analogously, different models are obtained for different
values of the time horizon parameter t∆. Those values are summarized in
the set T̃ .

In some cases, the triplets of points used to estimate the model can
contain outliers. They may stem from an interruption during a match
(e.g., due to a foul or corner kick) or errors in the data collecting process.
Hence, triplets containing outliers should be discarded. Finally, given that a
player’s ability to move should be symmetric with respect to the direction
she is facing. This can be achieved by augmenting the set with (x′, v) using
x′ = (x1,−x2) for each sample (x, v) ∈ St∆,V .
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7.2.4 Complexity Analysis

We now consider the complexities for training, prediction, and memory
consumption of the proposed approach for a single player. Let nt∆,V ∈ N

denote the number of samples within the set St∆,V of transformed locations
generated by Algorithm 7.1 when conditioning on a specific time delta
t∆ and speed v, i.e., nt∆,V = |St∆,V |. The complexity of training a KDE is
equivalent to the complexity of obtaining the training data, which is the
cardinality of the set St∆,V and thus equal to O(nt∆,V). Since there is a sepa-
rate KDE for every time horizon t∆ and speed interval V, the complexity of
training all KDEs for a single player is O(∑V∈Ṽ ∑t∆∈T̃ nt∆,V) and thus linear
in the player’s trajectory data. The complexity of predicting, i.e., obtain-
ing the probability for a given position, using a KDE is O(nt∆,V). Clearly,
it holds that the larger the training set, the better the model. However,
increasing the size of samples nt∆,V makes it prohibitive to use the individ-
ual movement models based on KDEs in real-time scenarios. Considering
the memory demand of the KDE-based approach, it becomes obvious that
all samples are needed as the KDE is a non-parametric method. Hence,
O(∑V∈Ṽ ∑t∆∈T̃ nt∆,V) points need to be stored.

7.2.5 Empirical Results

There are two typical ways of collecting positional data in sports. The first
way is to attach sensors to players and ball to monitor their positions (Grün
et al., 2011; Mutschler et al., 2013). The second way is to use computer
vision algorithms for retrieving players’ and ball’s trajectories in consecutive
frames (Barris and Button, 2008; D’Orazio and Leo, 2010).

Data

The positional soccer data from the German Bundesliga we use in the exper-
iments stem from the latter and is recorded at 25 Hz.2 This usually yields
over 25 · 60 · 90 = 135,000 samples (due to possible extra time by the end
of each half) for a single match. The dimensions of a soccer field are 105.0
by 68.0 meters, and the coordinates of positions in the trajectory data are
given relative to the origin of the field, which is set to (0, 0). Hence, player
coordinates (x1, x2) are within A = [−52.5,+52.5]× [−34.0,+34.0] ⊂ R2.

Baselines

As baselines, we use the Voronoi, Taki & Hasegawa, and Fujimura & Sugi-
hara models, which we introduced in Section 7.2. Except for the Voronoi-
based approach, all other approaches involve user-defined parameters

2We thank Deutsche Fußball Liga and Sportcast GmbH for providing the positional data.
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Table 7.1: Distribution of speed classes for three different players.

Speed Range (km/h) Goalkeeper Defender Midfielder

Stand < 1 27.19% 11.25% 12.01%
Walk 1− 7 66.68% 53.22% 50.90%

Jog 7− 14 5.44% 27.57% 28.11%
Run 14− 20 0.57% 5.97% 6.36%

Sprint > 20 0.12% 2.00% 2.62%

that need to be specified. For Taki & Hasegawa, the acceleration param-
eter amax can be derived from the corresponding speed samples vt using
at =

1
h (vt+h − vt). Here, these are computed for a time horizon of h = 1s

using data from a single match. Based on this, we set amax = 4.2 m/s2,
which is equal to the 0.999-quantile of the derived values. The quantile
instead of the maximum acceleration observed is used to ignore outliers.
The model by Fujimura & Sugihara includes two parameters, α and vmax.
We use α = 1.3, which is the value proposed by Fujimura and Sugihara
(2005), and vmax = 8.0 m/s. The latter corresponds to the 0.999-quantile of
the observed speed values (analogously as in the case of amax parameter in
the previous model).

Setup

To compute the individual movement models presented in Section 7.2.3,
we use tδ = 0.2s and t∆ = 1s in Algorithm 7.1. We use five different speed
intervals shown in Table 7.1. Note that such a discretization is a common
way to bin velocities to account for sparseness in real data, as the number of
samples per speed interval may vary significantly (Lago-Peñas et al., 2009;
Coutts et al., 2010; Gudmundsson and Wolle, 2014). Table 7.1 also presents
speed distributions for three different players: a goalkeeper, a defender, and
an attacking midfielder. On average, field players walk and jog and save
their energy for only a few sprints.

Results

Movement estimates for these three player roles are presented in Figure 7.4
using a Gaussian KDE with bandwidth equal to 1.0 for simplicity. Note that
there are small but distinctive differences between players’ ability to move.3

For example, the goalkeeper has a significantly lower probability of reaching
distant positions compared to the field players. However, the reason lies
not in her ability to move but in the lack of corresponding observations:

3Differences in Table 7.1 between the defender and the midfielder are significant according
to a χ2-test.
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Figure 7.4: Individual movement models for three different players with initial
speed in the range 14− 20 km/h in the direction of the x1-axis: goalkeeper (left),
defender (center), and midfielder (right).

goalkeepers hardly push forward and usually cover a smaller radius than
field players. The figures clearly show that the midfielder covers a wider
area and is, on average, moving faster than her peers. The few data samples
collected for the goalkeeper could be balanced with an average model; see
discussion in Section 7.4.

7.3 Zones of Control

7.3.1 Motivation

Movement models can be used to compute zones of control (or dominant re-
gions) of individual players and teams as a whole (Taki and Hasegawa, 2000;
Gudmundsson and Wolle, 2014; Horton et al., 2015). Below we formally
define dominant regions for the models presented in the previous section.
To do so, it is beneficial to recall the definition of the traditional movement
models that are inspired by physical laws. The definition of probabilistic
models is analogous and discussed later.

Let the function Γ yield the time s ∈ R≥0 needed to reach position x ∈ R2

for a player j at position xj
t moving with velocity vj

t in a given direction,
i.e., Γ

(
x | xj

t, vj
t
)
= s. This function is specific to a given physical model

governing player movements. In other words, for a given player, function
Γ yields the minimal time s that satisfies Equations (7.1) and (7.2) for the
Taki & Hasegawa and the Fujimura & Sugihara models, respectively. In Taki
and Hasegawa (2000), the concept of a player’s zone of control is defined as
follows.

Definition 7.1. The zone of control of player j is defined as the subset Aj of the
playing area A, where player j can arrive before any other player j′ ̸= j.
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Figure 7.5: Players with their movement models on a pitch. The ball trajectory is
depicted as black arrows.

Formally, this is to say that Aj ⊆ A is defined such that ∀x ∈ Aj:

j = arg minj Γ
(

x | xj
t, vj

t

)
.

It should be noted that interdependencies between players may be complex
enough to produce a player’s zone of control that is not a single connected
region (Taki and Hasegawa, 2000).

The zone of control of a team is defined analogously. Note that a different
perspective is taken in our setup by considering probabilistic movement
models for a given time horizon. That is, the zones of control are derived
based on density functions of possible players’ whereabouts. Therefore,
we obtain probability distributions of individual players over the playing
area. This is depicted in Figure 7.5. The computation of those regions using
probabilistic movement models is presented in detail below.

7.3.2 Problem Formulation

Let pj
t∆

(
x | xj

t−tδ
, xj

t, vj
t

)
be the movement model of the j-th player as intro-

duced in Equation (7.4). It quantifies the likelihood of player j to reach
position x given her current xj

t and last position xj
t−tδ

, velocity vj
t, and time

horizon t∆. The position x is controlled by the player that has the highest
likelihood, i.e.,

j = arg maxj∈{1,2,...,22} pj
t∆

(
x | xj

t−tδ
, xj

t, vj
t

)
,
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Algorithm 7.2 Exact computation of the zones of control

1: Input: Movement models pj
t∆

for players j = 1, 2, . . . , 22
2: Output: Sets A1, A2, . . . , A22

3: for j = 1, 2, . . . , 22 do
4: Aj = {x ∈ A | Ξt∆(x) = j}
5: end for

Algorithm 7.3 Finite approximation of the zones of control

1: Input: Movement models pj
t∆

for players j = 1, 2, . . . , 22
2: Output: Set B
3: B = ∅
4: for x ∈ G do
5: B = B ∪ {(x, Ξt∆(x))}
6: end for

assuming that there are 22 players. Hence, we can define a function

Ξt∆ : A → {1, 2, . . . , 22}, x 7→ arg maxj∈{1,2,...,22} pj
t∆

(
x | xj

t−tδ
, xj

t, vj
t

)
that determines the index of the dominating player. Thus, the zone of control
of a player j is given as the set of all points Aj = {x ∈ A | Ξt∆(x) = j} that are
controlled by her. It should be noted that ties may occur if the likelihood of
two or more players is equal. If ties are broken, then the set {A1, A2, . . . , A22}
is a partition of A. The procedure is summarized in Algorithm 7.2.

7.3.3 Approximating Zones of Control

Unfortunately, running Algorithm 7.2 is not practicable. This is because the
set A ⊂ R2 is not iterable since it is uncountable. A typical workaround
is to use a finite approximation of the playing area (Nakanishi et al., 2009;
Lucey et al., 2012; Narizuka et al., 2014; Franks et al., 2015). Let G ⊂ A be a
finite grid over A containing nx1 · nx2 equally spaced points in A with (axis-
aligned) distances ∆ to each other. The player domination is then computed
using G rather than A, which yields a finite approximation of the zones of
control with precision ∆. The smaller ∆ is, the better the approximation. The
procedure is presented in Algorithm 7.3. For visualization purposes, the set
B = {(x, Ξt∆(x)) | x ∈ G} can then be used to compute the zones of control
by assigning each position x ∈ A the same label as its closest neighbor from
the grid G.
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Figure 7.6: Zones of control for different movement models. Black plays from left
to right. The two arrows attached to player positions indicate their whereabouts
one and two seconds ago, respectively.

7.3.4 Empirical Results

We now compare zones of control obtained by a Voronoi tessellation, the
movement models by Taki & Hasegawa and Fujimura & Sugihara, respec-
tively, and the proposed data-driven movement model for the same situation.
Figure 7.6 shows the resulting regions where arrows indicate directions and
velocities of movements.

The top left shows a Voronoi tessellation and implements the assumption
that every player is able to run in any direction equally fast, hence ignoring
actually observed movements. In other words: the closest player always
wins, and borders of controlled zones are half cuts between players. The
assumption leads to implausible zones of control, as we showcase on the
example of the white team playing right to left. The white player on the
right-wing, for example, has a large zone, although she is running towards
the center of the pitch. Most of the controlled area of that player lies in her
back, and she would need to turn before being able to head in that direction.
The Voronoi model clearly overestimates the right-wing of the white team.
By contrast, their left-wing is underestimated. Although the left-winger
pushes forward and although her direct opponents only move slowly and
head towards the center of the pitch, her zone is small. In contrast to Voronoi
tessellations, the proposed approach in the upper right part of the figure
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clearly eliminates the depicted limitations. For the white team, the zone
of the right-winger is realistically small, and the zone of the left-winger
realistically large.

Computing controlled zones using the movement model by Taki &
Hasegawa leads to the bottom left figure. Borders between zones are often
curly as a direct consequence of the nested circles that originate from the
assumption that players may accelerate in any direction unbounded (see
Figure 7.2). The zone of the white left-winger evolves drop-like from the
actual player position. The underlying movement model also assigns a
big part of the right half of the pitch to the black team, although white
players are closely positioned, and some of them even move in this direction.
Figure 7.6 exhibits the limitations of the approach by Taki & Hasegawa.

The movement model by Fujimura & Sugihara corrects some of the
limitations of the model by Taki & Hasegawa, and, correspondingly, the
bottom right part of Figure 7.6 appears more realistic. For instance, similar
to the proposed approach, the zone of the white left-winger seems more
appropriate than the Voronoi-based zone. Nevertheless, this model has
other problems, as can be seen on the right-wing of the white team. The
zone of the winger has shrunk to almost zero, although her opponent is still
far away, and both are moving slowly.

To sum up, out of the four movement models, only the proposed ap-
proach leads to realistic controlled zones that are in line with player move-
ments and distances. Either of the competitors suffers from oversimplified
assumptions in the movement models and yield unrealistic zones of control.
Analyses that build upon one of the three competitors are likely to be crude
as they rely on rough approximations of reality. We include more examples
of the methods in Appendix A.

7.4 Discussion

The previous sections show theoretically and empirically that existing move-
ment models suffer from implausible assumptions. Particularly in the pre-
vious section, we observe the clear influence of such oversimplifications
in the resulting zones of control for Voronoi tessellations and underlying
movement models by Taki & Hasegawa and Fujimura & Sugihara.

The idea of this chapter is to avoid cumbersome definitions of complex
physics (and possibly oversimplifications) by simply observing player move-
ments. We propose a purely data-driven movement model that intelligently
combines all player movements into a probabilistic model. Depending on
the application at hand, either the full distribution, some quantile thereof,
or the convex hull of observed positions can be processed to compute reach-
able positions in a predetermined time. Further exploiting the probabilistic
nature of the model may provide confidence to possible movements. Empiri-
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cally, the resulting zones of control are intuitive and can be straightforwardly
interpreted with player movements and, hence, constitute a realistic picture
of a situation.

As a remark, we note that the zones of control for the three baseline
approaches are identical when no player is moving. This can be seen by
setting v = 0 in Equations (7.1) and (7.2) for Taki & Hasegawa and Fujimura
& Sugihara, respectively, which then reduces the resulting zones of control to
a Voronoi tessellation. The time needed to reach an arbitrary position is now
a strictly increasing function of the distance to that position. As Figure 7.2
shows, the greater the players’ velocities, the greater the differences of the
resulting zones.

However, also note that using positional data for estimating the move-
ments of players also comes with limitations. The angle estimation from
trajectory data used in Equation (7.3), for instance, is based on the assump-
tion that players always move forward. In other words, the model assumes
that the direction a player is facing is in line with her movement. This
is not always the case, as particularly goalkeepers often move backward.
Thus, the model would overestimate or underestimate the time needed for
turning around depending on the actual change of direction. A possible
remedy could be a better approximation of the angle θ rather than as used
in Equation (7.3) or devising the angle from an auxiliary data source. Using
positional data alone is, however, not sufficient to solve this matter.

The goalkeeper serves as an example of another problem of the proposed
approach as she is hardly running at full speed. Thus, just by observing her
movements on the pitch, one will hardly be able to assess her full potential.
The same problem occurs with players that are substituted for the first time
as the proposed approach does not apply off-the-shelf to unseen players.
The problem is also known as the cold-start problem, and similar instances
occur in recommendation scenarios (see, e.g., Son (2016)). To overcome this
problem, a two-component mixture model can be used. The first component
utilizes the actual (and continuously updated) movement model pj

nj of the
new player j, which is learned on nk points. The second component is
an average model pavg over all players (with a similar role) and their data
points. The idea is to blend the personalized component with the average
component until the former is accurate enough to be used alone. Hence, the
model is given by a convex combination of movement models

pj = λ · pj
nk + (1− λ) · pavg, with λ = min

(nk

n
, 1
)

.

Suppose nk = 0, then only the average model will be used. Once nk exceeds
the number of data points n, λ = 1 and the average model is weighted by
zero and hence automatically deactivated as desired. The required number
of observations depends both on the domain and a player’s speed. In the
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Figure 7.7: A mock-up showing possible passes.

case of soccer and for a given speed range, several thousands of samples
appear sufficient to produce satisfactory results. For a field player, those
samples can, for instance, be collected in a single match. However, in the
case of a goalkeeper, it is recommended to always maintain an additional
average movement model due to the small number of samples for higher
values of initial velocities as she mostly stands or walks during a match.

There are many possible use cases where realistic movement models may
give an edge toward existing techniques. For instance, player performance
indices that ground on the ability to move (Taki et al., 1996; Ueda et al., 2014)
may be revised accordingly. Similarly, player ratings that measure to what
extend their controlled zone contributes to the overall area controlled by
their team (Link et al., 2016; Harmon et al., 2016) may be revisited. Figure 7.7
shows a potential application that deals with estimating probabilities of
passing and pass completion given the context of the ball possessing player
to test the hypothesis that players try more difficult passes when they have
enough space. While the space is directly given by their zone of control,
pass interception and pass completion probabilities could be conditioned on
the available area to shed light on which player to attack in what situations
and also where to position the own defenders to intercept and defend the
receiving player possibly.

Along these lines, there is also the prediction of pass outcomes (Nakan-
ishi et al., 2009). The idea is to split the ball’s trajectory into small units that
are processed one after another. For every unit, the probability that a player
reaches the ball’s position during the lifespan of the unit is computed. If an
opposing player fulfills this criterion, she intercepts the ball, and the compu-
tation terminates. If no player intercepts the ball, the pass is completed after
processing the final unit.
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7.5 Conclusion

We proposed a novel data-driven method for estimating individual move-
ment models using positional data. The model is generated by conditioning
a player’s whereabouts after a given time on her initial position and veloc-
ity. We obtained tables of reachable (x1, x2) coordinates for every velocity
and time interval and proposed to turn these tables into a probabilistic
movement model using kernel density estimate. Movement models were
computed for every player individually, and the computation could be dis-
tributed on many machines to compute movement models for many players
and process many games at once. Empirically, we showed the limitations of
existing movement models and exemplified the contribution on the example
of zones of control. Computing these zones using existing approaches led
to crude approximation due to oversimplified assumptions in the respective
models. By contrast, the proposed movement models led to realistic and
intuitive zones of control.



Chapter 8

Contextual Movement Models

In the previous chapter, we proposed non-parametric probabilistic move-
ment models to quantify likelihoods within trajectories of movements using
kernel density estimates (KDEs). Although this solution is purely data-
driven and renders assumptions on underlying physics obsolete, we still
need to distinguish initial conditions (e.g., bins of velocities and time horizon
intervals). We addressed this by maintaining many, possibly differently pa-
rameterized, models. This turns the advantage of kernel density estimation
into a drawback: being non-parametric by design, predictive performance
does increase proportionally with data, but every new data point also in-
creases the computation time for the prediction. The same holds true for
memory requirements. This is rather impractical.

In this chapter, we provide a remedy to the issues of the KDE. We turn
conditional normalizing flows into novel movement models that consist of
only a single contextualized probabilistic model. This contextual model has
consistent prediction accuracies over all contexts, and its computation time is
independent of the amount of data, allowing for real-time applications. Nor-
malizing flows (NFs), as introduced in Chapter 3, provide a state-of-the-art
framework for learning densities using an invertible deep neural network.

The key contributions of this chapter are as follows. We (i) extend the
approach of conditional normalizing flows (Lu and Huang, 2020) in the
remainder to incorporate context into flow-based movement models. Hence,
our flow-based movement model is actually only a single model which can
be conditioned on several kinds of contexts, particularly more complex
ones than just bins of velocities and time horizon intervals. Furthermore,
we (ii) show how to incorporate additional contextual information such as
the relative positions of the other players. Empirically, we (iii) show that
the proposed contextual models predict the players’ trajectories more accu-
rately as measured in terms of log-likelihood. Finally, we (iv) demonstrate
that our contribution is efficient and allows for (near) real-time predictions
independently of the amount of data.

91
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8.1 Related Work

In Section 7.1 we already discussed related work regarding movement mod-
els. Hence, we now focus on normalizing flows, which recently emerged
as an attractive approach to learning densities. A significant advantage
over other methods for learning densities using neural networks is that
they allow the direct maximization of data log-likelihood. Alternatives such
as generative adversarial networks (GANs) (Goodfellow et al., 2014) and
variational autoencoders (VAEs) (Kingma and Welling, 2014; Rezende et al.,
2014) use instead surrogate learning objectives, such as the GAN adversarial
loss and the VAE evidence lower bound (ELBO), for this task. While this
does not hamper their use as generative models, they are inadequate for
estimating the likelihood of a given data point.

In the last few years, several different flow-based models were proposed.
A particular family of models, derived from NICE (Dinh et al., 2015), is
appealing due to their computationally efficient nature while being simple
to implement. Improvements such as RealNVP (Dinh et al., 2017) and Glow
(Kingma and Dhariwal, 2018) were proposed over the years, achieving state-
of-the-art performance to model complex, high-dimensional distributions
while keeping the attractive properties of NICE. Similarly, autoregressive
flow models such as NAF (Huang et al., 2018) and B-NAF (De Cao et al.,
2019) have been proposed. Particularly interesting are conditional normal-
izing flows (Winkler et al., 2019; Lu and Huang, 2020), an improvement
over Glow, allowing them to model distributions conditioned on continu-
ous variables. For an in-depth analysis of these and their relation to other
flow-based models, we refer the reader to Papamakarios et al. (2021).

8.2 Learning Flow-based Movement Models

8.2.1 Preliminaries

We consider the same notational setup as in Section 7.2.3. Hence, (xt)t∈R≥0

represents a trajectory of positions xt ∈ Rd at time t. The positional data
might come with additional information, the so-called context ct ∈ Rdc

at time t. An example for context is the velocity vector vt ∈ Rd, or its
magnitude, known as speed vt = ∥vt∥2, respectively.

To make the movement model location-invariant, we consider a local
coordinate system centered at the player’s current position and along the
last movement direction, just as in Chapter 7. The transformation g, as
introduced in Equation (7.3), allows us to transform a point of interest into
a local coordinate system given the current and past positions, which are xt
and xt−tδ

, respectively.



8.2. LEARNING FLOW-BASED MOVEMENT MODELS 93

Trajectory data Local coordinate system Base representation

g

x1

x2

z1

z2

x1
local

x2
local

x 2local

x 1loc
al

f

Figure 8.1: A summary of our approach. Left: triplets are extracted from a trajectory
using some current and previous position (black) as well as a future position (red)
reached within the time horizon t∆. Center: the future position is remapped using g
into a local coordinate system. The coordinates are centered at the current position
and aligned with the previous position. Right: points reached in time t∆ are
transformed using a conditional normalizing flow f. The flow f is optimized to
ensure that points under this transformation are distributed according to a Gaussian
base distribution.

8.2.2 Movement Models without Context

Instead of constructing a probabilistic movement model based on a kernel
density estimate as in Chapter 7, we now use a (conditional) normalizing
flow. Hence, a position x is represented in a local coordinate system as xlocal

using the transformation g before the normalizing flow f further transforms
it to the base representation z that matches a base distribution. An example
is depicted in Figure 8.1. Hence, the likelihood of a position x, that is, t∆ in
the future, can be evaluated via

pt∆ (x | xt−tδ
, xt, vt) = pFlow

t∆,V (g (xt−tδ
, xt, x)) ,

where pFlow uses the transformation f as outlined in Equation (3.3). In
this scenario, we still have a separate model for each time horizon t∆ and
speed vt. As an architecture for our flow model, we consider Glow (Kingma
and Dhariwal, 2018). Glow is built from three main transformations: ac-
tivation normalization (actnorm), 1× 1 invertible convolution, and affine
coupling. Those transformations, introduced in Section 3.3, are employed in
a multi-scale architecture, reshaping the image tensors to have fewer pixels
with more channels, referred to as squeezing. The channels are then split, and
further operations are only performed on half of them. This squeezing and
splitting scheme is performed several times for scalability. Squeezing, how-
ever, is not suitable for vectorial data, including d-dimensional positions.
Furthermore, the dimensionality of our setting curtails the computational
performance gains from splitting, allowing us to use the entire vector in
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Figure 8.2: Architecture of the (contextual) flow-based movement model: the
composition of the actnorm, permutation, and coupling transformations is repeated
multiple times to build the flow. The contextual part is shaded in gray. The
input to the flow is denoted as x and the output of the transformation is z. The
base representation z follows a predefined (base) distribution. In the conditional
variant, c denotes the contextual information, which can be used to characterize the
movement being modeled, such as speed. The networks CNca (conditional actnorm)
and CNcac (conditional affine coupling) augment the respective transformations
with contextual information.

every transformation of the flow. An overview of the non-contextualized
architecture we use is depicted in Figure 8.2 (non-grayed area).

A major benefit of this approach is the ability to compute predictions
independently of the data used for training. It only requires a number of
computations proportional to the data dimensionality d and the number of
transformations L employed. In other words, computing the likelihood of a
data point takes O(dL) time. Additionally, only the model parameters have
to be stored in memory, resulting in a significantly smaller memory footprint
than the KDE-based movement model proposed in Chapter 7 when dealing
with large data sets.

8.2.3 Contextual Movement Models

Our goal is now to unify the separate models and to propose s single con-
textual probabilistic movement model

p (x | xt−tδ
, xt, ct) = pCFlow (g (xt−tδ

, xt, x) |ct) .

In this setting, the contextual information ct at time t is, e.g., the speed
vt and time horizon t∆. Therefore, the transformations employed in the
normalizing flow should be able to take into account this additional in-
formation. A conditional flow-based model that appropriately addresses
those requirements is conditional Glow (c-Glow) (Lu and Huang, 2020).
As the name suggests, c-Glow is based on Glow (Kingma and Dhariwal,
2018). Nevertheless, the goal is to derive a contextualized model that can
be conditioned on arbitrary contexts. The most significant change is the
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addition of a conditioning network, denoted by CN(·), which replaces the
parameters of the actnorm and affine coupling layers with surrogates that
are predicted from the context c ∈ Rdc . Hence, a conditional probability
density can be devised whose log-variant is given by

log p(x|c) = log pz(z) +
L

∑
j=1

log
∣∣∣∣det J

f(θ(c))j
(zj−1)

∣∣∣∣ .

Here, log p(x|c) is the conditional counterpart to log px(x) as introduced
in Equation (3.4), and log pz(z) still refers to the base distribution, i.e., a
standard Gaussian. The parameters θ(c) of the transformations f(θ(c))j are
now dependent on the context c. Note that this does not change the com-
putation of the log-determinant of the Jacobian in both cases. The new
transformations with the addition of the conditioning network CN(·) are
detailed below.

Conditional actnorm. The scaling and offset vectors a and b are now
computed by CNca : Rdc → R2d as

(a, b) = CNca(c)

and the transformation is then carried out as in Equation (3.5). The original
initialization procedure for a and b (cf. Section 3.3) is no longer needed.

Conditional affine coupling. This transformation already computes its
scaling a and offset b parameters from NNcac : Rd′+d → Rd, similar to
the previously used NNac(·) in Equation (3.6). The change introduced by
conditioning on the context c is an additional input to NNcac(·), computed
by CNcac : Rdc → Rd, as

(log a, b) = NNcac(z2, CNcac(c)),

followed by the same operations as described for the affine coupling in
Section 3.3.

Figure 8.2 provides an overview of the complete normalizing flow model
with and without the conditioning on the context c. As shown in Figure 8.1,
learning contextual flow-based probabilistic movement models proceeds
as follows. Given positional data, triplets (A, B, C) are extracted from the
trajectories as depicted in Figure 7.1. The future position C in a time horizon
t∆ of interest is then represented in a local coordinate system for spatial
invariance. The positions which can be reached in time t∆ are then trans-
formed, using our normalizing flow model, into a representational space
that follows a standard Gaussian.
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The additional context taken into account by the model, while crucial
to its flexibility in dealing with a variety of movements observed in the
data, incurs little additional computational cost. As in the non-contextual
case, the time to compute the likelihood of a data point is O(dL), and the
amount of memory required is proportional to the number of parameters of
the model.

8.3 Experiments

We now evaluate our flow-based probabilistic movement models. First, we
conduct an in-depth analysis of our proposed approach and compare its
performance with several baselines. Second, we investigate whether using
the positions of the remaining players as additional contextual information
improves our movement model. For all experiments, we use data from
professional soccer.

8.3.1 Data

The tracking data from soccer consists of coordinates of each player and
the ball, recorded with camera-based systems at 25Hz for five professional
games from the German Bundesliga.1 Each game is encoded as a sequence
of triplets (x(t)1 , x(t)2 , vt) describing the x1 and x2 coordinates on the pitch in
meters and the current speed vt in km/h at time t for every player. Thus,
every game consists of about 25 · 60 · 90 = 135, 000 positions per player. The
x1 and x2 positions are relative to the origin. Hence, the coordinates are
within [−52.5, 52.5]× [−34.0, 34.0] ⊂ R2, since the dimensions of a standard
soccer field are 105× 68 meters. We use the first four games for training and
the last game for testing.

8.3.2 Baselines

We compare our model against the following baselines. The first baseline,
denoted as KDE, follows the approach introduced in Chapter 7 and deploys
kernel density estimates for the movement models. This approach is con-
sidered the current state of the art. We use a Gaussian kernel and select the
bandwidth using Scott’s rule (Scott, 2015). A second, straightforward base-
line simply estimates a two-dimensional Gaussian (mean and covariance) on
the point cloud S as introduced in Section 7.2.3; see, for instance, Figure 7.3.
We refer to this baseline as Gaussian. Third, we test a two-dimensional
histogram, again on the point cloud mentioned above. The histogram uses
an equally spaced grid over [−10, 30]× [−20, 20] with 1600 cells of size 1× 1

1We thank Deutsche Fußball Liga and Sportcast GmbH for providing the positional data.
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meter. Note that this range covers a larger space than depicted in Figure 7.3
and is suitable for all velocity ranges. We refer to this baseline as Histogram.

Depending on the experiment, we use different configurations. We
experiment with time horizons t∆ ∈ {1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0}, where
every value is in seconds. The baselines use the same speed discretization
as in Table 7.1 which is {[0, 1), [1, 7), [7, 14), [14, 20), [20, 40]}. Those values
are in kilometers per hour. Consequently, we train per baseline 7 · 5 = 35
different configurations, one per time horizon and speed range. As for the tδ,
denoting the time difference for estimating the direction in which a player is
moving, we again follow Brefeld et al. (2019) and use tδ = 0.2 seconds. We
show the influence of tδ in Appendix B.1.

The code for all baselines is written in Python using NumPy (Harris et al.,
2020) and SciPy (Virtanen et al., 2020). All experiments run on a machine
with an Intel Xeon CPU, 256GB of RAM, and an NVIDIA V100 GPU.

8.3.3 Evaluation Metrics

When evaluating and comparing movement models, it is important to quan-
tify how well a model explains the observed movements. In other words, a
movement model should be capable of showing where the agent or object
of interest will be in the near future. Consider a model that predicts a large
area of future positions. Although this model explains all future positions
by its sheer broadness, it is not concise. Hence, a good movement model
needs to be concise and accurate and, to fulfill both, the model has to find
an optimal trade-off between area and accuracy to estimate future positions
in the smallest area possible.

A natural measure for this trade-off is the (log-)likelihood. Since den-
sities are normalized by definition, larger areas possess lower point-wise
likelihoods while compact densities capture only trivial movements and do
not generalize well. As a consequence, a model achieving a good trade-off
will also achieve higher likelihoods.

We additionally aim to measure the complexity of the different ap-
proaches. The complexity of predicting a likelihood either scales in the
size of training data (KDE, see Section 7.2.4) or in the complexity of the
neural networks (flow-based models, see Section 8.2). We thus measure the
average evaluation time and report its quantity in seconds. Note that the
prediction speed remains constant for both the Histogram and the Gaussian
baseline.

A similar argument holds for memory footprints of the different ap-
proaches. The predictive performance of KDE is not only expected to de-
teriorate for data at large scales; it is also expected to require an excessive
amount of memory. Hence, we also analyze the memory requirements of
all evaluated methods and provide the number of variables (i.e., floats or
double precision) that need to be stored.
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Table 8.1: Neural network architectures are detailed as a sequence of fully connected
layers. The constants before and after arrows indicate the dimensionalities of input
and outputs for that layer, respectively, while SELU denotes the activation function.
The networks are part of the affine coupling NNac(z2) that operates on the second
part of the intermediate representation z2 ∈ Rd/2, the conditional actnorm CNca(c)
which uses the context c ∈ Rdc , and the conditional affine coupling NNcac(z2, c̃),
where c̃ = CNcac(c) ∈ Rd.

Network Architecture and Activation Functions

NNac (d/2) SELU−−−→ dhidden
SELU−−−→ dhidden

SELU−−−→ d

CNca dc
SELU−−−→ dhidden

SELU−−−→ dhidden
SELU−−−→ 2d

NNcac (d/2 + d) SELU−−−→ dhidden
SELU−−−→ dhidden

SELU−−−→ d

CNcac dc
SELU−−−→ dhidden

SELU−−−→ dhidden
SELU−−−→ d

8.3.4 Experimental Setup

We experiment with several configurations of the proposed models for a
thorough comparison of the unconditional and the conditional flow-based
movement models. The unconditional Flow uses the same time horizons
and speed discretizations as the baselines above. Hence, we consider as
many different models as the baselines for obtaining a fair comparison.
With Flow we intend to show that movement models based on normalizing
flows achieve the same or better predictive performance as the state of the
art. We introduce contextual information, given by ct = (vt, t∆), directly
as a part of a single model in CFlow. Here, we use the current speed vt
and the time horizon t∆ as context, just as for the baselines. Note that the
baselines are implicitly conditioned on the time horizon as well due to
maintaining different models for different intervals. Hence, the purpose
of CFlow is to have a unified model instead of many different ones. We
further evaluate a model called CFlow-extended, which leverages the other
players’ positions as additional contextual information. This model uses as
context ct = (vt, t∆, x̄rel

t ), where x̄rel
t ∈ R

1
2 dhidden is a permutation invariant

representation of the relative positions of the remaining players. We provide
details of how we compute this vector in Appendix B.2.

All models follow the architecture shown in Figure 8.2, repeating the
three depicted transformations (actnorm, permutation, and coupling) L = 8
times in sequence. The same applies to their contextual alternatives. For
unconditional and conditional flow-based models, the architectures of the
neural networks are outlined in Table 8.1. All networks use self-scaling
exponential linear unit (SELU) (Klambauer et al., 2017) activations, d denotes
the dimensionality of the input x, and dc is the dimensionality of the context
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Figure 8.3: Average log-likelihood values (22 players) per model relative to the
KDE baseline for various time horizons t∆. The specific values of the KDE are
stated in the upper x-axis.

which is for CFlow and CFlow-extended, dc = 2 and dc = 2 + 1
2 dhidden,

respectively. The size of the hidden dimensionality is set to dhidden = 16.
Just as the authors of Glow (Kingma and Dhariwal, 2018), we initialize the
weights and biases of the last layer of each neural network in Table 8.1 to
zeros for stability. This implies that the actnorm and affine coupling layers
are initialized to identity transformations before training.

The code of the flow-based models is written in Python using JAX (Brad-
bury et al., 2018). We employ the Adam optimizer (Kingma and Ba, 2015)
with a learning rate of 10−3. For stability, we clip gradients (Pascanu et al.,
2013) with norms larger than 20. The batch size is set to 1, 024 for all models
except the conditional models that condition on time horizon. A larger batch
size of 1, 024 ·Nt∆ is used to accommodate for different time horizons, where
Nt∆ denotes the number of different time horizons. All models are trained
for 100 epochs with no early stopping.

8.3.5 Results

Predictive Performance. We first evaluate the predictive performance of
the baseline movement models and compare them to the unconditional
Flow. To have a fair comparison, we deal with 35 different configurations
per model. We proceed as follows. We randomly sample a trajectory over
three minutes for every player from the test game, leaving us with 22 such
trajectories. Then, for several time horizons ranging from 1s to 4s, we
compare the average log-likelihood per trajectory and model as well as the
corresponding computation time for the prediction.
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Figure 8.4: Analysis of a sample trajectory. The bottom-right plot shows the speed
along the trajectory. Other plots depict log-likelihood values along the trajectory
for the Gaussian, Flow, and CFlow models for a time horizon of t∆ = 1s. Darker
colors in these other plots indicate the model estimates that position as less likely.
We also provide average log-likelihood values for each model in this trajectory. The
red star denotes the start of the trajectory. Black lines indicate model transitions
for the Gaussian and Flow models, which rely on speed binning. Black triangle
markers indicate an example where models behave distinctively. At those points in
the trajectory, the player starts accelerating and then slows down. CFlow maintains
a consistent quality of predictions. In contrast, the other two models do not.

Figure 8.3 shows the relative improvement of each model compared
to the KDE. Unsurprisingly, the average log-likelihoods of the KDE de-
crease for larger time horizons t∆, as the models become progressively more
uncertain with increasing t∆. It can be seen that the Flow model (green) per-
forms on par with the KDE (dashed red) while the Gaussian approximation
(brown) is almost consistently the worst. In addition, the performance gap
of the Histogram (dotted purple) closes for larger time horizons; however, it
underperforms compared to the KDE.

The relative improvement of CFlow (orange) and CFlow-extended (blue),
each of which are single contextual models, shows that they clearly domi-
nate all baselines by far. We credit this observation to conditioning. While
the other models use a predefined velocity discretization, both CFlow and
CFlow-extended adapt specifically to any velocity without the need for
binning intervals with identical model output. If we also include the other
players’ relative positions into the context and condition on it, the perfor-
mance increases further.
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Table 8.2: Evaluation time in seconds per model averaged over 22 players including
standard errors.

Model t∆ = 1.0s

KDE 774.3s ± 23.0
Histogram < 0.1s ± 0.0

Gaussian < 0.1s ± 0.0
Flow 0.5s ± 0.0

CFlow 0.1s ± 0.0
CFlow-extended 0.7s ± 0.0

The flexibility afforded by conditioning can also be seen in Figure 8.4,
which visualizes a trajectory of a soccer player drawn from the data. The
bottom-right part of the figure depicts the current velocities of the player. In
the remaining parts, the trajectory is colored according to the log-likelihood
values using the Gaussian, Flow, and CFlow models for a time horizon of
t∆ = 1s.

We also evaluate the average log-likelihood of this trajectory showing
that CFlow has the highest log-likelihood, meaning it predicts the move-
ment best. Once again, the Gaussian model yields the worst log-likelihood.
We credit this due to its implicit symmetry. While being symmetric for
moving left or right might be acceptable in this use case, the symmetry in
the orthogonal direction is clearly not present, as seen in Figure 7.3. Visual
inspection shows the effect of binning the velocities on the performance
of the Gaussian and Flow. The player accelerates and decelerates at the
positions marked by triangle markers while staying within a velocity bin.
Hence, the model is unable to adapt to those speed changes.

By contrast, the conditional CFlow takes those speed changes into ac-
count and adapts much better to the trajectory at hand. This is indicated
by a smooth transition of log-likelihood values and a higher average log-
likelihood of the trajectory. In summary, CFlow and CFlow-extended can
smoothly adjust to contextual changes such as speed and thus provide better
predictions at each point in time.

Time and Memory Requirements. Table 8.2 compares the predictive per-
formance of the competitors in terms of computation time. The numbers are
again averaged over 22 individual trajectories and are shown with their stan-
dard errors. The baselines Gaussian and Histogram take almost no time to
compute the predicted movements. KDE is consistently the slowest model
by orders of magnitude. The result clearly shows the impracticability of
KDE for (near) real-time applications and/or large data sets. Our proposed
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Table 8.3: Memory footprint per model. The memory demand is stated in terms of
floating point numbers which need to be saved.

Memory Demand

Model No. of Models per Model Total

KDE 35 variable 175,177,098
Histogram 35 1,600 56,000

Gaussian 35 6 210
Flow 35 2,360 82,600

CFlow 1 11,704 11,704
CFlow-extended 1 15,056 15,056

flow-based models are only marginally slower than the straightforward
competitors and, as expected, can be computed very efficiently.

The KDE baseline is not only the slowest approach when comparing
evaluation time; it also has the highest memory demand, as Table 8.3 shows.
This is due to the non-parametric nature of the approach. The more training
data is observed and integrated, the better the model. Trivially, integrating
more data into a KDE also means storing exactly these additional data. In
comparison, the Histogram baseline has a fixed grid and velocity binning
and, hence, a fixed memory footprint. The Gaussian exploits strong as-
sumptions (e.g., unimodality, symmetry) and needs the least amount of
memory but is quite limited in expressiveness. Our proposed flow-based
models have moderate memory requirements, which neither grow with
training data as the KDE nor with higher precision or finer-grained bins as
the Histogram.

8.4 Discussion

Binning velocities is a common trick in histogram-based movement models
since continuous movements can be treated as discrete events that are in-
stances of one or another bin. A major issue that is usually not appropriately
addressed is how to find the optimal size of bins for a problem at hand.
Often, optimal sizes are not equidistant but grow with the values of the
variable of interest, such as speed. The bins also induce hard thresholds
that may lead to treating similar values very differently if they end up in
two neighboring bins. The presented contextual models do not have these
limitations as they work directly on the continuous signal.

In the case of movement models, binning leads to maintaining several
models and renders the space and time complexity of the models highly inef-
ficient. By contrast, the contextual models do not rely on binning and simply
condition on all variables of interest such as current velocity, time horizon,
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Figure 8.5: An example of the set St∆ ,V (left) and corresponding kernel density
estimate (right) for a goalkeeper.

and even the position of the other players. Thus, we end up with only a
single model which is efficient and allows for (near) real-time processing.
Our experiments show that both contextual models are moreover achieving
superior performance in terms of log-likelihood and clearly outperform all
other approaches.

As another (straightforward) baseline, we incorporated a Gaussian in
the experiments. Naturally, a Gaussian is trivial to estimate and turns out
efficient in time and space. However, these advantages imply assumptions
on the densities being unimodal and symmetric. While some scenarios
may support these claims, others may suffer from this oversimplification,
as shown in Figure 8.5. It depicts the movements of a goalkeeper, and the
point cloud has clearly two modes. Estimating the density of the points
with a Gaussian introduces unnecessary errors by assigning a great deal of
probability mass to unlikely events. Again, the proposed contextual models
do not make any assumption on the nature of the densities and adapt to any
multi-modal distribution of points.

A practical application for movement models is to compute so-called
zones of control (cf. Section 7.3) that describe the areas which are controlled
by a player. The underlying idea is that the payer who controls the zone is
expected to arrive first at every position within this area (Taki and Hasegawa,
2000; Gudmundsson and Wolle, 2014; Horton et al., 2015; Spearman et al.,
2017; Brefeld et al., 2019). Figure 8.6 shows an example. Using any of the
CFlow models to compute the zones of control removes the necessity of
binning velocities and time horizons; computation time and memory re-
quirements are very low, even when training on massive amounts of data,
compared to KDE-based approach in Chapter 7. Thus, our models allow for
(near) real-time processing of live data and may be used in live analysis and
broadcasts to visualize key situations.
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Figure 8.6: Soccer pitch showing players and the controlled spaces per player
derived from the individual movement models.

Finally, while movement models, by definition, compute the area of
possible (near-)future positions, they do not allow for predicting positions.
Our contextual movement models, however, may overcome this issue by
explicitly conditioning the models also on positions of other players (CFlow-
extended) and the ball, ball possession indicators, etc. In principle, any
CFlow should adapt to the current positioning of players and ball on the
pitch, hence, shifting the probability mass towards areas that better represent
motions of professional athletes given the current situation. Although these
assumptions need to be confirmed in additional (empirical) studies and are
clearly out of scope for the present thesis, the sheer possibility indicates the
potential impact and importance of this line of work.

8.5 Conclusion

In this chapter, we studied the problem of learning movement models in a
purely data-driven fashion, which we evaluated on data from professional
soccer matches. We circumvented the limitations of previous approaches
and cast the problem as a conditional density estimation task. We exploited
characteristics of the low-dimensional problem formulation to devise condi-
tional normalizing flows for modeling movements. In contrast to the state
of the art, our contextual model consists of only a single model. Having
a conditional model proved important for the integration of contextual
information, such as velocities of movements. In principle, any relevant
information can be used as context. Moreover, they outperformed all com-
petitors by far when it came to predictive performance and turned out very
efficient. Their computation times were comparable to trivial baselines and
orders of magnitude faster than the state of the art.



Chapter 9

Principled Interpolation in
Normalizing Flows

Learning high-dimensional densities is a common task in unsupervised
learning. Normalizing flows (NFs) provide a state-of-the-art framework for
transforming complex distributions into simple ones: a chain of parametrized
bijective functions converts data into another representation that follows a
given base distribution. The log-likelihood of the data can then be expressed
as the log-likelihood of the base distribution and the log-determinants of
the Jacobians of the transformations.

In the previous chapter, we leveraged normalizing flows as density esti-
mators since our primary goal was to evaluate log-likelihoods. Now, we shift
our focus to generating new samples from a learned distribution. In flow-
based generative models, data are generated by drawing new samples from
a base distribution, which is usually a standard Gaussian. Those samples
are then mapped to real data using the aforementioned chain. A prevalent
operation is to linearly interpolate samples and consider the interpolation
path in data space. Such interpolations are, for example, frequently used to
evaluate the quality of the learned model and to demonstrate that the model
generalizes beyond what was seen in the training data (Radford et al., 2016).

In this chapter, we highlight the problems of vanilla linear interpolations
while using Gaussian base distribution and propose several approaches
to circumvent these problems. In summary, the key contributions of this
chapter are as follows: we (i) highlight interpolation issues in normalizing
flows using a Gaussian base distribution, (ii) propose to address those
issues by enforcing data to lie on specific manifolds and use appropriate
base distributions on them, and (iii) conduct quantitative and qualitative
empirical evaluations on several real-world image data sets. Finally, (iv)
our approach yields better interpolations as measured by Fréchet inception
distance (FID) scores, which have been shown to correlate highly with
human judgment of visual quality.
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Figure 9.1: Illustration of different interpolation paths of points from a high-
dimensional Gaussian. The figure also shows that, in high dimensions, points
are not concentrated at the origin.

9.1 The Interpolation Problem and a Simple Heuristic

When using a standard Gaussian as a base distribution (cf. pz(·) in Sec-
tion 3.3), the consequences for interpolation, however, are not immediately
apparent. Figure 9.1 shows a linear interpolation (lerp) of high-dimensional
samples from a Gaussian. The squared Euclidean norms of the samples
follow a χ2

d-distribution as indicated by the dashed black line. Data points
have an expected squared Euclidean norm of length d, where d is the di-
mensionality. This implies that there is almost no point around the origin.
As seen in the figure, the norms of a linear interpolation path (green line)
of two samples drop significantly and lie in a low-density area w.r.t. the
distribution of the norms (dashed black line) (White, 2016).

Instead of a linear interpolation (green line), an interpolation that pre-
serves the norm distribution of interpolants is clearly preferable (blue and
red lines): the blue and red interpolation paths stay in the data manifold and
do not enter low-density areas. The observation suggests that interpolated
samples with norms in a specific range should generally result in better
interpolations. This can be achieved, i.e., by shrinking the variance of the
density or norms (dashed lines), which yields a subspace or manifold that
has a fix norm. The blue path is obtained by a norm correction of the linear
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mean (µ)
face

654321start end

Figure 9.2: Two interpolation paths of samples from CelebA. Top: a linear interpo-
lation path. The central images resemble features of the mean face as annotated
in red. Bottom: an alternative interpolation path using a norm-correction. Note
that the first and last three images are almost identical as annotated in blue. Right:
decoded expectation of base distribution, i.e., the mean face.

interpolation via also interpolating the norms. Mathematically, that is

γ(λ) = ((1− λ)za + λzb)︸ ︷︷ ︸
linear interpolation

· (1− λ)∥za∥2 + λ∥zb∥2

∥(1− λ)za + λzb∥2︸ ︷︷ ︸
norm correction

, (9.1)

for endpoints za, zb and λ ∈ [0, 1]. We refer to this approach as norm-corrected
linear interpolation (nclerp). However, the depicted red lines also stay within
the manifold; hence it remains unclear how a unique interpolation path can
be obtained.

Figure 9.2 depicts two interpolation paths for faces taken from CelebA
(Karras et al., 2018) created using Glow (Kingma and Dhariwal, 2018), a
state-of-the-art flow-based model that uses a standard Gaussian as base
distribution. The leftmost and rightmost faces of the paths are real data,
while the other ones are computed interpolants. The face on the right
depicts the so-called mean face, which is given by the mean of the Gaussian
base distribution and is trivially computed by decoding the origin of the
space. The top row shows a linear interpolation similar to the green line in
Figure 9.1. The interpolation path is close to the origin, and the interpolants
consequentially resemble features of the mean face, such as the nose, mouth,
chin, and forehead shine, which neither of the women have. We highlight
those features in red in Figure 9.2.

By contrast, the bottom row of Figure 9.2 shows the norm-corrected
interpolation sequence (as the blue line in Figure 9.1): the background
transition is smooth and not affected by the white of the mean face, and also
subtleties like the shadow of the chin in the left face smoothly disappears
in the transition. The norm correction clearly leads to a better transition
from one image to the other. However, the simple heuristic in Equation (9.1)
causes another problem: the path after norm correction is no longer equally
spaced when λ values are equally spaced in [0, 1]. Hence, control over the
interpolation is lost. Implications of this can be seen in blue in the bottom
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endpoints lerp nclerp

Figure 9.3: Two examples showing the issues caused by a norm-corrected linear
interpolation (nclerp).

row of Figure 9.2, where the first and last three faces are almost identical.
We provide additional examples in Appendix C.

In Figure 9.3, we illustrate two examples, comparing a linear interpola-
tion (lerp) and a norm-corrected linear interpolation (nclerp) between points
from a high-dimensional Gaussian (green points). For equally-spaced λ
values in [0, 1], a linear interpolation yields an equally-spaced interpolation
path (red line). Evidently, the norm-corrected interpolation (blue line) keeps
the norms of interpolants within the range observed in data. However,
the interpolants are no longer evenly spaced along the interpolation path.
Hence, control over the interpolation mixing is lost. This problem is more
pronounced on the left example, where points 1 through 3 are closer to the
start point, while points 4 and 5 are closer to the endpoint. Consequently,
evaluations such as FID scores (Heusel et al., 2017) will be affected. Such
scores are computed by comparing two sets of samples, in this case, the real
data and interpolated data. As those points will be clearly more similar to
the endpoints, which are samples from the data set itself, the scores are in
favor of the norm-corrected interpolation.

9.2 Base Distributions on p-Norm Spheres

Motivated by earlier observations illustrated in Figures 9.1 and 9.2, we
intend to reduce ambiguity by shrinking the variance of the norms of data.
We achieve this by considering base distributions on restricted subspaces.
More specifically, we focus on unit p-norm spheres defined by

Sd
p =

{
z ∈ Rd+1

∣∣∣∣∣ ∥z∥p
p =

d+1

∑
j=1
|zj|p = 1

}
. (9.2)

We distinguish two choices of p and discuss the challenges and desirable
properties that ensue from their use. We consider p ∈ {1, 2} as those allow
us to use well-known distributions, namely the Dirichlet distribution for
p = 1 and the von Mises-Fisher distribution for p = 2.
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9.2.1 The Case p=1

For p = 1, the Dirichlet distribution defined on the standard simplex ∆d is a
natural candidate. Its probability density function is given by

p(s) =
1

Z(α)

d+1

∏
k=1

sαk−1
k with Z(α) =

∏d+1
k=1 Γ(αk)

Γ(∑d+1
k=1 αk)

for s ∈ ∆d, where Γ is the gamma function and αk > 0 are the parameters. In
order to make use of it, we also need to impose a non-negativity constraint
in addition to Equation (9.2).

Let z ∈ Rd be an unconstrained variable. The function ϕ : Rd →
(0, 1)d transforms z into a representation s on the standard simplex by first
transforming each dimension zk into intermediate values vk with

vk = σ (zk − log (d + 1− k))

which are used to write s ∈ ∆d as

sk =

(
1−

k−1

∑
l=1

sl

)
· vk,

where σ(·) denotes the sigmoid function. We note a few details of this
transformation. First, a property of ϕ is that 0 < ∑d

k=1 sk < 1. Therefore, a
point in ∆d can be obtained with an implicit additional coordinate sd+1 = 1−
∑d

k=1 sk. Second, the difference in dimensionality does not pose a problem
for computing its Jacobian as ϕ establishes a bijection within Rd while the
mapping to ∆d is given implicitly. Third, ϕ maps z = 0 to the center of the
simplex s = (d + 1)−11. Fourth, since s consists of solely positive numbers
which sum up to one, numerical problems may arise for high-dimensional
settings. We elaborate on this issue in Section 9.3.

The Jacobian Jϕ has a lower triangular structure and solely consists of
non-negative entries. Hence, the log-determinant of this transformation can
be efficiently computed in O(d) time via

log |det Jϕ| =
d

∑
k=1

log (vk(1− vk)) + log

(
1−

k−1

∑
l=1

sl

)
.

The inverse transformation ϕ−1 : Rd → Rd is given by

zk = σ−1

(
sk

1−∑k−1
l=1 sl

)
+ log(d + 1− k).
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The interpolation of two points a, b ∈ ∆d within the unit simplex is
straightforward. A linear interpolation (1− λ)a + λb using λ ∈ [0, 1] is
guaranteed to stay within the simplex by definition.

9.2.2 The Case p=2

For p = 2, data points lie on the surface of a d-dimensional hypersphere.
The von Mises-Fisher (vMF) distribution, defined on Sd

2, is frequently used
in directional statistics. It is parameterized by a mean direction µ ∈ Sd

2 and a
concentration κ ≥ 0, with a probability density function given by

p(s) = Cd+1(κ) exp(κµ⊤s),

with Cν(κ) =
κν/2−1

(2π)ν/2 Iν/2−1(κ)
,

where Iw denotes the modified Bessel function of the first kind at order w.

Again, let z ∈ Rd be an unconstrained variable. We employ a stere-
ographic projection, for both its invertibility and its Jacobian, whose log-
determinant can be efficiently computed. The transformation ψ : Rd → Sd

2
maps a point z ∈ Rd to a point s ∈ Sd

2 ⊂ Rd+1 on the hypersphere via

ψ(z) = s =

[
zρz

1− ρz

]
, with ρz =

2
1 + ∥z∥2

2
.

The transformation ψ, which has no additional parameters, ensures that its
image is on the unit hypersphere, allowing the use of a vMF distribution
to model p(s). Two points in Sd

2 are of special interest, namely the south
pole and the north pole, where the last coordinate of s is either −1 or 1,
respectively. By construction, the transformation is symmetric around zero
and sends z = 0 to the south pole, which we choose as the mean direction µ.
Furthermore, it is bijective up to an open neighborhood around the north
pole, as ρz → 0 whenever ∥z∥2

2 → ∞. For this reason, we avoid choosing
a uniform distribution on the hypersphere, which is obtained for κ = 0.
Figure 9.4 shows an example.

Contrary to the previous case, the log-determinant of Jψ alone is not
enough to accommodate the density change when transforming from Rd

to Sd
2 (Gemici et al., 2016). The correct density ratio change is scaled by√

det J⊤ψ Jψ instead, whose logarithm can be computed in O(d) time as

log
√

det J⊤ψ (z)Jψ(z) = d log
2

1 + ∥z∥2
2
= d log ρz,
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s ∈ S1
2

µ ∈ S1
2

Figure 9.4: A stereographic projection mapping z ∈ R1 to s ∈ S1
2 ⊂ R2 using the

north pole depicted as a black dot. For the vMF distribution we use µ ∈ S1
2 as the

mean direction.

with ρz given as stated above. The inverse transformation ψ−1 : Sd
2 ⊂

Rd+1 → Rd is

ψ−1(s) = z =
[s]1:d

1− [s]d+1
,

where [s]1:d denotes the first d coordinates of s and [s]d+1 is the (d + 1)-th
coordinate of s.

To interpolate points on the hypersphere, a spherical linear interpolation
(slerp) (Shoemake, 1985) can be utilized. It is defined as follows. Let sa and
sb be two unit vectors and ω = cos−1(s⊤a sb) be the angle between them. The
interpolation path is then given by

γ(λ) =
sin((1− λ)ω)

sin(ω)
sa +

sin(λω)

sin(ω)
sb, for λ ∈ [0, 1].

9.2.3 Sampling with Temperature

Prior research (Kingma and Dhariwal, 2018; Chen et al., 2019) indicates
that sampling with a low temperature yields better samples for a Gaussian
base distribution. Sampling with temperature refers to sampling from a
base distribution pT(z) ∝ p(z)−T2

. In the case of a standard Gaussian base
distribution, we obtain

p(z)
1

T2 ∝ exp

(
−

1
T2

2
z2

)
= exp

(
−1

2
z2

T2

)
,

which is equivalent to sample from a Gaussian with zero mean and stan-
dard deviation of σ′ = T. Since the squared Euclidean norm of a standard
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Gaussian sample follows a χ2
d distribution, i.e., ∥z∥2

2 ∼ χ2
d, a sample has an

expected length of E
[
∥z∥2

2
]
= d. A sample with a different standard devia-

tion can be obtained by first drawing a sample from a standard Gaussian
and then scaling it by T2. Therefore, by sampling with temperature T < 1,
we essentially sample closer to the mean, since

E
[
∥T · z∥2

2
]
= E

[
T2∥z∥2

2
]
= T2E

[
∥z∥2

2
]
= T2d.

An analogous change can be performed in a vMF distribution. Using
temperature, we have

p(z)−T2
= p(z)

1
T2 ∝ exp

( κ

T2 µ⊤z
)

,

which corresponds to having a vMF distribution with κ′ = κ
T2 . Consequently,

T → ∞ yields a uniform distribution on the hypersphere and T → 0 results
in sampling the mean direction µ.

9.3 Experiments

We now evaluate the restriction of a normalizing flow to a unit p-norm
sphere and compare them to a Gaussian base distribution. As we focus on a
principled way of interpolating in flow-based generative models, we employ
a fixed architecture per data set instead of aiming to achieve state-of-the-art
density estimation. We use Glow (Kingma and Dhariwal, 2018) as the flow
architecture for the experiments in the remainder of this section. However,
our approach is not limited to Glow, and the transformations and changes
in the base distribution can also be used in other architectures. We also do
not compare against other architectures as our contribution is a change of
the base distribution, which allows for obtaining better interpolations.

9.3.1 Performance Metrics and Setup

Performance is measured in terms of: bits per dimension (BPD), calculated
using log2 p(x) divided by d; Fréchet inception distance (FID) scores, which
have been shown to correlate highly with human judgment of visual quality
(Heusel et al., 2017); and kernel inception distance (KID) scores (Bińkowski
et al., 2018). KID is similar to FID as it is based on Inception scores (Salimans
et al., 2016). While the FID first fits a Gaussian distribution on the scores of
a reference set and a set of interest and then compares the two distributions,
the KID score is non-parametric, i.e., it does not assume any distribution
and compares the Inception scores based on maximum mean discrepancy
(MMD). We follow Bińkowski et al. (2018) and employ a polynomial kernel
with degree three for our evaluations.
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We measure bits per dimension on the test set and on interpolated sam-
ples. FID and KID scores are evaluated on generated and interpolated
samples and then compared to a reference set, which is the training data.
When generating data, we draw as many samples from the base distribution
as we have for training. For interpolation, we focus on interpolation within
classes and adopt regular linear interpolation for Gaussian-distributed sam-
ples, while using a spherical linear interpolation on the sphere for vMF-
distributed samples. In this operation, we sample n/5 pairs of images from
the training set and generate five equally spaced interpolated data instances
per pair, resulting in n new images. From those interpolation paths, we only
use the generated points and not the points which are part of training data.
Hence, we are only considering previously unseen data.

We also compare against the norm-corrected linear interpolation (nclerp) as
defined in Equation (9.1). Note that a linearly spaced interpolation path is
no longer linearly spaced after norm correction. The resulting interpolation
paths are composed of images located closer to the endpoints and thus bias
the evaluation. We include the results nevertheless for completeness and
refer to Section 9.1 for a detailed discussion.

The reported metrics are averages over three independent repetitions
and include standard errors. The code is written in Python using PyTorch
(Paszke et al., 2019), and all experiments run on an Intel Xeon CPU with
256GB of RAM using an NVIDIA V100 GPU.

9.3.2 Data

We utilize MNIST (LeCun et al., 2010), Kuzushiji-MNIST (Clanuwat et al.,
2018), and Fashion-MNIST (Xiao et al., 2017), which contain gray-scale
images of handwritten digits, Hiragana symbols, and images of Zalando ar-
ticles, respectively. All MNIST data sets consist of 60,000 training and 10,000
test images of size 28× 28. In addition, we evaluate on CIFAR10 (Krizhevsky
and Hinton, 2009), which contains natural images from ten classes. The data
set has 50,000 training and 10,000 test images of size 32× 32.

9.3.3 Architecture

Following Kingma and Dhariwal (2018), we employ the Adam optimizer
(Kingma and Ba, 2015) with a learning rate of 10−3, clip gradients at 50,
and use linear learning rate warm-up for the first ten epochs. Models were
trained on MNIST data and CIFAR10 using mini-batches of size 256 and 128,
respectively. All models are trained for 100 epochs without early stopping.
We keep all architectures as close as possible to Glow, with the following
deviations. For MNIST data, we use random channel permutations instead
of invertible 1× 1 convolutions. The number of filters in the convolutions
of the affine coupling layers is 128. In Glow terms, we employ L = 2 levels
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Table 9.1: Results for generative modeling averaged over three independent runs
including standard errors.

Test Sample

Base dist. BPD FID KID
M

N
IS

T
Gaussian 1.59 ± 0.06 34.53± 0.83 0.033± 0.001

vMF κ = 1d 1.46± 0.07 40.07 ± 2.46 0.037 ± 0.001

vMF κ = 1.5d 1.54 ± 0.09 40.39 ± 1.40 0.036 ± 0.001

vMF κ = 2d 1.82 ± 0.08 39.82 ± 0.26 0.038 ± 0.001

Dirichlet α = 2 1.76 ± 0.12 40.08 ± 0.72 0.039 ± 0.001

K
-M

N
IS

T

Gaussian 2.58 ± 0.11 35.34 ± 0.76 0.041 ± 0.001

vMF κ = 1d 2.63 ± 0.06 36.63 ± 0.37 0.041 ± 0.001

vMF κ = 1.5d 2.48± 0.06 35.00± 0.61 0.040± 0.001

vMF κ = 2d 2.51 ± 0.04 36.45 ± 0.42 0.041 ± 0.001

Dirichlet α = 2 2.50 ± 0.05 35.54 ± 0.39 0.040± 0.001

F-
M

N
IS

T Gaussian 3.24 ± 0.04 66.64 ± 1.29 0.064 ± 0.003

vMF κ = 1d 3.16± 0.03 60.45± 3.34 0.055± 0.005

vMF κ = 1.5d 3.30 ± 0.07 61.89 ± 1.29 0.056 ± 0.002

vMF κ = 2d 3.22 ± 0.06 60.60 ± 3.47 0.055± 0.004

C
IF

A
R

10

Gaussian 3.52 ± 0.01 71.34 ± 0.45 0.066± 0.001

vMF κ = 1d 3.43 ± 0.00 71.07 ± 0.78 0.069 ± 0.001

vMF κ = 1.5d 3.42± 0.00 70.58± 0.40 0.068 ± 0.001

vMF κ = 2d 3.42± 0.01 71.00 ± 0.28 0.068 ± 0.001

of K = 16 steps each. For CIFAR10, our models have L = 3 levels of K = 24
steps each, while the affine coupling layers have convolutions with 512
filters. The architecture is kept the same across base distributions, except
for the additional parameterless transformations to the restricted subspaces
introduced in Section 9.2.

When comparing base distributions, we consider the following hyperpa-
rameters. For the vMF distribution, we use concentration values for which
the partition function is finite. For consistency, the values we use are the
same multiples of the data dimensionality d for each data set. The concen-
tration values for the Dirichlet distribution are set to α = 2, which refers to
2 · 1d+1 ∈ Rd+1.

9.3.4 Quantitative Results

We first evaluate the generative modeling aspects of all competitors. Ta-
ble 9.1 summarizes the results in terms of bits per dimension on test data,
and FID and KID scores on generated samples for all data sets. Experiments
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Table 9.2: Results for interpolation averaged over three independent runs including
standard errors. Interpolations are in-class only and use five intermediate points;
lerp refers to a linear interpolation; nclerp refers to the norm-corrected linear inter-
polation (Section 9.1) and slerp refers to the spherical interpolation.

Base dist. Type BPD FID KID

M
N

IS
T

Gaussian lerp 1.33 ± 0.05 5.10 ± 0.14 0.003 ± 0.000

Gaussian nclerp 1.44 ± 0.06 5.12 ± 0.30 0.003 ± 0.000

vMF κ = 1d slerp 1.31± 0.09 3.84± 0.36 0.002 ± 0.000

vMF κ = 1.5d slerp 1.40 ± 0.10 4.22 ± 0.12 0.002 ± 0.000

vMF κ = 2d slerp 1.63 ± 0.10 4.45 ± 0.06 0.002 ± 0.000

Dirichlet α = 2 lerp 1.61 ± 0.10 5.81 ± 0.36 0.004 ± 0.001

K
-M

N
IS

T

Gaussian lerp 1.91 ± 0.17 19.71 ± 1.59 0.021 ± 0.002

Gaussian nclerp 2.15 ± 0.15 17.60 ± 1.48 0.020 ± 0.002

vMF κ = 1d slerp 2.08 ± 0.15 17.93 ± 3.72 0.020 ± 0.004

vMF κ = 1.5d slerp 1.80± 0.07 22.72 ± 2.65 0.025 ± 0.003

vMF κ = 2d slerp 2.03 ± 0.14 14.54± 2.51 0.016± 0.003

Dirichlet α = 2 lerp 1.81 ± 0.04 24.09 ± 2.35 0.026 ± 0.003

F-
M

N
IS

T

Gaussian lerp 2.84 ± 0.10 13.06 ± 0.62 0.007 ± 0.001

Gaussian nclerp 2.93 ± 0.03 7.80± 0.13 0.004 ± 0.000

vMF κ = 1d slerp 2.66± 0.03 12.16± 0.13 0.006± 0.000

vMF κ = 1.5d slerp 2.84 ± 0.07 12.19 ± 1.07 0.006± 0.001

vMF κ = 2d slerp 2.70 ± 0.05 15.11 ± 0.85 0.008 ± 0.001

C
IF

A
R

10

Gaussian lerp 2.64 ± 0.06 58.63 ± 1.26 0.053 ± 0.001

Gaussian nclerp 3.32 ± 0.01 14.29± 0.16 0.010 ± 0.000

vMF κ = 1d slerp 2.78 ± 0.05 51.08± 0.37 0.010 ± 0.000

vMF κ = 1.5d slerp 2.66 ± 0.05 55.23 ± 5.14 0.047 ± 0.005

vMF κ = 2d slerp 2.58± 0.08 52.65 ± 3.34 0.044 ± 0.004

with the Dirichlet base distribution were not successful on all data sets. The
restrictions imposed to enable the use of the distribution demand a high
numerical precision since every image on the simplex is represented as a
non-negative vector that sums up to one. Consequently, we only report re-
sults on MNIST and Kuzushiji-MNIST. Using the vMF as a base distribution
clearly outperforms the Gaussian in terms of bits per dimension on test data.
As seen in the FID and KID scores, we perform competitive compared to
the Gaussian for generating new data. Hence, the generative aspects of the
proposed approach are either better or on par with the default choice of a
Gaussian. Note that lower BPD on test data and lower FID/KID scores on
generated data might be obtained with more sophisticated models.

We now evaluate the quality of interpolation paths generated via various
approaches. Table 9.2 shows the results in terms of bits per dimension, FID,
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1 2 3 4 5start end

Figure 9.5: Four interpolation paths of the norm-corrected linear interpolation
(nclerp) depicting the problem of almost repeated endpoints (highlighted in blue)
and thus a biased evaluation on CIFAR10.

and KID scores for all data sets. The experiments confirm our hypothesis
that an interpolation on a fixed-norm space yields better results as measured
in BPD, FID, and KID scores. The norm-corrected interpolation yields better
FID and KID scores for Fashion-MNIST and CIFAR10. However, this heuris-
tic produces interpolation paths that are biased towards the endpoints and
hence are naturally closer to observed data, thus yield better FID and KID
scores. This is depicted in Figure 9.5. More results for general interpolations
within classes and across classes are provided in Appendix C.

9.3.5 Qualitative Results

Figure 9.6 displays interpolation paths with five interpolants of four pairs of
data from CIFAR10, created using the same architecture trained on different
base distributions. We pick the best performing model on BPD on test data
from the multiple training runs for each base distribution. We visually
compare a linear interpolation using a Gaussian base distribution against a
spherical linear interpolation using a vMF base distribution with different
concentration values. Naturally, the images in the center show the difference
and the effects resulting from the choice of base distribution and, hence, the
interpolation procedure.

Overall, the linear interpolation with a Gaussian tends to show mainly
darker objects on a brighter background (almost black and white images) in
the middle of the interpolation path. This is not the case for the spherical
interpolations using a vMF base distribution. Specifically, in the second
example showing dogs, the checkerboard background of the left endpoint
smoothly fades out for the vMF (κ = 2d) model while the Gaussian shows
an almost white background. A similar effect happens in the last pair of
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Figure 9.6: Interpolation paths of four pairs of data from CIFAR10 using different
models.
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Figure 9.7: Interpolation paths of two pairs of data from Fashion-MNIST using
different models.

images, highlighting the weaknesses of a linear interpolation once again. By
contrast, the vMF models generate images where those effects are either less
prominent or non-existent, suggesting a path that strictly follows the data
manifold. We provide more interpolation paths on CIFAR10 in Appendix C.

Figure 9.7 depicts interpolation paths with five interpolants on two pairs
of data from Fashion-MNIST. In both cases, the Gaussian model produces
suboptimal images with visible changes in color, which is not consistent
with the endpoints. Furthermore, there is visible deformation of the clothing
items.

9.4 Related Work

Interpolations are commonplace in generative modeling, being particularly
useful for evaluating them. White (2016) proposes to use a spherical linear
interpolation to circumvent the problems depicted in Figure 9.1 in gener-
ative adversarial networks (GANs) and variational autoencoders (VAEs).
However, as the Gaussian is kept as a base distribution, the difference
in norms causes problems similar to the norm corrected approach. The
problem of interpolation is also investigated by Agustsson et al. (2019) for
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GANs. Specifically, they show that the quality of the generated images in
the interpolation path improves when attempting to match the distribution
of norms between interpolants and the GAN prior, such as a Gaussian or
uniform distribution. The problem with the distribution mismatch while
interpolating is also studied in Kilcher et al. (2018).

Brehmer and Cranmer (2020) propose to simultaneously learn a mani-
fold and corresponding normalizing flow on it. By contrast, in this chapter,
we employ a prescribed manifold, i.e., a p-norm sphere, on which the inter-
polation can be done in a principled way. Davidson et al. (2018) and Xu and
Durrett (2018) investigate the vMF distribution as a prior of VAEs. Their
motivation is to encourage the model to learn better latent representations
on data with hyperspherical structure. While results show improvements
over a Gaussian prior, properties of our interest, such as interpolation, are
not addressed. Similarly, Sinkhorn autoencoders (Patrini et al., 2020) employ
principles that allow them to work with different latent spaces and priors,
such as the simplex with the Dirichlet prior and a hyperspherical space with
the vMF prior.

Employing normalizing flows on non-Euclidean spaces, such as the
hypersphere, was first proposed by Gemici et al. (2016). They introduce a
mapping for doing normalizing flows on hyperspherical data. The main
difference from our setting is that the data is already on a sphere and is
moved to Rd, an unrestricted space, performing the entire flow in there
instead, before moving back to the sphere. This avoids defining a flow on
the sphere, which is studied in Rezende et al. (2020) for tori and spheres.
Furthermore, Bose et al. (2020) define normalizing flows on hyperbolic
spaces, which is beneficial for graph-structured data.

Arvanitidis et al. (2018) provide a geometric analysis of autoencoders,
showing that they learn latent spaces which can be characterized by a Rie-
mannian metric. With this, interpolations follow a geodesic path under this
metric, leading to higher quality interpolations. Compared to our contri-
bution, these approaches do not change the standard priors but propose
alternative ways to interpolate samples. In contrast, we propose an orthogo-
nal approach by changing the base distribution and imposing constraints
on the representation in our training procedure. Consequently, standard
interpolation procedures, such as the spherical linear interpolation, can be
used in a principled way.

9.5 Conclusion

In this chapter, we highlighted the limitations of linear interpolation in
flow-based generative models using a Gaussian base distribution. As a
remedy, we proposed to focus on base representations with a fixed norm
where the interpolation naturally overcomes those limitations and intro-
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duced normalizing flows onto unit p-norm spheres. Specifically, we showed
for the cases p ∈ {1, 2} that we can operate on the unit simplex and unit
hypersphere, respectively. We introduced a computationally efficient way
of using a Dirichlet distribution as a base distribution for the case of p = 1
and leveraged a vMF distribution using a stereographic projection onto a
hypersphere for the case p = 2. Although the former suffered from nu-
merical instabilities in a few experiments, our experimental results showed
superior performance in terms of bits per dimension on test data and FID
and KID scores on interpolation paths that resulted in natural transitions
from one image to another. This was also confirmed by visually comparing
interpolation paths on CIFAR10 and Fashion-MNIST.
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Conclusions

This thesis dealt with unsupervised representation learning. Specifically,
we considered two orthogonal views to representation learning. First, we
changed the representation of a data set in terms of its sample size and
selected representative subsets for various learning tasks. The goal was that
machine learning models trained on those small subsets learn approximately
the same model as on all data and perform competitively at a much smaller
cost. Second, we transformed the representation of data in terms of the
dimensions to facilitate specific tasks such as density estimation and inter-
polation. We derived multiple novel algorithms and concepts that advance
the current state of the art for both scenarios. Theoretical and empirical
evaluations showed that our contributions outperform existing baselines on
several metrics and data sets.

The Sample Size View

We first introduced the concept of the frame and investigated its use for
two learning tasks, namely archetypal analysis (AA) and linear regression,
within the setting of optimal experimental design (OED). The frame consists
of the data points on the boundary of the data set and can be seen as extreme
data points. Computing this subset in high dimensions with existing meth-
ods is challenging. Hence, we proposed a new and efficient way based on
the well-known non-negative least squares (NNLS) (Lawson and Hanson,
1995) optimization algorithm. We then showed that the frame serves as a
representative subset for archetypal analysis. This matrix factorization can
be seen as an approximation of the boundary of data with a pre-defined
number of vertices, making the frame a natural candidate. Another learning
task in which the boundary of data is highly informative is linear regression,
specifically in the setting of optimal experimental design. Considering the
dual formulations of often-used optimality criteria showed, extreme points
of the boundary will most likely contribute to the solution. Hence, we lever-
aged our proposed frame concept and showed empirically that computing
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OED on the frame yields competitive results in much less time. Besides,
we showed how to compute the frame in kernel-induced feature spaces by
having access only to the kernel matrix. This allows for using the frame
concept in primal formulations and dual versions of learning problems. We
also showed theoretically that some kernel functions will always yield a full
frame. In other words, all points belong to the boundary, which means that
all of them are informative in highly non-linear settings. In summary, the
idea of using the boundary of data as a representative subset turned out to
work well in practice: competitive results were obtained in a much shorter
time, allowing for learning at much larger scales.

Although the frame worked empirically well for archetypal analysis, it
had some shortcomings. First, the size of the representative subset is an in-
herent property of every data set and hence cannot be freely chosen. Second,
the representative subset comes with no theoretical guarantees on the per-
formance. As a remedy, we were the first to propose coresets for archetypal
analysis. Coresets are (weighted) subsets of data that are representative and
come with theoretical guarantees in terms of a bound on the loss function
on the data and the computed coreset. The size of the coreset is directly
linked to the probability that the bound holds and how tight that bound
is. Furthermore, the computation of the coreset for AA is highly efficient
as it scales linearly in the number of data points. We provided a rigorous
theoretical analysis of the proposed coreset and backed our evaluation with
empirical results on large data sets. Our contribution rendered archetypal
analysis feasible for large data sets, comes with theoretical guarantees, and
is straightforward to implement.

The Dimension View

The second part of this thesis dealt with a change of representation in terms
of dimensions. We began by studying movement models, which are key
to spatio-temporal problems and help us predict the movements of objects
such as animals, particles, or players. We derived probabilistic movement
models along trajectories from positional data. A change of representation
into a local coordinate system allowed us to learn a location-invariant dis-
tribution of possible whereabouts. At first, we employed a kernel density
estimate (KDE) as a non-parametric density estimator and maintained a
separate model per context. As contextual information, we used the time
horizon, i.e., the time offset in the future for which we want to have the
prediction, and the initial velocity. Compared to traditional movement mod-
els, our proposed approach does not rely on unrealistic assumptions on the
underlying physics since we use a purely data-driven approach. We then
leveraged our probabilistic movement models to derive so-called zones of
control. In the example of soccer, every player has an area or zone on which
she arrives first and hence controls that zone. Hence, the zones induce a par-
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tition of the playing area or pitch. Empirically, we showed that our models
produce better and more realistic zones of control than baseline competi-
tors. However, using KDEs came with issues. Contextual information was
sub-optimally handled, and the non-parametric nature of the KDE implied
increasing computation and memory requirements with every new data
point. As a remedy, we proposed the usage of normalizing flows, which
are state-of-the-art density estimators based on invertible neural networks.
Employing a conditional version of a normalizing flow allowed us to use a
single contextual model instead of the previously used bag of KDE models.
Our experimental evaluation confirmed that the prediction performance
drastically increased, while the computational effort remained static for a
growing data set. In addition, the contextual model allowed for condition-
ing on more complex information, such as the relative positions of the other
players.

After employing normalizing flows as density estimators, we used them
as generative models. The chain of transformations that transforms data
into a representation that follows a simple base distribution allows for easy
generation of new data due to its invertibility. A prevalent operation in
generative modeling is to linearly interpolate samples and thus generate
new data. We highlighted issues when using a standard interpolation and a
Gaussian base distribution at the same time. Those issues caused either de-
teriorated the generative performance visually or introduced biases towards
the expectation of the base representation, as we demonstrated. The problem
is that linear interpolates leave the data manifold, which a high-dimensional
Gaussian imposes. As a remedy, we enforced a specific manifold on which
it is easy to interpolate. Specifically, we used the hypersphere and the prob-
ability simplex as manifolds and the von Mises-Fisher (vMF) and Dirichlet
distributions on those manifolds. To use those manifolds, we proposed
appropriate transformations that move from an unrestricted space to the
manifold. We then conducted quantitative and qualitative empirical evalua-
tions on various well-known image data sets. Our proposed approach did
not only convince visually by yielding more natural interpolation paths, but
it also produced better interpolations as measured by bits per dimension
(BPD), Fréchet inception distance (FID) scores, and kernel inception distance
(KID) scores. Hence, we were able to produce better interpolations without
sacrificing generative performance.
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Future Work

In this thesis, we considered the two aforementioned views on unsupervised
representation learning rather independently. Besides, we put our focus
on different objectives, i.e., scalability and the facilitation of operations.
However, some settings concern both views simultaneously. One example
is privacy, which is about preserving private information for specific users.
Since representative subsets are usually (weighted) subsets of data, any
subset will contain original data points that might reveal private information.
Thus, a natural question is how to derive representative subsets which
preserve differential privacy. Moreover, privacy is not only of interest for
data summaries but also for generative modeling. Another example that is
relevant for both views is the setting of fairness in machine learning. Here,
the goal is to reduce biases and assure fairness. Such biases might be of
algorithmic nature or inherently present in the data. It can be expected
that representative subsets also carry inherent biases. Thus, it should be
studied whether those subsets introduce bias and how fair representative
subsets can be derived. Finally, the most important research direction is
the combination of both views. For example, when dealing with data sets
that are large in sample size and dimensionality, we could first compute
a representative subset and then reduce the dimensionality. However, the
same could be done in the reversed order. Since both operations are usually
approximations and thus introduce errors, it is important to study how to
combine both views optimally. Last but not least, an important question
that follows is whether and how the combination of both views can be done
simultaneously.
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Appendix A

Appendix of Probabilistic
Movement Models and Zones
of Control

To shed more light on the different movement models and their implication
on the zones of control, the following Figures show four exemplary situa-
tions for Voronoi-based movement models, approaches by Taki & Hasegawa
and Fujimura & Sugihara as well as the proposed probabilistic movement
model.

Figure A.1 shows perhaps the most relevant situation for coaches and an-
alysts. The probabilistic movement model on the top right clearly identifies
a scoring opportunity for the white team. The white player in the center of
the pitch creates a large zone of control behind the defending black players.
If the ball possessing player plays the ball into this zone, the white player
may have enough time to control the ball and to create a one-on-one with
the goal keeper. Except for Taki & Hasegawa, the baselines fail to detect this.

In general, Figure A.2 shows that the baselines either lead to unnatural
square- and rectangle-like shapes (Voronoi and Fujimura & Sugihara) or
implausible drop-like areas (Taki & Hasegawa) as a consequence of implicit
assumptions and constraints in the models. Our approach allows to capture
movements irrespectively of the resulting shapes of the zones as there are
no assumptions on the movements.

Velocities are generally an issue for the baseline approaches. Figure A.3
shows an example where we focus only on the ball possessing player and
the white striker that runs towards her. The region in the Voronoi-based
approach are clearly too small for the running player. By contrast, Taki
& Hasegawa and Fujimura & Sugihara overestimate the impact of the ap-
proaching white player and render the ball possessing player outside of her
own region of control. The approach by Taki & Hasegawa even credits a
surprisingly large area to the second white player from the left. Interestingly,

143



144 APPENDIX A. APPENDIX OF CHAPTER 7

Figure A.1: Illustration of a scoring opportunity for the white team.

this player is almost standing and only gets an area this large because the
zones of the other players evolve drop-like into the direction of movement.
A remedy to such artefacts is to compute the controlled zones with underly-
ing probabilistic movement models. The respective figure on the top right
shows realistic areas that are easily interpreted.
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Figure A.2: Implicit assumptions in baselines constrain possible shapes of zones.
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Figure A.3: High velocities not appropriately captured by baselines.



Appendix B

Appendix of Contextual
Movement Models

B.1 Influence of tδ
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Figure B.1: Evaluation of the impact of tδ.

Figure B.1 depicts the log-likelihood values of CFlow for the same setting
as Figure 8.3, but now also varying tδ. The figure shows that there is little
influence from varying tδ when compared to t∆. Although a choice of
tδ = 0.1s seems to be better, we use tδ = 0.2s just as in Chapter 7.

B.2 Details of CFlow-extended

CFlow-extended uses contextual information given by ct = (vt, t∆, x̄rel
t ),

which extends the current speed of the player vt and the time horizon t∆ by
the positions of the other players, relative to the player under consideration,
i.e., x̄rel

t . For soccer, there are R = 21 remaining players whose relative
positions are summarized in the set X rel

t = {x(1)t , . . . , x(R)
t }.
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Table B.1: Network architectures for CFlow-extended.

Network Architecture and Activation Functions

gpair 2d SELU−−−→ dhidden
SELU−−−→ dhidden

SELU−−−→ dhidden

gglobal dhidden
SELU−−−→ dhidden

SELU−−−→ dhidden
SELU−−−→ 1

2 dhidden

However, instead of simply stacking those positions into a vector, we
leverage an aggregated representation x̄rel

t ∈ R
1
2 dhidden to circumvent the

problem of ordering those players. Here, dhidden is the dimensionality of
the aggregated representation x̄rel

t . The latter is obtained by employing a
relation network (Santoro et al., 2017) and defined as

x̄rel
t = gglobal

(
1

R2

R

∑
i=1

R

∑
j=1

gpair

(
x(i)t , x(j)

t

))
,

where both gpair : R2d → Rdhidden , gglobal : Rdhidden → R
1
2 dhidden are small feed-

forward neural networks with architectures outlined in Table B.1. The out-
put of this aggregation step, x̄rel

t , is then used by the conditioning networks
CNca(c) and CNcac(c) whose input dimensionalities increase by 1

2 dhidden.
An example of the relation network is depicted in Figure B.2. The remainder
of the flow is then carried out in the same way as CFlow.

Figure B.2: An example of the relation network with only four objects x(i)t for

simplicity. The colored nodes represent the objects x(i)t .
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Appendix of Principled
Interpolation in Normalizing
Flows

mean (µ)
face

654321start end

Figure C.1: Two additional interpolation paths of samples from CelebA. Left: Linear
(1st and 3rd row) and norm-corrected (2nd and 4th row) interpolations paths. Right:
decoded expectation of base distribution, i.e., the mean face.

C.1 Additional Interpolation Paths on CelebA

Figure C.1 depicts two additional interpolation paths of images taken from
CelebA. Analogously to Figure 9.2, the top row shows a linear interpolation
and the bottom row an interpolation with norm correction as introduced
in Equation (9.1). While this correction guarantees that the norms of in-
terpolants stay within the observed range of data, we note that this is a
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Figure C.2: Samples generated from the models for CIFAR10 (top left), Fashion-
MNIST (top right), Kuzushiji-MNIST (bottom left), and MNIST (bottom right).
Per data set, we show one row of samples from Gaussian, vMF (κ = 1d), vMF
(κ = 1.5d), and vMF (κ = 2d), where the order is top to bottom.

rather ad-hoc way to perform the interpolation as we will point out in the
remainder.

The leftmost and rightmost faces in Figure C.1 are real data while the
remaining ones are interpolants. The mean face shown on the right hand
side is clearly visible in the central interpolants; e.g., the glasses disappear
in the top row around the center and then reappear while the lips in the
third row become more prominent towards the center. We credit both to the
properties of the mean face. In contrast, the norm-corrected interpolation
does not suffer from distortions by the mean face and has many desirable
properties, but also a major limitation. The first and last interpolants are
very close to the end points, which are real data. Figure 9.5 depicts the same
phenomenon for CIFAR10.

C.2 Samples from the Models

Figure C.2 shows twelve samples per model. The figure essentially shows
that the choice of the base distribution does not influence the quality of
the generated samples. Changing the base distribution thus leads to more
natural interpolations without sacrificing generative performance. Note
that better looking samples can be produced with a more sophisticated
architecture, but this is not the goal of this chapter.

C.3 Interpolations Across and Within Classes

Table C.1 depicts the same experiments as shown in Table 9.2. The dif-
ference, however, is that the interpolations are no longer restricted to be
within classes but uniformly sampled and thus also contain interpolations
across classes. Using the vMF as a base distribution clearly outperforms the
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Table C.1: Results for interpolation averaged over three independent runs including
standard errors. Interpolations are within and across classes and use five interme-
diate points; lerp refers to a linear interpolation; nclerp refers to the norm-corrected
linear interpolation (Section 9.1) and slerp refers to the spherical interpolation.

Base dist. Type BPD FID KID

M
N

IS
T

Gaussian lerp 1.34 ± 0.06 9.78 ± 0.50 0.007 ± 0.001

Gaussian nclerp 1.50 ± 0.12 11.66 ± 1.06 0.009 ± 0.001

vMF κ = 1d slerp 1.34 ± 0.10 6.70 ± 0.46 0.005 ± 0.001

vMF κ = 1.5d slerp 1.41 ± 0.09 6.65 ± 0.20 0.004 ± 0.000

vMF κ = 2d slerp 1.65 ± 0.09 8.31 ± 0.20 0.006 ± 0.000

Dirichlet α = 2 lerp 1.61 ± 0.10 8.96 ± 0.32 0.006 ± 0.000

K
-M

N
IS

T

Gaussian lerp 2.00 ± 0.16 31.51 ± 2.53 0.034 ± 0.003

Gaussian nclerp 1.85 ± 0.18 29.76 ± 2.44 0.033 ± 0.003

vMF κ = 1d slerp 2.15 ± 0.13 29.39 ± 5.66 0.032 ± 0.006

vMF κ = 1.5d slerp 1.65 ± 0.06 37.35 ± 3.49 0.041 ± 0.004

vMF κ = 2d slerp 2.09 ± 0.13 23.74 ± 4.41 0.026 ± 0.005

Dirichlet α = 2 lerp 1.90 ± 0.04 37.80 ± 4.30 0.042 ± 0.005

F-
M

N
IS

T

Gaussian lerp 2.84 ± 0.04 16.93 ± 0.06 0.011 ± 0.000

Gaussian nclerp 2.86 ± 0.03 13.61 ± 0.52 0.009 ± 0.000

vMF κ = 1d slerp 2.69 ± 0.02 20.10 ± 2.11 0.012 ± 0.001

vMF κ = 1.5d slerp 2.78 ± 0.05 17.56 ± 1.46 0.009 ± 0.001

vMF κ = 2d slerp 2.72 ± 0.06 21.41 ± 0.79 0.013 ± 0.001

C
IF

A
R

10

Gaussian lerp 2.82 ± 0.04 63.17 ± 0.99 0.059 ± 0.001

Gaussian nclerp 3.33 ± 0.01 16.83 ± 0.24 0.013 ± 0.000

vMF κ = 1d slerp 2.93 ± 0.04 56.13 ± 0.38 0.049 ± 0.000

vMF κ = 1.5d slerp 2.85 ± 0.04 59.89 ± 4.95 0.054 ± 0.004

vMF κ = 2d slerp 2.79 ± 0.06 57.14 ± 3.45 0.051 ± 0.004

Gaussian in terms of bits per dimension on test data. The only exception is a
tie on MNIST. This is caused by the same effect that caused Figure 9.1: since
the norm drops when conducting a linear interpolation, the interpolants are
much closer to the mean. Hence, they possess higher likelihoods in terms
of the base distribution and yield better scores, because bits per dimension
is a rescaled negative log-likelihood. The results in terms of FID and KID
scores on general interpolations are in line with the results in Table 9.2:
the vMF base distribution yields better scores on MNIST and K-MNIST.
The norm-corrected linear interpolation (nclerp) yields lower FID and KID
scores on K-MNIST and CIFAR10. We credit this to the biased evaluation as
discussed in Section 9.1.
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C.4 Additional Interpolations on CIFAR10

Figure C.3 shows interpolation paths on four additional pairs of images
from CIFAR10. The order is the same as in Figure 9.6. The first row shows
the Gaussian, the second, third, and fourth rows depict the vMF with κ ∈
{1d, 1.5d, 2d}, respectively. Within the top left part, the Gaussian prior yields
the worst interpolation path since the airplane loses its wings. The vMF
(κ = 1d) shows the most natural transition. While a meaningful transition of
the images in the top right and bottom left parts is not obvious, the Gaussian
base distribution fails to produce a smooth transition of the background and
falls back to white. In contrast, all vMF models yield a smooth change of
background. The interpolation of the cars depicted in the bottom right part
shows an example where both the Gaussian as well as the vMF (κ = 1.5d)
have issues.
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Figure C.3: Additional interpolation paths of four pairs of data from CIFAR10
using different models.
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