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Deutsche Zusammenfassung

In dieser Dissertation werden fortgeschrittene nichtlineare Regelungsstrategien und Minimum-Varianz-
Schätzalgorithmen kombiniert, um die Schätz- und/oder Regelgüte bei Regelungs- und Fehlerzustand-
serkennungsaufgaben für jene physikalischen Systemtypen aus den Bereichen Elektromobilität und kon-
ventioneller Antriebstechnik zu verbessern, die Potential für Verbesserungen bezüglich Nachhaltigkeit
oder Leistung aufweisen. Die anwendungsspezifischen Neuerungen im Hinblick auf nichtlineare Kalman-
Filter-Methoden sind:

• Verbesserte Ladestandsschätzung für Lithium-Ionen-Akkuzellen, basierend auf einem neuartigen,
selbst-adaptiven EKF, das einen polynomialen Kurven-Fit hoher Ordnung als Zerlegung der un-
sicherheitsbehafteten, nichtlinearen Ausgangsgleichung verwendet (mit absichtlicherweise redun-
danten Basen für die Zerlegung und mit einer reduzierten Anzahl von Parametern), wobei die
Polynomkoeffizienten durch das EKF selbst angepasst werden.

• Offset-freie Online-Schätzung der Zeitverzögerung (Totzeit) zwischen zwei periodischen Signalen
von etwa gleicher Form, die ein ausgeprägtes (zueinander unkorreliertes) Messrauschen aufweisen,
basierend auf einer Approximation fraktionaler Ordnung der transzendenten Übertragungsfunkti-
on der Totzeit, die als Modell in einem neuartigen EKF verwendet wird.

• Verwendung von zwei (E)KFs (eines für das lineare Subsystem und eines für das nichtlineare Sub-
system eines neuartigen, mehrstufigen piezohydraulischen Aktors) in einer kaskadierten Schlei-
fenstruktur, um die Rechenlast der Schätzung zu reduzieren, wobei die Schleifenstruktur durch
geschickte Wahl geeigneter „Schnittstellen“ zwischen den beiden Beobachtern erst ermöglicht wird
(u.a. durch die Verwendung einer gemeinsamen Systemmodellgleichung in beiden Beobachtern).

Auch die Innovationen in Bezug auf nichtlineare Regelungsmethoden basieren auf Beobachtern:

• Gleitzustands-Drehzahlregelung eines Gleichstrommotors, der nichtlinearer Reibung und unbe-
kannten Lastmomenten ausgesetzt ist, verbessert durch ein kontinuierliches, zustandsrückfüh-
rungsbasiertes „äquivalentes Stellgesetz“ und mit einem neuen intelligenten Adaptierungssche-
ma für die Amplitude des diskontinuierlichen Schaltanteils (für reduziertes chattering und so-
mit weniger Energieverbrauch/Stellgliedverschleiß), das wiederum ermöglicht wird durch eine
linear-modellprädiktive Meta-Regelung des bereits geregeltem Systems mit Taylor-linearisiertem
Systemmodell, wobei eine beobachterbasierte Störgrößenkompensation (durch ein KF mit einem
Doppelintegrator-Störmodell) für model-matching-Zwecke erforderlich ist.

• Direkte Drehzahlregelung von permanentmagnet-erregten dreiphasigen Synchronmotoren, die eine
hohe spezifische Leistung (bezogen auf das Volumen des Bauraums) haben, basierend auf einer
neuartigen Gleitzustands-Regelung in einem mit dem Läufer rotierenden d, q-Koordinatensystem
und mit einem neuen „äquivalenten Stellgesetz“ für beide Systemeingänge, und mit einer sekun-
dären Gleitoberfläche, um die beiden Ströme (im d, q-System sind es nur zwei für das dreiphasige
System) auf der Trajektorie mit minimalen Strömen für das erforderliche Drehmoment zu halten,
wobei diese komplexe Regelungsstrategie ohne Messung des Rotorwinkels arbeitet (dank eines
ebenfalls neuartigen EKF, das alle Zustände im statorfesten α, β-Koordinatensystem sowie das
Stör-/Lastmoment und dessen Ableitung schätzt).

In allen Fällen wurden Verbesserungen (im Vergleich zu den in der Literatur beschriebenen Methoden) in
Bezug auf die Regel- und Schätzgüte erzielt und mittels Simulationsstudien oder Experimenten belegt.
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English abstract

In this dissertation, advanced nonlinear control strategies and nonlinear minimum-variance observation
are combined, in order to improve the estimation and/or tracking quality within control and fault
detection tasks, for several types of systems from the fields of electromobility and conventional drivetrain
technology that have some potential for sustainability or performance improvements. The application-
specific innovations in terms of nonlinear Kalman filter methods are:

• Improved state of charge estimation for Lithium-ion battery cells, powered by a novel self-adaptive
EKF that uses a high-order polynomial curve fit as a decomposition of the uncertain nonlinear
output equation with intentionally redundant bases, and with a reduced number of polynomial
parameters that are adapted online by the EKF itself.

• Online estimation of the time delay between two periodic signals of roughly the same shape that
have pronounced uncorrelated noise, based on a fractional-order approximation of the transcendent
transfer function of the time delay which is used as a model in a novel kind of EKF.

• Using two (E)KFs (one for the linear subsystem and one for the nonlinear subsystem of a new
kind of multi-stage piezo-hydraulic actuator) in a cascaded loop structure in order to reduce the
computation load of the estimation, by appropriate “interfacing” between the two observers (using
one shared system model equation, among other aspects).

The innovations in terms of nonlinear control methods are powered by observation, as well:

• Sliding mode velocity control of a DC drive that is subject to nonlinear friction and unknown
load torques, enhanced by an equivalent control law, and with a new intelligent switching gain
adaptation scheme (for reduced control chattering and, thus, less energy consumption and actuator
wear), which is powered by Taylor-linearized model predictive control, which in turn requires
observer-based disturbance compensation (by a KF with a double-integrator disturbance model)
for model-matching purposes in order to function correctly.

• Direct speed control of permanent-magnet three-phase synchronous motors that have a high power-
to-volume ratio, based on sliding mode control in a rotating d, q coordinate system, with a new
equivalent control method that exploits both system inputs and with a secondary sliding surface to
ensure compliance with the current-trajectory of maximum efficiency for the required torque, and
which works without measurement of the rotor angle (thanks to a new kind of EKF that estimates
all states in the stationary α, β coordinate system, as well as the disturbance/load torque and its
derivative).

In all instances, improvements (compared to methods existing in the literature) in terms of control and
estimation performance have been achieved and confirmed using simulation studies or real experiments.
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Preliminary remarks

0.1 Thesis-related publications
Parts of the content of this dissertation have already been disseminated to the scientific community by
the author, as peer-reviewed journal and book chapter publications:

• Polynomial augmented extended Kalman filter to estimate the state of charge of Lithium-ion bat-
teries [1], published in the IEEE Transactions on Vehicular Technology.

• An extended Kalman filter for time delays inspired by a fractional order model [2], published within
the Lecture Notes in Electrical Engineering book series by Springer.

• Tracking control of a piezo-hydraulic actuator using input-output linearization and a cascaded
extended Kalman filter structure [3], published in the Journal of the Franklin Institute.

• Gain adaptation in sliding mode control using model predictive control and disturbance compensa-
tion with application to actuators [4], published in Information (MDPI).

Instead of citing these publications within the chapters, the assignment of the papers to the chapters
is given in Table 0.1, which also indicates the author’s contribution to each paper in detail, marked by
his initials (B.H.). While these publications were written together with Prof. Dr.-Ing. Paolo Mercorelli

Table 0.1: Authors’ contributions to publications [1–4]
Chapter 2 3 4 5

Content from publication [1] [2] [3] [4]

Supervision P.M. P.M. P.M. P.M. and H.A.

Conceptualization B.H. and P.M. B.H. and P.M. B.H. and P.M. B.H.

Methodology B.H. and P.M. B.H. and P.M. P.M. and H.A. B.H., H.A. and P.M.

Formal analysis B.H. and P.M. P.M. P.M. and H.A. H.A.

Software development B.H. B.H. B.H. B.H.

Visualization B.H. B.H. B.H. B.H.

Writing B.H. and P.M. B.H. and P.M. B.H., P.M. and H.A. B.H., P.M. and H.A.

(P.M., doctorate supervisor), and two also with Prof. Dr.-Ing. Harald Aschemann (H.A., University
of Rostock, Germany), the author was the main contributor for all of them, and also the first and
corresponding author. Another two peer-reviewed journal papers were published in collaboration with
two former Leuphana PhD students. In terms of methods, they fit the topic of the dissertation in
a broader sense. However, they treat physical systems from fundamentally different fields and are,
therefore, not part of this document.

• Extended Kalman Filter for Temperature Estimation and Control of Peltier Cells in a Novel In-
dustrial Milling Process, written together with Alexandra Mironova [5] and published in the IEEE
Transactions on Industry Applications.
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• An Extended Kalman Filter as an Observer in a Control Structure for Health Monitoring of a
Metal-Polymer Hybrid Soft Actuator, written together with Manuel Schimmack [6] and published
in the IEEE/ASME Transactions on Mechatronics.

0.2 Structure of the dissertation
The structure of this dissertation is illustrated in Fig. 0.1, where content descriptions of the five chapters
and information about composition and classification can be found. To aid cursory comprehension at a
glance, each chapter begins with a short summary that also serves as a contextual transition, followed
by content taken from the corresponding papers.
While the chapters treat different applications (categorizable into combustion engine and electromo-

bility systems) and can be read independently, they share many characteristics in terms of the methods
that are employed, refined, or derived. The chapters with example applications from the field of elec-
tromobility are particularly innovative in terms of the methodology, while those chapters using example
applications from the field of combustion engine technology additionally deal with innovative practical
developments.

Obviously, all chapters exploit state observers as a common theme, and some also disturbance ob-
servers (chapters 5-6), in order to achieve different nonlinear control (chapters 4-6) or estimation goals
(chapters 2-3).

Figure 0.1: Structure of the dissertation with common features and distinctions.
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1 Introduction

This dissertation deals with advanced nonlinear control methods and state/disturbance observation
algorithms using minimum variance estimation and disturbance compensation. On the one hand, the
focus is on using these two approaches to design more intelligent, adaptive control architectures that
are specifically derived for selected, important physical systems. On the other hand, this work considers
observers for other uses, apart from control purposes in the classic sense, in several scenarios. Observers
are an integral component of supervision and fault detection systems and are, therefore, often used
when there are corresponding non-functional requirements, for example to ensure operational safety
(like monitoring each cell in batteries within electric vehicles to avoid thermal runaway).
In terms of application examples treated in this work, the focus is not only on electromobility (that

is, electrical drive technology and electrochemical energy storage), but also on conventional engine
technology, since internal combustion engines are a justifiably phased-out, yet still necessary, transitional
technology that holds some untapped efficiency gains, even today. These topics can be considered as
important fields for a more sustainable near-term future of the engineering sciences, and specifically
their applications, both in mobility of people or cargo and in industry.
Estimation/observation of states1 is an important field in modern control engineering since the space-

flight pioneering era in the 1960s, because, in addition to noise suppression of measured output variables,
it also makes it possible to estimate quantities that are not measurable (or are not desirable to be mea-
sured) by exploiting existing knowledge about the system (that is, a model). Depending on the approach
and the system, it is possible to obtain estimates that are at least as accurate as the measured value
(if the state variable is measurable at all), but usually even more accurate. Today, one of the most
ubiquitous occurrences of this principle is the navigation of a car using GPS or similar satellite-based
localization services. While the position measurement is always done via satellite signal, it is usually
not accurate enough – at least for non-military users – for advanced car navigation features, like lane
detection. However, all cars come with relatively accurate speed sensors (or even directional awareness,
for steer-by-wire systems), which can be incorporated as additional measurements into an observer for
improved localization accuracy, compared to pure GPS localization. (This can also be taken one step
further, using acceleration sensors.) This approach is also called sensor fusion, which became a rather
overloaded buzz word in the scientific engineering community in recent years.
Traditionally, robustness against parameter variation or disturbances and tracking performance2 have

been conflicting goals in the field of applied control. Practitioners often resort to proportional-integral-
derivative (PID) controllers as they are readily available in various dedicated hardware and software
modules and require little tuning effort if one of the many existing tuning heuristics is applied, or if
an accurate model is known for controller tuning within simulation studies, or if the practitioner is
experienced with the type of system to be controlled. Also, PID often performs well enough in the
industry, using few (or even single) state feedbacks, and can be tuned to guarantee safe operating
conditions at all times – at the cost of a not particularly dynamic response. One notable exception
to this general trend is the chemical/pharmaceutical industry, where model predictive control (MPC,
from the field of optimal control) has already been used for several decades, enabled by the (usually)
very slow processes and, hence, very large sampling times in which optimal or suboptimal setpoints and
commands can be computed by means of online optimization. Also, this industry often has huge savings

1state variables (abbreviated as states in this work) of a physical system are usually all energy-storing variables, such
as speed (kinetic energy), height or spring displacement (potential energy), electrical current (inductance) or voltage
(capacity).

2the ability to quickly and accurately follow/track a prescribed, continuously or discontinuously changing trajectory
signal.
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potentials, in case of large quantities or high value of the educts and products.
Advanced control methods from the (relatively new) fields of optimal control and robust control have

the capability to dissolve, or at least improve, this trade-off between robustness and tracking performance
that is present with PID control. The base concept is to incorporate knowledge about the system, as a
mathematical model, during the constructive derivation of the control laws. Since this has to be done
case by case for each type of system and each set of system parameters, and should – ideally – also be
mathematically proven to be asymptotically stable for all realistic working conditions, these advanced
approaches are still not very common in actual, real-world applications. In fact, stability proofs become
much harder or even impossible if state observers are present in the control loop. However, as mentioned
before, state observers are necessary in the numerous cases where some states are not measurable, but
are required by the chosen advanced control strategy.
Many control engineers work exclusively on a theoretical basis, often not even considering specific real-

world systems but, instead, rather abstracted classes of systems, evaluating their control algorithms in
simulations using synthetic numerical examples. This dissertation, on the other hand, aims to fall
right into the notorious trench between theory and practice in control engineering (but perhaps a little
closer to the practice side). While the (realistic) example systems treated in this work may not offer
much money-saving potential like the chemical industry, significant control performance improvements
(compared to classic PID control) have been achieved. Rigorous mathematical convergence proofs or
stability analyses involving the state/disturbance observer in the loop are not given anywhere in this
work3, due to the complications mentioned above, but the derived algorithms are always implemented
and thoroughly tested either in simulation studies using Matlab/Simulink, or even using dedicated
hardware test-benches, for evaluation and validation.

1.1 Mathematical fundamentals
State estimation/observation algorithms are called observers; they always consist of a combination of
a-priori existing model4 knowledge about the system and a-posteriori available measured values.
Notable historical milestones of this estimation principle is the Luenberger observer, named after the

US-American electrical engineer David Gilbert Luenberger, and the Kalman filter (KF). The Luenberger
observer, arranged in parallel to the real system in state-space form (see Fig. 1.1), simulatively calculates
(predicts) the system outputs using an identified system model. The difference of these predicted
outputs and the measured outputs (= prediction error) is then weighted with a constant gain matrix
and fed back into the system model, in order to determine the states. In this sense, one can speak
of a regulated/controlled algorithm, in analogy to the classical P-controller with additional feedforward
control. The gain matrix, typically denoted by L, can be tuned using pole placement methods, which
poses another similarity with control.
The KF, named after the Hungarian mathematician Rudolf Emil Kálmán (who passed away only

recently, in 2016), has a structure very similar to the Luenberger observer (even though its scope and
derivation is entirely different), and automatically adapts the gain matrix with which the estimation
error is fed back. The discrete-time form (being the most practice-relevant, due to the omnipresence
of digital control systems) of the KF for linear time-invariant (LTI) systems can be seen in Fig. 1.2.
Note that the discrete-time Luenberger observer has an identical structure; the only difference lies in
the adaptation of the feedback gain matrix that is done by the KF. This matrix is calculated based on
the solution of a (in discrete-time: algebraic) Riccati differential equation, involving the dynamics of
the covariances, in such a way that the covariance (more precisely: the trace of the covariance matrix),
which describes the system uncertainty, is minimized. Therefore, the KF is also called the minimum
variance estimator. It can be extended to the nonlinear case, see Fig. 1.3 where the extended Kalman
filter [7] (EKF) is shown within a control loop. The EKF is not the only nonlinear extension of the KF,

3in case of sliding mode control, as in chapters 5 and 6, the stability proof is inherently included in the derivations.
4model in this context means the system dynamics formulated in state space, resulting in a system of first-order differential
equations. This is why differential equations for all states are best suited for the observer-oriented modelling.
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but the one that is most commonly found in the literature. The (E)KF is one of the most widely-used
observers today, due to its optimality (under certain mathematical preconditions) and relatively simple,
iterative implementation, and is the common denominator of all chapters of this dissertation.

Figure 1.1: Block diagram of the continuous-time Luenberger observer. The gray blocks represent the
real system, modelled as LTI, with known parameters.

Figure 1.2: Block diagram of the discrete-time KF algorithm for LTI systems, where K(k) is adapted
accordingly. The 1/z blocks represent the unit delay for one step size Ts (with corresponding
ICs). In×n is the identity matrix where n is the system order (state vector size). Matrices
Ad = In×n + ATs and Bd = BTs in case of explicit Euler discretization with step size
Ts. For constant feedback gain K(k) = Ld, this is equivalent to the discretized version of
the continuous-time Luenberger observer with gain L, which can also be discretized using
explicit Euler as Ld = LTs.

1.1.1 Observability and choice of measured outputs
An important property of systems is their observability, which formally is a sufficient condition for the
existence of an observer. A system is called observable if its initial state can be reconstructed using
the system model and progressions of the inputs and outputs over a finite time interval [8]. Practically,
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Figure 1.3: Schematic of the discrete-time extended Kalman filter algorithm within a control loop.

observability allows to reconstruct the states of the system (at any past point in time), using information
about past and current values of the inputs/outputs and the system model. See Table 1.1 for an overview
of rank conditions for observability of the most important classes of systems. Note that these rank

Table 1.1: Observability rank conditions (simplified) for different classes of systems
Linear time-invariant [8] Analytically varying [8] Nonlinear [9]

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

ẋ(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t)

ẋ(t) = f(x,u)
y(t) = h(x)

O =


C

CA
CA2

. . .
CAn−1

 O(t) =


O0
O1
O2
. . .

On−1

 O(x,u, t) =


O0
O1
O2
. . .

On−1



O0(t) = C(t)
Oi+1(t) = Oi(t)A(t) + dOi(t)

dt
=



∂h
∂xT
∂Lf h
∂xT
∂L2

f h
∂xT

. . .
∂Ln−2

f h
∂xT


=



∂h
∂xT
∂O0f
∂xT
∂O1f
∂xT

. . .
∂On−2f
∂xT



rank(O) = n rank(O(t)) = n rank(O(x,u, t)) = n
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conditions only provide a qualitative yes/no predication, but no quantitative measure (index/metric) of
the observability. Numerous quantitative observability measures have been reported in the literature, for
example the one by Lückel and Müller [10] which is based on eigenvectors and eigenvalues (hence, usable
only for linear systems), the evaluation of the observability Gramian matrix [11] (for linear and nonlinear
systems, thanks to local linearization), or the one recently proposed by Letellier et al., [12] (for nonlinear
systems). However, all of the approaches mentioned above suffer a lack of comparability across systems,
as they are influenced by the scale of the system’s states, parameters, and/or dynamics. However,
particularly the measure by Letellier et al. has some convenient uses during the design stage of feedback
controllers for a specific system, as it allows to determine which system outputs should be measured
(and also what the influence of different sensors is going to be, provided the sensor model is known) and
which outputs are less important in order to maintain “enough” observability for the specific control
goals. Another interesting (but, in this context, less important) aspect of the observability property is
its kinship with the controllability property of a system. In fact, the two are often described as dual
properties [8]. For systems that naturally have state-regions of “low observability”5, as for example the
one treated in chapter 2 (where a decomposition with intentionally redundant bases is employed as a
fix), there are some work-arounds to keep the observer from “falling asleep” (also called dropping-off
phenomenon, where new measurement information no longer corrects the estimates). A new streaming
in the literature is observability-oriented control [13] that considers such regions of low observability and
aims to avoid them, based on some kind of observability metric, with or without specified thresholds.

1.1.2 Observer-oriented modelling
Apart from model accuracy requirements, verification/validation, and maintaining the system’s observ-
ability also in its model, there are some further aspects that should be considered when deriving models
(that is, formulating differential equations describing each state’s dynamics) for the purpose of observer
design. An important aspect is the size of the model, i.e. the number of states whose interaction should
be modelled and observed. This number, often denoted by n, is a good indicator of the computational
load that is generated by evaluating the model numerically (for prediction). For linear and linearized
systems of order n, state transition matrices6 are n×n-dimensional, so in case of matrix multiplications,
the (theoretical worst case) computation time is proportional to the square of the number of states. For
physical systems with many energy-storing state variables, like that in chapter 4, it can be sensible to
split the system into several subsystems. This is especially reasonable if one subsystem is much faster
than the other ones. In chapter 4, for example, the oil pressure dynamics are treated in a dedicated
subsystem since they are, a.) much faster than the mechanical system that consists of springs and
dampers, and b.) nonlinear, unlike the rest of the system, thus requiring a different type of observer.
Splitting the model in two parts requires for interfacing. In this sense, states that have impacts on
other states’ dynamics within more than one subsystem must be considered as new inputs/outputs of
these subsystems, in order to maintain the correctness of the overall model. It is sensible to keep the
number of states as low as possible in a model that is to be used within observers, not only for the
mentioned computational efficiency considerations, but also for estimation robustness. This aspect sur-
faces in chapter 3, where the time delay is (in a first step) approximated using a linear low pass filter.
Theoretically, the transfer function of the time delay requires an infinite model order in implementation
(e.g. the Padé approximation). Using a first-order approximation for the model, as was done here,
unsurprisingly results in significant estimation biases. However, using a second-order approximation
instead already resulted in stability and convergence issues of the observer. Hence, the first-order ap-
proximation was used. The problem of the remaining bias is solved in chapter 3 by introducing an
augmented adaptation parameter, inspired by the mathematical field of non-integer-order calculus.
For the decision about the model size and potential split-up into subsystems, another aspect should be

regarded, which is the inclusion of model parameters or disturbances as augmented states. Often, system

5A better term would be “weak observability”, but that has already been overloaded with different conflicting mathemat-
ical definitions during the last decades.

6also called system matrices; only meaningful for linear and linearized systems
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behavior will change during its lifetime, causing a model mismatch between observer and real system
that will eventually cause the observer to stop converging. Since this violates the assumptions made
for the observer derivation, in particular the zero-mean assumption of the process noise, modelling the
causative parameters as variables (instead of constants that are assumed to be known) is often necessary.
The model for the parameter’s dynamics can be an open integrator, i.e. ṗ = 0 in case no further
dynamics information is available (done in chapters 2 and 3), or an actual model (e.g. the temperature
dependence of an electrical resistor, done in [5, 14]). This is then included as an additional differential
equation in the overall state-space model; the new state is called an augmented state. For unknown
lumped disturbance signals7 the simplest model is the integrator disturbance model, identical to the
open-integrator model mentioned above. Another common choice is the double integrator disturbance
model, especially if the disturbance’s time derivative is also required, as in chapters 6 and 5. Including
parameters as augmented states together with the physical state variables is particularly reasonable
if the parameters change about as fast as the physical states, as in chapter 2. If, however, there are
many parameters to be estimated or if the timescales of change differ a lot between physical states and
augmented parameters, it can be advantageous to build a secondary, dedicated observer exclusively for
the parameters, which simplifies the allocation of the measured information into either physical state
estimates or parameter estimates. It also allows for further gains in terms of computational efficiency if
the state vector size of the primary observer can be shrunk enough, due to the influence of n2 described
above.

1.1.3 The Kalman filter algorithm
In this subsection, the algorithm equations of the minimum variance estimator – the Kalman filter – are
given. For nonlinear systems, the EKF can be used, which is structurally very similar to the KF since it is
based on Taylor linearization of the nonlinear system and uses a Jacobian matrix instead of a system state
transition matrix. Due to the similarity, only the linear case is presented in this subsection. Multiple
different mathematical derivations based on analytical minimization of the estimation error covariance
matrix are available in the literature (e.g. [15]) but will not be detailed in this work. Instead, a much
more intuitive derivation from [16, pp. 291-292], inspired by Kálmán’s original 1960 paper [17, Theorem
2], is outlined in the following. The discrete-time KF algorithm consists of two steps (see Fig. 1.4)

Figure 1.4: Evolution of a single state and its uncertainty (represented by error bars, related to the
covariance matrix P) during prediction and correction steps of the KF algorithm.

that are executed in iteration: a prediction of the states one time step into the future, based on the
time-discretized model equations of the states’ dynamics, and a correction step that is based on the
output equation and allows for inclusion of measured data for one or multiple outputs.

7sometimes called unknown inputs
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Presuppositions

The model for the prediction step of the linear KF must be available in state-space form, with state
vector x(t), input vector u(t), outputs y(t), and a system of first-order differential equations ẋ(t)

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t). (1.1)

Note that the system can also be time-variant, i.e. matrices A,B,C,D are generally time-varying.
For the sake of simplicity of notation, they are assumed to be constant (LTI system). Also, matrix D
(mapping the feedthrough of the inputs into the outputs, if any) is ignored in the following, because its
presence does not change the derivation much. Thus, the system to be considered can be stated as

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t). (1.2)

The discrete-time state-space model can be obtained, for example, using explicit Euler discretization
with step width Ts, after which the random variables w(k) and v(k) are introduced to represent white,
uncorrelated, zero-mean process and measurement noise, respectively, with normal probability distribu-
tions [16].

x(k + 1) = Adx(k) + Bdu(k) + w(k), (1.3)
y(k) = Cx(k) + v(k), (1.4)

Ad = In×n + TsA, Bd = TsB. (1.5)

The notation x(k) is an abbreviation of x(t) = x(Tsk) and is commonly used for sampled, discrete-time
signals. The covariances (which can also be time-variant) of the process and measurement noise are

Q(k) = E
[
w(k)w(k)T

]
, R(k) = E

[
v(k)v(k)T

]
, (1.6)

and are assumed to be known during the derivation of the algorithm. (In practice, they are usually
treated as tuning parameters in the observer design stage.)

Prediction step

For the prediction of the states one time step into the future, the a-priori estimates are calculated based
on the discretized model as

x̂−(k) = Adx̂+(k − 1) + Bdu(k − 1), (1.7)
which is possible thanks to the assumption E [w(k)] = 0. For the first step, initial values x̂+

KF (0) can
be either specified by the user or simply set to zero.
Since the algorithm is based on covariance minimization, the covariance matrix of the prediction error

(called a-priori covariance matrix) must be calculated:

P−(k) = E
[(

x(k)− x̂−(k)
) (

x(k)− x̂−(k)
)T ]

, (1.8)

where x(k) are the true (unknown) values of the states according to Eq. (1.3). Evaluating the prediction
error yields

x(k)− x̂−(k) = Adx(k − 1) + Bdu(k − 1) + w(k − 1)−Adx̂+(k − 1)−Bdu(k − 1)

= Ad

(
x(k − 1)− x̂+(k − 1)

)
+ w(k − 1). (1.9)

Then,

P−(k) = E
[(

Ad

(
x(k − 1)− x̂+(k − 1)

)
+ w(k − 1)

)((
x(k − 1)− x̂+(k − 1)

)T
AT
d + w(k − 1)T

)]
= AdE

[(
x(k − 1)− x̂+(k − 1)

) (
x(k − 1)− x̂+(k − 1)

)T ]
AT
d + E

[
w(k − 1)w(k − 1)T

]
= AdP+(k − 1)AT

d + Q, (1.10)
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where the a-posteriori estimation error covariance matrix from the last iteration is introduced as

P+(k − 1) = E
[(

x(k − 1)− x̂+(k − 1)
) (

x(k − 1)− x̂+(k − 1)
)T ]

. (1.11)

Note that the two mixed terms of Eq. (1.10), involving the products of
(
x− x̂+) and w, vanish when

evaluating the expectation, due to lack of correlation (as per assumption). A similar property is exploited
in the correction step, as well – see Remark 1.1 for a more detailed explanation.

Correction step

Using the a-posteriori state estimates

x̂+(k) = x̂−(k) + K(k)
(
y(k)−Cx̂−(k)

)
, (1.12)

the a-posteriori estimation error can be expressed with the true values x(k) as

x(k)− x̂+(k) = x(k)− x̂−(k)−K(k)
(
y(k)−Cx̂−(k)

)
= x(k)− x̂−(k)−K(k)

(
Cx(k) + v(k)−Cx̂−(k)

)
= (In×n −K(k)C)

(
x(k)− x̂−(k)

)
−K(k)v(k), (1.13)

where In×n is the n-by-n identity matrix, abbreviated as I in the following. The covariance matrix of
the a-posteriori estimation error then is

E
[(

x(k)− x̂+(k)
) (

x(k)− x̂+(k)
)T ]

= E
[
(I−K(k)C)

(
x(k)− x̂−(k)

) (
x(k)− x̂−(k)

)T (I−K(k)C)T
]

− E
[
(I−K(k)C)

(
x(k)− x̂−(k)

)
v(k)TK(k)T

]
− E

[
K(k)v(k)

(
x(k)− x̂−(k)

)T (I−K(k)C)T
]

+ E
[
K(k)v(k)v(k)TK(k)T

]
. (1.14)

However, since the output noise v(k) is not correlated with the a-priori estimation error, the two mixed
terms in the second and third line of Eq. (1.14) result to be zero, similar to the case of Eq. (1.10) where
the mixed terms have been omitted directly. Evaluating the expectations, this leads to

E
[(

x(k)− x̂+(k)
) (

x(k)− x̂+(k)
)T ]

=

(I−K(k)C) E
[(

x(k)− x̂−(k)
) (

x(k)− x̂−(k)
)T ] (I−K(k)C)T + K(k)E

[
v(k)v(k)T

]
K(k)T . (1.15)

With the a-priori estimation error covariance P−(k) = E
[
(x(k)− x̂−(k)) (x(k)− x̂−(k))T

]
and the

a-posteriori estimation error covariance P+(k) = E
[(

x(k)− x̂+(k)
) (

x(k)− x̂+(k)
)T ], this yields

P+(k) = (I−K(k)C) P−(k) (I−K(k)C)T + K(k)RK(k)T (1.16)

in which R = E
[
v(k)v(k)T

]
in accordance with Eq. 1.6.

In order to find the optimal Kalman gain matrix K(k), the orthogonality principle can be used [16],
as was done in Kalman’s original work [17]:

E
[(

x(k)− x̂+(k)
)

y(k)T
]

= E
[(

x(k)− x̂−(k)−K(k)
(
C
(
x(k)− x̂−(k)

)
+ v(k)

))
(Cx(k) + v(k))T

]
= E

[(
(I−K(k)C)

(
x(k)− x̂−(k)

)
−K(k)v(k)

) (
x(k)TCT + v(k)T

)]
= (I−K(k)C) P−(k)CT −K(k)R. (1.17)
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Remark 1.1 The orthogonality principle can be seen as a lack of correlation between the a-posteriori
estimation error and the measured outputs, which only is the case for optimal values of K(k) that are
to be found. In other words, a suitable choice of K(k) will achieve complete8 denoising of the state
estimates x̂+(k), such that no stochastic influence of the output noise v (via the measured outputs y)
gets into the state estimates, characterized by the described absence of correlation between outputs and
a-posteriori estimation error.

Thus, the approach is to set
E
[(

x(k)− x̂+(k)
)

y(k)T
]

= 0. (1.18)

Then, using Eq. (1.17),

0 = (I−K(k)C) P−(k)CT −K(k)R
= P−(k)CT −K(k)CP−(k)CT −K(k)R (1.19)

P−(k)CT = K(k)CP−(k)CT + K(k)R

= K(k)
(
CP−(k)CT + R

)
(1.20)

K(k) = P−(k)CT
(
CP−(k)CT + R

)−1
. (1.21)

An intuitive demonstration of the optimality of this solution can be found in [18]. Considering the
expression (1.16) for the a-posteriori covariance, together with some algebraic manipulations and intro-
duction of the symbol S(k) = CP−(k)CT +R, it is possible to find the algebraic Riccati equation which
describes the discrete-time dynamics of the covariance

P+(k) = P−(k)−P−(k)CTS(k)−1CP−(k) +
(
K(k)−P−(k)CTS(k)−1

)
S(k)

(
K(k)−P−(k)CTS(k)−1

)T
.

(1.22)
The goal still is to minimize the covariance using suitable choices of Kalman gain K(k), which can be
done directly and intuitively considering this expression. In there, the latter summand (...)S(k)(...)T is
a quadratic form – therefore, the covariance will always grow if this term does not vanish. The best
possible choice in such circumstances is therefore to eliminate the quadratic term using

K(k) = P−(k)CTS(k)−1 = P−(k)CT
(
CP−(k)CT + R

)−1
. (1.23)

The algorithm equations together with this solution can be implemented in real time-capable embedded
systems, ideally using an optimized library for linear algebra. Apart from hardware-level C or even
assembly programming, Matlab/Simulink allows to automatically generate and compile C code for the
specified hardware target, making the implementation not trivial, but very straight-forward – the most
challenging part still is to formulate a sensible system model to base the observer on.

1.2 Disturbance compensation for control purposes
In its most basic form, feedback control works by comparing the actual value of a state with the
desired value and then influencing the system accordingly to reach the desired value. Many systems
can be controlled satisfactorily using PID action on the control error (the difference between desired
and actual value) of a selected system output. In such cases, a more dynamic response of the closed
loop system can only be achieved using larger gains in the P, I, and D paths. Apart from peaking
problems and actuator saturation, such a high-gain control system is prone to extreme amplification
of the measurement noise that propagates into the system inputs, which can lead to increased energy

8Perfect denoising can obviously only be achieved if the system model (including parameters) and the covariances Q, R
are known with absolute certainty, which is never completely true in real life. However, KF do perform very well in
practice, even if multiple system parameters are only approximately known (or if they are modelled as constants but
change during operation). In practice, Q, R are used as tuning parameters, manual or automatically-adaptive.
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consumption and actuator wear-out failure. Denoising the feedback signals using a state observer or a
filter9 can mitigate this effect to a certain degree, but will generalle leave the closed-loop system either
unrobust or (relatively) slow. Thus, it is generally advisable to “unburden” the controller gains as much
as possible by exploiting additional knowledge about the system. This is especially true if there is a
trajectory to be tracked, that is, a time-varying reference signal as a desired value in the control loop.
This can be taken into account using an additional feedforward control action over the desired trajectory
signal (and its derivatives), e.g. exploiting the differential flatness property of a system [19]. Taking this
approach one step further, it is possible to compensate observable disturbances that act on the system
by adjusting the inputs accordingly, which works for matched and unmatched disturbances10. This was
done in chapters 5 and 6, where electromagnetic actuators/motors are to be controlled in a velocity
tracking task. The disturbance torques (and their derivatives) are estimated by (E)KFs and used within
the control laws, allowing for lower controller gains, which improves both the noise/chattering levels
and the tracking performance. While there are many different approaches to estimate disturbances,
only those that incorporate model knowledge (like the KF) perform well under pressure, which becomes
obvious in chapter 5, where KF-based disturbance estimation clearly outperforms two other traditional
disturbance estimation methods that rely exclusively on measurement signal processing.

1.3 State and parameter monitoring for fault detection and diagnosis
Beyond feedback control, another field where observers are advantageously employed is fault detection
and diagnosis. In safety-critical systems, it is often mandated by legislation to fulfill certain non-
functional requirements. Notable cases are passenger cars and airplanes, where critical components like
sensors often need to be installed redundantly11 and to be constantly monitored for correct functionality.
This task can be achieved using fault detection methods, where measured data is checked for plausibility
(allowing to infer the physical integrity of components) using additional information sources. Observer-
based fault detection strategies can be derived by directly measuring the state that is to be supervised
using a sensor, and, in parallel, running an observer that does not incorporate the same sensor signal,
but only measurements for the other states of the system (provided it is still observable like that).
Divergence of the resulting estimate and the measured value indicates faults in the system which can
then be treated accordingly. Using multiple sensors improves the operational safety even more and
allows for further diagnosis, i.e. determining where the fault is located.
Aside from operational safety, monitoring non-measurable states can prolong the functional lifetime

of devices and components, as was done in [21], where an observer is used to determine the temperature
of a car seat heater based on conductive fibers. As too high temperatures can permanently damage
the conductive layer of the polymer fibers, which still is far away from temperature ranges dangerous
to the passenger, the controller needs to make sure not to exceed the temperature limits. A similar
purpose is pursued in chapter 2, where the state of charge of Lithium-ion cells is determined using a
novel kind of EKF. It needs to be monitored in all devices and vehicles powered by rechargable batteries
in order to prolong the cells’ lifetime and to avoid thermal runaway (catastrophic destruction due to
inextinguishable fire), among other reasons.

9Low-pass filters without model-based prediction capabilities always introduce phase delay (at least if the filter is causal,
i.e. implementable), which is usually undesirable, especially for very fast systems. Using a state observer instead can
reduce this delay significantly while yielding the same denoising power, thanks to the model knowledge that can be
incorporated.

10disturbance signals appearing in the same differential equation as the inputs (matched) or in other ones (unmatched).
11and also need to be used redundantly, which was not done by Boeing, directly leading to the tragic 737 MAX crashes [20]
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2 Polynomial augmented extended Kalman filter to
estimate the state of charge of Lithium-ion
batteries

This chapter deals with adaptive estimation of the state of charge (SOC) of Lithium-ion cells, as they
are used, for example, in traction batteries, medical technology or consumer electronics. Since such cells
exhibit considerable voltage drops as a function of electrical current, SOC, and state of health (SOH
– depending on age and number of cycles), it is not possible to infer the SOC from the cell voltage
during operation, as it is possible (though to a limited extent) with some non-rechargeable battery
types. However, if the cell has been at rest for many hours, it is possible to find a characteristic curve
(often stored as a lookup table/LUT) for the cell that links the open circuit voltage (OCV) with the
SOC (which is defined between 0 and 1). However, this curve results to be quite flat for common Li-ion
cell chemistries, especially in the middle SOC range around 50%, which reduces the invertibility and,
hence, the observability. This makes it necessary to estimate the SOC in the battery management
system (BMS) with a suitable state observer. A common approach is to assign the initially measured
cell voltage (right before current is drawn, upon activation of the device) to an initial condition (IC)
for the SOC estimator by means of an inverse lookup table and, starting from this, to determine the
amount of charge removed or added time-integratively by means of numeric integration of the measured
current. Related to a nominal “capacity” (more precisely: nominal charge quantity, assumed to be
known), an estimate of the current SOC can be obtained from this. This method, called Coulomb-
counting, works very well if the nominal maximum charge and the intial SOC are exactly known and
if the current measurement is accurate, but can suffer from drifting problems due to the integrating
behaviour and from offsets due to the flatness of the characteristic curve. It also does not allow an exact
SOC determination without frequent re-calibrations. Erroneous SOC estimation can lead to accidental
deep discharge, overcharging or a limited usable energy storage capacity – in the worst case, it can
even trigger catastrophic thermal runaways, though standard BMS’ integrate multiple other failsafes
against this. In this chapter, a more sophisticated method for SOC estimation is developed, based on
an extended Kalman filter, which combines the Coulomb-counting method and an electrical resistive-
capacitive (RC) equivalent circuit model (ECM) with an online adaptation of the polynomial curve
fit of the characteristic OCV curve. This allows all over/undervoltages at the electrodes and in the
electrolyte to be represented by two capacitor voltages, resulting in a more accurate, calibration-free
SOC estimation, thus allowing safe and better utilization of the existing electrode material and better
fault detection capabilities.

2.1 State of the art
Due to the fast ongoing technical development of electrical devices, the requirement for safe and durable
energy storage becomes very important. Lithium-ion batteries (LIB) are frequently used for mobile or
mains-independent devices, but perhaps most importantly, in electric vehicles. There, a necessary
information for the driver is the battery’s state of charge, as an indicator of the remaining range
the vehicle can travel. It can also be used as part of a fault-detection system, together with other
measurements, to ensure the passengers’ safety. For example, in [22], SOC estimates are used for current
or voltage sensor fault detection. There, SOC estimates obtained using Coulomb counting (which will
be detailed later) are compared to SOC estimates given by a Kalman filter-based observer. In other
applications, incorrect determination of the SOC can e.g. lead to data loss or impaired user experience.
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In practice, it is not feasible to measure the SOC directly, so approximate methods must be employed.
Various approaches are described in the literature for the estimation of the SOC of a battery: from
the most empirical ones through data-based methods (e.g. using various neural network structures) to
physical model-based methods. In general, empirical methods tend to be either too inaccurate or too
complex, rendering it difficult to successfully apply them. From a technical point of view, observers
based on electrical ECMs are a good compromise between complexity and estimation accuracy. In this
chapter, the following classification is taken into consideration, not only in terms of review of the existing
literature, but also to compare the results:

• Empirical methods, and

• Physical model based methods.

Table 2.1: Variables and example parameters
Symbol Value Description
SOC(t) – State of charge (0 ≤ SOC ≤ 1)

OCV (SOC) – Open circuit voltage (relaxed cell)
uT (t) – Measurable terminal voltage
i(t) – Current (positive for discharging)
p1 – Polynomial slope-related coefficient
p2 – Polynomial “S”-related coefficient
p3 – Polynomial coefficient, OCV (0.5)
C1 5.6 kF Capacitance (fast electrode dynamics)
R1 0.6 mΩ Resistance (fast electrode dynamics)
C2 54 kF Capacitance (slow electrode dynamics)
R2 8.2 mΩ Resistance (slow electrode dynamics)
R0 20 mΩ Ohmic resistance of the cell
Qfull 9087 C Maximum electric charge of the cell
Ts 100 ms Fundamental sampling time

2.1.1 Empirical methods
The simplest empirical method is the measurement of the battery terminal voltage during operation
and using it directly as an indicator of the remaining charge. Influences like temperature dependence,
voltage drops caused by the current through internal ohmic resistances and aging effects render this
method inaccurate [23]. While measurement of the OCV, and direct usage as remaining charge indicator,
mitigates some of these issues, it constitutes a very tedious process due to the necessity of long relaxation
phases and therefore is not suitable for online operation. Empirical methods based on impedance
measurement for SOC estimation are described in [24]. There, information about the dynamics of the
battery cell by means of impulse response is gained from the impedance measurement. However, this
method is not suitable for real-time applications [24, 25]. In [26], impulse responses are also used, in
combination with a LUT to estimate the SOC. Other examples of mapping a measurement to the SOC
estimate through an empirical model can be found in [27], [28]. The so-called Coulomb counting method,
including an integral of the current from and to the battery, is one of the most widely used methods
to estimate the SOC of a battery. In situations where there are many dicontinuities in the measured
current (e.g. from switching, which can happen in hybrid vehicles due to large dynamic transients in
current and power demand upon gear shifts), numerical problems can arise and render this method
inaccurate [29], [30]. However, Coulomb counting still yields very accurate SOC estimates in case of a
known initial SOC, known battery parameters and accurate fast current measurements.
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2.1.2 Physical model based methods
Many modern methods are based on a physical model. The battery model that is most prevalent in
literature is an ECM that was first presented by Chen and Rincón-Mora in 2006 [31]. In general, ob-
servers based on ECMs like this offer similarly precise results as electrochemical model-based observers,
but with less computational load. This ECM consists of a variable voltage source for the open circuit
voltage, a resistor representing the internal ohmic cell resistance, and two RC branches for the fast
and slow electrode dynamics in the positive branch of the circuit. Up to this point, it is identical to
the well-known dual-polarization model [32]. The second part of the model proposed in [31] includes
another RC network and a current source. It characterizes the SOC-OCV-relationship and the cell’s
SOH.
In fact, knowledge about the SOC-OCV characteristics is a crucial aspect for SOC estimation purposes

if the observer depends on a known, certain SOC-OCV model. In the past, but also still in recent
contributions, it is identified offline and then stored within LUTs [33,34] or in piecewise linear fits which
interpolate the characteristics between sampling points [35]. Different polynomial parametrizations
of the SOC-OCV characteristics are also very often used in order to refine the interpolation between
samples. In [36–41], for instance, polynomials are used to approximate the SOC-OCV characteristics.
In [42] characteristic SOC-OCV curves at different temperatures are studied using the most commonly

used mathematical basis function: exponential, polynomial, sum of thrigonometric functions, and also
Gaussian model fitting. In all these considered bases the measurements are conducted with pulse test
data.
Estimation of the SOC also depends on the accuracy of the ECM parameters. In the literature,

different approaches are adopted to estimate these parameters:

• directly (within the state observer),

• indirectly (outside of the state observer), and each either

• online (adaptive), or

• offline (pre-identified).

Direct methods integrate the parameters to be estimated as random variables into the state observer,
for example inside a KF, while indirect methods use a dedicated observer to provide for parameter
estimation which are then passed to the state observer. In [33] for instance, a recursive least square
method with forgetting factor is used to estimate the parameters, while a KF is used to estimate
the states of the battery model. This cascaded method represents a quite common way to reduce
the calculation load in case the time scales of the changes of states and parameters differ greatly.
Nevertheless, the difficulty to tune the initial value of the covariance matrices together with the forgetting
factor is often a reason to prefer other methods. Another classical indirect method is the well known dual
KF which consists of two intertwined KFs: one of them dedicated to the estimation of the parameters
and the other one dedicated to the estimation of the states. A recent example of the dual KF approach
applied to LIBs can be found in [41] where a model based on an ECM with two RC branches is
combined with an SOC-OCV relationship that is modelled as a standard 6th order polynomial with 7
coefficients. The state EKF estimates the SOC and the two RC voltages while the cascaded parameter
EKF, operating on the assumption of much slower dynamics than the states (i.e. a multi-time-scale-
approach), estimates all the physical parameters as well as all polynomial coefficients – 13 parameters
in total. In [43], an adaptive KF algorithm is used to estimate the SOC of a LIB. To be more precise,
a dual KF is adopted in order to estimate the parameters and to use the estimated parameters to
adapt the KF which is dedicated to the estimation of the SOC. Additionally, the well-known Sage-Husa
algorithm [44] is employed to adapt the process and measurement covariance matrices.
In general, drawbacks of indirect parameter estimation methods include the following aspects.

• Concerning the need to involve a model as virtual measurement, we can consider, for example,
the case that some ohmic resistance R is to be estimated online from measurements of current
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and voltage. Then, numerically unfavourable operations (i.e. division by a measured quantity)
will occur in the model. Including the parameter estimation into the state observer, e.g. by
introducing a physically meaningful differential equation based on Kirchhoff’s laws that contains
the ohmic resistance as a parameter, can numerically robustify the parameter estimation.

• A delay of at least one sampling time step, due to the cascaded intertwined architecture, has to
be introduced in the estimation of either the states or the parameters in order to avoid algebraic
loops. For slow systems like batteries, the impact of this issue is low.

• For a clear and expedient separation, or decoupling, of state and parameter estimation, their
change rates should be different. This is oftentimes the case if the parameters are, in fact, physical
parameters.

For relatively slow systems, where a sampling time of 0.1 seconds is sufficient, the reduction of the
calculation load is not a strong motivation. Furthermore, as will be detailed in the following sections,
in the case presented here, the parameters to be estimated have no physical meaning, but are more
abstract. In particular, they are supposed to change in a time scale similar to that the states. In such
cases, a single KF which directly estimates parameters and states together is to prefer, despite the
calculation load.
The proposed contribution deals with an extended Kalman filter for SOC estimation of a LIB. The

following points are taken into consideration:

• An EKF based on an ECM of the battery is derived in order to estimate the SOC.

• The SOC-OCV nonlinearity in the system output is modelled using a single high-order polynomial
with a reduced number of adaptive (state-dependent) parameters, rendering the method suitable
to cells with qualifying SOC-OCV curve forms.

• To achieve the adaptivity, coefficients of said polynomial are estimated by the augmented EKF,
as well, while their ICs are pre-computed offline using a standard nonlinear Least Squares method
from measured SOC-OCV data sets. These ICs must constitute an SOC-OCV decomposition
that is roughly in the vicinity of the true (unknown) one in order to yield EKF convergence, but
increased robustness is demonstrated.

• The polynomial parameters, estimated online by the EKF, change just as rapidly as the states
(SOC and electrode overvoltages), in contrast to e.g. [41]. Even if the SOC-OCV evaluation using
the adaptive parameters does not represent a curve that fits the uncertain initial SOC-OCV data
points well, accurate SOC estimates can be obtained.

• Two variants of the EKF from the same family (same polynomial SOC-OCV model) are compared,
where one includes a supplementary state representing the terminal voltage, which yields better
results, also compared to the existing literature. Thanks to an increased stochastization of the
output model representation inside the EKF, the bias effect in the estimation results can be
reduced.

The chapter is organized as follows. In Section 2.2 the model of the battery is described. Section
2.3 and 2.4 show the polynomial EKF with the output nonlinearity and the state nonlinearity variant,
respectively. In Section 2.5 the structure of the experimental setup is discussed. Finally, Section 2.6
presents the measured results together with a comparison with similar observer structures, followed by
some conclusions.

2.2 Modeling
The SOC is defined as the fraction of the full charge that is currently available in a battery. It is necessary
to specify the sign of the current for charging and discharging; the most common practice is to assign
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Figure 2.1: Dual polarization-like model with two RC circuits representing fast and slow electrode dy-
namics and a variable, SOC-dependent voltage source as OCV.

positive currents to the process of discharging and use negative currents for charging. Consequently,
the SOC is

SOC(t) = SOC(t0)−
∫ t
t0
ηi(τ)dτ
Qfull

. (2.1)

Here, η = η(i, SOC, SOH, t, T, ...) is a usually unknown coefficient quantifying the (dis-)charging effi-
ciency and accomodating other uncertainties when charging or discharging and Qfull is the full amount
of electrical charge that can be stored in the cell. The terminal voltage is modelled subject to electrical
and electrochemical influences, which heavily depend on the direction and the magnitude of the current,
and can be expressed as, see e.g. equation 3.20 at p. 52 of [45],

uT (i, SOC) = OCV (SOC)
Anode and cathode overpotentials︷ ︸︸ ︷
−uA(i, SOC) + uC(i, SOC)−∆ϕM (i)︸ ︷︷ ︸

Ion losses

−R0i. (2.2)

The first summand, OCV (SOC), is the open circuit (no load) cell voltage in a relaxed state. The
anode and cathode exhibit a current-dependent effect that manifests as spatial voltage drops, called
overpotentials or overvoltages, indicated by uA,C for the anode and cathode, respectively. Ohmic losses
can be distinguished into two categories, namely the ion losses in the electrolyte and further ohmic
resistances. For the observer design, however, a simpler model based on ECM is employed. In particular,
part of the model from [31] is combined with a polynomial fit of measured OCV (SOC) data to represent
the output nonlinearity. The complete Li-ion single cell model that is used in this contribution can be
seen in Fig 2.1.

Remark 2.1 The model parameters R0, C1, R1, C2, R2 and Qfull are assumed to be constant in the
model and were determined iteratively by hand in extensive simulation studies, using the equivalent
circuit model as shown in Fig. 1 and comparing with measured currents and voltages. The assumption
of constant parameters is not a strong one, since it will be relaxed using the system model uncertainty
matrix (process noise) Q in the EKF design.

The output of the system is the battery terminal voltage

uT (t) = OCV (SOC)− uRC1(t)− uRC2(t)−R0i(t). (2.3)

u̇RC1(t) = i(t)
C1
− uRC1(t)

R1C1
, u̇RC2(t) = i(t)

C2
− uRC2(t)

R2C2
(2.4)

represent the fast (RC1) and slow (RC2) electrode dynamics. In state-space form, the system dynamics
can be described as

x(t) =
[
SOC(t) uRC1(t) uRC2(t)

]T
, (2.5)

ẋ(t) = Ax(t) + Bi(t) (2.6)
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with the simplification η = 1 and system input i(t) and

A =

0 0 0
0 − 1

R1C1
0

0 0 − 1
R2C2

 , B =

−
1

Qfull
1
C11
C2

 . (2.7)

The output, however, is nonlinear due to OCV (SOC):

uT (t) = OCV (SOC)− uRC1(t)− uRC2(t)−R0i(t). (2.8)

Remark 2.2 If the true OCV (SOC) is a known relationship with dOCV (SOC)
dSOC 6= 0 for 0 ≤ SOC ≤ 1,

and if R1C1 6= R2C2, the system described by this model is observable [46].

In the contribution at hand, relationship OCV (SOC) is modelled using a polynomial fit of order 12.
Instead of realizing all 13 independent coefficients of the curve fit, a custom function is introduced

OCV = (2.5p1(SOC − 0.5) + 1)
(
p2(SOC − 0.5)11 + p3

)
. (2.9)

An example can be seen in Fig. 2.4a, where three SOC-OCV data sets (consisting of 15, 22 and 25 data
points, respectively) for three cells are shown together with curve fits according to Eq. (2.9).

Remark 2.3 The SOC-OCV data sets can be obtained with several different tedious measurement proce-
dures. In our case, data set 3 was measured with an alternation of discharging and relaxation preriods:
First, the cell was charged with the standard CC-CV strategy up to 4.2 V until virtually no further
charging current was drawn. Then, using Coulomb counting technique, varying but known amounts of
charge (mAh) were drawn from the cell with an iMAX B6 charger/discharger. Between the discharging
periods, the cell was allowed to relax for 30 minutes. Data sets 1 and 2, on the other hand, correspond
to other cells. They are included in this work, as well, to demonstrate a certain degree of robustness of
the estimator against uncertainty in p1,2,3(0) – since these three numbers are the only information about
the SOC-OCV-relationship that is available to the observer.

Note that data sets 1 and 2 are quite similar. In fact, the initial polynomial curve fit coefficients
p1,2,3(0) (computed using Matlab’s nonlinear least squares function lsqcurvefit) for data sets 1 and
2 are almost identical. Data set 3 corresponds to significantly different initial polynomial curve fit
coefficients, see Table 2.2.

Remark 2.4 Apart from the low number of coefficients to be optimized, an additional advantage of a
fit like Eq. (2.9) is the intuitive interpretability of said coefficients: 2.5p1 is the slope of the curve in
the middle range at 50% SOC, while p2 influences the steepness near 0% and 100% SOC. Note that the
given odd exponent, 11, within the second parenthesis, is necessary to represent the saddle-shaped curve
and can be changed to other odd numbers to match the cell more closely, affecting the width of the linear
region for median SOC values: Larger exponents correspond to wider regions of near-linear behavior.
Finally, p3 is the voltage at exactly 50% SOC. This specific function is able to describe

1. SOC-OCV characteristics with a certain degree of rotational symmetry around 50% SOC (data
sets 1 and 2), if the given interpretations of the parameters are to hold,

2. SOC-OCV characteristics where the slope reduces drastically in the left half-plane but then retains
a positive, yet small value in the rest of the field (like data set 3).

In the latter case, however, the parameters are harder to interpret.

Though most Lithium ion cells fall into one of the mentioned categories [47], a single polynomial with
such a low number of parameters is still a rather restrictive limitation, but this is relaxed by adapting
the parameters online. Hereafter, an integrated combined estimation and adaption algorithm based on
EKF is presented.
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Table 2.2: Initial polynomial curve fit coefficients
ICs for data set 1 ICs for data set 2 ICs for data set 3
p1(0) = 0.0380584
p2(0) = 1404.69
p3(0) = 3.39572

p1(0) = 0.0359893
p2(0) = 1398.47
p3(0) = 3.38153

p1(0) = 0.0586138
p2(0) = 736.048
p3(0) = 3.53325

2.3 Polynomial EKF: Output nonlinearity variant
The curve fit parameters p1,2,3 are now considered as states to be estimated, which allows for a robus-
tification of the SOC-estimation against the uncertain SOC-OCV relationship.

Remark 2.5 As a consequence of this state augmentation, the observability proof from [46] mentioned
before does not hold for the resulting augmented system. However, it will be shown by experiment that the
SOC estimate is stable, even though estimation error convergence for the other states is not guaranteed.
In particular, the uncertain SOC-OCV model (represented by the polynomial coefficients) cannot be
identified. But in practice, estimates for uRC1,2 and the polynomial parameters p1,2,3 are not required
(being abstract and conceptional in nature, anyway), as long as they constitute a decomposition of the
terminal voltage dependency on the SOC. By allowing for variation of the coefficients p1,2,3 within one
(dis-)charging process, i.e. relatively fast changes similar to that the system states, the SOC estimate
itself can become more robust against SOC-OCV uncertainty and also adaptive to changes.

The EKF design is based upon a state-space model of the system, so the following states are intro-
duced:

z(t) =
[
SOC(t) uRC1(t) uRC2(t) p1 p2 p3

]T
, (2.10)

where polynomial coefficients p1,2,3 are modelled as uncertain constants for now. In general, dynamics
of a nonlinear system in state-space form can be expressed as field g

ż(t) = g(z(t),u(t), t) (2.11)

with states z(t) and inputs u(t). However, just like in Eq. (2.6), the internal dynamics are linear in this
case, as well:

ż(t) =
[

A 03×3
03×3 03×3

]
z(t) +

[
B

03×1

]
u(t)︸︷︷︸
i(t)

, (2.12)

while the system output function uT = h(z) still is

h(z) = OCV (SOC(t))− uRC1(t)− uRC2(t)−R0i(t). (2.13)

Note that function OCV (SOC(t)) is the polynomial parametrization (2.9) with coefficients p1,2,3 and is,
naturally, evaluated using the estimated states and parameters. Implementation of the EKF algorithm
in a microcontroller calls for discrete-time equations, so the system introduced above is discretized using
an explicit Euler scheme with sampling time Ts = 0.1 s, i.e.

ż(t) ≈ z(k)− z(k − 1)
Ts

= g(z(k − 1),u(k − 1)). (2.14)

A so-called a-priori estimate ẑ−(k) of the states (prediction step of the EKF algorithm) is obtained
by solving Eq. (2.14) for ẑ−(k), where ẑ−(k) substitutes z(k) and the last step’s a-posteriori estimate
ẑ+(k − 1) substitutes z(k − 1):

ẑ−(k) = Tsg(ẑ+(k − 1),u(k − 1)) + ẑ+(k − 1), (2.15)
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or in this specific case

ẑ−(k) =


SOC(k − 1)− Ts i(k−1)

Qfull

uRC1(k − 1) + Ts
(
i(k−1)
C1 − uRC1(k−1)

R1C1

)
uRC2(k − 1) + Ts

(
i(k−1)
C2 − uRC2(k−1)

R2C2

)
[
p1(k − 1) p2(k − 1) p3(k − 1)

]T

 . (2.16)

Like mentioned above, the states at time (k − 1) are in fact the a-posteriori estimates from the last
iteration ẑ+(k− 1), e.g. SOC(k− 1) stands for ẑ+

1 (k− 1), just to aid comprehensibility and traceability
of the derivation. Since the internal system dynamics is linear in this variant, the Jacobian is not
state-dependent. It is defined as

J(k) =



∂ẑ−
1 (k)

∂ẑ+
1 (k−1)

∂ẑ−
1 (k)

∂ẑ+
2 (k−1) · · · ∂ẑ−

1 (k)
∂ẑ+
n (k−1)

∂ẑ−
2 (k)

∂ẑ+
1 (k−1)

∂ẑ−
2 (k)

∂ẑ+
2 (k−1) · · · ∂ẑ−

2 (k)
∂ẑ+
n (k−1)

...
... . . . ...

∂ẑ−
n (k)

∂ẑ+
1 (k−1)

∂ẑ−
n (k)

∂ẑ+
2 (k−1) · · · ∂ẑ−

n (k)
∂ẑ+
n (k−1)


, (2.17)

J(k) = J = diag
(

1, 1− Ts
R1C1

, 1− Ts
R2C2

, 1, 1, 1
)
. (2.18)

The Jacobian of the output, on the other hand, is a complicated function of the states. It is defined as

h(k) =
[
∂h(ẑ−(k))
∂ẑ−

1 (k)
∂h(ẑ−(k))
∂ẑ−

2 (k) · · · ∂h(ẑ−(k))
∂ẑ−
n (k)

]
, (2.19)

resulting in this specific case as

h(k) =



h1(ẑ−)
−1
−1

(2.5ẑ−1 − 1.25)(ẑ−5 (ẑ−1 − 0.5)11 + ẑ−6 )
(ẑ−1 − 0.5)11(1 + (2.5ẑ−1 − 1.25)ẑ−4 )

1 + ẑ−4 (2.5ẑ−1 − 1.25)



T

(2.20)

where discrete time arguments (k) were omitted, with

h1(ẑ−) = 2.5ẑ−4 (ẑ−5 (ẑ−1 − 0.5)11 + ẑ−6 ) + 11ẑ−5 (ẑ−1 − 0.5)10(1 + ẑ−4 (2.5ẑ−1 − 1.25)). (2.21)

The output Jacobian is needed for the Taylor-like linearization approach upon which the EKF theory
is based [7]. An a-priori estimate of the covariance results as

P−(k) = JP+(k − 1)JT + Q, (2.22)

where Q ∈ R6×6, all elements ≥ 0, is used as a tuning matrix quantifying the system uncertainty.
Greater numbers on the principal diagonal signify less trust in the corresponding states’ modelled system
dynamics. This is useful for states z4,5,6, which are the polynomial parameters that were modelled
as stochastic constants. Off-diagonal elements are not as easy to interpret, they correspond to the
system covariance between states. Or, described in a more intuitive way, when considering Q a tuning
parameter instead of a system property, they effectively weight the influence which the measured output
has (mapped through the output Jacobian to the state assigned to the specific column of Q) on the
estimated state represented in the specific row of Q. In particular, for this EKF variant,

Q = diag(2× 10−3, 102, 102, 10−2, 0, 10−1), (2.23)
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i.e. off-diagonal elements equal zero. In the first time step, P+(0) is a user-supplied initial value for the
covariance matrix. Since there is only one measured output that is used in the update step of the EKF
algorithm, the denominator in the following Kalman gain expression is scalar, allowing for this concise
notation:

k(k) = P−(k)h(k)T

h(k)P−(k)h(k)T + r
. (2.24)

Here, r = 0.1 is a parameter quantifying measurement uncertainty related to the measured battery
terminal voltage uT . Using the Kalman gain, an a-posteriori estimation of states and covariance is
obtained (update step of the EKF algorithm):

ẑ+(k) = ẑ−(k) + k(k)
(
uT (k)− h(ẑ−(k))

)
, (2.25)

P+(k) = (I6×6 − k(k)h(k)) P−(k). (2.26)

Again, in the first time step the algorithm requires user-specified ICs, in particular ẑ+
1 (0) = SOC(0).

In implementation, this initial SOC could be roughly approximated using an inverted OCV-SOC LUT,
fed with the measured terminal voltage uT (0) plus an approximated cell voltage drop R0i(0) using the
measured current, as indicated in Fig. 2.2a. However, in this contribution, the initial SOC is assumed
to be unknown and hardcoded to 0.5 in the Kalman filter implementation. This necessitates a large
initial state covariance P+

1,1(0) as discussed in section 2.6. The other ICs are chosen as ẑ+
2 (0) = 0,

ẑ+
3 (0) = 0, ẑ+

4 (0) = p01, ẑ+
5 (0) = p02 and ẑ+

6 (0) = p03. As mentioned before, the last three ICs, for the
polynomial coefficients, are calculated offline using given measurements for OCV . An overview of the
EKF algorithm can be obtained from Fig. 2.2a where the dashed lines represent data transfer through
iterations. The initial conditions for this variant are

ẑ+(0) =
[
0.5 0 0 0.0381 1404.7 3.3957

]T
P+(0) = diag(106, 1, 1, 103, 103, 103). (2.27)

2.4 Polynomial EKF: State nonlinearity variant
In order to investigate a possible improvement of the estimation, terminal voltage uT (t) can be considered
as an additional state.

Remark 2.6 This additional state represents a redundancy since the polynomial parameters p1,2,3 al-
ready represent most of the uncertain part of the nonlinear output model, i.e. the SOC-OCV relationship.
An analogy to this concept of redundancy can be observed in [48], where orthonormal bases are extended
to frames in form of additional redundant bases, achieving improved results of mathematical decom-
positions. Since this will yield infinite permutations of decompositions, that do not necessarily hold
physical meaning any longer, some kind of optimization using a cost function is necessary to handle the
power that this concept provides – in our case, this is the Kalman filter algorithm, which is a covariance
minimizer and has the sole goal of estimating the SOC.

The conducted state augmentation using uT implies treatment of Eq. (2.8) as a stochastic relationship
instead of a trusted equation like in Eq. (2.13) and facilitates a more targeted tuning influence (com-
pared to the measurement uncertainty r) by adding new uncertainty tuning parameters, represented
by the corresponding new elements in matrix Q. The state vector of the EKF base model is extended
accordingly:

zTi =
[
SOC uRC1 uRC2 p1 p2 p3 uT

]
, (2.28)
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(a) EKF algorithm: Output nonlinearity variant (b) EKF algorithm: Internal nonlinearity variant

Figure 2.2: Variants of the EKF algorithm.

where time arguments have been omitted. Since an expression of the dynamics of uT is required for the
state-space model, a usually straight-forward approach would be to take its derivative, using Eq. (2.9),
yielding

u̇T (t) = d
dt [OCV (SOC(t))− uRC1(t)− uRC2(t)−R0i(t)] (2.29)

with the derivative
d
dtOCV (SOC(t)) = dOCV (SOC)

dSOC
dSOC

dt = −j1(zi)i(t)
Qr

, (2.30)

where j1 = dOCV (SOC)
dSOC is similar to h1 from Eq. (2.21), and continuous time arguments (t) are omitted

for better readability:

j1(zi) = 2.5zi,4(zi,5(zi,1 − 0.5)11 + zi,6) + 11zi,5(zi,1 − 0.5)10(1 + zi,4(2.5zi,1 − 1.25)). (2.31)

In the literature, a common approximation when calculating u̇T (t) is di(t)
dt ≈ 0 with the quite restricting

rationale that only relatively slow changes occur in the current, at least compared to the other system
dynamics, see e.g. [49]. This approach would lead to

u̇T (t) = −j1(zi)i(t)
Qr

− u̇RC1(t)− u̇RC2(t). (2.32)

To obtain the a-priori state estimate from this, an explicit Euler discretization can be applied, yielding

ẑ−i (k) =



SOC(k − 1)− Ts i(k−1)
Qfull

uRC1(k − 1) + Ts
(
i(k−1)
C1 − uRC1(k−1)

R1C1

)
uRC2(k − 1) + Ts

(
i(k−1)
C2 − uRC2(k−1)

R2C2

)
[
p1(k − 1) p2(k − 1) p3(k − 1)

]T
ẑ−i,7(k)


(2.33)
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where, again, the states at time (k − 1) are in fact the a-posteriori estimates from the last iteration
ẑ+
i (k − 1), and with

ẑ−i,7(k) = uT (k−1)+Tsi(k−1)
(
C1 + C2
C1C2

− j1(ẑ+
i (k − 1))
Qr

)
−Ts

(
uRC1(k − 1)

R1C1
+ uRC2(k − 1)

R2C2

)
. (2.34)

Using this approach, however, the modelled terminal voltage no longer depends on the internal cell
resistance R0, due to the employed approximation di(t)

dt ≈ 0. It is desirable to obtain an expression where
R0 is present because the reason to include uT into the state vector to be estimated is the stochastization
of this important parameter. A somewhat unorthodox alternative to using a discretization of the
terminal voltage dynamics, avoiding said approximation, is to formulate the terminal voltage model
directly in discrete time, depending on last iteration’s a-posteriori estimates:

ẑ−i,7(k) = OCV (SOC(k − 1))− uRC1(k − 1)− uRC2(k − 1)−R0i(k − 1). (2.35)

Note that, again, function OCV (SOC(k − 1)) stems from the polynomial parametrization (2.9) with
coefficients p1,2,3(k − 1). While not obviously corresponding to a well-defined state dynamics u̇T (t),
this approach has the advantage of retaining the system input i(t), together with the highly uncertain
(since time-varying and SOH-dependent) parameter R0. Since it is possible in this variant to assign
uncertainty to the terminal voltage model, the estimation (if well-tuned) results more robust to errors
in the underlying SOC-OCV data. Using this, the now time-variant Jacobian results as

Ji(k) =
[

J 06×1[
j1(ẑ+

i (k − 1)) −1 −1 0 0 0
]

0

]
(2.36)

where j1 from Eq. (2.31) is evaluated at the last iteration’s a-posteriori state estimates. The output
Jacobian simplifies to

hi =
[
01×6 1

]
(2.37)

while the rest of the filter equations stay almost the same:

P−i (k) = Ji(k)P+
i (k − 1)Ji(k)T + Qi (2.38)

with ri = 0.1 and

Qi =



10−3 0 0 0 0 0 0
0 102 0 0 0 0 0
0 0 102 0 0 0 0
0 0 0 10−2 0 0 10
0 0 0 0 0 0 0
0 0 0 0 0 10−1 103

0 0 0 10 0 103 1


. (2.39)

Note that the non-zero off-diagonal elements in the last row and column have shown to be important in
order to allow for enough innovation in the polynomial parameters, in particular p1 which is proportional
to the mid-section slope, and the 50%-SOC-voltage p3.

ki(k) = P−i (k)hTi
hiP−i (k)hTi + ri

, (2.40)

ẑ+
i (k) = ẑ−i (k) + ki(k)

(
uT (k)− ẑ−i,7(k)

)
, (2.41)

P+
i (k) = (I7×7 − ki(k)hi) P−i (k). (2.42)

The modified EKF algorithm with the nonlinearity transformed into the internal system equations can
be retraced in Fig. 2.2b. The initial conditions for this variant are

ẑ+
i (0) =

[
0.5 0 0 0.0381 1404.7 3.3957 uT (0)

]T
P+
i (0) = diag(109, 1, 1, 103, 103, 103, 109). (2.43)
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Figure 2.3: Measurement setup using two I2C 16 bit differential ADCs (TI ADS1115) with programmable
gain. RShunt = 50 mΩ (0.5%, < 30 ppm/K, 4T sensing) and RLoad = 2.2 Ω (10 W, 5%).

2.5 Experimental setup
In Fig. 2.3 the measurement setup can be examined. Due to as of yet unresolved I2C compatibility
issues, the analog-to-digital converters (ADCs) were not connected to the Arduino Due directly but
to an additional Arduino Mega, which subsequently handles all I/O tasks and sends them to the Due
over the serial interface. (The serial interface is also used for real-time synchronization of the two
microcontrollers and the PC, which is equipped with Matlab, and receives all the data for logging.)
The EKF presented in Section 2.3, the output nonlinear variant, and that described in Section 2.4, the
state nonlinearity variant, were implemented on the Arduino Due with the given parameters and initial
conditions. The Lithium ion cell that was used in the experiment is a standard Samsung ICR18650-26F
cell. The discharging mode is characterized by a constant load resistance RLoad = 2.2 Ω and a pulsed
current between 0 (relay open) and max. 1.7 A (relay closed) with a duty cycle of 0.5 and a period of
1000 s, see Fig. 2.4b.

Remark 2.7 This simple load profile is similar to the Hybrid Pulse Power Characterization (HPPC)
test profile which is used in the literature [36], [43]. HPPC is used to identify various model parameters,
but not the SOC, which is tested using realistic driving cycles in the cited works. In the contribution
at hand, however, parameters and states are estimated together and online, so separate experiments
are not suitable. While using a realistic driving cycle test profile would certainly be a practice-relevant
experiment, a more challenging estimation task is posed to the EKF by testing with a pulsed on-off
load profile. This is due to the phases of smooth or even constant signals, where, in general, EKFs
can exhibit a phenomenon commonly described as “falling asleep” or “dropping off” due to lack of
information/innovation. The load steps, including theoretically infinite frequencies, represent the most
dynamic case, where stability and robustness of the observer algorithm come into play.
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(a) SOC-OCV data sets and their curve fits. (b) Measured current i for the experiment.

(c) Resulting estimates for the state of charge (data set
1).

(d) SOC estimates in detail: red and green lines overlap
(data set 1).

(e) SOC estimates in detail: red and green lines overlap
(data set 2).

(f) SOC estimates in detail: red and green lines overlap
(data set 3).

Figure 2.4: Results obtained from the experiment.
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(a) SOC estimation error (data set 1). (b) SOC estimation error (data set 2).

(c) SOC estimation error (data set 3). (d) Estimates for the output voltage uT (data set 1, vi-
sually identical for 2 and 3).

(e) Estimates for the output voltage uT (detail). Note
that all graphs overlap.

(f) Estimates for electrode dynamics voltage uRC1 for
data set 1. Note that it is virtually identical for data
sets 2 and 3.

Figure 2.5: Results obtained from the experiment.
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(a) Estimates for polynomial parameter p1 (data set 1). (b) Estimates for polynomial parameter p1 (data set 2).

(c) Estimates for polynomial parameter p1 (data set 3). (d) Estimates for polynomial parameter p3 (data set 1).

(e) Estimates for polynomial parameter p3 (data set 2). (f) Estimates for polynomial parameter p3 (data set 3).

Figure 2.6: Results obtained from the experiment.
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(a) Estimates for electrode dynamics voltage uRC2 (data
set 1).

(b) Estimates for electrode dynamics voltage uRC2 (data
set 2).

(c) Estimates for electrode dynamics voltage uRC2 (data
set 3).

(d) Reconstructed curve fits (2.9) using the EKF-
estimated p1,2,3 for both variants (IC set 1).

(e) Reconstructed curve fits (2.9) using the EKF-
estimated p1,2,3 for both variants (IC set 2).

(f) Reconstructed curve fits (2.9) using the EKF-
estimated p1,2,3 for both variants (IC set 3).

Figure 2.7: Results obtained from the experiment.
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2.6 Experimental results and comparisons
In the literature, EKFs for estimation of the SOC have been reported many times, e.g. in [36], where the
state vector contains the SOC and two polarization overpotentials. This is equivalent to the physical
base model shown in Eqs. (2.5-2.6) of the contribution at hand. In [37], the same model is used, but
with a fractional order. Compared to these works, this one extends the state vector by three parameters
of the polynomial output model (2.9), as described in section 2.3, and also by the terminal voltage as
described in section 2.4. Thanks to this extension, an improved SOC estimation will be demonstrated.

2.6.1 Description of the results
For the experiment, three sets of initial estimation conditions for polynomial coefficients p1,2,3(0) were
tested for each EKF variant in order to demonstrate its robustness against output model uncertain-
ties. These ICs, shown in Table 2.2, correspond to the three SOC-OCV data sets. Again, these ICs,
together with the initial covariance matrix elements, are the only information about the real SOC-
OCV-characteristics that are incorporated into the EKF algorithms. Thus, they require offline pre-
identification. If they do not correspond to a relatively close curve fit, the EKF does not converge.
(The EKF estimation problem in general is not convex, so neither convergence nor optimality are ever
guaranteed.) While the values differ quite a bit between the sets shown in Table 2.2, they each still
constitute a good decomposition in terms of a curve fit of similar SOC-OCV characteristics. The SOC
estimates are shown in Fig. 2.4c and in more detail in Figs. 2.4d-2.4f. Figs. 2.5a-2.5c depict the
SOC estimation error. It can be seen that both EKF variants perform very well, especially the state
nonlinearity variant. In Table 2.3 a comparison of both EKF variants with each other is given, and also
with an adaptive EKF reported in the literature [43]. It can be seen that, using several common error
metrics like the integral of the absolute error (IAE), mean value, maximum absolute error, and variance,
both introduced EKFs yield promising results. As reference signal, the Coulomb Counting method, see
Eq. (2.1), is used together with SOC(0) = 1 for the fully charged cell at the beginning. The point of ref-
erence for 0% SOC arises when computing the total amount of charge dispensed during the experiment,
namely Qfull. The output nonlinearity variant of the EKF has a small, potentially negligible residual
SOC estimation offset and is unable to compensate it for the duration of the experiment. The state
nonlinearity variant, however, matches the reference SOC more closely. Note that both Kalman filter
variants operate on the assumption of SOC(0) = 0.5, but thanks to large P+(0) matrices this initial
error can be corrected quickly using measurement innovation. In fact, the observers reconstruct the
measured terminal voltage uT almost perfectly using the estimated states, see Figs. 2.5d and 2.5e where
all signals visually overlap completely. The estimation results for uT look identical for all three sets of
initial conditions corresponding to the three data sets, so only one is shown. Concerning the comparison
between the two Kalman filters, it is possible to observe some interesting properties from Figs. 2.6a-2.6c,
2.6d-2.6f and 2.7a-2.7c. Fig. 2.6a shows estimates of polynomial parameter p1, which is proportional to
the slope of the SOC-OCV curve in the middle region around 50% SOC. While neither Kalman filter
retains the initial values of the polynomial parameters, the state nonlinearity variant stays close and
has little variation, but the output nonlinearity variant shows distinct fluctuation and influences of the
measured current and voltage. Clearly, parameter p1 is dominant for low and high SOC, i.e. near 0 or
1 at the start and beginning of the experiment where the variation of estimated p1 is more pronounced
than in the middle, which is due to multiplication of p1 with (SOC − 0.5) in model (2.9). p3 on the
other hand is the only remaining influence at an SOC of 0.5, which shows in Figs. 2.6d-2.6f. Here, the
most variation occurs in the middle of the experiment, when the cell is at about half capacity.

2.6.2 Interpretation of the results
In Figs. 2.7d-2.7f, the polynomial SOC-OCV curve fit from Eq. (2.9) is reconstructed using the
parameters p1,2,3 that are estimated online by the EKFs. These curve fits are not used anywhere in
the observer algorithm but they are shown to demonstrate an interesting property. They are compared
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to a curve fit that is evaluated using the ICs p1,2,3(0), stemming from the offline pre-identification.
The “smaller” EKF variant (terminal voltage not included in the state vector but only in the output
equation) tends to stick closer to the fit reconstructed using constant values than the larger variant.

Remark 2.8 The larger difference for the state nonlinearity variant can be explained by the redundancy
that was introduced by augmenting the output uT as a state into the EKF. This redundancy affects the
output equation (3) for uT . As can be seen in Figs. 2.7a and 2.7d, the difference is compensated
for within the estimation of state uRC2. Metaphorically speaking, the “line of least resistance” for the
information flow inside the state nonlinearity variant of the EKF algorithm is somewhat ambiguous
because of this redundance. This effect leads to loss (or reduction) of physical interpretability of each
participating element of the decomposition, but combined they still constitute a correct terminal voltage
decomposition, however with better SOC estimation performance. As we demonstrate, using the pre-
sented strategy of aggressively adapting p1,2,3, knowledge of a static SOC-OCV relationship is not as
crucial for an accurate SOC estimation as it may seem, which in our opinion is an interesting result.

Table 2.3: Benchmarks
ICs from
data set 1

ICs from
data set 2

ICs from
data set 3

state
nonl.

IAE = 8.3672
VAR = 1.7682× 10−6

MEAN = −6.7484× 10−4

MAX = 0.0068

IAE = 25.9530
VAR = 6.3472× 10−7

MEAN = 0.0021
MAX = 0.0046

IAE = 9.7195
VAR = 5.3548× 10−8

MEAN = 8.1031× 10−4

MAX = 0.0033

output
nonl.

IAE = 67.9906
VAR = 4.5719× 10−6

MEAN = 0.0055
MAX = 0.0072

IAE = 68.6260
VAR = 6.2699× 10−6

MEAN = 0.0054
MAX = 0.0076

IAE = 47.3463
VAR = 1.2644× 10−5

MEAN = 0.0027
MAX = 0.0078

from
[43]

VAR = 5.75× 10−5

MEAN = 0.0106
MAX = 0.0254

This interesting effect is also linked to the weakened observability of the augmented system model (the
one with uT versus the one without) and depends non-trivially on uncertainty matrices P,Q. Regarding
this aspect, the output nonlinearity variant of the EKF turns out to have a wider convergence region
in terms of the initial covariance of the SOC, P+

1,1(0), compared to the state nonlinearity variant. The
two initial covariance convergence regions are characterized by the same upper bound, but by different
lower bounds. Using the state nonlinearity EKF variant, a 103 times larger initial covariance value
is needed, compared to the lower bound belonging to the output nonlinearity variant. The reason of
that can be heuristically explained considering that the level of observability reduces if the number
of states increases. In general, the required minimum initial covariance is non-trivially related to the
number of states to be estimated. The more states, the higher the required initial covariance. Intuitively
speaking, there is a larger inertia to be overcome, the SOC being the state with the most inertia in
terms of observability. This can be seen as a disadvantage of the state nonlinearity variant. On the
other hand, a drawback of the output nonlinearity variant consists of a more pronounced bias in the
estimation. This effect can be explained intuitively, considering that the output nonlinearity variant
trusts the nonlinear model Eq. (2.13) in the a-posteriori state estimation step of the EKF algorithm
and thus errors or uncertainties in this part of the model (e.g. in the internal cell resistance R0) are
directly visible in the estimation in form of a bias. On the other hand, for the state nonlinearity variant,
the nonlinearity is moved inside an extended stochastic dynamics of the KF structure and thus can
include the uncertainties of the output model inside the extended process noise covariance matrix Q.
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This can reduce the bias effect in the estimation results. In [40] an EKF described in form of the output
nonlinearity variant is implemented and tested in which the OCV is approximated using a polynomial
function of the 9th order. The results are compared with a nonlinear estimator which outperforms the
described EKF. However, no details are given on the utilized EKF, especially regarding delicate tuning
parameters like the initial covariance. As we show in this contribution, a sensible tuning of r as well as
matrices Q, P can results in satisfactory EKF performance.
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3 An extended Kalman filter for time delays
inspired by a fractional order model

In this chapter, different variants of an EKF are compared, with the goal to estimate the variable time
delay between two noisy signals – online and adaptively. A prerequisite for the observers developed
for this purpose is that the signals are periodic with a period duration that is greater than the time
delay to be estimated. The model used in the observer design is not an exact description of the time
delay, but a rough approximation (attained by early truncation of its Taylor series), which practically
results as a PT1 system (1st order low pass). This approximation is robust, yet too imprecise to be used
as-is. Hence, in addition to the variable time delay or “PT1 time constant” T , a variable exponent α is
introduced as an additional augmented state, representing the non-integer order of the low-pass filter.
For this purpose, methods from the field of fractional calculus (FC) are used, in particular the defini-

tion of the non-integer derivative according to Grünwald and Letnikov, since it not based on fractional
integral expressions which are difficult to implement. Compared to integer derivatives, which operate
locally on the signal1, the fractional derivative has a memory that theoretically goes back infinitely
far, so an infinitely large memory would actually be required for correct digital implementation. This
problem was bypassed by the introduction of another approximation in the time-discrete Grünwald-
Letnikov derivative definition. The resulting delay system, apart from the augmented states T and
α ≥ 1 (which now no longer corresponds to the system order), always is of order 1, thanks to said
approximations, which effectively avoids the aforementioned infinite-memory problem and results in a
significantly improved time delay estimate (compared to the PT1-based observer).
This chapter is organized in the following way. Section 3.1 starts with a short literature survey about

fractional methods in modelling and control, followed by an explanation of the practical motivation
to design such an observer. In Section 3.3 the model of the considered abstracted time delay system
is taken into account, followed by the first order approximation. Next, Section 3.5 is devoted to the
description of the fractional model structure of the delay and the resulting EKF variants. In Section
3.6 the simulated results are shown and the conclusions close the chapter.

3.1 Fractional calculus in modelling and control
The area of FC emerged at the same time as the classical differential calculus and it deals with deriva-
tives and integrals to an arbitrary order (real or even complex order), [50–53]. However, its inherent
complexity postponed the application of the associated concepts. Nowadays, the FC theory is applied
in many fields in science and engineering after recognizing its ability to yield a superior modelling and
control in many dynamical systems, [50, 53, 54]. Very recent works like [55] pointed out advantages in
terms of precision and optimality in control systems through the use of fractional PI controllers. In the
literature, we can find several different definitions for the fractional integration and differentiation of
arbitrary order, [50, 51, 53]. One of the most well-known definitions is given by the Grünwald-Letnikov
approach. In [56], a study of the differential flatness property of linear time-invariant fractional systems
is proposed. A framework of polynomial matrices of the fractional derivative operator is given together
with a characterization of fractionally flat outputs and a simple algorithm to compute them. In terms
of observation, recently some contributions related to fractional order system have appeared. In [57],
linear matrix inequalities are proposed to ensure the stability of a class of uncertain fractional-order

1In discrete-time, for example, the first derivative of a signal can be approximated using the current and the last sample,
whereas the second derivative additionally requires the sample right before the last one, etc.
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linear systems by means of a fractional-order deterministic observer. In [58], by introducing a contin-
uous frequency-distributed equivalent model and using an indirect Lyapunov approach, the sufficient
condition for asymptotic stability of the full-order observer error dynamics is presented. It is notable
that the stabilization problem of fractional order nonlinear systems is even more difficult [59] than that
of integer systems, as shown in [60,61].
As can be seen, fractional methods are an active field of research within modelling and control

engineering. The presented approach, however – modelling the elemental time delay phenomenon using
fractional methods and build observers on this basis – has not been described before in the literature.

3.2 Motivation

Figure 3.1: Model of the whole actuator (with a linearized version of the oil pressure dynamics). From
[62].

Figure 3.2: Hydraulic displacement amplifier (the middle part is clamped). Friction hysteresis is caused
by the sealings. From [62].

In systems with time delays, it can be advantageous to know these delays in order to design com-
pensators. This is especially true when a pre-defined or periodic desired trajectory must be tracked,
since it can simply be antedated by a certain amount of time and fed into a feedforward action. This
chapter proposes an EKF to estimate variable time delays online, based on (or rather, inspired by) FC
methods. The motivation for this isolated, specific estimation task was a problem that occurred during
the control design for a fully variable valve control within internal combustion engines by means of a
piezo-hydraulic multistage actuator (which is shown in Fig. 3.1 and is also treated, in more detail, in
chapter 4). In test-bench experiments with this actuator, using simple PD control on the position with
additional feedforward action, the engine valve position could already be controlled sufficiently well –
with the exception of an engine speed-dependent time delay behavior, caused by static friction hysteresis
at the seals of a hydraulic displacement amplifier that is part of the multistage actuator. It is depicted
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Figure 3.3: Hydraulic displacement amplifier with installed pressure sensor. Source: Ostfalia University
of Applied Sciences, Faculty of Automotive Engineering. N. Werner, G. Bergholz and U.
Becker.
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Figure 3.4: Consequences of static friction effects, caused by the sealings of the hydraulic displacement
amplifier that is part of the actuator. From [62].

in Figs. 3.2 (schematic) and 3.3 (picture). This hysteresis effect can be retraced in Figs. 3.4, where the
pressure inside the oil chamber (cyan line) increases for a duration τ1 after the input piston moves (red
line) and before the output piston moves (green line). As soon as the chamber volume increases again,
the pressure increase is less pronounced (τ2) and stays constant after that (τ3). Naturally, this behavior
also happens for movements in the other direction (τ4 and τ5). In order to compensate for the resulting
time delay phenomenon, which only occurs in this form during periodic back and forth movements due
to the friction hysteresis effect depicted in Fig. 3.5a, the signal of the feedforward part of the control law
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Figure 3.5: Hysteresis effects

can be antedated by a corresponding time delta, which must be known. The time delay phenomenon is
clearly visible in Fig. 3.5b, where measurements of the engine valve positions are shown.

3.3 Modelling
It is commonly known that the time delay

y(t) = u(t− T ) (3.1)

can be described by a transcendental transfer function

G(s) = Y (s)
U(s) = e−Ts = 1

eTs
. (3.2)

A rather rough approximation can be obtained by truncating the Taylor polynomial

ex = 1 + x+ 1
2x

2 + ...+ 1
n!x

n +O(xn+1) (3.3)

after the first term (n = 1):
G(s) = e−Ts = 1

eTs
≈ 1

1 + Ts
. (3.4)

Of course, the accuracy of this approximation grows with more terms, but so does the order of the
resulting transfer function, which constitutes numerical challenges when implementing it in an EKF
and it clearly counteracts estimation robustness. In this application, a second-order approximation
already caused problems, and the first-order one results to be much more robust.

3.4 EKF using a first order time delay model
Transforming the resulting transfer function back to the time domain yields the differential equation

y(t) + T ẏ(t) = u(t). (3.5)
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Please note that, because of legibility reasons, symbols y and u are neither renamed in this section nor
in the next, but they are different than in Eq. (3.1) due to the approximation. Following a simple
forward Euler discretization given a small enough sampling time ts,

y(k − 1) + T

ts
(y(k)− y(k − 1)) = u(k − 1), (3.6)

it is now assumed that T is a state and that it is constant (this strong assumption will be relaxed later,
using a non-zero value in the EKF parameter matrix Q1). The resulting discrete nonlinear system
equations

y(k) = y(k − 1)
(

1− ts
T (k − 1)

)
+ u(k − 1) ts

T (k − 1) (3.7)

T (k) = T (k − 1) (3.8)

are used for calculating the a-priori-estimate of the states ẑ−1 (k) = [y(k) T (k)]T in the prediction step,
using the a-posteriori estimates of the last iteration ẑ+

1 (k−1) for the (k−1)th values. The initial values
ẑ+

1 (0) must be defined by the user. The discrete Jacobian is now calculated symbolically as

J1,k =
[
T (k−1)−ts
T (k−1)

ts(y(k−1)−u(k−1)
T (k−1)2

0 1

]
. (3.9)

The a-priori covariance then is
P−1,k = J1,kP+

1,k−1JT1,k + Q1 . (3.10)

In the first time step, P+
1,k−1 = P+

1,0 is a given initial value; otherwise, it represents the a-posteriori
estimate from the previous time step. The matrix Q1 must be specified by the user, and it can be
considered as a quantification of the model uncertainty represented by corresponding noise processes.
The denominator in the following equation is scalar, so the Kalman gain can be expressed in a compact
form as

k1,k =
P−1,kc1

cT1 P−1,kc1 + r1
. (3.11)

The vector c1 = [1 0]T specifies which state serves as measurement innovation, in the given case the
measured output of the (real) time delay system. Now, in the update step, the a-posteriori estimation
of the states and the covariance of the estimation error follow from

ẑ+
1 (k) = ẑ−1 (k) + k1,k

(
ymeasured − cT1 ẑ−1 (k)

)
, (3.12)

P+
1,k =

(
I2×2 − k1,kcT1

)
P−1,k. (3.13)

The initial values used in this simple EKF variant are

ẑ+
1 (0) =

[
0

0.0005

]
and P+

1,0 =
[
0 0
0 100

]
(3.14)

while the parameters were chosen as

Q1 =
[
1 0
0 0.0001

]
and r1 = 1. (3.15)

These values were established after many iterations of simulations. The quality of the estimation using
these exact parameter values depends in a non-trivial way on the shape and scale of the measured
signals. The relatively small value in Q1 corresponding to the state T , compared to that of the state
y, is justified by the assumption that the real time delay to be estimated changes very slowly, if at all,
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which is projected in the model, while the relatively large model uncertainty for y is founded in the fact
that the value calculated using the approximated model is not to be trusted too much. In P+

1,0, however,
a large value is used for T since this EKF is not supposed to depend on prior knowledge about the time
delay it shall estimate. If such knowledge exists, it can of course be implemented in the initial values,
speeding up the convergence of the filter. Unfortunately, for EKFs the convergence in general is not
guaranteed at all, and must be investigated on a case-by-case basis, usually by carrying out simulations,
as it was done in this contribution. For example, if the initial value for the time delay is chosen as zero
or a value smaller than used here, the filter does not converge.

3.5 EKF using fractional order time delay models
To improve the accuracy of the approximation done in Eq. (3.4), a new parameter α is introduced:

Gα(s) = e−Ts = 1
eTs
≈ 1

1 + Tsα
, (3.16)

or, in a second variant,
Gα,T (s) = e−Ts = 1

eTs
≈ 1

1 + (Ts)α . (3.17)

Intuitively it is clear that α should be greater than one for the denominator to increase. Also, the
Fractional Derivative represented by sα can be irrational, so a series expansion would have an infinite
number of terms, just like the transcendental e−Ts. In order to formulate discrete system equations, the
Fractional Derivative definition from [63], Eq. (9a) is used:

Dαy(t) ≈ 1
tαs

m∑
j=0

(−1)j
(
α

j

)
y(t− jts). (3.18)

The resulting system for m = 1 is

y(k) = y(k − 1)
(
α(k − 1)− t

α(k−1)
s

T (k − 1)

)
+ u(k − 1) t

α(k−1)
s

T (k − 1) , (3.19)

T (k) = T (k − 1), (3.20)
α(k) = α(k − 1) (3.21)

or for the second variant

y(k) = y(k − 1)
(
α(k − 1)−

(
ts

T (k − 1)

)α(k−1)
)

+ u(k − 1)
(

ts
T (k − 1)

)α(k−1)
, (3.22)

T (k) = T (k − 1), (3.23)
α(k) = α(k − 1). (3.24)

For α = 1 both variants simplify to the system Eqs. (3.7-3.8). These system equations are used for
the prediction step of the “Fractional Extended Kalman Filter”. Note that there are, in fact, three
approximations used during the derivation of the system equations. The first one is the truncation of
the Taylor series for e−Ts, the second one is the approximation of the limit in the Grünwald-Letnikov
derivative by a constant sampling time done in [63] and the third one is the small chosen value ofm when
transforming sα to the (discrete) time domain. The Jacobian (discrete time arguments are omitted for
the sake of brevity) is

Jα =

α−
tαs
T (y − u) t

α
s
T 2 y + (u− y) t

α
s
T log(ts)

0 1 0
0 0 1

 (3.25)
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Figure 3.6: Measured noisy input and output, the latter with additional noise.

or, for the second variant,α−
(
ts
T

)α (y − u)αT
(
ts
T

)α
y + (u− y)

(
ts
T

)α log( tsT )
0 1 0
0 0 1

 . (3.26)

The design of the respective EKFs is analogous to the previous section, so the steps are not described
further. The only differences (apart from notation) are cα = [1 0 0]T and I3×3 in the calculation of the
a-posteriori covariance because of the additional state. The parameters, very similar to those in the
previous section, are chosen identically for both variants with α:

ẑ+
α (0) =

 0
0.0005

1

 , P+
α,0 =

0 0 0
0 100 0
0 0 10

 ,Qα =

1 0 0
0 0.0001 0
0 0 0.001

 , rα = 1. (3.27)

3.6 Results
Fig. 3.6 is an example of the input and output signals that were used to validate the proposed approach
in simulations. They resemble bell curves, also called Gaussian curves for they have the shape of a
Gaussian distribution. This shape proved to be advantageous for combustion engine valve control,
which is one possible application. The signal has a periodicity of 60 ms. The shown time delay amounts
to 3 ms. In Figs. 3.7a and 3.7b, a step from 0 to 3 ms is applied to the variable time delay function
block that is used to implement the time delay in Simulink. The reactions of the EKFs are shown.
Note that the variant without the additional parameter α shows a relatively large bias after reaching
steady state. Meanwhile, the two variants with α perform well enough for many possible applications.
Problematic behaviour can be observed in Fig. 3.7c. There, a triangular signal is used for the variable
time delay. The EKFs have no trouble following this slowly changing reference, but they do so with a
notable estimation offset. Especially for small time delays, the estimation is quite bad. This is due to
the presence of state T (k − 1) in the denominator of the system equations from which numerical issues
arise. The corresponding values of α can be seen in Fig. 3.7d. This problem is even more visible when
a rectangular reference is applied, see Figs. 3.7e and 3.7f.
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(a) Reaction of the three described EKF variants to a
step from 0 to 3 ms.

(b) α for constant time delays.

(c) Reaction of the three described EKF variants to tri-
angular time delays.

(d) α for triangular time delays.

(e) Reaction of the three described EKF variants to rect-
angular time delays.

(f) α for rectangular time delays.

Figure 3.7: Simulation results

47



4 Tracking control of a piezo-hydraulic actuator
using input-output linearization and a cascaded
extended Kalman filter structure

Chapter 4 considers the same physical system as in the previous chapter: a piezo-hydraulic multistage
actuator for fully variable valve control in internal combustion engines, stemming from a research project
by Nils Werner [64]. Unlike the prequel, this chapter deals with the whole control architecture instead of
isolated aspects, and in particular with advanced nonlinear control methods instead of PID control, but
it does so in simulation studies instead of real test bench experiments. This is a common approach in
applied control and requires a validated/verified model of the system, which is present for this actuator.
Depictions of the real system and the test bench are given in Fig. 4.1. Note that a newer version of
the actuator, which is treated in this chapter, includes a second piezo stack and a second hydraulic
displacement amplifier, located on the other side of the double-acting hydraulic cylinder.

Figure 4.1: Actuator (left, old variant with only one piezo stack) and test bench (right, old variant, with
a spring instead of a second piezo stack). Source: Ostfalia University of Applied Sciences,
Faculty of Automotive Engineering. N. Werner, G. Bergholz and U. Becker.

Originally, combustion engine valves are opened and closed by the camshaft, with a trajectory profile
according to the actual physical shape of the cams, which is immutable during operation (and, thus,
cannot be optimized for each set of operating conditions). Due to friction between cams and rocking
levers, this traditional approach also suffers from significant thermal friction losses of (at high engine
speeds) up to 10% of the engine’s nominal mechanical power [64]. Thus, entirely removing the camshaft
and related components (and replacing it with fully-variable valve control) achieves a significant reduc-
tion of friction losses compared to an engine with camshaft. Using such actuators for each cylinder of
the combustion engine, it is possible to optimize and control the valve trajectories in real-time (or even
disable multiple cylinders), with large fuel savings potential [64].
Apart from strict soft-landing requirements1, the intake or exhaust valves of internal combustion

engines have to withstand very strong accelerations to open and close within a few milliseconds and, if
necessary, to overcome the exhaust gas pressure of up to 100 bar in the cylinder. With an engine speed

1A soft landing is achieved for closing velocities lower than a certain threshold, often specified between 0.1 and 0.5 m s−1,
and facilitates an increased expectation of life and better acoustics of the engine valves.
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of 6000 RPM, for example, valve accelerations of up to 6 km s−2 occur when using the smooth desired
valve trajectory proposed in this chapter (and possibly even more, for trajectories with sharp bends or
discontinuities in the signal). Note that this is solely due to the prescribed movement and does not
even consider exhaust gas forces yet. This application therefore requires actuators with extremely high
power densities if the valves are to be controlled individually and fully-variably (which is a prerequisite
for more efficient combustion that is optimized to the current operating conditions), while the available
installation space is typically limited. For these reasons, double-acting hydraulic cylinders are a sensible
choice for moving the engine valves, as they combine high power at high speeds with a low volume
(since the large hydraulic power supply can be conveniently placed somewhere else). An actuator is
then required in order to move the 4/3-way servo-proportional valve that controls the hydraulic cylinder,
typically an electromagnetic one (e.g. voice coil actuators). However, electromagnetic actuators that
are both fast and powerful enough would not fit in the available space. Thus, off-the-shelf actuators
consisting of stacked piezo crystals were used, which can apply very high forces very quickly, but only over
very short distances (max. 100 µm in this case). However, since the servo valve requires a displacement
range of up to 10 mm, a hydraulic displacement amplifier was introduced, see Fig. 3.3. In principle,
it consists of a small oil chamber with two circular openings for the inlet and outlet pistons. On the
input side (towards the piezo stack), the area is large and the piston stroke travel is small, and on the
output side (towards the servo valve), the area is small and the piston stroke travel is increased by a
corresponding factor. Due to the high pressures inside this oil chamber, expensive sealings are necessary,
which, due to static friction effects, cause the hysteresis problem that was already described in chapter
3. (Note that this hysteresis loop is not considered in the model that was used in the simulation studies
at the end of this chapter.) Apart from this, the three-stage valve actuator functions satisfactorily at
both low and high engine speeds, but the control results to be complex. Thankfully, the piezo actuators
come with their own controller box developed by the manufacturer, implementing position control of
the output piston (that interfaces the displacement amplifier). Hence, the position can be modelled
proportionally to the input voltage.
The oil pressure dynamics in the two chambers of the double-acting hydraulic cylinder (which drives

the actual engine valves) can be modelled depending on the positions of the servo valve spool and
that of the hydraulic cylinder, using the continuity equation from the field of fluid dynamics (i.e. a
volume flow balance), while the dynamics equation of the engine valve itself contains a driving force
that is proportional to the difference between these two pressures. To control the position of the servo
valve spool, a linearized tenth-order state space model of the hydraulic displacement ratio was derived,
which models the elasticity of the hydraulic fluid in the oil chamber as virtual linear springs, whose
stiffness is calculated from the elastic modulus of the oil, the piston areas and the oil volume. This
linear model was then simplified via automatic model order reduction to a second order system, which
can be easily inverted by directly inverting the transfer function (introducing two very fast poles to
maintain causality). This way, a feedforward control for the servo valve spool position is obtained, by
appropriate specification of the piezo actuators’ input voltages. (Feedback effects of the engine valves
on the position of the servo valve spool were neglected here). The remaining nonlinear part of the
system, which is the pressure dynamics within the hydraulic cylinder, is compensated with the method
of feedback linearization, which was mainly coined by the Italian control engineer Alberto Isidori. In
this method, states are fed back in such a way that the resulting closed loop (sub)system behaves like
an integrator chain – in this case as a single integrator. This enables control of the engine valve position
using purely linear control methods. Here, the LQI approach was used, which originates from the field
of optimal control and consists of the well-known linear-quadratic regulator (LQR), extended by an
integral component for more robust tracking and disturbance rejection. This rather complex combined
control strategy, which requires the availability of the entire state vector, is made possible by a novel
cascaded EKF variant, in which (in analogy to the control) the nonlinear subsystem is “outsourced”
into an additional observer, which forms a loop with the observer for the linear subsystem. In this
way, the computational effort can be greatly reduced, which is a necessary condition for real-time
implementability. Causality is achieved by adding an artificial delay of one time step inside the loop,
which does not harm the quality of the results, as demonstrated by simulations.
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4.1 State of the art
Conventional engine valve systems with camshafts offer no variability with respect to the optimal timing
for a partial load or full load of the combustion engine. At all speeds of the engine and all load ranges,
a constant valve lift curve with a fixed timing is present. Reductions in both the fuel consumption
and the exhaust emissions could be achieved by implementing the Miller or Atkinson cycles. This
approach, however, would lead to a power reduction as well. Therefore, by charging the filling phase of
the cylinder via a compressor or a turbocharger, the power reduction in comparison with conventional
internal combustion engines could be compensated. The necessary compromise can be circumvented
with a variable valve timing and stroke as proposed here. This can be achieved by replacing the camshaft
of the internal combustion engine by actuators for each valve. These are often electromagnetic actuators
or combinations with pneumatic or hydraulic servo-systems. As an example for existing systems, the
Electro-Hydraulic Valve System (EHVS) by Bosch is depicted in Fig. 4.2. There are four ways by

Figure 4.2: Electro-Hydraulic Valve System by Bosch [64].

which the engine valve behaviour can be influenced: Two 2/2-way valves, an adjustable hydraulic pump
and a throttle valve. In order to open the engine valve, the right 2/2-way valve is closed and the left
one is opened, resulting in a pressure equalization between the upper and lower chamber. However,
since the upper active surface of the cylinder piston is larger, the valve slowly starts to open. When
the upper holding edges are cleared, the movement is accelerated because the upper surface is slightly
enlarged. The valve movement stops shortly after the left 2/2-way valve is closed again, resulting in a
force equilibrium holding the engine valve in place. To close the engine valve, the right 2/2-way valve
is opened, allowing the fluid to flow through the throttle valve into the tank. The throttle valve must
be controlled; it is necessary to decelerate right beforce closing, to avoid a too large contact velocity
when attaining its seat (soft landing). The valve lift can be influenced by closing the left 2/2-way valve
and, thereby, to initiate the deceleration. The hydraulic pressure supplied by the pump (or rather the
pressure difference between pump and tank) determines the acceleration of the engine valve movement.
The throttle valve determines the deceleration force and is used to achieve soft landing. This kind of
system represents a dedicated actuator for the given application. While control of the engine valve
movement seems to be generally intuitive and simple, an exact trajectory tracking is a complicated
control problem due to the presence of four inputs and because the 2/2-way valves are on-off valves.
In this chapter, a novel kind of system is presented that consists of two antagonistic piezo-electric
actuators with hydraulic displacement amplifiers, driving a 4/3-way servo (proportional) valve that is
in turn driving one or more double-acting hydraulic cylinders. This architecture allows to combine the
advantages of piezo actuators (accuracy and speed) with those of hydraulic systems (high power and
compact dimensions of the hydraulic cylinders, being the actual actuators).
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4.1.1 Control strategies for hydraulic systems
In recent control applications for hydraulic servo-systems, the basic concepts of nonlinear identification
and nonlinear control have already been successfully used. Studies such as [65–68] consider innovative
control strategies for similar hydraulic systems. In particular in [65], a decentralised control approach is
proposed using Lyapunov techniques and a Sliding Mode control design for the positioning of two coupled
cylinders. Moreover, the control structure is extended with a sliding mode disturbance observer. In [66],
a cascaded backstepping control is designed, where fast inner control loops determine the difference
pressure in each hydraulic cylinder, while the position as well as the generated force are controlled in
the outer loop. Here, the design of the outer control loop is based on adaptive backstepping. In [67], a
cascaded flatness-based control is developed for the MIMO system. Model parameter uncertainties are
estimated by a reduced-order disturbance observer and used for a compensation. Nonlinear techniques
such as feedback linearisation, Sliding Mode control and EKF for the estimation of immeasurable state
variables become important for feedback control, see [69] for a mechanical system and also [70, 71] for
a hydraulic one. In particular, the paper [71] deals with the same system model as the contribution
at hand, however, only with a quasi-static description of the pressure dynamics. The positioning of
the spool valve is achieved by feedforward control, i.e., a flat inversion of the quasi-static pressure
dynamics with desired values. The engine valve position is accurately controlled by Sliding Mode
techniques, where a switching control part counteracts model uncertainty. However, the states that are
used for the feedback control are assumed to be measurable. In contrast, this work envisages an input-
output linearization by an inversion of the pressure dynamics and a linear-quadratic proportional-integral
tracking control of the engine valve. Here, a Cascaded Extended Kalman Filter provides the necessary
estimates for the state variables, instead of relying on measurements like in [71]. The integral part takes
into account model uncertainty. Standard control approaches like PID are very well known because
of their high practical relevance. Recent applications, however – in particular those in sophisticated
mechatronic systems, where hydraulics is combined with unconventional drives like piezo-elements –
call for new approaches. This is especially true considering the technical challenges posed by this
specific application. To repeat the initially given example, at 6000 RPM, high accelerations of up to
2700 m s−2 are required for lifting the valve, and up to 6000 m s−2 at the peak of the valve trajectory
to brake and accelerate in the opposite direction [64]. In case of the exhaust valve, even more force is
necessary to overcome exhaust gas pressures of up to 100 bar in the cylinder. Furthermore, soft landing
is required to reduce material wearout and noise. These requirements justify abandoning the classical
control structures like PID, favored by practitioners for their simplicity and intuitive tuneability, and
employing more complex algorithms.

4.1.2 Sensorless control
Sensorless control focusses on the estimation of state variables to avoid measurements or to reduce the
number of sensors as much as possible. In the given case, the engine valve velocity and the hydraulic
pressures in both chambers of the cylinder have to be estimated. Obtaining measurements of these
variables tends to be very difficult or too expensive, especially regarding the pressure in the hydraulic
chambers. Therefore, an observation strategy is advantageous. In general, local observer design for
nonlinear control systems represents one of the key problems both in theory and in applications. In
the recent literature, several different sensorless control structures are common. In [72], a Sliding Mode
observer is develloped. For non-Gaussian noise, an online state estimation scheme is presented in [73].
In the context of Kalman filters, a large number of papers have been published recently, e.g. the EKF
in [74]. In particular, Kalman filter structures such as in [75–78] are often applied in sensorless drive
control. Kalman filters guarantee very high performance and optimal estimation in the presence of
noisy measurements and model uncertainty if certain conditions are met. In particular, in [79] and [80]
innovative Kalman filter structures are employed for the control of electromagnetic actuators. Another
very important issue in many applications is the reduction of the computation load. In the literature,
there are several papers that contribute to a reduction of the complexity in terms of the numerical
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effort required by the proposed observers. A large effort was devoted to reduced-order observers in [81].
Moreover, efficient implementations of EKFs in a cascade structure are presented in [82], [83], and [74].

4.1.3 Contributions and structure of this chapter
The piezo-hydraulic actuator is controlled by an input-output linearization of the nonlinear hydraulic
system part, a feedforward compensation of the piezo-mechanical system, and an LQI control of the
engine valve position. Thereby, robust trajectory tracking of the engine valve position is achieved. The
LQI control involves a linear state feedback controller enhanced by a proportional-integral feedback of
the tracking error w.r.t. the engine valve position. As already pointed out, the estimation of the valve
velocity and the pressures in both hydraulic chambers is of fundamental importance because access by
measurements is very difficult or expensive. Therefore, one of the main contributions of this work is a
cascaded EKF. This estimator is the basis of the implementation of a sensorless control of the piezo-
hydraulic actuator to be used in a camless engine. The avoidance of sensors is always an advantage, not
only from an economical point of view but also in terms of reducing faults and guaranteeing a long life
time. To conclude, the main contributions of this work are:

• to propose an innovative actuator for an accurate motion control of engine valves that consists of
two antagonistic piezo-elements, a mechanical and a hydraulic part.

• to propose a control structure that involve three main parts: an input-output linearization using
appropriate feedback to compensate the nonlinearities in the hydraulic system part, a feedforward
action to compensate the system dynamics of the piezo-mechanical part, and an LQI control that
renders the trajectory tracking robust against disturbances, parameter uncertainty and unmodeled
dynamics.

• to achieve a sensorless motion control engine valve that only requires the measurements of the valve
spool position and the position of the engine valve itself. Furthermore, the efficient implementation
of the proposed estimator structure needs only a limited number of calculations.

• The numerical complexity of the proposed cascaded EKF structure is compared with a standard
EKF, developed for the same application.

This chapter is structured in the following way: Section 4.2, starting with the generation of the desired
trajectories, is devoted to the description of the actuator and its mathematical modelling. In Section
4.3, a feedforward control design for the piezo-mechanical subsystem is described together with a input-
output linearisation of the hydraulic part. An LQI control of the engine valve position contributes to a
robustification of the trajectory tracking. In Section 4.4, the design of the cascaded EKF structure is
presented. Moreover, a comparison between the proposed cascaded EKF structure and an alternative
standard EKF in terms of the calculation load is provided. Simulation results are presented and discussed
in Section 4.5, which show the high accuracy that is achievable with the proposed overall control
structure. The chapter closes with conclusions in Section 4.6.

4.2 System modelling and trajectory generation
As basis for the model-based control design, a mathematical model of the physical system is to be
developed. Furthermore, in the envisaged application to camless combustion engines, a suitable tra-
jectory generation is important. The overall model consists of two subsystems that are assumed to be
decoupled:

• Two antagonistic piezo actuators combined with hydraulic displacement amplifiers acting on the
valve spool
– input signals: input voltage of the corresponding piezo actuator
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– output signal: position of the valve spool

• Servo valve and hydraulic cylinder with the engine valve
– input signal: position of the valve spool
– output signal: position of the engine valve

Small retroactive effects of the second subsystem on the first one are neglected in the control-oriented
model to simplify the subsequent development of control strategies.

4.2.1 Generation of desired trajectories
The desired engine valve trajectory is chosen as a Gaussian

y(t) = He−(mt+a+c
b )2

, (4.1)

which belongs to the class of C∞ functions. The expression mt denotes a periodic ramp function
covering the range – as typical for four-stroke engines – from 0° (crank angle) to 720°. Thus, the
slope factor becomes m = 360°

60 s ne, with the engine speed ne in RPM (explaining the denominator),
whereas the constant a has a value of a = −360°. The parameter c can be used online to influence
the timing of the valve opening. Thus, the crank angle function mt + a + c should be implemented
as a resettable integrator to ensure it maintains in [−360°, 360°]. The parameter b = 65° controls
the aperture of the Gaussian, and thus the opening duration in dependence of the engine speed. It
is proportional to the full time width of the valve curve at a height of H

2 with a factor of m
2
√

ln 2 .
Here, the parameter H = 10 mm denotes the maximum valve lift. Fig. 4.3 shows the shape of the
generated trajectory in the worst case of ne = 8000 RPM as well as the relevant region of its frequency
spectrum. Here, frequency components larger than 500 Hz can be neglected in good accuracy. This
approach is a very simple and convenient way to generate mathematically well-defined intake/exhaust
valve trajectories because unlike e.g. polynomials of similar shape, it has only 3 parameters (amplitude
H, width b and timing c). These can be expressed in analogy to traditional combustion engines. The
generated continuous signal is very smooth in the sense that its spectrum declines rapidly towards
high frequencies compared to discontinuous signals like triangular ramp-like signals. This allows for
more aggressive model order reductions (or similar simplifications of linear models) in order to design
feedforward actions. Furthermore, when designing flatness-based feedforward controls (which was not
done in this contribution), derivatives of the desired output are required, sometimes even very high-order
derivatives. Thus, the main advantage of this symbolic ansatz function is its infinite differentiability.
For example, the first time derivative is

ẏ(t) = −2mmt+ a+ c

b2
He−(mt+a+c

b )2︸ ︷︷ ︸
y(t)

. (4.2)

4.2.2 Nonlinear modelling of the hydraulic cylinder and the engine valve
The engine valve is actuated by a double-acting hydraulic cylinder as depicted in Fig. 4.4, cf. [70, 71].
The equation of motion of the engine valve is described by the linear second-order ordinary differential
equation (ODE)

Mvÿ(t) + bvẏ(t) = ∆p(t)S − d(t) . (4.3)

Here, ẏ(t) represents the engine valve velocity, ÿ(t) is the engine valve acceleration, Mv = 62.5 g is the
reduced mass of the hydraulic piston and the engine valve and bv = 0.1 kg s−1 a damping coefficient.
The area S = 0.754 cm2 is the active surface of the cylinder, ∆p(t) the pressure difference pA(t)− pB(t)
and d(t) a disturbance force caused by exhaust gases, which affects the engine valve motion. Please
note that d(t) may also take into account any model uncertainties and other unmodelled effects. Since
the hydraulic fluid is assumed to be compressible, additional differential equations for the pressure
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Figure 4.3: Desired valve trajectory and its frequency content (FFT) at ne = 8000 RPM.

dynamics in the cylinder chambers need to be derived. They arise from the continuity equation (volume
flow balance), see [70], as well as an oil model

ṗA(t) = EOil
VA,0 + Sy(t)(QA(t)− Sẏ(t)− CLi(pA(t)− pB(t)) , (4.4)

ṗB(t) = EOil
VB,0 − Sy(t)(QB(t) + Sẏ(t) + CLi(pA(t)− pB(t)) . (4.5)

Here, VA,0 = 0.113 cm3 and VB,0 = 1.018 cm3 are the initial volumes of the cylinder chambers that
correspond to a completely closed engine valve at the position y(t) = 0. The bulk modulus of the
hydraulic fluid is given by a constant value of EOil = 1.883 GPa, where a dependence on the pressure
and on the temperature is neglected. The leakage coefficient CLi characterizes internal leakage, which
is directed from chamber A to chamber B. The volume flows QA(t) and QB(t) into and out of the
hydraulic chambers can be adjusted by the valve spool position. Here, a negative sign corresponds to
a flow out of the chambers. The pipeline dynamics are not modelled explicitly because their impact is
negligible. The valve shown in Fig. 4.5 is a 4/3-way servo valve, which allows for a vanishing flow rate
in the case of x2(t) = 0, i.e., the middle position of the valve spool. For a concise symbolic description
of the volume flow rates, the function sg(x) is introduced as follows

sg(x) =
{
x for x > 0
0 for x ≤ 0 . (4.6)

Then, the flow rates result in

QA(t) = c sg(x2(t))
√
p0 − pA(t)− c sg(−x2(t))

√
pA(t)− pT , (4.7)
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Figure 4.4: Hydraulic system part driving the engine valve.

Figure 4.5: Valve spool of the servo valve with indicated flow directions.

QB(t) = c sg(−x2(t))
√
p0 − pB(t)− c sg(x2(t))

√
pB(t)− pT , (4.8)

where p0 = 100 bar represent the absolute pressure provided by the hydraulic power supply, whereas
pT = 1 bar is the pressure of the hydraulic fluid tank. The position of the valve spool is given by x2(t)
and represents the control input for the nonlinear system part. The hydraulic coefficient

c = αDnb

√
2
ρoil

(4.9)

depends on the hydraulic fluid density ρoil = 845.6 kg m−3, the number n of orifices in the servo valve
(2), the width b = 5 mm as well the coefficient αD = 1. For further details, see [64]. These five equations
lead directly to a nonlinear state-space representation for the hydraulic system part:

ż = f(z,u,d) , (4.10)

with the state vector
z =

[
z1 z2 z3 z4

]T
. (4.11)

The states are chosen as z1 = y(t), z2 = ẏ(t), z3 = pA(t), z4 = pB(t), whereas the input is given by the
valve spool position u = x2(t). The disturbance force is d(t), and the output corresponds to the engine
valve position z1 = y(t). Then, the right-hand side can be stated as

f(z,u,d) =


z2

1
Mv

((z3 − z4)S − z2bv − d)
EOil

VA,0+z1S
(c sg(u)

√
p0 − z3 − c sg(−u)

√
z3 − pT − z2S − CLi(z3 − z4))

EOil
VB,0−z1S

(c sg(−u)
√
p0 − z4 − c sg(u)

√
z4 − pT + z2S + CLi(z3 − z4))

 . (4.12)
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Figure 4.6: Antagonistic structure with two piezos and hydraulic amplifiers, see [84].

4.2.3 Modelling of the piezo-electrically driven valve spool with hydraulic displacement
amplifiers

As indicated in Fig. 4.6, the hydraulic fluid is assumed to be compressible. In analogy to the nonlinear
part, the bulk modulus is assumed to be constant in this subsystem as well. As proposed in [64], it is
possible to calculate a resulting spring constant from the bulk modulus that approximately represents
the resulting dynamical behaviour by the following linear relation

KFL = S2EOil
V0

. (4.13)

Here, KFL denotes the spring constant and V0 the considered fluid volume. This representation takes
the two different piston surfaces on both sides – which have a ratio of 100 – into account, and
thus two conjoined chambers with identical oil volumes. On the piezo side, the stiffness is given by
KFL1 = 4.88 GN m−1, whereas the stiffness on the valve side is KFL2 = 488 kN m−1. The actual force
transmission ratio achieved by this design, cf. [71], depends on the quotients

AF1 = A1
A1 +A2

, AF2 = A2
A1 +A2

. (4.14)

Here, A1 denotes the surface area at the piezo-side, and A2 surface area at the valve-side. Given
the piezo parameters Dx = 180 nm V−1, characterizing the displacement per applied voltage, and the
stiffness Kx1,2 = 166.67 MN m−1, the linear ODEs for the mechanical system with five point masses
depicted in Fig. 4.6 become

mP1ẍ11(t) = Vz1DxKx1 − x11(t)(Kx1 +K1 +AF1KFL11)− ẋ11(t)D1 + xc1(t)KFL11 , (4.15)
mOilẍc1(t) = x11(t)AF1KFL11 + x2(t)AF2KFL12 − xc1(t)(KFL11 +KFL12) , (4.16)
mV S ẍ2(t) = xc1(t)KFL12 + xc2(t)KFL21 − ẋ2(t)(DV S1 +DV S2) (4.17)

− x2(t)(AF2KFL12 +KV S1 +KV S2 +AF2KFL21) ,
mOilẍc2(t) = x2(t)AF2KFL21 + x21(t)AF1KFL22 − xc2(t)(KFL21 +KFL22) , (4.18)
mP2ẍ21(t) = −Vz2DxKx2 + xc2(t)KFL22 − x21(t)(AF1KFL22 +K2 +Kx2)− ẋ21(t)D2 . (4.19)

Here, the inputs of the piezo elements are the voltages Vz1(t) and Vz2(t). The other parameters are
given by AF1 = 0.9901, AF2 = 0.0099, mV S = 28.1 g, mP1,2 = 70.8 g, K1,2 = 140 kN m−1, KFL11,22 =
KFL1, KFL21,12 = KFL2, D1,2 = 1000 kg s−1, KV S1,2 = 3.1 kN m−1 and DV S1,2 = 16.8 kg s−1. For the
subsequent control design, a linear state-space representation can be derived as follows

x =
[
x11, ẋ11, xc1, ẋc1, x2, ẋ2, xc2, ẋc2, x21, ẋ21,

]T
, (4.20)

ẋ(t) = Ax(t) + B
[
Vz1(t)
Vz2(t)

]
, y(t) = cTx(t), A =

[
A11 A12
A21 A22

]
. (4.21)
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Submatrix A11 is given by

0 1 0 0 0
−Kx1+K1+AF1KFL11

mP1
− D1
mP1

KFL11
mP1

0 0
0 0 0 1 0

AF1KFL22
mOil

0 −KFL21+KFL22
mOil

0 AF2KFL12
mOil

0 0 0 0 0
0 0 KFL12

mV S
0 −AF2(KFL12+KFL21)+KV S1+KV S2

mV S


, (4.22)

whereas A12 = 04×5 is a zero matrix. The lower block matrices result in

A21 =


0 0 0 0 0
0 0 0 0 AF2KFL21

mOil
0 0 0 0 0
0 0 0 0 0

 , (4.23)

A22 =



1 0 0 0 0
−DV S1+DV S2

mV S
KFL21
mV S

0 0 0
0 0 1 0 0
0 −KFL21+KFL22

mOil
0 AF1KFL22

mOil
0

0 0 0 0 1
0 KFL22

mP2
0 −Kx2+K2+AF1KFL22

mP2
− D2
mP2


. (4.24)

The input matrix can be stated as

B =
[
0 DxKx1

mP1
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −DxKx2
mP2

]T
, (4.25)

and the output vector results in

cT =
[
0 0 0 0 1 0 0 0 0 0

]
. (4.26)

4.3 Model-based trajectory tracking
4.3.1 Feedforward control design for the linear subsystem
In the sequel, the feedforward control design for the piezo-electrically driven valve spool is considered.
Given a desired trajectory for the valve spool position, the necessary input signals for the antagonistic
piezo elements are determined. To reduce the implementation effort, a model-order reduction is rea-
sonable. As a consequence, the order of the linear subsystem according to Subsect. 4.2.3 is reduced
using Matlab’s modred function. Hankel singular values shown in Fig. 4.7 indicate that the following
second-order system is suitable for the feedforward control design

ẋD2(t) = AD2xD2(t) + BD2

[
Vz1(t)
Vz2(t)

]
, yD2(t) = cTD2xD2(t), xD2(t) =

[
x2(t)
ẋ2(t)

]
. (4.27)

Fig. 4.8 demonstrates that this order reduction is justified as long as input signals Vz1(t) – apart from
inevitable noise – do not contain frequency components larger than 1 kHz. The feedforward control
strategy is based on the use of symmetric input voltages, which follows intuitively when looking at the
antagonistic structure in Fig. 4.6

Vz = 1
2(Vz1(t) + Vz2(t)) = const. (4.28)

57



Figure 4.7: Hankel singular values.

Here, the constant mean value Vz can be specified by the user. The authors chose a mean value
of Vz = 400 V because the piezo actuators have an input voltage range from 0 V to 1000 V. The
signals Vz1(t) and Vz2(t) are symmetric around this mean value because Vz2(t) is calculated according
to 2Vz − Vz1(t). In order to obtain an invertible SISO system model, Vz is introduced as an additional
state. Furthermore, the 2× 2 matrix BD2 is partitioned into two columns

BD2 =
[
BD2,1 BD2,2

]
. (4.29)

The extended system model can be stated as

ẋD3(t) = AD3xD3(t) + BD3Vz1(t), yD3(t) = cTD3xD3(t) , (4.30)

where the matrices and vectors are given by

xD3(t) =
[
xD2(t)
Vz

]
,AD3 =

[
AD2 2BD2,2

01×3

]
,BD3 =

[
2BD2,1

0

]
, cD3 =

1
0
0


T

. (4.31)

The corresponding transfer function can be determined using Matlab’s ss2tf routine, which yields

GD3(s) = b1s

a3s3 + a2s2 + a1s
. (4.32)
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The feedforward control involves an inversion of this transfer function

G−1
D3(s) = a3s3 + a2s2 + a1s

b1s
. (4.33)

Since this is not a proper system, two relatively fast poles are added to obtain an implementable inverse

GD3−Ffwd(s) = a3s2 + a2s+ a1
b1(10−9s+ 1)2 . (4.34)

4.3.2 Input-output linearization
A widely used approach to control nonlinear systems is input-output linearization, see in particular the
pioneer work of [85]. Moreover, application-oriented presentations can bei found in [70,86]. This allows
to cancel nonlinearities in the input-output behaviour, resulting in an integrator chain [85]. Afterwards,
this linear system has to be stabilized in a final design step using a suitable linear control strategy. If the
relative degree, which characterizes the order of the input-output dynamics, is smaller than the system
order, an internal dynamics exist. A condition for the implementability of the input-output linearization
is the stability of the internal dynamics, an unobservable part of the overall system dynamics. Typically,
the stability analysis is simplified by considering only the zero dynamics. It represents the linearized
internal dynamics with a vanishing output as well as vanishing time-derivatives of the output and the
corresponding input signal. A further condition is the non-existence of any singularities in the input
signal.
The overall control strategy is a cascaded one, which is outlined in Fig. 4.9. Given the chosen output

∆F = (pA − pB)S, only the nonlinear part of the system (4.12) is considered in the sequel. Performing
a time-derivation of the controlled ouput

∆Ḟ (t) = (ṗA(t)− ṗB(t))S (4.35)

and inserting the differential equations for ṗA and ṗB leads to the occurrence of the control input x2.
Thus, the relative degree of the nonlinear part of the second subsystem is one, and the internal dynamics
is of order one. A suitable state variable for the internal dynamics is either pA or pB. Eq. (4.12) shows
that the zero dynamics is asymptotically stable in the case of internal leackage. In the next design step,
the highest derivative of the controlled output ∆Ḟ (t) is chosen as stabilizing control input v(t). Solving
for the desired input variable, x2(t) is renamed as x2d(t), and the inverse dynamics can be stated as

x2d =
v(t) +

(
EOil

VA,0+y(t)S + EOil
VB,0−y(t)S

) (
ẏ(t)S2 − SCLi(pA(t)− pB(t))

)
EOilSc

[(√
p0−pA(t)

VA,0+y(t)S +
√
pB(t)−pT

VB,0−y(t)S

)
H(x2d(t− Ts)) +

(√
pA(t)−pT

VA,0+y(t)S +
√
p0−pB(t)

VB,0−y(t)S

)
H(−x2d(t− Ts))

]
(4.36)

where x2d(t) is delayed by one sampling time step on the right-hand side according to sg(x2d(t)) =
x2d(t)H(x2d(t− Ts)) with the Heaviside function H, to avoid any algebraic loops. All the other signals
– with the exception of the stabilizing input v(t) – are available from measurements and/or estimations
and employed in the inverse dynamics. Using estimates instead of noisy measurements often yields
better results because noise properties can be exploited adequately, e.g., by an (extended) Kalman filter
approach. Employing other filtering techniques like model-free low-pass filtering would provide smooth
signals as well, however, only with a certain time lag. Also, the Kalman filter is useful as an estimator
of unmeasurable states by exploiting a-priori knowledge of the system in the form of the system model
equations. In the given case, the engine valve position is the only measurable signal used for feedback,
whereas the remaining ones are estimated by a Cascaded Extended Kalman Filter (CEKF) structure
that will be described in one of the next chapters. For these two reasons, estimates are used for all the
signals.
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Figure 4.9: Block diagram of the overall control strategy.

4.3.3 LQI control design for the tracking of the engine valve position
The stabilizing control law v(t) is chosen as an LQI control, which consists of a proportional-integral
feedback of the tracking error w.r.t. the engine valve position and state feedback. The gain vector Klqi =[
Kx KI

]
is calculated by Matlab’s lqi(ss(Al,bl,cl,dl),Ql,rl) command, using the matrices and

vectors (see Fig. 4.9)

Al =

0 1 0
0 − bv

Mv

1
Mv

0 0 0

 , bl =

0
0
1

 , bd =

 0
− 1
Mv

0

 , cTl =
[
1 0 0

]
, dl = 0 , (4.37)

which belong to the following state-space representation

x(t) =
[
y(t) ẏ(t) F (t)

]T
, ẋ(t) = Alx(t) + blv(t) + bdd(t). (4.38)

The controlled output is given by the first state variable y(t), and the design parameters are chosen as

Ql =


107 0 0 0
0 1010 0 0
0 0 106 0
0 0 0 107

 , rl = 10−6, P = 1012 . (4.39)

The element Ql2,2 turned out to be the most important to achieve disturbance rejection because the
corresponding state, the valve velocity ẏ(t), is the first to be affected by the disturbance force. Fig. 4.10
depicts the modelled disturbance force with a maximum value of 500 N acting against the engine valve
motion. It is caused by retroactive effect of the compressed exhaust gas in the cylinder. The linear
slope is maybe a little idealistic. In any case, between the openings – due to the limitation of the engine
valve position at 0 mm, d(t) does not have any effect anyway on the valve motion. Please note that
the modelled disturbance is only used for validation in simulation. This a-priori knowledge about the
general shape of the signal is not exploited in the control algorithm. This might be done in a future
contribution.

4.4 Cascaded extended Kalman filter structure
Since only the pressure dynamics for pA and pB of the hydraulic subsystem are nonlinear, a Cascaded
EKF structure consisting of a linear KF and an EKF is proposed, which is depicted in Fig. 4.11. This
approach has several advantages over an alternative EKF for the whole subsystem – primarily related
to the reduced computational effort – as can be clearly seen in Tables 4.1 and 4.2. In the following
comparison, the integers n,m, p represent the dimension of the state, output and input vectors of the
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Figure 4.10: Modelled disturbance force at 2000 RPM.

Table 4.1: Kalman estimator: arithmetic operations for a standard EKF structure.

Number of multiplications/divisions Number of additions/substractions
(n=4, m=1, p=1) (n=4, m=1, p=1)

ẑ+
k+1 n2 + nm (20) n2 − n+ nm (16)

P+
k+1 2n3(128) 2n3 − n2 (112)

K+
k+1 n2m+ 2np2 + p3 (25) n2m+ 2np2 + p3 − 2np (17)

ẑ−k+1 2nm+ pm (9) 2nm+ pm (9)
P−k+1 n3 + n2p (80) n3 + n2p− n2 (64)

Total 262 218

standard Kalman filter, whereas nNL,mNL, pNL and nL,mL, pN denote the corresponding dimensions
of the cascaded Kalman filters. The number of the individual arithmetic operations are stated in Tables
4.1 and 4.2, please see [74] for further details. In Table 4.2, the contribution 2 pm according to (2)
stems from the calculation of the term zNL,k+1 within the Runge-Kutta scheme. Since the developed
control strategy is flashed in its entirety into a field-programmable gate array (FPGA) at the test stand
and the two cascaded Kalman Filters run in parallel, only the EKF is relevant for a comparison of
the computational effort. It shows that one large EKF needs approximately more than twice as long
as the small EKF. Considering the small sampling time Ts = 500 ns, which is necessary to correctly
estimate the very fast pressure dynamics, this represents a significant improvement. The linear part of
the subsystem (4.12) with z1 = y(t), z2 = ẏ(t) and u = ∆F (t) = (pA(t)− pB(t))S can be described by
the following state-space representation

żL(t) = ALzL(t) + bLu(t), y(t) = cTLzL(t) , (4.40)

where the matrix as well as the vectors are as follows

AL =
[
0 1
0 − bv

Mv

]
,bL =

[
0
1
Mv

]
, cTL =

[
1 0

]
. (4.41)

Here, the disturbance force d(t) has been neglected. A time discretization using the explicit Euler
approach, i.e., Ad,L = I2×2 + ALTs and bd,L = bLTs, allows for an a-priori estimation of the states

ẑ−L (k + 1) = Ad,Lẑ+
L (k) + bd,Lu(k) (4.42)
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Table 4.2: Arithmetic operations for the CEKF structure.

Number of multiplications/divisions Number of additions/substractions
(nNL = 3, nL = 2) (nNL = 3, nL = 2)
(m = mf = ms = 1) (m = mf = ms = 1)
(p = pf = ps = 1) (p = pf = ps = 1)

ẑ+
NL,k+1 n2

NL + nNLm (12) n2
NL − nNL + nNLm (9)

ẑ+
L,k+1 n2

L + nLm (6) n2
L − nL + nLm (4)

P+
NL,k+1 2n3

NL(54) 2n3
NL − n2

NL (45)
P+
L,k+1 2n3

L(16) 2n3
L − n2

L (12)
kNL,k+1 n2

NLm+ 2nNLp2 + p3 (16) n2
NLm+ 2nNLp2 + p3 − 2nNLp (10)

kL,k+1 n2
Lm+ 2nLp2 + p3 (9) n2

Lm+ 2nLp2 + p3 − 2nLp (5)
ẑ−NL,k+1 2nNLm+ pm (7)+2pm (2) 2nfm+ pm (7)+2pm (2)
ẑ−L,k+1 2nsm+ pm (5) 2nsm+ pm (5)

P−NL,k+1 n3
NL + n2

NLp (36) n3
NL + n2

NLp− n2
NL (27)

P−L,k+1 n3
L + n2

Lp (12) n3
L + n2

Lp− n2
L (8)

Total 175 127

Ad,L =
[
1 Ts
0 1− Tsbv

Mv

]
,bd,L =

[
0
Ts
Mv

]
. (4.43)

Furthermore, the covariance matrix of the estimation error can be estimated a-priori

P−L,k+1 = Ad,LP+
L,kA

T
d,L + QL . (4.44)

Considering that cTLP−L,k+1cL + rL is scalar, the Kalman gain simplifies to

kL,k+1 =
P−L,k+1cL

cTLP−L,k+1cL + rL
. (4.45)

Figure 4.11: Implementation of the CEKF in Simulink. The delay z−1 is necessary to avoid an algebraic
loop. Given the small sampling time, this is not an issue. The estimates are used within
the inverse dynamics of the input-output linearization and the LQI controller.
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As soon as a new measurement ym is available, an a-posteriori estimation of both the states and the
covariance of the estimation error becomes possible

ẑ+
L (k + 1) = ẑ−L (k + 1) + kL,k+1

(
ym − cTL ẑ−L (k + 1)

)
, (4.46)

P+
L,k+1 =

(
I2×2 − kL,k+1cTL

)
P−L,k+1 . (4.47)

Please note that – within the CEKF structure – for the EKF described in the following, the engine
valve velocity estimated by the KF is used as “measurement” innovation in the update step of the EKF
algorithm, and the estimated engine valve position is employed as an additional input. The nonlinear
part of (4.12) is then reformulated as żNL(t) = fNL(zNL,u). Again neglecting disturbances and setting
z1 = ẏ(t), z2 = pA(t), z3 = pB(t), u1 = y(t) and u2 = x2(t), the right-hand side results in

1
Mv

((z2 − z3)S − z1bv)
EOil

VA,0+u1S
(c sg(u2)

√
p0 − z2 − c sg(−u2)

√
z2 − pT − z1S − CLi(z2 − z3))

EOil
VB,0−u1S

(c sg(−u2)
√
p0 − z3 − c sg(u2)

√
z3 − pT + z1S + CLi(z2 − z3))

 . (4.48)

In the cascaded filter structure, it is necessary that both Kalman filters involve the equation of motion
for the engine valve. The continuous-time system fNL now is time discretized using using a third-order
Runge-Kutta scheme, which provides a higher accuracy than the simple Euler approach. This was
necessary to obtain an accurately working EKF in simulation. The a-priori state estimate becomes

ẑ−NL(k + 1) = ẑ+
NL(k) + Ts

(1
6 fNL,A + 4

6 fNL,B + 1
6 fNL,C

)
, (4.49)

where the evaluation of the right-hand sides are

fNL,A = fNL(ẑ+
NL(k),u(k)) , (4.50)

fNL,B = fNL(ẑ+
NL(k) + Ts

2 fNL,A,u(k)) , (4.51)

fNL,C = fNL(ẑ+
NL(k)− TsfNL,A + 2TsfNL,B,u(k)) . (4.52)

For the covariance prediction, the continuous-time Jacobian of the system is calculated symbolically

JfNL(zNL,u) =


∂fNL1
∂z1

∂fNL1
∂z2

∂fNL1
∂z3

∂fNL2
∂z1

∂fNL2
∂z2

∂fNL2
∂z3

∂fNL3
∂z1

∂fNL3
∂z2

∂fNL3
∂z3

 , (4.53)

which results in

JfNL =


− bv
Mv

S
Mv

− S
Mv

− EOilS
VA,0+u1S

J22
EOilCLi
VA,0+u1S

EOilS
VB,0−u1S

EOilCLi
VB,0−u1S

J33

 , (4.54)

with
J22 = EOil

VA,0 + u1S

(
−CLi −

1
2csg(u2)
√
p0 − z2

+
1
2csg(−u2)
√
z2 − pT

)
(4.55)

and
J33 = EOil

VB,0 − u1S

(
−CLi +

1
2csg(−u2)
√
p0 − z3

−
1
2csg(u2)
√
z3 − pT

)
. (4.56)

This Jacobian is discretized as before using a Runge-Kutta scheme except the substitution of zNL with
the a-priori estimates ẑ−NL(k + 1):

JfNL,k+1 = I3×3 + Ts

(1
6JA + 4

6JB + 1
6JC

)
. (4.57)
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The evaluation of the right-hand terms is given by

JA = JfNL(ẑ−NL(k + 1),u(k)) , (4.58)

JB = JfNL(ẑ−NL(k + 1) + Ts
2 fNL,A,u(k)) , (4.59)

JC = JfNL(ẑ−NL(k + 1)− TsfNL,A + 2TsfNL,B,u(k)) . (4.60)

Finally, the a-priori estimates for the covariance of the estimation errors can be calculated

P−NL,k+1 = JfNL,k+1P+
NL,kJ

T
fNL,k+1 + QNL . (4.61)

In the first time step, P+
NL,k = P+

NL,0 is a given initial value; otherwise, it represents the a-posteriori
estimate from the previous time step. The matrix QNL must be specified by the user, and can be
considered as a quantification of the model uncertainty in the form of corresponding noise processes.
Again, the denominator of Kalman gain is scalar and follows as

kNL,k+1 =
P−NL,k+1cNL

cTNLP−NL,k+1cNL + rNL
. (4.62)

The vector cTNL = [1 0 0]T specifies which state serves as measurement innovation, in the given case
the valve velocity ẏsi estimated by the linear KF. The a-posteriori estimation of the states and the
covariance of the estimation error follow from

ẑ+
NL(k + 1) = ẑ−NL(k + 1) + kNL,k+1

(
ẏsi − cTNLẑ−NL(k + 1)

)
(4.63)

P+
NL,k+1 =

(
I3×3 − kNL,k+1cTNL

)
P−NL,k+1 . (4.64)

The estimates used by both the input-output linearization and by the linear feedback controller are
contained in the vector ẑ+

NL(k + 1). The used noise variance parameters rL (linear KF) and rNL
(EKF) have been determined iteratively in extensive simulation studies. They do, of course, depend
on the given output measurement noise (or how it is modelled in simulation), including all influences,
e.g. quantization errors from the measurement AD conversion. rNL can be chosen very small because
the EKF receives the estimated valve velocity from the linear KF as “measurement” innovation. This
estimated signal is naturally much cleaner than a real measurement (which is not available). Instead of
the employed trial-and-error approach, it is possible to estimate the two covariance parameters Q and
R for Kalman estimators using Least Squares methods like in [87,88].

4.5 Simulation results and possible implementation
Fig. 4.12c demonstrates the accurate tracking of the engine valve position. The simulation considers
an additive white noise in the measured output with a variance of 10−9 m2. The solid line signal
corresponds to the measured output, which is fed into the Kalman filter to estimate all the other states
of (4.12). The dotted line signal represents the estimate provided by the Kalman Filter. In Fig. 4.12d,
the corresponding velocity is shown. Unfortunately, it cannot be measured at the test stand, which
prevents any use of the solid line signal. The dotted line signal is the estimate provided by the Kalman
Filter, which is employed instead by the miscellaneous control algorithms. The estimation is quite
good, even at the beginning, even though the disturbance is present. An accurate tracking of the
desired velocity – unlike the desired position – is not very important, however, the soft landing property
is achieved in the given case. Fig. 4.12b shows the valve spool position. Note that the desired and
obtained signals are practically identical. The desired valve spool position is calculated by the input-
output linearization – the inverse dynamics – and includes estimated feedback signals. Please note
as well that this signal has been filtered with 1

10−3s+1 . The curve’s asymmetry along the time axis is
caused by the presence of the disturbance force – here, the beneficial contribution of the linear feedback
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Figure 4.12: Simulation results
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controller by means of v(t) becomes visible. Fig. 4.12a depicts the piezo input voltage. These signals
were filtered with 1

(10−3s+1)3 , too, in order to obtain a nice plot. Note that the amplitude is higher in the
first half of the curve than in the second half, which is related to the fact that the simulated disturbance
is much higher at the beginning than later on. The presented control and estimation architecture was
implemented in Matlab/Simulink. As indicated in Fig. 4.11, the CEKF was implemented using “Matlab
Function” blocks that can be used to automatically generate embeddable C and VHDL code. Using
a DSP system (consisting of a 2.8 GHz quadcore DS1006 processor board and one or more 100 MHz
DS5203 FGPA boards) and the corresponding Matlab/Simulink interface software by dSPACE , the
model can be flashed in its entirety into dedicated real-time control hardware. Regarding the feasability
of implementation, it is possible to justify that the CEKF algorithm could be executed directly on
one CPU core of the DS1006 board instead of the FPGA within the chosen sampling time of 500 ns,
considering the small clock time of 1

2.8 GHz ≈ 0.36 ns. The resulting 500 ns × 2.8 GHz = 1400 available
clocks should be enough to execute the 175 + 127 = 302 necessary operations (see Table 4.2) of the
CEKF. This simplistic, rather naive calculation neglects optimizations and high IPC of the modern
x86 CPU integrated in the DS1006, but also neglects the high scheduling overhead attributable to the
real-time operational mode of the embedded system. A traditional EKF, on the other hand, needs
262 + 218 = 480 operations (see Table 4.1), so it would take approx. 60% longer to execute. It would
propbably run within 500 ns on the CPU, too (which was not tested), but the more efficient variant is
obviously preferrable. Nevertheless, to exploit the parallel structure, the CEKF algorithm should be
implemented in an FPGA, regardless of these considerations. For details on these practical aspects,
see [64].

4.6 Outlook
An innovative actuator dedicated for a fully variable valve control in camless combustion engines is
considered in this contribution. The actuator consists of piezo-mechanical as well as hydraulic parts, and
this contribution extends earlier work by a nonlinear modelling of the hydraulic system part. Accurate
tracking of desired valve trajectories as well as soft landing – despite disturbance forces and measurement
noise – are achieved using a combined control strategy which consists of an input-output linearisation,
an LQI controller and a suitable feedforward control design. Given the very small adopted sampling
time, a CEKF is implemented to estimate the state variables required for the control implementation.
The CEKF allows to drastically reduce the overall number of operations and thus the computational
load. The necessary calculation time is one of the most important requirements for a possible real-time
hardware application of the algorithm. Future work may include implementing the presented control
architecture, particularly the CEKF, in a DSP system at the test stand to validate the obtained results.
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5 Gain adaptation in sliding mode control using
model predictive control and disturbance
compensation with application to actuators

This chapter considers, as an example application, a DC electric motor that is subject to unknown,
nonlinear friction effects or unknown load torques. The main focus is on the control strategy, which
aims to be robust and efficient thanks to a sophisticated gain adaptation scheme. The system, modelled
in state space, is controlled by a second order sliding mode control (SMC), i.e. with an additional
integral term in the sliding surface, increasing the order. SMC is usually characterized by very fast
switching between two different control laws of high amplitudes in the system input, so-called control
chattering. Comparable to very fast bang-bang control, a robust controller with guaranteed stability
can be achieved at the price of poor electrical efficiency (due to switching at high frequency, which is
problematic in semiconductor-based discrete switches such as transistors). This disadvantage of SMCs
can be mitigated or avoided by various methods, especially using the concept of equivalent control,
unburdening the switching part to a certain extent using continuous signals to compensate for those
parts of the sliding surface dynamics that are not uncertain. Additionally, the switching amplitude
can be adapted online, instead of tuning it once (conservatively, for all eventualities and disturbances)
– this approach is employed here. The adaptation is based on the assumption that the (closed loop,
SMC-controlled) system behaves according to the SMC error dynamics. However, this is only the case
if there are no disturbances or load torques. For this reason, a KF was designed that, apart from all
state variables, estimates such disturbances and also the derivative of the disturbance signal. These two
quantities are applied to the input voltage with suitable factors in order to implement the disturbance
compensation and to achieve the prescribed system behavior (model matching). Once this is achieved,
a linear MPC can be designed that adapts the switching amplitude so that it is always large enough to
reach the control target, but small enough to minimize the control chattering. An interesting property
of this strategy is that the model used for the MPC is not application-specific, but can be used for any
system that is controllable by SMC, rendering it a “plug and play” adaptation scheme.

5.1 Literature review
5.1.1 Adaptive sliding mode control and model predictive control
While belonging to perhaps the most robust and versatile control strategies, SMC tends to suffer from
high energy consumption and high-frequency oscillations in system inputs, states or even outputs, which
certainly is to be avoided in tracking problems. Currently, many remedies have been proposed and suc-
cessfully realized to deal with these problems. A very important one is the so-called boundary layer
approach, see e.g. [89], which introduces a permissible region around the sliding surface. This layer is
characterized by its thickness, inside which no switching of the control input takes place. Another fre-
quently applied approach to chattering reduction is higher-order SMC [90], which can also be combined
with a boundary layer concept [91]. Nevertheless, powerful alternatives exist towards a model-based or
signal-based adaptation of the switching amplitudes. A model-based approach is shown in [92], where
model reference adaptive control (MRAC) is employed to adjust the SMC gain in an application of a
brushless DC motor. The signal-based approaches discussed in the literature are generally based on
integral-type scheduling rules, typically case distinctions depending on a norm or an absolute value of
the sliding surface, see e.g. [93] and [94]. The contribution at hand looks at an innovative model-based
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adaptation. Thanks to countermeasures like these against chattering, SMC is suitable to be widely used
in industry. In the context of drive applications, for example, it has even been used to reduce torque
ripple [95].
MPC still constitutes a developing research field in the context of machines and drives, though many

applications already use such control strategies, e.g., in [96] for a permament magnet synchronous
machine (PMSM) or in [97] for a DC drive. The MPC approach takes into account model-based
predictions and determines the control inputs by minimizing a cost function. However, compared to
classical controllers like PID control, this method from the field of optimal control requires a relatively
high modeling accuracy in order to yield acceptable results. SMC, on the other hand, is known for being
robust against disturbances, model mismatch and parametric uncertainties.

5.1.2 Estimation and Kalman filters
Thanks to the high computing power of modern processors, micro-controllers, or even FPGAs, it has
become possible to deploy intelligent and sophisticated control approaches, e.g. observer-based control,
utilizing only a minimal number of sensors, see [72,98]. Contributions like [99–102] reflect the progress
in theoretical studies of KFs, especially concerning robustness and the ability to deal with unknown
or inaccessible disturbances or model uncertainty. In many situations, time-varying disturbances like
friction effects can be modeled as additional unknown inputs. In [103] for instance, a two-stage KF is
implemented to estimate the pressure disturbance inside a cylinder of an internal combustion engine
and its effect on the controlled output.

5.1.3 Actuators
As important mechatronic components, electromagnetic actuators are used in many technical applica-
tions, in particular in the automotive industry and in industrial production systems. In production
systems, they play a key role in motion control and precise positioning. Mechanical, pneumatic or
hydraulic components tend to be replaced by electromagnetic actuators due to their high efficiency,
excellent dynamic behavior and cleanliness. An important effect that needs to be considered in the
mechanical part of actuators is nonlinear friction. An extended survey of friction modeling is given
in [104] including a large number of literature references. Recent contributions mark progress in terms
of identification of friction phenomena and their compensation [105].

5.1.4 Main contribution
In this chapter, a combination of SMC and linear MPC is proposed to create an adaptive control
method. Here, LMPC adapts the switching height of the discontinuous control part and, thereby,
reduces the undesired chattering effect. The combination of SMC and LMPC allows for an exploitation
of the benefits of both worlds, gaining both robustness and a degree of optimality with regard to
the specific MPC cost function – at the cost of a more sophisticated control design as well as an
increased implementation and computation effort. The introduction of a cost function and, therefore,
of an optimality measure allows the intuitive balancing of the error convergence rate versus chattering
amplitude penalties, in order to achieve a reasonable trade-off. Linear MPC is a straight-forward,
easily implementable way of minimizing such a cost function. Furthermore, an augmented linear KF
is employed with the primary goal to contribute to a fast convergence to the sliding surface, thus to
unburden the switching control part of the SMC and to reduce undesired chattering. To achieve this
goal, the KF estimates the disturbance (and also the first derivative with regard to time), which is
considered as an unknown input, and is subsequently used for a compensation in the SMC law. Also,
since the cost function that is minimized by the MPC includes the predicted tracking error stemming
from a model-based prediction scheme, an accurate model of the SMC sliding surface dynamics is
necessary to allow for an optimally small SMC gain. To ensure that the underlying model assumptions
of the MPC design are met, a compensation of lumped disturbances is mandatory. Thanks to the
disturbance compensation using the estimates of the KF, an accurate prediction over a finite horizon
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becomes possible in compliance with the underlying assumptions at the KF design. The disturbance
compensation may also be interpreted as a lowering of the necessary minimum SMC gain because part
of the disturbances are compensated for by the KF estimates – and the SMC is disburdened. In order
to demonstrate the properties of the proposed control method in a practice-relevant field, this work
considers a DC drive system that is subject to both nonlinear friction and model uncertainty. The
nonlinearity is represented by the sum of the Coulomb friction model and a quadratic term depending
on the relative velocity.
To conclude, the goal of this contribution, which represents an extension of a conference paper [106],

is to conceive an SMC with optimal adaptivity that can be implemented as simply as possible. Its
effectiveness is demonstrated in simulations, subject to realistic conditions regarding disturbances and
model uncertainty, controlling the angular velocity of a DC drive including a nonlinear friction model.
The chapter is structured as follows:

• Section 5.2 presents the physically-based model of a DC drive that is affected by a nonlinear
friction torque and model uncertainty.

• The feedback control design is described in Section 5.3, where

• Subsection 5.3.1 contains details on the employed SMC techniques which involve a combination
of a continuous control action and a discontinuous switching part, and where

• in Subsection 5.3.2, the height of the switching control action is adapted using MPC techniques
to counteract undesired chattering.

• Moreover, an unknown lumped disturbance – accounting for nonlinear friction and model uncer-
tainty in the equation of motion – is estimated in Subsection 5.3.3 by a KF. This estimate is
employed subsequently in the error dynamics for compensation purposes and, as a result, con-
tributes to the reduction of the necessary switching height determined by MPC.

• Finally, the benefits are shown by meaningful simulation results in Section 5.4.

5.2 System modelling
The system model is based on physical considerations and involves ordinary differential equations for
the armature current i(t) and the motor angular velocity ω(t)

di(t)
dt = 1

L
(u(t)−Ri(t)−KTω(t)) , (5.1)

dω(t)
dt = 1

J
(KT i(t)− Tr(ω(t))) . (5.2)

Here, a nonlinear friction torque

Tr(ω(t)) =
(
Kfω

2(t) + Tr0
)
sign(ω(t)) (5.3)

is introduced, where Kf > 0 denotes a coefficient related to the quadratic term in the motor angular
velocity, and Tr0 characterizes the Coulomb friction part. The nonlinear friction torque Tr(ω) = Tr(ω(t))
is depicted in Fig. 5.1a. This friction model is implemented in a regularized form and used in the
simulation studies to represent nonlinear friction.
Given this model description, two alternatives seem to be promising to address nonlinear friction:

1. Feedback disturbance compensation: In this solution, the friction term (5.3) is assumed as known
and explicitly included in the sliding mode control design. The corresponding parameters are
identified beforehand by the least-squares method. In the envisaged sliding-mode control design
this would involve a time differentiation of the friction model and a compensation by means of
feedback. It is clear that any changes of the friction model afterwards results in an imperfect
compensation.

69



2. Estimator-based disturbance compensation: In this approach, the detailed physical model for the
nonlinear friction (5.3) is not employed at all in the control design. Instead, nonlinear friction
is estimated by a Kalman filter. It turns out that the approach can be generalized by consid-
ering a lumped disturbance torque d(t) = Tr(ω(t)) + Tu(t), where Tu(t) represents any further
external loads torques, unmodelled dynamic effects and model uncertainty. The estimate can be
subsequently used for a disturbance compensation. The modified system model is then given by

di(t)
dt = 1

L
(u(t)−Ri(t)−KTω(t)) , (5.4)

dω(t)
dt = 1

J
(KT i(t)− d(t))) . (5.5)

In the sequel, the latter approach using a KF is followed because it promises a higher tracking accuracy.
Moreover, the estimator dynamics can be specified appropriately in the KF design.

5.3 Control design

(a) Nonlinear friction characteristic Tr(ω).

(b) Implementation of the SMC in combination with a
KF for state and parameter estimation and an MPC
for the adaptation of the switching height. The gray
block represents the DC drive.

Figure 5.1

The implementation of the overall control structure corresponds to the block diagram shown in
Fig. 5.1b. The control input involves an equivalent control action, a disturbance compensation and
a robustifying switching term. In this contribution, the switching height is adapted by means of a
quasi-linear MPC.

5.3.1 Feedback control design using SMC
Since the lumped disturbance d(t) is estimated by a KF and used for a subsequent disturbance com-
pensation, the state-space representation (5.4) and (5.5) can be used in the derivation of an integral
SMC. It is worth mentioning that the estimated disturbance compensates the largest part of the lumped
disturbance and significantly increases the tracking accuracy. As a result, the SMC has to cope with
model imperfections that are related to the dynamics of the estimator only – leading to a significant
reduction of the necessary switching height and, thereby, reducing the undesired chattering effect. The
SMC design aims at a highly accurate tracking of desired trajectories for the angular velocity with
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smallest possible tracking errors e(t) := ωd(t) − ω(t). For that purpose, an integral sliding surface is
introduced as follows

s(t) = ė(t) + αe(t) + η

∫ t

0
e(τ) dτ − e(0), (5.6)

where e(0) represents an initial error. Its presence in s(t) could eliminate the reaching phase (s(0) = 0),
see [107]. In this contribution, however, e(0) is assumed to be unknown and is set to zero in the
implementation. The coefficients α ∈ R and η ∈ R have to be positive. The time derivative of the
sliding surface can be easily computed and results in

ṡ(t) = ω̈d(t)− ω̈(t) + α(ω̇d(t)− ω̇(t)) + η (ωd(t)− ω(t))

= ω̈d(t)−
(
KT

J

di(t)
dt
− 1
J
ḋ(t)

)
+ α

[
ω̇d(t)−

(
KT

J
i(t)− 1

J
d(t)

)]
+ η (ωd(t)− ω(t))

= ω̈d(t)−
[
KT

J

( 1
L
u(t)− R

L
i(t)− KT

L
ω(t)

)
− 1
J
ḋ(t)

]
+ α

[
ω̇d(t)−

(
KT

J
i(t)− 1

J
d(t)

)]
+ η (ωd(t)− ω(t))

= ω̈d(t)−
KT

JL
u(t) + KTR

JL
i(t) + K2

T

JL
ω(t) + 1

J
ḋ(t) + α

[
ω̇d(t)−

KT

J
i(t) + 1

J
d(t)

]
+ η (ωd(t)− ω(t)) . (5.7)

It becomes obvious that the time derivative ḋ(t) of the lumped disturbance affects the time derivative
of the sliding surface ṡ(t) – and, hence, is needed in the SMC law. This explains why it is estimated
as well using a Kalman filter with a suitable disturbance model. For the derivation of the SMC law, a
quadratic Lyapunov function candidate based on the integral sliding surface is considered

V (t) = 1
2s(t)

2. (5.8)

The time derivative of the Lyapunov function candidate can be easily calculated. It has to fulfill the
sliding condition, which is chosen as follows in this work

V̇ (t) = s(t)ṡ(t) ≤ s(t) (−λs(t)− βsgn(s(t))) = −λs(t)2 − β|s(t)|. (5.9)

Now, all known terms in the time derivative ṡ(t) are compensated for by feedback, which leads to the
following expression for the equivalent control

ueq(t) = JL

KT

[
ω̈d(t) + KTR

JL
i(t) + K2

T

JL
ω(t) + α

[
ω̇d(t)−

KT

J
i(t)

]
+ η (ωd(t)− ω(t))

]
. (5.10)

Then, the time derivative of the sliding surface becomes

ṡ = −KT

JL
[u(t)− ueq(t)] + 1

J
ḋ(t) + α

J
d(t). (5.11)

The unknown disturbance as well as its time derivative are estimated by a Kalman filter. A disturbance
compensation based on these estimates ˙̂

d and d̂, hence, contributes to a reduction of the discontinuous
switching term, i.e., to a suppression of undesired chattering. The disturbance compensation law results
in

udc(t) = L

KT

˙̂
d(t) + αL

KT
d̂(t). (5.12)

Finally, the switching part usw(t) can be derived from the sliding condition

ṡ(t) = −KT

JL
usw(t) ≤ −λs(t)− βsgn(s(t)). (5.13)
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If the equality sign holds, the switching part is given by

usw(t) = JL

KT
(λs(t) + βsgn(s(t))) . (5.14)

The overall SMC law comprises the sum of all three terms

u(t) = ueq(t) + udc(t) + usw(t). (5.15)

Outside the boundary layer – during the convergence to the sliding surface – the time derivative ṡ(t) is
governed by the nonlinear error dynamics

ṡ(t) = −λs(t)− βsgn(s(t)). (5.16)

5.3.2 Adaption of the switching height using MPC
The main idea of this contribution is now to use MPC techniques to determine an optimal switching
height β(k). For that purpose, the error dynamics is discretized with regard to time using the explicit
Euler method with a sampling time of Ts = 10 µs, and the switching height β(k) is introduced as control
input for the MPC

s(k + 1) = (1− λTs) s(k)− β(k)Tssgn(s(k)). (5.17)

Converge properties outside the boundary layer

Outside the boundary layer, from (5.17), a possible discrete-time state-space representation results

s(k + 1) = ak,rs(k) + bk,rβ(k), y(k) = cks(k), (5.18)
⇒ ak,r = 1− λTs, bk,r = −Tssgn(s(k)), ck = c = 1,

where subscript r indicates the reaching phase characteristics. By repeated evaluations of the difference
equation, the system behavior can be predicted as

ŷ(k + 1) = c ak,r s(k) + c bk,r β(k) (5.19)
ŷ(k + 2) = c a2

k,r s(k) + c ak,r bk,r β(k) + c bk+1,r β(k + 1),
ŷ(k + 3) = c a3

k,r s(k) + c a2
k,r bk,r β(k) + c ak,r bk+1,r β(k + 1) + c bk+2,r β(k + 2),

etc. It is straightforward to show that the following vector expression holds

ŷ(k) = grs(k) + Fk,ruk, (5.20)

with

ŷ(k) =


ŷ(k + 1)
ŷ(k + 2)

...
ŷ(k + p)

 , uk =


β(k)

β(k + 1)
...

β(k + p− 1)

 , (5.21)

and a prediction horizon of length p. The system matrices for use in the MPC become

gr =


c ak,r
c a2

k,r

...
c apk,r

 , Fk,r =


cbk,r 0 ... 0

cak,rbk,r cbk+1,r ... 0
... ... ... ...

cap−1
k,r bk,r cap−2

k,r bk+1,r ... cbk+p−1,r

 , (5.22)

where the prediction horizon p should not be chosen as too large, considering that bk,r might change
unpredictably. For p = 2, these matrices simplify to

gr =
[

1− λTs
(1− λTs)2

]
, Fk,r = −Ts

[
sgn(s(k)) 0

(1− λTs) sgn(s(k)) sgn(s(k + 1))

]
. (5.23)
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With given sgn(s(k)), sgn(s(k + 1)) can be obtained from the prediction step (5.18) using the second
element of the input vector uk−1 computed in the previous step. Given the system according to (5.20),
an optimal input β(k) has to be calculated that minimizes the following cost function

J(k) = 1
2
(
yd(k)− ŷ(k)

)T
Q
(
yd(k)− ŷ(k)

)
+ 1

2uT
k Ruk, (5.24)

where Q ≥ 0 and R > 0 are symmetric non-negative definite matrices. Moreoever, yd(k) is the sliding
surface reference trajectory for the next p time steps. In this case, its elements can simply be set to
zero. The corresponding solution can be stated in closed form

uk = (FT
k,rQFk,r + R)−1FT

k,rQ
(
yd(k)− gy(k)

)
, (5.25)

where y(k) = s(k) holds and the sliding mode control switching gain β = β(k) is now chosen as the
first element of uk. The MPC with the predicted sliding surface is realized with matrices (5.18) that do
not depend on any specific systems parameters. As a result, this approach offers an intrinsic robustness
regarding the prediction.

Convergence properties inside the boundary layer

As a second measure against chattering — in addition to the disturbance compensation by means of
the Kalman filter – a regularized version of the switching law is employed. This leads to the definition
of a boundary layer resulting from the replacement of sgn(s(k)) by a smoothed version given by the
saturation function sat

(
s(k)
Φ

)
. Inside the boundary layer, the saturation function is linear, resulting in

sat
(
s(k)
Φ

)
= s(k)

Φ :

s(k + 1) = (1− Tsλ) s(k)− Ts
s(k)
Φ β(k). (5.26)

This expression contains a multiplication of a state variable with the input variable and is, hence, a
nonlinear term. A first-order multivariate Taylor linearization of the function f(xT ) = s(k)

Φ β(k), where
the vector xT =

[
β(k) s(k)

]T
denotes the independent variables, can be performed in the operating

point x∗T =
[
β∗(k − 1) s∗(k − 1)

]T
, which contains known values at the discrete point at time k − 1.

Here, the star symbol (·)∗ denotes the operating point and allows for representing the corresponding
values in the following equations. The Taylor series expansion up to linear terms becomes

f(xT ) ≈ f(x∗T ) +∇f(x∗T ) (xT − x∗T ) , (5.27)

where the operator ∇ indicates the gradient of f , a row vector. A detailed description can be stated as
follows

s(k)
Φ β(k) ≈ s∗(k − 1)

Φ β∗(k − 1) + s∗(k − 1)
Φ (β(k)− β∗(k − 1)) + β∗(k − 1)

Φ (s(k)− s∗(k − 1)) (5.28)

= s∗(k − 1)
Φ β(k) + β∗(k − 1)

Φ s(k)− s∗(k − 1)β∗(k − 1)
Φ . (5.29)

By substituting this Taylor linearization into the difference equation, a linear first-order discrete-time
model can be derived

s(k + 1) =
(

1− Tsλ− Ts
β∗(k − 1)

Φ

)
︸ ︷︷ ︸

ak

s(k) + −Tss
∗(k − 1)
Φ︸ ︷︷ ︸
bk

β(k) + w∗(k − 1), (5.30)

where w∗(k − 1) = Ts
Φ s
∗(k − 1)β∗(k − 1) represents a known term consisting on past information, i.e.,

from the previous time step. The discrete-time system matrix and the input vector become scalars and
are given by ak and bk, respectively. Note that these terms are time-dependent. The output equation is
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scalar as well and can be stated as y(k) = ck s(k), ck = c = 1. In analogy to the approach outside the
boundary layer, the design of a quasi-linear MPC is presented that is based on the discrete-time model
above. The moving prediction horizon comprises two steps in the future. With the following vectors
and matrices

gk =
[

ak
akak+1

]
=

 1− Tsλ− Ts β
∗(k−1)

Φ(
1− Tsλ− Ts β

∗(k−1)
Φ

) (
1− Tsλ− Ts β

∗(k)
Φ

) , (5.31)

Fk =
[
cbk 0
cakbk cbk+1

]
= −TsΦ

[
s∗(k − 1) 0(

1− Tsλ− Ts β
∗(k−1)

Φ

)
s∗(k − 1) s∗(k)

]
, (5.32)

wk =
[

c
cak + c

]
=
[

1
2− Tsλ− Ts β

∗(k−1)
Φ

]
, (5.33)

the solution can be determined in a closed-form expression as follows

uk = (FT
k QFk + R)−1FT

k Q [yd(k)− gky(k)−wkw
∗(k − 1)] . (5.34)

Here, the output y(k) = s(k) is identical to the current value of the sliding surface, whereas the
time-varying SMC switching gain β is chosen again as the first element of the computed input vector
uk =

[
β̃k(k) β̃k(k + 1)

]T
. As the input β∗(k), which shows up in gk and represents the linearization

point for β, is not yet available, it is substituted by the second element of the input uk−1, which
corresponds to previous time step.

5.3.3 KF for the estimation of a lumped disturbance torque
In the sequel, the combined estimation of the state variables and the external disturbance as well as its
time derivative is described. The design of a corresponding KF is based on the modified system model,
including a double-integrator disturbance model

di(t)
dt = 1

L
(u(t)−Ri(t)−KTω(t)) (5.35)

dω(t)
dt = 1

J
(KT i(t)− d(t))) (5.36)

dd(t)
dt = ḋ(t) (5.37)

dḋ(t)
dt = 0 (5.38)

and aims at providing estimates for both state variables, an estimate d̂ for the unknown lumped distur-
bance and its derivative ˙̂

d. It is worth mentioning that the chain of two integrators has no input so far.
Nevertheless, this integrator chain is driven by the output error feedback as well as the process noise —
the stochastic part — in the framework of the KF design. As a result, the estimator states vary during
the operation of the KF and highly accurate estimates are obtained for a subsequent compensation in
the control structure.
Whenever feedback control is applied, it is necessary to measure selected system outputs. Under

realistic conditions, however, measurements are affected by errors like deterministic offsets and stochastic
disturbances, e.g. white noise processes. In such cases, a KF can be advantageously employed and
provides estimates with minimum covariances. The optimality conditions include an accurate system
model and the knowledge about the noise characteristics. In the given case, the system model (5.4) and
(5.5) — that contains a perfectly-known part and the unknown lumped disturbance – is both complete
and correct. As confirmed by the simulation results, the quality of the estimates is high and, hence,
an accurate system model is obtained due to the estimates. The typical design of a KF addresses
uncorrelated process noise and measurement noise that are assumed to be Gaussian, white and with

74



a vanishing mean value. Despite the fact that in practice the stochastic noise processes are often not
perfectly known, the KF algorithm is usually still capable of providing meaningful state and disturbance
estimates. The covariances can then be considered as tuning parameters like in the LQR control design.
The model defining the KF prediction step can be stated in state-space form, with the input variable
u(t),

xKF (t) =
[
[i(t) ω(t) d(t) ḋ(t)

]T
, (5.39)

ẋKF (t) = AKFxKF (t) + bKFu(t), (5.40)
ym(t) = CKFxKF (t) (5.41)

with matrices

AKF =


−R
L −K

L 0 0
K
J 0 − 1

J 0
0 0 0 1
0 0 0 0

 , bKF =


1
L
0
0
0

 , CKF =
[
1 0 0 0
0 1 0 0

]
. (5.42)

The discrete-time state space model can be obtained using explicit Euler discretization with step width
Ts, after which the random variables wKF and vKF are introduced to represent white, uncorrelated
process and measurement noise, respectively, with normal probability distributions [7].

xKF (k + 1) = AKFdxKF (k) + bKFdu(k) + wKF (k), (5.43)
yKF (k) = CKFxKF (k) + vKF (k), (5.44)

AKFd = I4×4 + TsAKF , bKFd = TsbKF .

Based on this, the a-priori estimates are calculated in the prediction step of the Kalman filter algorithm
according to

x̂−KF (k + 1) = AKFdx̂+
KF (k) + bKFdu(k). (5.45)

For the first step, initial values x̂+
KF (0) can be either specified by the user or simply set to zero. The

same applies to the initial uncertainty P+(0) in the following equation. The a-priori estimate of the
covariance matrix is

P−(k + 1) = AKFdP+(k)AT
KFd + QKF , (5.46)

where QKF represents a R4×4 matrix quantifying the covariance matrix of the process noise wKF ,

QKF (k) = E
(
wKF (k)wKF (k)T

)
=


qi 0 0 0
0 qω 0 0
0 0 qd 0
0 0 0 qḋ

 . (5.47)

Here, QKF is assumed to be constant, diagonal and positive and is treated as a tuning parameter matrix.
Parameter qd is set to zero since equation (5.37) is a certain relationship, while qḋ is assigned a large
value since equation (5.38) is not. Parameters qi and qω reflect the modeling uncertainty concerning
Eqs. (5.36), (5.35). The Kalman gain can now be calculated as

K(k + 1) = P−(k + 1)CT
KF (CKFP−(k + 1)CT

KF + RKF )−1, (5.48)

with the measurement matrix CKF according to the measured outputs ym(t) = CxKF (t). Here, the
measurement covariance matrix RKF is related to the measurement noise vKF and has properties similar
to QKF

RKF = E
(
vKF (k)vKF (k)T

)
=
[
ri 0
0 rω

]
. (5.49)
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In the correction step of the Kalman filter algorithm, the a-posteriori estimates for covariance and
states are calculated as follows

P+(k + 1) = (I4×4 −K(k + 1)CKF ) P−(k + 1), (5.50)

x̂+
KF (k + 1) = x̂−KF (k + 1) + K(k + 1)

(
ym(k + 1)−CKF x̂−KF (k + 1)

)
, (5.51)

with the measured current and velocity ym =
[
im ωm

]T
. The estimated states as well as the estimated

disturbance and its time derivative are used in the SMC control law.

5.4 Simulations

(a) Friction torque Tr. (b) load torque Tl.

(c) Detailed view of the velocity tracking after load torque steps.

Figure 5.2: Friction and load torques and their influence on the velocity tracking.
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In this section, simulation results are presented. They were obtained using a sampling time of Ts =
10 µs. The velocity profile to be tracked was generated from step-like signals using a second-order
low-pass command-shaping filter 1/(0.01s2 + 0.2s+ 1).

5.4.1 Simulation settings and scenarios
The covariance matrices and initial conditions of the Kalman filter were chosen according to

RKF = diag (0.001, 500) , QKF = diag (0.001, 0.001, 0, 0.5) , P+(0) = diag
(
103, 103, 0, 103) , x̂+

KF (0) = 0,
(5.52)

where the third and fourth element on the diagonal of QKF relate to the double integrator disturbance
model. The proposed control strategy, i.e., an adaption of the SMC switching height β by means of
MPC, is compared with two other, more classical variants. These three variants are as follows:

1. SMC with β = const. and switching control law (5.14),

2. SMC with β = const. and usw = JL
KT

(λs(t) + βsat(s(t)/Φ)),

3. SMC with adaptive β = β(k) and usw = JL
KT

(λs(t) + β(k)sat(s(t)/Φ)), i.e., the proposed strategy.

The SMC design parameter λ affecting the linear term in the sliding condition was set to zero in all
variants. This corresponds to the classical choice of the sliding condition. To allow for a fair comparison,
the switching height β = const. = 2× 107 and the boundary layer thickness Φ = 200 were iteratively
tuned to achieve good tracking properties while maintaining robustness and only small chattering in
the presence of disturbances. These disturbances were implemented as load torques, see Fig. 5.2b. Two
alternative load variants were tested: The red signal shows a sinusoidal signal with steps at 0.5 s and
1.5 s; all other figures were created using this load profile. It must be pointed out that also with pulsed
load torques, i.e., the blue signal, the results were equally good. It becomes obvious that such strong
discontinuities can be managed properly by an integrator disturbance model upon which the KF design
is based — even though they represent the worst case for the observer part of the combined control
system. Step-like changes are estimated accordingly complying with the KF estimation error dynamics.

5.4.2 Results
The resulting velocity tracking is demonstrated in Figs. 5.3a-5.3b, where the tracking error and error
energy are depicted, and Figs. 5.3c-5.3f, which show the angular velocity itself. While all the variants
manage to track the desired velocity profile almost perfectly (Fig. 5.3c), variant 1 shows a little more
ripple (Fig. 5.3d) than variants 2 and 3 (Figs. 5.3e-5.3f). Additionally, variant 3 shows smaller deviations
in the case of load torque steps (Fig. 5.2c), thanks to a momentarily larger switching height β. This
effect results in a significantly smaller error energy, see Fig. 5.3b. The value of β can be seen in Fig. 5.4a,
where spikes at 0.5 s and 1.5 s are the cause for the phenomenon mentioned above. The rest of the time,
β takes relatively small values but shows a high variability. Thanks to a smaller switching height β,
a significant reduction in control input chattering is achieved. This becomes visible when comparing
Fig. 5.4f to Fig. 5.4e or especially to 5.4d. However, the major influence stems from the equivalent
control part, Eq. (5.10), and the disturbance compensation, Eq. (5.12), which are shown in Fig. 5.4c.
The disturbance estimates used for compensation are provided by the KF, using only measurements of
current and velocity. These estimates are shown in Figs. 5.5a-5.5b. The currents resulting from those
input voltages are displayed in Figs. 5.5c-5.5d and indicate only a negligible difference between the three
variants. Finally, the sliding surface s(t) is depicted in Figs. 5.5e-5.5f, where the influence of the external
load torque becomes obvious. The SMC variants employing a boundary layer clearly achieve superior
behaviour in comparison with the classical switching variant, which has a strong chattering impact in
the sliding surface.
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5.4.3 Discussion
Note that in contrast to the authors’ previous work [106], upon which this contribution is based, the
sliding function s(t) remains in the close vicinity of zero. This positive effect can be attributed to the
employed disturbance compensation provided by the KF. Some slight but negligible influence of the
load torque in s(t) becomes visible, which is the price of a significantly reduced chattering. In [106],
due to the violation of the SMC sliding condition mentioned there, s(t) was partially non-zero in
the presence of large disturbances, with no tendency to converge to zero – despite the fact that a
nearly perfect velocity tracking was achieved. This phenomenon can be explained by a model mismatch
concerning the dynamics of the sliding surface in closed loop, due to a missing disturbance compensation,
which can yield a mismatched MPC. This problem has been solved in the given contribution by means
of the disturbance compensation. To further point out the benefits of the proposed approach – the
combination of a disturbance estimation by a KF, finite horizon MPC and SMC gain adaptation – it is
benchmarked in closed-loop simulation studies against two other widespread methods: A disturbance
observer (DOB) according to [108] and a time-delay estimation (TDE), see [93]. Both are implemented
to provide estimates for d(t) and ḋ(t), using the same (noisy) measurements that are available to the
KF as well: current i(t) and velocity ω(t). The resulting estimates can be compared in Fig. 5.6. Both
of these alternatives lead to similar but slightly increased error energies (the unit is omitted here) in
comparison with the KF approach: 0.009024 (KF), 0.009076 (TDE) and 0.009383 (DOB). Despite a
negligible difference in tracking performance, the use of either DOB or TDE in closed-loop control
shows significantly larger chattering amplitudes as compared to the KF variant: usw is in the range of
±40 mV for DOB and TDE, where a range of ±20 mV holds for the KF (apart from spikes of about
±1 V at 0.5 s and 1.5 s, respectively). Since TDE is based on the feedback of the acceleration ω̇, which
needs to be determined via numerical differentiation of a noisy measurement signal, the performance
degradation as compared to the KF becomes evident. In fact, to achieve reasonably useful results, the
necessary numerical derivative of the velocity ω(t) had to be low-pass filtered using a cut-off frequency of
5000 rad s−1. Lower frequencies resulted in considerably worse tracking, while higher corner frequencies
led to even more noise than depicted in Fig. 5.6e. The KF offers a superior behaviour in the presence of
noise because it explicitly considers noise processes. Furthermore, since the KF constitutes a disturbance
estimator with an integrated de-noising state observer, its state estimates for current and velocity are
used to supply the SMC with state feedback, anyway. This renders the KF a perfect solution in cases
like these, where state and disturbance estimates are needed. A formal proof, however, regarding the
compliance with the SMC sliding condition as stated in Eq. (5.9) using suitable choices of the MPC
weighting matrices Q and R, still remains an open problem. This contribution presents an adaptive
tuning of the switching gain of an SMC that is achieved by means of an MPC scheme designed on the
basis of the sliding surface error dynamics. To properly address disturbances and the impact of external
load torque in the control approach, they are compensated for using estimates provided by a KF. The
overall design is benchmarked in simulations considering a frequently used application of high practical
relevance — a DC drive. The simulations clearly show that the MPC-based adaptation of the switching
height represents an effective means of counteracting a drawback of classical SMC — chattering caused
by a conservative choice of the switching height, which is unnecessarily high most of the time and should
be reduced when permissible.
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(a) Simulated values for the tracking errors e(t) for all
the variants. (b) Integrated squared error for all the variants

(c) Comparison of desired and simulated angular veloc-
ities for all variants.

(d) Comparison of desired and simulated angular ve-
locities, detailed view for constant switching ampli-
tudes.

(e) Comparison of desired and simulated angular veloc-
ities, detailed view for the classical boundary layer
approach.

(f) Comparison of desired and simulated angular veloc-
ities, detailed view for the proposed gain adaptation
scheme.

Figure 5.3: Simulation results showing the velocity tracking quality.
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(a) Simulated values for the switching height β. (b) Simulated values for the switching height β (detailed
view).

(c) Contribution of the equivalent control law and the
disturbance compensation to the input u(t).

(d) Switching component usw(t) of the input for con-
stant switching amplitudes.

(e) Switching component usw(t) of the input for the
classical boundary layer approach.

(f) Switching component usw(t) of the input for adap-
tive switching amplitudes.

Figure 5.4: Simulation results involving the switching amplitude β and the various control laws for the
input u(t).
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(a) d(t) and its estimates provided by the KF. (b) ḋ(t) and its estimates provided by the KF.

(c) Comparison of simulated currents i for constant
switching amplitudes and the proposed adaptation
scheme.

(d) Comparison of simulated currents i for constant
switching amplitudes and the classical boundary
layer approach.

(e) Simulated values for the sliding surface s(t) for con-
stant switching amplitudes and the proposed adap-
tation scheme.

(f) Simulated values for the sliding surface s(t) for con-
stant switching amplitudes and the classical bound-
ary layer approach.

Figure 5.5: Simulation results for the disturbance and its derivative, current i(t) and sliding surface s(t).
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(a) Disturbance estimates for d using a disturbance ob-
server (DOB).

(b) Disturbance estimates for ḋ using a disturbance ob-
server (DOB).

(c) Disturbance estimates for d using time-delay estima-
tion (TDE).

(d) Disturbance estimates for ḋ using time-delay esti-
mation (TDE).

(e) Disturbance estimates for d using KF, DOB and
TDE in comparison.

(f) Disturbance estimates for ḋ using KF, DOB and
TDE in comparison.

Figure 5.6: Comparison of different disturbance observer schemes.
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6 Direct Speed Control of PMSMs using
Constrained Optimal SMC and Disturbance
Compensation via EKF

This chapter, like the last one, pursues the goal of direct (as opposed to cascaded) speed control of
electric motors. Here, however, three-phase synchronous motors with permanent magnets in the rotor
(PMSM) are considered instead of DC motors. PMSMs do not require a commutator or brushed sliding
contacts, making them mechanically durable and low-maintenance; however, the three-phase rotating
field must be generated externally. For this purpose, knowledge of the rotor angle is required at all times,
otherwise it is possible that the motor rotates in the wrong direction, does not move at all or shows
other error patterns. If the angle is not measured with a sensor (resolver or absolute encoder, using a
coded encoder disk or the like), it must be estimated, which was the foundation of the field of “sensorless
control”. The estimation of this angle, based on the measured stator currents/voltages, is the main task
of the EKF that was designed for this purpose (and, apart from the paper upon which this chapter is
based, has not been described in the literature so far). Furthermore, the EKF, analogous to chapter
5, also estimates the load torque (or a lumped, unmatched disturbance) and its derivative, for the
purpose of disturbance compensation by the controller. The most important innovation of this project,
however, is the derivation of the equivalent control laws of the SMC, which is based on analytic, classical
minimization of the system inputs ud,q subject to equality constraints (using Lagrange multipliers). The
developed SMC, which also has not been described in the literature yet, works with two surfaces instead
of one, where one is dedicated to the velocity error and one to the deviation of the so-called maximum
torque per Ampere (MTPA) trajectory. The MTPA approach allocates the desired currents id,q(t) (in
the rotor fixed, i.e. rotating coordinate system with the abstracted axes d and q) depending on a given
desired motor torque. If the motor has a rotor with permanent magnets glued to the inner surface of the
rotor (so-called surface PMSM, SPMSM), the inductances of the two axes are approximately equal and
only the Lorentz force (and, thus, only iq) contributes to the torque generation. However, if the magnets
are buried in the rotor material (interior PMSM, IPMSM), reluctance force effects occur. These can be
exploited in addition to the Lorentz force, which is achieved with negative id currents (field weakening
operation). In the latter case, there is a certain redundancy/ambiguity or degree of freedom in deciding
which of the two system inputs ud,q is used, at least if speed control is the only objective and no other
criteria are considered. This ambiguity can be resolved by means of optimization, including a second
constraint (apart from velocity tracking), namely the MTPA condition. This minimization turns out to
have a unique pair of solutions for ud and uq which is shown to be the optimum.
Classically, PMSM (and other AC motors) are controlled in cascaded architectures, i.e. with one

external control loop for position and/or velocity control (manipulated variable: torque) and one or two
internal control loops for the current id,q (manipulated variables: voltages ud,q). However, this approach
only works well as long as the inner, electrical subsystem reacts much faster than the outer, mechanical
subsystem. This is no longer the case for many modern PMSMs (especially small, high-powered ones),
which is why direct speed control is becoming increasingly important. Approaches to achieve direct
speed control via SMC have been present in the literature for several years. However, they still require
a reference for the id current, so they are mostly only suitable for SPMSMs (where id can be forced
to zero). The presented SMC solves the problem of direct speed control regardless of the PMSM type,
because, thanks to the second sliding surface, no current references have to be generated.
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6.1 Literature survey
The power density of PMSMs is currently still increasing, so the choice of control strategy becomes more
and more important so as to ensure further efficiency gains when operating these electrical machines.
During the last few years, a great deal of effort has been invested in the context of optimal control
strategies for PMSMs, and also in the field of SMC [95,109]. Such techniques are often combined with
sensor-reduced control strategies, as recently in [72, 98]. However, few contributions consider how to
integrate optimization criteria with SMC strategies, as in [4].

6.1.1 Optimality in the context of PMSM control strategies
In order to obtain maximum motoric torque using minimum d, q stator currents, the MTPA control
strategy can be employed, the foundations of which are laid down in [110]. A more recent publication
is [111], in which a nonlinear MPC scheme is adopted to minimize the MTPA condition within a direct
torque control. This approach offers only suboptimal solutions at each sample time, because of the
numerical structure of the control law, and does not guarantee the stability of the optimizing closed-loop
control strategy, which is a common simplification in the literature (see, for example, [112]). Another
related paper by the same authors of [111], which combines the above-mentioned MTPA criterion in
the MPC cost function with one that considers voltage limits, can be found in [113]. Ultimately, the
controller switches between multiple cost functions during the online optimization, depending on the
current operating point. However, the limit of this approach in [111] and [113] is the separation of the
optimization procedure, which implies switching criteria. This renders the control system stability very
difficult to investigate, since different cost functions are used in the control law and must be selected
during the operation of the machine. Moreover, when using a separation procedure, global optimality
is not guaranteed. The contribution [114] is based on the same concept as that seen in [111] and [113],
and shows the same disadvantages, but instead deals with direct speed control.
In its most straightforward manifestation, MTPA is used to generate current references that can

be used within current control loops. As an alternative to such cascaded control architectures, direct
speed control can be used for PMSMs, dissolving the loop separation and directly determining the
input voltage according to the speed reference. This work proposes such a direct speed control scheme,
adopting a monolithic (not cascaded) control strategy. This choice can be justified as cascaded control
architectures can cause problems if the dynamics of the electrical and the mechanical subsystems are
approximately equally fast. The inner loop dynamics cannot be neglected from the point of view of the
outer loop controller in the case of fast PMSMs that are optimized for very high power densities; this is
the main field of application for these motors. This limits the possible dynamics of cascaded controllers,
particularly in high-power applications. Cascaded structures have a limited bandwidth, in order to
avoid large overshoots and possible ringing, due to an artificial separation principle in their design.
This chapter considers a PMSM with comparably fast electrical and mechanical dynamics, proposing a
monolithic speed control scheme, as in Fig. 6.1. A short overview of the advantages and drawbacks of
cascaded control versus direct speed control is given in [111].
The paper [115] describes a speed control scheme based on input-output linearization, a load torque

observer and a boundary-layer integral SMC. Here, the d-axis current and the rotor’s mechanical angular
velocity are chosen as controlled outputs, the system is linearized with respect to these, and two integral
sliding surfaces are designed that consider the error of the respective output. However, the control system
cannot be considered as a direct speed control, because it still requires a reference generator for the
currents (and not only for the velocity) and is, therefore, a cascaded control scheme. This approach
does not allow optimization of the inputs ud and uq since they are already fixed by separation, with
which the control is conceived.
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6.1.2 Kalman filters as state and disturbance observers
Sensorless control strategies (i.e. control strategies that use a reduced or minimal number of sensors for
feedback control) are very attractive because of the cost and complexity reductions in relation to the
control system and motor. (Sensorless control has been established as an umbrella term in the literature,
even when the specific approach is not truly “sensorless” but rather “sensor-reduced”.) Said advantages
are not only present in the case of electromagnetic drives, but also in that of any controlled system
in which the reduction of measured signals represents a relevant specification [3]. Recent literature
on the control of electromagnetic drives considers sensorless control as a primary factor, not only for
reasons related to costs reduction and reliability, but also those regarding the quality of control and
signals and electromagnetic compatibility, and yields a robust and more precise tracking [116]. SMC
is a state-based control strategy that often requires the availability of the full state vector, but more
importantly, it requires state feedback with very low noise power. In this sense, sensorless control, with
the aim of reducing the number of measured states, and denoising the signals, is a challenging problem
whose resolution can improve the whole controlled system. A reduction in the number of sensors used
is achieved by using an observer as a virtual sensor. Observers combine a-priori knowledge about the
system (in form of a mathematical model used for prediction) with actual feedback of the system’s states
and/or outputs. It is known that an accurate knowledge of the model and its parameters is necessary
in order to realize an effective sensorless control. In particular, it must be understood that observers
suffer from a lack of precision in the presence of uncertainties in the model. In [79, 80] the problem of
PMSM model parameter estimation is solved using different types of Kalman filters.
Various contributions have recently been made to this field; for example, [117] and [118] compare the

performance of EKFs and sliding-mode observers in the presence of measurement noise. However, the
estimation of the mechanical rotor angle [119] as well as possible disturbances [120] are still challenging
problems. Disturbance estimation and compensation for PMSMs using an EKF was recently demon-
strated in [121], where it aids an SMC with velocity-tracking control. Here, however, the observer is
based on the system dynamics in rotor-fixed d, q coordinates, therefore requiring the direct measurement
of the rotor angle. More formally, through a sensitivity analysis, the contributions [122] and [123] have
recently investigated the influence of model uncertainty on the observed position and robustness of a
proportional-integral observer in current control used for PMSM drives.

6.1.3 Contribution of this work
In this chapter, an EKF is used for sensorless control, providing estimates for all states. The approach is
based on that reported in [124] (that is, it considers the phase-current dynamics within a two-component
stator-fixed α, β reference frame). The approach taken in [124] was amended by considering the me-
chanical dynamics of the system, introducing the mechanical rotor velocity as an additional state, while
for the angle the electrical rotor angle is considered. The approach in [124] (which considers the use of
a model with an infinitely large moment of inertia in the mechanical subsystem) is typical in the litera-
ture, see e.g. [125], [126]. In comparison, the proposed approach obtains a more precise result through
the use of a mechanical model of the system, instead of adopting the conservative hypothesis that the
derivative of the electrical angular velocity is equal to zero. This combined EKF allows the electrical
rotor angle (which is always required in the control of PMSMs) to be precisely estimated, as well as the
mechanical disturbance torque and its derivative. Since an estimate of the angular acceleration is also
required, which is in fact a very common problem in applied control, another Kalman filter is intro-
duced that combines the three most powerful techniques of approximating the acceleration: numerical
differentiation of the velocity, model-based approximation, and state-observer based approximation.
The first and main innovation by this contribution is that it proposes a direct speed control law

that is usable for both IPMSMs and SPMSMs. Additionally, it offers analytical stabilizing solutions
for the defined convex optimization problem in the context of SMC. The control law minimizes the
input voltages and achieves velocity tracking while optimizing the currents at the same time. The
analytical solution to the defined problem allows a globally stabilizing optimal control law that does

85



not require computationally expensive online optimization to be implemented. More technically, in the
context of the derivation of the equivalent control laws, a constrained convex optimization problem is
defined and solved, eliminating redundancy in the choice of control inputs by introducing a constrained
cost function, consisting of the two input voltages, that can be minimized through the use of the classic
Lagrange approach. The two optimization constrains are characterized by ṡ = 0 (for two sliding surfaces,
as will be shown in the sequel), which is the well-known sliding mode differential equation. The first
sliding surface defines the desired speed error dynamics and thus guarantees asymptotic tracking of the
desired velocity dynamics. At the same time, the second constraint, which states the “MTPA criterion
dynamics”, achieves current optimality in terms of MTPA. Since the unique analytical solution is found
offline, no expensive online optimization is required.
The chapter is organized in the following way. Section 6.2 describes the physical system and shows the

mathematical model, as well as providing an observability analysis. In Section 6.3 the EKF algorithm
is detailed, followed by a description of a secondary Kalman filter, dedicated to the estimation of the
angular acceleration. In Section 6.5, an optimal SMC with analytical solution is proposed and formalized
as a theorem. Section 6.6 discusses the simulation results.

6.2 Description of the physical system

Figure 6.1: Schematics of the combined estimation and control architecture.

To aid advanced controller design in PMSM, it is very important that an appropriate model of the
motor be obtained. A good model should not only be an accurate representation of system dynamics,
it should also facilitate the application of the existing control techniques. Among a variety of models
presented in the literature since the introduction of PMSM, the two-axis d-q model, obtained using
the d-q transformation (which is a combination of Clarke’s and Park’s transformations) is the most
widely used in variable-speed PMSM control applications, [127] and [128]. The d-q transformation is a
coordinate transformation that converts the three-phase stationary variables into variables in a rotating
coordinate system. In d-q transformation, the rotating coordinate is defined relative to a stationary
reference angle. It is worth noting that the d-q transformation allows the complexity of the model to
be reduced. This is because the three-phase system can be described using just two coordinates, whose
dynamics no longer show trigonometric expressions as they are hidden by the transformation. Relation
(6.1) from [129] gives the variant of the d-q transformation used in this contribution, in which θ(t) is
the electrical rotor angle, i.e. the mechanical rotor angle multiplied by the number of pole pairs p,
and where M−1 represents the corresponding inverse transformation. Note that, while there are several
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different formulations of this transformation described in the literature, here we use the following:[
xd(t) xq(t) x0(t)

]T
= M

[
xa(t) xb(t) xc(t)

]T
,

M =


2 cos(θ(t))

3
2 cos(θ(t)−2π/3)

3
2 cos(θ(t)+2π/3)

3
−2 sin(θ(t))

3
−2 sin(θ(t)−2π/3)

3
−2 sin(θ(t)+2π/3)

31
3

1
3

1
3

 ,

M−1 =

 cos(θ(t)) − sin(θ(t)) 1
cos(θ(t)− 2π/3) − sin(θ(t)− 2π/3) 1
cos(θ(t) + 2π/3) − sin(θ(t) + 2π/3) 1

 . (6.1)

6.2.1 PMSM dynamics
The flux linkages in a PMSM and their derivatives (assuming constant inductances) are [129]

ψd(t) = Ldid(t) +Kf ,
dψd(t)

dt = Ld
did(t)

dt , (6.2)

ψq(t) = Lqiq(t),
dψq(t)

dt = Lq
diq(t)

dt . (6.3)

From this, the following electrical model can be derived:

did(t)
dt = − R

Ld
id(t) + pω(t)Lq

Ld
iq(t) + ud(t)

Ld
(6.4)

diq(t)
dt = − R

Lq
iq(t)− pω(t)Ld

Lq
id(t) + uq(t)

Lq
− Kfp

Lq
ω(t), (6.5)

where it is worth noting that the parameters R, Ld, Lq, Kf and p are the stator resistance, d-axis and
q-axis inductances, the permanent magnet flux linkage in the air gap, and the number of magnetic pole
pairs, respectively.
Considering the electrical rotor angle θ and the mechanical angular velocity of the rotor ω, the

mechanical model is

dθ(t)
dt = pω(t), (6.6)

dω(t)
dt = Tm(t)

J
− F

J
ω(t)− Tl(t)

J
, (6.7)

where J represents the inertia of the motor, F is a velocity-proportional friction coefficient, Tl(t) repre-
sents a possible external load torque and/or unknown lumped disturbances, and θ(t) ∈ (−π, π] is cyclic.
From the electrical model, through the superposition of the three-phase fields, the following equation
for the torque can be derived:

Tm(t) = 3
2p
(
iq(t)ψd(t)− id(t)ψq(t)

)
, (6.8)

where the term iq(t)ψd(t)− id(t)ψq(t) defines the cross coupling within the PMSM dynamics. This leads
to the effect whereby a variation of the current id(t) has an impact on the current iq(t) in the q-axis
and vice versa. By introducing the inductances, the torque can be expressed alternatively in the form

Tm = 3
2p
(
(Ld − Lq)id(t)iq(t) +Kf iq(t)

)
. (6.9)

Remark 6.1 Please note that power electronics components were not modelled in this contribution. It
is assumed that the actual three-phase input voltages ua,b,c can be controlled.
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Using the following substitutions (from the Clarke and Park transformations)

id(t) = iα(t) cos (θ(t)) + iβ(t) sin (θ(t)) , (6.10)
iq(t) = −iα(t) sin (θ(t)) + iβ(t) cos (θ(t)) , (6.11)

did(t)
dt = diα(t)

dt cos (θ(t))− iα(t)ω(t) sin (θ(t)) + diβ(t)
dt sin (θ(t)) + iβ(t)ω(t) cos (θ(t)) , (6.12)

diq(t)
dt = −diα(t)

dt sin (θ(t))− iα(t)ω(t) cos (θ(t)) + diβ(t)
dt cos (θ(t))− iβ(t)ω(t) sin (θ(t)) , (6.13)

together with some simplifying manipulations, the PMSM dynamics can be expressed using stator-fixed
α, β-coordinates:

diα
dt = 1

2LdLq

[
(uα − iαR) (Ld + Lq) + iβpω (Ld − Lq)2 − (Ld − Lq) (uα − iαR+ iβpω (Ld + Lq)) cos (2θ)

− (Ld − Lq) (uβ − iβR− iαpω (Ld + Lq)) sin (2θ) + 2KfLdpω sin (θ)
]
, (6.14)

diβ
dt = 1

2LdLq

[
(uβ − iβR) (Ld + Lq)− iαpω (Ld − Lq)2 + (Ld − Lq) (uβ − iβR− iαpω (Ld + Lq)) cos (2θ)

− (Ld − Lq) (uα − iαR+ iβpω (Ld + Lq)) sin (2θ)− 2KfLdpω cos (θ)
]
, (6.15)

dω
dt = −Fω

J
−Tl
J

+ 3p
2J (iβ cos (θ)− iα sin (θ)) (Kf + (Ld − Lq) (iβ sin (θ) + iα cos (θ))) , (6.16)

dθ
dt = pω. (6.17)

Remark 6.2 The given PMSM dynamics in d, q- and α, β-coordinates are equivalent. In simulation
studies, both sets of differential equations can be used to model the PMSM, producing identical results
in terms of the actual three-phase quantities. The d, q-variant is easier to implement, due to its more
compact equations, and has the additional advantage of yielding constant currents in steady-state (in the
given reference frame, that is); it thereby facilitates easier debugging and/or other analysis methods like
fault detection. In this contribution, however, the α, β-variant was implemented for the simulation of
the actual PMSM system, because the observer was designed to use this coordinate system and requires
model implementation in any case. The control design, on the other hand, is based on d, q-coordinates,
complying with the traditional approach in PMSM control.

6.2.2 Observability analysis
Regarding PMSM observability in cases where the mechanical rotor angle is not measured, and only the
currents in the stator-fixed α, β reference frame are known, the property of local weak observability [9]
can be investigated, yielding a sufficient (but not necessary) condition for observability at a point x0.
For a nonlinear system of order n, with m outputs, inputs u, states x, dynamics ẋ(t) = f(x,u), and
outputs field y(t) = h(x), the condition is

rankO(x,u) = n at x = x0, (6.18)

with the nonlinear observability matrix O ∈ Rnm×n, where Lkf h is the kth Lie derivative of output field
h with respect to the dynamics field f

O =



O1

O2

O3

...

On


= ∂

∂xT



h
Lf h
L2

f h
...

Ln−1
f h


=



∂h
∂xT
∂O1f
∂xT
∂O2f
∂xT

...
∂On−1f
∂xT


. (6.19)
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Symbolically calculating this observability matrix is tedious, but it can be done automatically using
computer algebra systems. It is sufficient to find one determinant (i.e. a closed-form expression in-
volving states/inputs as variables) that is non-zero for the value ranges of all emergent variables that
correspond to realistic working conditions. Some determinants are investigated in-depth and reported
in the literature (see [130–132]), showing that the PMSM system in stator-fixed α, β-coordinates is
observable (with respect to the states iα, iβ, ω, θ) using only measurements of the currents iα,β (and
knowledge of the inputs, of course), as long as the velocity ω is not too small or Ld 6= Lq.
Since the approach presented in this chapter requires not only the above-mentioned states, but also

the load torque Tl and its derivative, a third measurement is introduced: the electrical angular velocity
ωel = pω. This allows for the convergence of the state estimates, even if they are used for feedback
control and even when starting from standstill, and also for unknown initial rotor angles. Since most
modern three-phase PMSMs integrate three digital Hall effect sensors in the stator to facilitate basic
field commutation, ωel is easy to calculate from the digital sensor signals using time measurements (or
using edge detection and counting, in case of high speeds or large number of poles), which is accurate
enough to serve as an additional informaton source for the observer.
As a suboptimal state-observer algorithm that features powerful sensor-fusion capabilities, an EKF

that estimates states and disturbances is designed in the following section. For this purpose, the model
given in (6.14-6.17) is augmented through the use of a double-integrator disturbance model [4]

dTl
dt = Ṫl,

dṪl
dt = 0. (6.20)

6.3 EKF for state and disturbance estimation
A popular EKF variant was introduced in [78, 133] and is still used in more-recent contributions [124].
In this variant, the EKF is used to estimate the currents iα,β in the stationary α, β reference frame, as
well as the mechanical rotor velocity and the electrical rotor angle. Usually, PMSM control is based on
currents id,q within the rotary d, q reference frame, and the corresponding coordinate transformation is
calculated outside of the EKF using the EKF-estimated electrical rotor angle.

We propose to extend the EKF reported in [124] through the use of a model of the mechanical
subsystem, using measurements of the stator currents iα,β and the electrical rotor velocity ωel to obtain
denoised estimates of the currents, mechanical rotor velocity ω, and electrical rotor angle θ, as well as
the lumped disturbance or load torque Tl and its derivative. A nonlinear state-space model with states
z, inputs u and outputs y can be derived as

z =
[
iα iβ ω θ Tl Ṫl

]T
, u =

[
uα uβ

]T
, (6.21)

ż = f(z,u), y = CKFz, CKF =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 p 0 0 0

 .
The dynamics for the six states are modelled as in Eqs. (6.14-6.17). Note that this system includes
additional augmented states Tl, Ṫl that represent the load torque (a lumped unmatched disturbance)
and its derivative, with the modelled dynamics given in Eq. (6.20). It is known that Runge-Kutta
methods are generally better than the explicit Euler method in terms of truncation errors and resulting
computation time (due to the ability to use lager step sizes Ts); however, this benefit is balanced by
an increased implementation effort. In the presented case, it became necessary to use a third-order
Runge-Kutta (RK3) scheme for the EKF, since sampling times smaller than the chosen one (Ts = 0.01
ms), as they would be required when using Euler instead, would have slowed down the implemented
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control and estimation system too much. Thus, the a-priori state estimates are

ẑ−(k) = ẑ+(k − 1) + Ts

(1
6 fA + 4

6 fB + 1
6 fC

)
(6.22)

fA = f
(
ẑ+(k − 1),u(k − 1)

)
(6.23)

fB = f
(

ẑ+(k − 1) + Ts
2 fA,u(k − 1)

)
(6.24)

fC = f
(
ẑ+(k − 1)− TsfA + 2TsfB,u(k − 1)

)
. (6.25)

For the covariance prediction, the continuous-time Jacobian of the system is calculated symbolically

Jf (z,u) = ∂f
∂zT =



∂
diα(t)

dt
∂zT

∂
diβ(t)

dt
∂zT
∂

dω(t)
dt

∂zT
∂

dθ(t)
dt

∂zT
∂

dTl(t)
dt

∂zT

∂
dṪl(t)

dt
∂zT


=



jα
jβ
jω

0 0 p 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0


(6.26)

with symbols ∆L = Ld − Lq,

jTα =


∆L(pω(Ld+Lq) sin(2θ)+R cos(2θ))−R(Ld+Lq)

2LdLq
∆L(−pω(Ld+Lq) cos(2θ)+pω∆L+R sin(2θ))

2LdLq[
jα,ω

2LdLq
jα,θ
LdLq

0 0
]T

 , (6.27)

jα,ω = p∆L(iα(Ld + Lq) sin(2θ) + iβ∆L) + iβp
(
Lq

2 − Ld2
)

cos(2θ) + 2KfpLd sin(θ), (6.28)

jα,θ = ∆L sin(2θ) (−iαR+ iβpω(Ld + Lq) + uα) + ∆L cos(2θ)(iαpω(Ld + Lq) + iβR− uβ)
+KfLdp∆Lω cos(θ), (6.29)

jTβ =


∆L(R sin(2θ)−pω((Ld+Lq) cos(2θ)+Ld−Lq))

2LdLq
−∆L(pω(Ld+Lq) sin(2θ)+R cos(2θ))+R(Ld+Lq)

2LdLq[
jβ,ω

2LdLq
jβ,θ
LdLq

0 0
]T

 , (6.30)

jβ,ω = −p∆L(Ld + Lq)(iα cos(2θ) + iβ sin(2θ))− 2KfpLd cos(θ)− piα∆L2, (6.31)
jβ,θ = −∆L cos(2θ)(−iαR+ iβpω(Ld + Lq) + uα) + ∆L sin(2θ)(iαpω(Ld + Lq) + iβR− uβ)

+KfLdpω sin(θ), (6.32)

jTω =


3p(∆L(iβ cos(2θ)−iα sin(2θ))−Kf sin(θ))

2J
3p(∆L(iα cos(2θ)+iβ sin(2θ))+Kf cos(θ))

2J[
−F
J

jω,θ
2J

−1
J 0

]T
 , (6.33)

jω,θ = −3p
[
iα cos(θ)(4iβ∆L sin(θ) +Kf ) + (iα − iβ)(iα + iβ)∆L cos(2θ) + iβKf sin(θ)

]
. (6.34)
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The Jacobian is also discretized using an RK3 scheme:

Jf d(k) = I6×6 + Ts

(1
6JA + 4

6JB + 1
6JC

)
(6.35)

JA = Jf
(
ẑ+(k − 1),u(k − 1)

)
, (6.36)

JB = Jf

(
ẑ+(k − 1) + Ts

2 fA,u(k − 1)
)
, (6.37)

JC = Jf
(
ẑ+(k − 1)− TsfA + 2TsfB,u(k − 1)

)
. (6.38)

The a-priori estimation of the covariance is as follows:

P−(k) = Jf d(k)P+(k − 1)Jf d(k)T + QKF , (6.39)

whereupon the Kalman gain is

K(k) = P−(k)CT
KF

(
CKFP−(k)CT

KF + RKF

)−1
. (6.40)

A-posteriori estimates of states and covariance are obtained in the update step, using measurements of
iα,β and ωel

ẑ+(k) = ẑ−(k) + K(k)


 iα(k)
iβ(k)
ωel(k)

−CKF ẑ−(k)

 , (6.41)

P+(k) = (I6×6 −K(k)CKF ) P−(k). (6.42)

The matrices QKF and RKF can be considered as tuning parameter matrices and correspond to the
process and measurement uncertainty, respectively. The EKF algorithm is implemented in discrete-time
and is used for all state feedback and disturbance compensation purposes, with one notable exception
being the mechanical angular acceleration ω̇. Since the main EKF already estimates the velocity ω as
well as the load torque, it is difficult to include yet another augmented state that will allow another
quantity to be estimated at the torque level. For this reason, an additional Kalman filter is designed,
with the sole purpose of estimating ω̇. This Kalman filter results to be linear, since no nonlinear
dynamics have to be considered, and will be detailed in the following section.

6.4 KF-based estimation of the acceleration
Another Kalman filter for the estimation of the angular acceleration is then derived, since this quantity
is required for the computation of the sliding surface in (6.52). In the following, the abbreviation KF
always denotes the secondary observer that is dedicated to the estimation of ω̇, while the abbreviation
EKF always refers to the main state observer discussed in the last section. The working principle of
the secondary observer is to combine the numerical differentiation of the EKF-estimated velocity ω̂
and a model-based approximation of ω̇ in an optimal way (such that the covariance is minimized).
By combining these two basic approaches to approximate acceleration with the powerful Kalman filter
algorithm, a very fast, yet denoised, estimate of the angular acceleration can be obtained. Since Kalman
filters always require an underlying system model in order to compute the state prediction, an integrator
disturbance model with no inputs is again used. The two modelled states are zω =

[
z1ω z2ω

]T
, with

z1ω=̂ω and z2ω=̂ω̇. Using an explicit Euler discretization (which works sufficiently well in this case,)
the state prediction equations are obtained as

ẑ−1ω(k) = ẑ+
1ω(k − 1) + Tsẑ

+
2ω(k − 1), (6.43)

ẑ−2ω(k) = ẑ+
2ω(k − 1). (6.44)
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The “measured” outputs are both states. For z1ω,m, the actual velocity estimate ω̂ generated by the
EKF is used. As z2ω,m, an acceleration “measurement” based on the mechanical model (6.7) is used,
with EKF-estimated states

z2ω,m = 3p
2J
(
∆Lîdîq +Kf îq

)
− F

J
ω̂ − 1

J
T̂l. (6.45)

Hence, the output map CωKF is the 2× 2 identity matrix, while the discrete system matrix is simply

AωKF =
[
1 Ts
0 1

]
. (6.46)

The filter equations for this KF are structurally almost the same as for the EKF, where a state Jacobian
J is used instead of the discrete system matrix AωKF . However, the equations can be simplified
substantially, thanks to CωKF = I2×2:

P−ω (k) = AωKFP+
ω (k − 1)AT

ωKF + QωKF , (6.47)

Kω(k) = P−ω (k)
(
P−ω (k) + RωKF

)−1 (6.48)

ẑ+
ω (k) = ẑ−ω (k) + Kω(k)

([
z1ω,m(k)
z2ω,m(k)

]
− ẑ−ω (k)

)
, (6.49)

P+
ω (k) = (I2×2 −Kω(k)CωKF ) P−ω (k). (6.50)

6.5 An optimal sliding mode control
This section is devoted to the derivation of an optimal SMC for direct speed control. Two sliding mode
surfaces are defined. The first is based on the angular velocity error, while the second one is based on
the dynamics of a criterion that represents the optimal MTPA trajectory. This criterion is the solution
of a power optimization problem and is given by

cMTPA(t) = id(t) + ∆L
Kf

(
id(t)2 − iq(t)2

)
, (6.51)

in which ∆L = Ld − Lq. The case cMTPA(t) = 0 represents the locus of id(t) and iq(t) in which the
optimal working condition in terms of MTPA is obtained [111].

Remark 6.3 Enforcing cMTPA(t) = 0 does not limit the reachability of the desired velocity. If the
required torque (also considering possible load torques or disturbances) can be supplied by the PMSM in
the first place, then cMTPA(t) = 0 directly corresponds to the allocation of id,q to the minimal stator
current. Hence, the two sliding surfaces are compatible under all circumstances.

Innovatively, the input voltages ud,q are minimized in order to avoid or to alleviate saturation effects
while guaranteeing both velocity tracking and optimal currents according to the MTPA condition. A
theorem is proven that shows optimal and efficient velocity tracking; this is obtained by minimizing the
squared input voltages ud,q with additional equality constraints, i.e. ṡ1,2(t) = 0.

Problem 6.1 Find a stabilizing and optimizing pair of control laws ud(t), uq(t) that guarantees an
asymptotic velocity tracking of the mechanical angular rotor velocity ω(t) for the system defined in (6.4-
6.9), and at the same time, guarantees to stay on the MTPA trajectory to improve the efficiency of the
motor.

To solve problem 6.1, let us propose the following theorem, which constructively introduces a suitable
cost function and shows how to find its unique solution, based on classic Lagrangian optimization.
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Theorem 6.1 Given the system (6.4-6.9), let

s1(t) = ė(t) + αe(t) + η

∫ t

0
e(τ)dτ (6.52)

be a sliding surface with velocity error e(t) = ωd(t)−ω(t), where α > 0 and η > 0 are tuning parameters.
The second sliding surface, in which γ > 0, is

s2(t) = cMTPA(t) + γ

∫ t

0
cMTPA(τ)dτ. (6.53)

A Lyapunov function candidate is introduced as

V (t) = 1
2s1(t)2︸ ︷︷ ︸
V1(t)

+ 1
2s2(t)2︸ ︷︷ ︸
V2(t)

. (6.54)

There exists a pair of globally stabilizing control laws ud(t), uq(t) which guarantees prescribed closed-loop
error dynamics with the chosen decay rates β1,2 > 0

ṡ1(t) = −β1sgn (s1(t)) , (6.55)
ṡ2(t) = −β2sgn (s2(t)) , (6.56)

as well as yielding
dV (t)

dt < 0, (6.57)

i.e. global asymptotic convergence of both the velocity error e(t) and the MTPA error cMTPA(t), by
combining a pair of equivalent controls udeq and uqeq , which are the global minimizing solution of the
Lagrangian function

C(ud(t), uq(t), λ1, λ2) = u2
d(t) + u2

q(t) + λ1ṡ1(t) + λ2ṡ2(t), (6.58)

with corrective parts according to

ud(t) = udeq(t) + udsw(s1, s2), (6.59)
uq(t) = uqeq(t) + uqsw(s1, s2), (6.60)

which are detailed in the proof.

Proof 6.1 If the Lagrangian (6.58) is considered, in which

ṡ1(t) = ë(t) + αė(t) + ηe(t) = 0, (6.61)
ṡ2(t) = ċMTPA(t) + γcMTPA(t) = 0 (6.62)

state the constraints required to calculate the unique optimal equivalent solution of the defined SMC
problem, then

∇C(ũd(t), ũq(t), λ1, λ2) = 0 (6.63)
represents the condition used to symbolically calculate the unique pair of minimizing solutions ũd(t) and
ũq(t), which can be done automatically using computer algebra software. These algebraic expressions
are used as the equivalent controls udeq = ũd and uqeq = ũq and are complemented by corrective compo-
nents udsw and uqsw (to overcome imperfect cancellations through the equivalent part of the control law)
according to the following solution, which globally stabilizes the control system:

ud(t) = udeq(t) + ξd1(t)β1sgn (s1(t)) + ξd2(t)β2sgn (s2(t))︸ ︷︷ ︸
udsw

, (6.64)

uq(t) = uqeq(t) + ξq1(t)β1sgn (s1(t)) + ξq2(t)β2sgn (s2(t))︸ ︷︷ ︸
uqsw

. (6.65)
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The expressions ξd1,2 and ξq1,2 are used to achieve the prescribed error dynamics (6.55-6.56) and were
determined using computer algebra software, as well:

ξd1(t) = −3Kfp(id(t)∆L+Kf )JLd
N(t) , (6.66)

ξd2(t) = 4iq(t)J2Ld∆L
N(t) , (6.67)

ξq1(t) = 3JLqiq(t)Kfp∆L
N(t) , (6.68)

ξq2(t) = 2J2Lq(2id(t)∆L+Kf )
N(t) , (6.69)

N(t) = 3Jp
(
2
(
id(t)2 + iq(t)2)∆L2 + 3id(t)Kf∆L+Kf

2
)
. (6.70)

Eq. (6.63) yields the following expressions (after eliminating λ1, λ2), in which multiplicative expressions
spanning multiple rows are enclosed within square brackets, expressions in round brackets always end on
the same line, and the symbol ∆L = Ld − Lq:

udeq(t) = 1
N(t)

[
∆L

[
2Fiq(t)Ld (3iq(t)Kfp− 2Tl(t)− 2αJω(t))

−4F 2iq(t)Ldω(t) + 3JγKfLdp
(
iq(t)2 − 2id(t)2)+ 9Jid(t)2KfpR− 9Jid(t)iq(t)KfLqp

2ω(t) + 4iq(t)J2Ldω̈d(t)

+ 4Jiq(t)Ld
(
Ṫl(t)− Jηω(t)

)
+ 4ηiq(t)J2Ldωd(t) + 2Jαiq(t)Ld (2Tl(t) + 2Jω̇d − 3iq(t)Kfp)

]
− 3JK2

fp (γid(t)Ld − id(t)R+ iq(t)Lqpω(t)) + 3∆L2p
[
2Fid(t)iq(t)2Ld + JγLdid(t)

(
iq(t)2 − id(t)2

)
− 2Jαid(t)iq(t)2Ld + 2J

(
iq(t)2 + id(t)2

)
(id(t)R− iq(t)Lqpω(t))

]]
, (6.71)

uqeq(t) = 1
N(t)

[
Kf

[
FLq (3iq(t)Kfp− 2Tl(t) + 2αJω(t)) + 3JKfp (iq(t)R+ ω(t) (Kf + id(t)Ld) p)

− 2F 2Lqω(t) + JαLq (2Tl(t) + 2Jω̇d(t)− 3iq(t)Kfp) + 2JLq
(
Ṫl(t) + J (ω̈d(t) + ηωd(t)− ηω(t))

) ]
+ ∆Lid(t)

[
FLq (9iq(t)Kfp− 4Tl(t) + 4αJω(t))− 4F 2Lqω(t) + 3Jγiq(t)KfLqp

+ 9JKfp (iq(t)R+ ω(t) (Kf + id(t)Ld) p) + JαLq (4 (Tl(t) + Jω̇d(t))− 9iq(t)Kfp)

+ 4JLq
(
Ṫl(t) + J (ω̈d(t) + ηωd(t)− ηω(t))

) ]
+ 3∆L2p

[
id(t)2iq(t)Lq (2F − 2Jα)

+ 2J
(
id(t)2 + iq(t)2

)
(iq(t)R+ ω(t) (Kf + id(t)Ld) p) + JγLq (id(t)− iq(t)) iq(t) (id(t) + iq(t))

]]
.

(6.72)

Considering realistic assumptions about the system parameters

J > 0, (6.73)
p > 0, (6.74)

Kf > 0, (6.75)
Ld > 0, (6.76)
Lq > Ld, (6.77)
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it is possible to show that the control is non-singular at all times: Analyzing N(t) > 0 in the unfavourable
case iq(t) = 0 yields two boundary conditions for id(t)

id(t) < −
Kf

2∆L, or (6.78)

id(t) > −
Kf

∆L. (6.79)

Both boundaries are positive for machines with Lq > Ld, as per assumption. Since the goal is id(t) ≤ 0
(i.e. meeting the MTPA condition cMTPA(t) = 0), the smaller value is considered as a boundary. Hence,
the sufficient condition for non-singularity of the control laws results as

id(t) < −
Kf

2∆L. (6.80)

It is not a necessary condition – except at start-up – because iq(t) > 0 helps to further increase N(t).
Apart from non-singularity of the control laws, controllability (both of the physical system, which is
guaranteed anyway, and for the implemented control system) is another necessary condition in the field
of sliding mode methods. The only potentially problematic case for the controllability arises if id,q = 0,
i.e. before start-up or on no-load standstill, yielding ξd2 = 0 and ξq1 = 0. However, thanks to the
equivalent parts of the control laws and thanks to ξd1(t) < 0 and ξq2(t) > 0 for all t, the overall system
results to be controllable.

�

Remark 6.4 For realistic values of Kf and ∆L, condition (6.80) is always met.

6.6 Simulation study
In the simulation study, the system depicted in Fig. 6.1 is implemented in Matlab/Simulink R2020a
Update 3, running on a standard desktop computer with Intel Skylake CPU on Linux. As mentioned
above, the PMSM dynamics are simulated in the stator-fixed α, β coordinate system.

6.6.1 Simulation setup and tuning of controllers and observers
The desired velocity profile is a smooth A to B signal, generated using the sigmoid function tanh:

ωd(t) = ωmax
1 + tanh (mω(t− ton))

2 , (6.81)

ω̇d(t) = 1
2mωωmaxsech (mω(t− ton))2 , (6.82)

ω̈d(t) = m2
ωωmax tanh (mω(t− ton)) sech (mω(t− ton))2 . (6.83)

The target velocity is ωmax = 2000 RPM ≈ 209.44 rad/s, time parameter ton = 1 s, and slope mω = 5.
The fundamental sampling time for the whole system was chosen as Ts = 0.01 ms due to the fast
dynamics (small inductances) of the electrical subsystems. All simulation results discussed in this
section have been obtained with the control architecture shown in Fig. 6.1 and consider an IPMSM
(Ld < Lq).

Step-like disturbances/load torques represent one of the worst cases for electrical machine control.
Thus, in the simulation study, a repeating pulsed disturbance signal is synthesized, yielding a continuous
step-like load torque profile that is applied to the PMSM and can be seen in Fig. 6.4c.
In the EKF that estimates the PMSM states, the electrical rotor angle θ is erroneously initialized

as θ̂(0) = −π. This represents the worst possible case, because the true θ(0) = π
2 , yielding an initial

error of 90◦ (due to the cyclic nature of θ(t) ∈ [−π, π) this is also equivalent to an error of 270◦).
The case |θ̂(0) − θ(0)| = 90◦ can be problematic because the estimated angle θ̂ is used in the Park

95



(a) Electrical rotor angle θ and its estimation from un-
known initial conditions, θ(0)− θ̂(0) = 90◦.

(b) Detailed view of the transient of the angle estima-
tion.

(c) Tracking of a given desired mechanical velocity sig-
nal for the rotor and estimated velocity. (d) Velocity tracking error.

(e) Current id in the rotor-fixed reference system and
its estimation, computed using θ̂.

(f) Current iq in the rotor-fixed reference system and
its estimation, computed using θ̂.

Figure 6.2: Simulation results.
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(a) Reaction of the currents to step-like disturbances. (b) Detailed view during transient and upon step-like
loads.

(c) Three-phase input voltages from stand-still.

Figure 6.3: Three-phase currents and voltages.

transformation of the estimated currents, which are used for feedback control, and also in the inverse d-q
transformation employed to obtain the three-phase input voltages. In some less-sophisticated sensorless
control strategies, an angle error of ±90◦ can cause the motor to rotate in the wrong direction, not to
move at all, or to show other faulty behavior that sometimes cannot be perceived by the controller, due
to confused d- and q-axes.
All PMSM states are initialized as zero in the simulation. The measured quantities, i.e. the three-

phase currents and the electrical rotor angular velocity ωel, contain synthetic additive uncorrelated white
noise with realistic variances (comparable to common sensor systems). Only EKF-estimated states are
used for the feedback control, allowing for reduced noise at a minimum delay. The chosen parameters
of the main EKF are

ẑ+(0) =
[
0 0 0 −π 0 0

]T
,

P+(0) = diag
(
10, 10, 103, 5× 106, 1, 100

)
,

QKF = diag
(
10−3, 10−3, 10−3, 0, 0, 100

)
,

RKF = I3×3. (6.84)

In the implementation of the SMC, another Kalman filter (see section 6.4) is used to estimate the
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mechanical angular acceleration of the rotor, ˆ̇ω, which is used in the computation of s1. This KF is
tuned as

ẑ+
ω (0) =

[
0 0

]T
, P+

ω (0) = diag (0, 0) ,

QωKF = diag (1, 100) , RωKF = diag
(
1, 104

)
. (6.85)

The equivalent control part of the SMC is tuned indirectly, using parameters α, η and γ of the sliding
surfaces. These are chosen using an auxiliary parameter ν = 104, which (when only the equivalent
controls are used, without the corrective parts) can be interpreted similarly to an eigenvalue of the
closed-loop system. Parameter ν should be chosen no larger than 1

10Ts . In practice, when using real
motors, smaller values should suffice. In the presented case,

α = 2ν, η = ν2 (6.86)

are used for the experiment. Regarding the MTPA criterion, γ can be set to the same value as α in
order to obtain similarly fast error dynamics. The switching amplitudes for the corrective part of the
controls are chosen as β1 = 107 and β2 = 104. In order to reduce chattering effects, boundary layers
around the sliding surfaces s1,2 are introduced, with thicknesses Φ1,2. These describe the region where
one may stay without further switching. This is achieved by replacing the switching terms sgn(x) by

sat
(
x

Φ

)
, (6.87)

where sat is the −1, 1 saturation function. In the tuning of the thickness, the resulting noise levels of
the computed s1,2(t) should be considered, as such noise causes dramatically increased chattering levels
in the inputs. This, in turn, depends on the measurement noise, motor parameters, the tuning of the
state observer and the acceleration observer, and other possible influences. Such effects can be alleviated
using a larger boundary-layer thickness. In this case, thanks to the denoising KF that estimates the
acceleration, it turns out that a thickness of Φ1 = 100 is large enough for s1, while Φ2 = 0.1.

6.6.2 Discussion of the results
The estimation performance of the electrical rotor angle θ can be assessed in Fig. 6.2a. Even though
the initial estimate is 90◦ off, the EKF quickly converges to the correct angle after approximately
10 ms, when the motor slowly begins starting up, see Fig. 6.2b. The tracking of the desired velocity
profile, along with the estimated mechanical rotor angular velocity, is depicted in Fig. 6.2c. Even small
deviations from the desired velocity trajectory can be compensated for by the controller. The EKF,
thanks to feeding back the measured electrical rotor angular velocity, is able to closely follow the true
state evolution. The sophisticated control strategy derived in the previous section, combined with such
high-quality estimates, leads to a satisfactory velocity tracking error, as shown in Fig. 6.2d. The small
remaining deviations (in the instants of time when the step-like load torque changes) are of the same
order of magnitude as the peak simulated measurement noise of ωel divided by the number of pole pairs,
p. The repeating spikes are due to the disturbance torque signal described in the previous subsection.
It also influences the resulting d- and q-axis currents, which are shown in Figs. 6.2e-f together with
their estimates. These are computed outside of the EKF using its estimated states îα,β and Park’s
transformation with estimated angle θ̂ (see also Fig. 6.1).

The controller computes the control inputs ud and uq; their individual components according to
Eqs. (6.64-6.65) are shown in Figs. 6.4a-b. Note that, due to the enforced MTPA, flux weakening is
applied, which yields negative d-axis voltages and currents. This effect is particularly pronounced in
the switching component of ud. Thanks to the employed boundary-layer approach with a permissible
region Φ1,2 around s1,2(t), the switching part uqsw is merely a low-voltage component of the total input
voltage and shows only mild chattering effects.
In many of the above-mentioned diagrams, the step-like nature of the simulated disturbance/load

torque is visible, which is shown in Figs. 6.4c-d, together with its derivative and the corresponding
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estimates by the EKF. Again, thanks to the feeding back of ωel, the disturbance torque can be estimated
by the EKF effortlessly. The estimated derivative of the disturbance shows a small delay, but the EKF
is able to attenuate any visible noise. In case of truly discontinuous step disturbances (instead of the
simulated continuous signal), this estimate would appear more like a Dirac pulse with a magnitude and
width that are determined mainly by the corresponding element of the EKF tuning parameter matrix
QKF . However, real discontinuous step disturbances do not happen in real-world mechanical systems;
there are always slip effects and similar tendencies to smooth out the actual load torque. Thus, this
issue is not too problematic.
In Fig. 6.4e, the value of the components of sliding surface s1 can be observed. Apart from some very

short time instances of rapid load change, its value (being the sum of the depicted signals) stays within
the boundary layer. The same is true for surface s2, shown in Fig. 6.4f, where the remaining offset of
the integral term of the surface (again, due to the chosen permissible boundary-layer thickness) can
safely be ignored, as cMTPA vanishes.
Since the voltages ud and uq are rather abstract quantities with no simple physical interpretation, the

actual three-phase input voltages that are applied to the PMSM during the start-up phase are shown in
Fig. 6.3c, where a sinusoidal progression can be observed thanks to the accurately estimated electrical
rotor angle θ̂, which is used in the inverse d-q transformation step in the control scheme. The (mostly)
sinusoidal three-phase currents are shown in Fig. 6.3a, and in detail in Fig. 6.3b, during a time interval
in which the transient takes place and the step-like load torque becomes active.
To conclude, this chapter presents a novel direct speed sliding mode control for permanent-magnet

synchronous motors. The control laws consist of an optimized equivalent solution together with a
corrective switching part that can be further refined using the well-known boundary-layer approach for
chattering reduction. A convex cost function of the inputs is defined, containing two sliding surfaces’
error dynamics as equality constraints. The first sliding surface’s error dynamics realizes a velocity-
tracking constraint. At the same time, thanks to the second sliding surface, the maximum torque per
ampere condition is reached. The equivalent solution to the sliding mode control is minimal with respect
to the input power, yielding a more efficient torque generation. In this context, the extended Kalman
filter plays a crucial role because it is required in order to provide estimates of the load torque as well
as its derivative, in addition to all system states. The control strategy is amended by a second Kalman
filter, which is dedicated to the estimation of the angular acceleration. Computer simulations show that
this approach to combined PMSM control and estimation is promising.
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(a) Input voltage ud in the rotor-fixed reference frame
that is transformed back to the stator-fixed system
using θ̂.

(b) Input voltage uq in the rotor-fixed reference frame
that is transformed back to the stator-fixed system
using θ̂.

(c) Lumped torque disturbance or load and its esti-
mate.

(d) Derivative of the load torque and its estimate.

(e) Components of the sliding surface s1(t).
(f) Components of the sliding surface s2(t). Note that
|s2| < Φ2; the remaining offset is tolerated (bound-
ary layer approach).

Figure 6.4: Simulation results.
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7 Conclusions and outlook

Minimum-variance state estimation and disturbance compensation, being two relatively recent ap-
proaches, are shown to significantly improve the performance of nonlinear systems subject to per-
turbation and uncertainty. In particular, state and disturbance estimators based on the Kalman filter
family are used due to their (sub-)optimality and inherent robustness, even against implementation
errors. In addition to control goals, these estimators are well-suited for fault detection and diagnosis
purposes in safety-critical systems thanks to model-based state predictions. Regarding the control meth-
ods, the robustness property is perhaps strongest in sliding mode control, which (usually) works using
very conservative tuning, i.e. high-gain control. Employing advanced, model-based control strategies
is demonstrated to significantly mitigate the disadvantages that come with high-gain controllers, like
control chattering, thanks to less (or smaller) discontinuities in the control.
Within the scope of this dissertation, the following innovations were contrived and disseminated.

Mathematical foundations and state of the art
A preparative chapter is dedicated to the fundamentals of observation, state estimation, and minimum
variance observers, as well as common practices in applied control. After a brief introduction to the state
space from the field of system theory and to nonlinear, continuous-time, observer-oriented modelling
using differential equations, the concept of observability and the choice of measured system outputs
is discussed. The derivation of the Kalman filter algorithm is then presented, using two intuitive ap-
proaches from the literature that are not based on analytic minimization of the covariance matrix, but
on geometric considerations and on the iterative evolution of the discretized dynamics of the covari-
ance matrix (algebraic Riccati equation) in a quadratic form. Particular emphasis is put on control
applications of the estimation techniques, i.e. disturbance compensation and full state feedback.

Li-Ion state of charge estimation
However, as initially explained, control applications are not the only target of the methodological frame-
work introduced in this thesis. Supervision of systems that potentially can cause harm is another field
where observers tend to shine. Thus, the physical system first presented in this thesis is a Lithium ion
battery cell, where the goal is to estimate the state of charge offset-free and without the knowledge of
the initial true state of charge. Since most observers presented in the literature require initial conditions
that are known with relatively high certainty, a robustified, self-adaptive EKF with redundant bases in
the decomposition of the system output equation is used, yielding improved state of charge estimation.
While the augmentation of actual, meaningful system parameters into the state vector that is to be
estimated is a (more or less) established procedure in observer design, doing so with the coefficients
of willfully redundant bases is much less orthodox. This seemingly problematic digital representation
turns out to aid estimate convergence in a region of reduced observability.

Time delay estimation based on a fractional variable-order model
Another case where the model structure is intentionally different than the real system is shown in chapter
3, where the time delay phenomenon is approximately modelled using a first-order system. Theoretically,
the time delay can be seen as a system of order zero, since it has no internal dynamics, or of order
infinity (when representing the time delay using a Padé approximant or a Taylor series). Obviously,
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first-order models by themselves cannot possibly be a representation of the time delay. To improve this
inaccurate first-order model, methods from the field of fractional-order calculus can be advantageously
employed. Since the fractional derivative requires infinite memory for correct implementation, yet
another approximation (back to system order one) is introduced.
Combining this complicated reduced-order model with measurements allows offset-free delay estimates

that are even able to follow variable time delays. Especially within control systems, the ability to react
to changing time delays at any point in time is an important requirement if such phenomena are to be
expected.

Piezo-hydraulic actuator state estimation and control
One of such systems where time-delay phenomena occur is a novel multi-stage actuator, intended to
be used in camless combustion engines so open and close the intake and exhaust valves. Chapter 4
presents the model of this actuator, which consists of a stack of Piezo elements, a hydraulic displacement
amplifier, a proportional valve, and a double-acting hydraulic cylinder (driven by a hydraulic pump and
controlled using the proportional valve). Since the Piezo stack cannot achieve the necessary servo valve
spool displacements of up to 10 mm, but only 0.1 mm, a transmission ratio of 100 is required. The
necessary rubber sealings of the hydraulic chamber that constitutes the displacement amplifier show
strong static friction effects due to the high pressure within the chamber. Periodic intake/exhaust valve
trajectories, in combination with a model-based feedforward control action, then lead to a phenomenon
that can be modelled as a time delay between the desired and the obtained intake/exhaust valve position
signals, which is treated in chapter 3. Thus, chapter 4 considers the rest of the control architecture with
the exception of the time delay phenomenon. However, due to continuing development, yet another new
incarnation of the described actuator is treated here, where two mirrored, antagonistic Piezo stacks are
used instead of one (replacing the return spring and yielding better tracking accuracy). The feedback
control scheme for this actuator consists of a feedforward control, based on approximate inversion of
the inverted linearized system, an input-output linearization scheme (based on Isidori theory) that
effectively cancels out the nonlinear part of the dynamics, as well as LQI (LRQ + Integral) control of
the resulting virtual IT2 system (PT1 and two integrals), yielding position tracking of the intake and
exhaust valves. Since this involved control method requires all state signals to be available, a novel type
of EKF for state estimation is proposed. It is based on a cascaded structure involving the linear and the
nonlinear subsystem of the actuator, both of which are estimated using a dedicated KF. The Cascaded
EKF (CEKF) has much better computational efficiency than a monolithic, full-order observer and is
shown to be real-time capable despite the very fast system dynamics that are considered.

DC motor nonlinear adaptive control through disturbance estimation
Kalman filters, being the de-facto standard for state estimation, can also be used to estimate dis-
turbances acting on the system, like unknown load torques (or unknown inputs in general). This is
particularly neat if a Kalman filter is used anyway, for the state estimation task. Augmenting an ad-
ditional state comes with a cost, especially if the size n of the state vector is large already, because
the computation time of the (unoptimized) KF scales roughly with n2. In such cases, the fundamental
sampling time must be large enough to allow for the computation to complete (with the corresponding
real-time overhead).
If the controller can be improved by compensating known disturbances and if the digital hardware

is capable of the additional computational load, (E)KFs can be advantageously employed, as was done
in chapter 5. Here, a DC motor subject to nonlinear friction effects (that are assumed to be unknown)
and unknown load torques is controlled using SMC. In order to avoid the common chattering problem
that occurs in SMC, four independent mitigations are used: equivalent control (feedback cancellation
of undesired known residual dynamics), second-order SMC (using an integral sliding surface, which
also increased robustness against disturbances), regularized SMC (replacing the cause of the chattering,

102



which is the sgn function, by a smooth approximation), and a new gain adaptation algorithm. The
adaptivity of the switching amplitude, being the main contribution of the chapter, is enabled by com-
pensating disturbances that are estimated by an EKF. The observer is a vital part of the combined
control strategy as it is a prerequisite for model matching, i.e. static and dynamic system behavior that
is consistent with the model, because the disturbances are not known beforehand. The adaptation itself
is no longer based on a model of the physical system, but on a model of the closed-loop sliding surface
(error) dynamics. This allows to use the algorithm, which is based on linear MPC, in a plug & play
manner for any system that can be controlled with SMC, not only DC motors.

Future work: Advanced sensorless PMSM control with SMC, EKF and DC

Figure 7.1: Hybrid motorcycle (work in progress), based on a BMW F 800 GS Adventure with a PMSM.

Passing over to the technically more complicated PMSM motors, the thesis culminates in chapter 6,
where SMC and EKF are again combined to obtain velocity tracking – without rotor angle measurement,
i.e. sensor-reduced control. The architecture of the control scheme is intended for small motors with
very high power densities, where the mechanical subsystem is about as fast as the electrical subsystem.
Such characteristics are problematic if the motor is controlled using the traditional cascaded control
approach, where an inner current control PI(D) loop is combined with an outer speed/position control
PI(D) loop. Hence, direct speed control is used, based on a novel two-surface SMC with MTPA-
compliant current tracking and an optimal equivalent control law (and powered by EKF for state and
disturbance estimation/compensation). The SMC, however, is not yet adaptive but used constant gains.
In the future, more work on adaptive PMSM control is planned, in the context of a research project

regarding a motorcycle with parallel-hybrid drivetrain (combustion engine and PMSM, see Fig. 7.1)
that is currently starting at the Flensburg University of Applied Sciences.
To demonstrate the effectiveness of the combination of observer-based disturbance compensation and

advanced control strategies, several new or improved control and estimation methods based on “meta-
methods” like Kalman filters or sliding mode control are derived and investigated, each one dedicated
to an example system with high practical relevance. The improved control methods allow for reduced
actuator wearout and energy consumption through control chattering suppression and/or for better,
faster tracking performance. The improved observers, on the other hand, mainly enhace the accuracy
of the state and disturbance estimates – almost always by augmenting the observer base model with
additional unknown/uncertain quantities that appear in one of the model equations; that is, by localizing
the main uncertainty present within a model equation into the chosen variable.
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