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Resumen 

Una de las estrategias colombianas para diversificar y descarbonizar el sector energético es fomentar 

el uso de recursos renovables no convencionales (RNNC). Para ello, el gobierno emitió en 2014 la 

Ley 1715 para promover los RNNC y las mejoras de eficiencia energética en el sector. Si bien esto 

ayudará a cumplir el compromiso internacional y nacional de reducir las emisiones de CO2 en un 

20% en 2030, este supuesto no puede ser probado de manera amplia sin tener en cuenta las 

consecuencias ambientales que tales iniciativas pueden producir en el sector doméstico, el mayor 

sector consumidor de electricidad en Colombia. 

Esta tesis mide el efecto rebote ambiental (ERE) de aumentar la participación de energía eólica en la 

red eléctrica colombiana en el sector residencial (hogares). Para ello se aplicó un modelo de 

evaluación del ciclo de vida basada en procesos (P-LCA), un modelo de entrada y salida ambiental 

extendido (EEIO) y modelos de gastos adicionales (sistema de demanda casi ideal AIDS). 

El efecto rebote directo se midió a través del precio de la elasticidad de la demanda de electricidad; 

además, el ahorro medioambiental por el aumento de la participación de energía eólica en la red se 

calculó a través de P-LCA. Para ello se realizó un P-LCA para un parque eólico en Colombia, 

mientras que la información para otros recursos energéticos (Hidro, Carbón, Gas, Solar) se tomó de 

la base de datos Ecoinvent 3.4. 

Para calcular el efecto rebote indirecto ambiental se calcularon los ahorros monetarios obtenidos por 

la eficiencia ambiental. Para ello se aplicó un AIDS para obtener las participaciones presupuestarias 

marginales (MBS). Combinando las MBS obtenidas con el modelo EEIO, el ahorro monetario se 

tradujo en indicadores ambientales. 

El ERE se presenta para diez categorías de impacto (cambio climático (CC), acidificación (A), 

ecotoxicidad (E), eutrofización marina (MEUT), eutrofización terrestre (TEUT), efectos 

cancerígenos (CE), efectos no cancerígenos (NCE), agotamiento de la capa de ozono (OD), creación 

fotoquímica de ozono (POC), y efectos respiratorios, inorgánicos (RES)). Además, se realizó un 

análisis de sensibilidad para medir la variabilidad del ERE con respecto a los diferentes valores del 

efecto rebote directo y los diferentes porcentajes de eficiencia de los precios. 

Los resultados muestran que la inclusión del efecto de rebote ambiental tiene generalmente un 

impacto no despreciable en los indicadores ambientales globales a lo largo de todos los años 

estudiados. Estos impactos oscilan entre el 5% (eutrofización) y el 6,109% (creación de oxidantes 

fotoquímicos) para el modelo combinado, mientras que para el modelo único los valores caen en los 

rangos del 1% (eutrofización) y el 9,277% (creación de oxidantes fotoquímicos). Además, un análisis 

de sensibilidad del precio de la elasticidad de la electricidad y del precio de la electricidad revela que 

la ERE varía de diferentes maneras, específicamente, los cambios en estos parámetros podrían variar 

los impactos, respectivamente, hasta entre un <1% y 38%. En 8 de 10 los impactos ambientales 

estudiados está presente el “backfire effect” o “efectos contraproducentes” en diferentes magnitudes 

a lo largo de los años, dependiendo en gran medida de los ahorros disponibles para reinvertir. 



 

Palabras clave. Efecto de rebote ambiental, mejoras en la eficiencia ambiental, recursos renovables 

no convencionales, LCA, STIRPAT.  



 

Abstract 

One of the Colombian strategies to diversify and decarbonize the energy sector is encouraging the 

use of non-conventional renewable resources (NCRR). For doing so the government issued in 2014 

the Law 1715 to promote NCRR and energy efficiency improvements into the sector. While 

presumably it will help to achieve the international and national commitment to reduce the CO2 

emission by 20% in 2030, this assumption cannot be tested broader without taking in account the 

environmental consequence that such initiatives may produce in the household sector, the greatest 

electricity consuming sector in Colombia 

This thesis measures the environmental rebound effect (ERE) when increasing the shares of wind 

power into the Colombian power grid in the residential (household) sector. For doing so, a process-

based Life Cycle Assessment (P-LCA), an environmental extended input output (EEIO) model and 

re-spending models (almost ideal demand system AIDS) were applied. 

Direct rebound effect was measured thought the elasticity price of the electricity demand; 

furthermore, the environmental savings for increasing the shares of wind power into the grid were 

calculated via P-LCA. For doing so, a P-LCA for a wind farm in Colombia was performed, whereas 

the information for other energy resources (Hydro, Coal, Gas, Solar and Thermal) where collected 

from Ecoinvent 3.4 database. 

To calculate the environmental indirect rebound effect the monetary savings obtained for the 

environmental efficiency were calculated. For doing so, an AIDS was applied to obtain the marginal 

budget shares (MBS). Combining the MBS obtained with the EEIO model the monetary savings were 

translated into environmental indicators. 

The ERE is presented for ten impact categories (climate change (CC), acidification (A), ecotoxicity 

(E), marine eutrophication (MEUT), terrestrial eutrophication (TEUT), carcinogenic effects (CE), 

non-carcinogenic effects (NCE), ozone layer depletion (OD), photochemical ozone creation (POC), 

and respiratory effects, inorganics (RES)). Moreover, a sensitive analysis was conducted to measure 

the variability of the ERE to different values of the direct rebound effect and different percentages of 

price efficiency. 

The results show that the inclusion of the environmental rebound effect has generally a non-negligible 

impact on the overall environmental indicators across all studied years. Such impacts ranging across 

impact categories from 5% (eutrophication) and 6,109% (photochemical oxidant creation) for the 

combined model, whereas for the single model the values fall on the ranges of 1% (eutrophication) 

and 9,277% (photochemical oxidant creation). Further, a sensitivity analysis of the elasticity price of 

the electricity and the price of the electricity reveals that the ERE varies in different ways, specifically, 

changes in these parameters could vary the impacts, respectively, by up to about <1% and 38%. 

Backfire effects are present for 8 of the 10 environmental impacts studied in different magnitudes 

across the years, depending meanly of the savings available to re-invest. 



 

Keywords. Environmental rebound effect, environmental efficiency improvement, non-conventional 

renewable resources, LCA, STIRPAT. 
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1. Introduction 

One of the main challenges of the global economy is to achieve an economic growth without the 

depletion of the natural resources so that the future regeneration may meet their own needs. This 

paradigm become one of the most important goals of the human kind since the United Nations labeled 

it as “Sustainable development”, a concept introduced by Gro Harlem Brundtland chair of the World 

Commission on Environment and Development in his report  “Our Common Future” to the United 

Nations in 1987 (United Nations, 1987). 

Among the different strategies to achieve the sustainable development e.g. efficiency, consistency, 

and sufficiency. The efficiency which implies reduce the consumption of materials and energy to 

provide certain services “produce more with less” is suggested to be the key to decouple the 

economies to the depletion of resources and environmental impacts (IPCC, 2014). Thus, technology, 

via technical efficiency improvement have been thought to be play a decisive role to reduce the 

environmental impacts caused by anthropogenic activities (Sharon, 1994).  

Several approaches e.g. The IPAT equation introduce by Ehrlich and Holdren (1971, 1972) define 

the environmental pressures (I) as function of the product of the population (P), affluence (A+), and 

technology (T) in which T is commonly defined as the environmental impact per unit of economic 

activity (efficiency measurement) that translates human actions into environmental impacts 

(Commoner, 1972; Ehrlich & Holdren, 1971, 1972). Similarly, the Intergovernmental Panel on 

Climate Change (IPCC) uses a reformulation of the IPAT model, called the KAYA equation, as the 

basis for the greenhouse gas emissions (GHG) emissions calculation, projections, and scenarios (S. 

Lin et al., 2009). Different variations of the IPAT equation, e.g. ImPACT, ImPACTS, IPBAT, and 

STIRPAT, implicatively assume T as key to decouple economic growth from pollution (Vélez-henao 

et al., 2019). Consequently, several international and national policies, programs and strategies 

seeking to decouple resources consumption from economic growth focus their effort in efficiency 

improvements to achieve their goals. 

However, the effectiveness to achieve those goals through efficiency improvements may be limited 

by the so called rebound effect (Maxwell et al., 2011). The rebound effect is a widely accepted 

phenomenon introduced by Stanley Jevons in the late nineteenth century (1865) and popularized in 

the last decades by Khazzom (1980) and Brookes (1990). An interesting debate about this topic can 

be found in Berkhout and colleagues (2000), and Muster (1995). General speaking the RE states that 

a change in the technical efficiency of an energy service can change the overall consumption pattern 

of this service, due to the behavioral responses of economic variables such as: income, price, financial 

gains, product costs, and material substitution (David Font Vivanco & Voet, 2014a).  Similar 
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definitions of the RE can be found in the literature (Berkhout et al., 2000; Binswanger, 2001; Brookes, 

1990; Girod et al., 2010; Greening et al., 2000; Sorrell et al., 2009; Sorrell & Dimitropoulos, 2007; 

Weidema, 2008).  

Different definitions of the rebound effect can be found in the literature (Berkhout et al., 2000; 

Binswanger, 2001; Brookes, 1990; Girod et al., 2010; Greening et al., 2000; Sorrell et al., 2009; 

Sorrell & Dimitropoulos, 2007; Weidema, 2008). A definition that can encompass all of them is the 

following: the rebound effect is the change in consumption and production of goods or services as a 

consequence of a change in economic variables (such as income, price and financial gains or costs of 

product and material substitution) caused by the improvement in efficiency of providing an energy 

service (David Font Vivanco & Voet, 2014a). Greening et al., (2000) provided a widely accepted 

classification of the rebound effect, classifying it into direct, indirect, and macroeconomic effects. 

The direct rebound effect can be measured through the efficiency or price elasticity of energy services. 

The indirect rebound involves further changes in consumption patterns caused by energy efficiency 

improvements. These patterns are captured through macroeconomic price variables rather than 

efficiency variables. Combination of Input Output models and re-spending models are commonly 

used to capture such effects (Freire-González, 2011). Macroeconomic effect refers to both direct and 

indirect responses to efficiency energy improvement.  

Recently, the importance and complexity of the rebound effect has been handled by diverse actors 

such as academic, public, and private entities in different disciplines such as energy economics, 

transportation economics, and environmental sciences. According to Font Vivanco et al. (2016), 

many intergovernmental organizations and international agencies, such as the European Environment 

Agency (EEA), the European Commission (EC), the International Energy Agency (IEA) the United 

Nations Environment Programme (UNEP), the Department of Energy and Climate Change in the 

United Kingdom (UK), the Irish Department of Communications, Marine, and Natural Resources, 

and the U.S. Department of Energy, have advocated for the importance of taking into account the 

rebound effect, given its impact on achieving environmental goals. In the context of energy and 

climate change policies, projections from the Intergovernmental Panel on Climate Change (IPPC) 

that by 2030, energy efficiency gains will reduce global energy consumption by 30% below where 

they would otherwise be do not incorporate the rebound effect. Many rebound effect publications cite 

this as a serious oversight in light of the evidence for rebound effects for energy efficiency (Maxwell 

et al., 2011). 

Moreover, some authors refer to the environmental rebound effect (E)RE, a concept that has its roots 

in industrial ecology and was first introduced by Goedkoop et al (1999) as the environmental pressure 

resulting from a function fulfillment optimization. This concept offers a more holistic view of the 

environmental impacts caused by an improvement in the efficiency of providing a service, expressing 

the rebound effect in different environmental dimensions, such as material extraction, emissions, and 

waste. Detailed information about the rebound effect and the environmental rebound effect can be 

found in (David Font Vivanco, Mcdowall, et al., 2016; Greening et al., 2000; Sorrell & 

Dimitropoulos, 2007). Moreover, Font Vivanco et al. (2014) presented a general framework to 

capture and assess the RE through the IPAT equation. 
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The ERE is possible to measure by the integration of LCA (Life Cycle assessment) approaches 

translating conventional measures of the rebound effect into different environmental footprints. LCA 

is a holistic approach developed to assess the environmental impacts caused by a product or service 

during the entire life of cycle, from the extraction of raw materials until the disposal or recycling 

(cradle to gate). LCA procedures are standardized by the ISO family 14040-14044 (ISO, 1998, 2000a, 

2000b, 2006a, 2006b). The results found are analyzed below, in the presentation of each chapter of 

this document. 

Different LCA approaches can be distinguish. (1) the process-based model (P-LCA) allows to model 

in a detailed way determinate technology across the entire life cycle of a product or services. Through 

P-LCA it is also possible to include the use and end-of-life (EoL) stages. (2) input output LCA (IO-

LCA) allows including complete information of the system boundaries (whole economy) making 

possible to identify the environmental impacts of determinate consumption patter. According to Joshi 

(2000), traditional methods suffer, among other, from problems of subjective boundary definition and 

aggregation. Process-based LCA (P-LCA) often suffers from truncation as well as omission of 

resource use and emissions of upstream stages by setting subjective system boundaries (Huey et al., 

2017; Lenzen, 2000). On the other hand, input–output LCA (IO-LCA) includes the whole economy 

as the system boundary, yet it suffers from aggregation issues as the product of interest is generally 

approximated by its commodity sector, an aggregation of a large number of heterogeneous products 

(Joshi, 2000; Lenzen, 2000). Finally, the (3) approaches, Hybrid LCA combines the strengths of both 

P-LCA and IO-LCA, resulting in a more robust method for environmental footprinting (Suh et al., 

2004). Thus, the hybrid approaches allow to bring analyses one step ahead by (1) integrating social 

and economic aspects, (2) expanding the level of analysis across sectors and regions, and (3) including 

scenarios and rebound effects (Onat et al., 2017). 

The ERE has been extensively studied for several regions, technologies, and environmental 

indicators. Estimations of the ERE can be found in the literature for general energy efficiency 

improvements in the household sector in US, China and Spain (Freire-González et al., 2017; Freire-

González and Font Vivanco, 2017; Thomas and Azevedo, 2013a; Wen et al., 2018), smartphones 

reuse in the US (Makov and Font Vivanco, 2018),  electric cars and transport innovations in Europe 

(Font Vivanco et al., 2016c, 2015; Font Vivanco and Voet, 2014), green consumption in Australia 

(Murray, 2013), and high-speed transport technologies (Spielmann et al., 2008). Whereas, the 

environmental rebound effect has not been yet explored in the area of renewable energy resources. 

  



4 
 

1.1 Problem statement 

The energy sector is the second largest emitter of greenhouse gas (GHG) emissions in the country, 

accounting for about 35% of the 236.9 Mton of CO2 emitted in 2014 (see figure 1).1 About 28% of 

the GHG emissions of the energy sector come from electricity and heat production (IDEAM et al., 

2018), mainly from the combustion of coal and natural gas, which still have a substantial presence in 

the energy grid (70% hydro, 18% coal, 12% Gas, <1% wind in 2014) (see figure 2) (UPME, 2019). 

Moreover, the current energy grid poses challenges for ensuring a continuous electricity supply 

during climatic variations such as the “El Niño” phenomenon, due to rainfall decrease which feeds 

the dams (Vélez Henao & Garcia Mazo, 2019). To meet the rising electricity demand while 

diversifying and decarbonizing the energy system, the Colombian government plans a sizeable 

increase in the share of non-conventional renewable resources (NCRRs, such as wind and solar 

power) (UPME, 2016b). Specifically, the government issued the law 1715, with the purpose of 

promoting energy and environmental efficiency in the energy sector (LEY 1715 de 2014, 2014). This 

policy seeks first to promote NCRRs to protect the electricity grid against the effects of the “El Niño” 

phenomenon. Second, to achieve the commitments made in COP 21 to reduce carbon emissions by 

2030 (Vélez Henao & Garcia Mazo, 2019). Third, to align energy policies with the 7th sustainable 

development goal (SDG): guarantee the access for renewable and sustainable energy (United Nations, 

2017). 

 

Figure 1-1. CO2-equivalent emissions by economic sector in Colombia for the period 1990-2014. 

IPPU: industrial process and product use; Energy others: oil refining, solid fuel manufacturing, 

 
 

1 This was the last year available at the writing of this article. 
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manufacturing and construction industries, other sectors, and fugitive emissions; AFOLU: 

agriculture forestry and other land use (IDEAM et al., 2018). 

 

Figure 1-2. CO2-equivalent emissions by electricity production technology. Source: own 

elaboration, based on UPME (2019) for the share of each technology in the energy grid and the CO2 

eq emissions for each technology, obtained from the ecoinvent 3.4 database. 

 

Consequently, the Colombian government plans a sizeable increase in the share of NCRRs to meet 

the rising of electricity demand (UPME, 2016b). Among these, wind power is expected to receive a 

considerable boost, from a marginal share of 0.1% in 2016 to a share between 2% and 7% in 2030 

(727 MW to 1,456 MW of new wind power installed). Such expansion will mainly depend on the 

available space in the Guajira region, where wind farms are expected to be installed. This expansion 

is expected to entail environmental savings in the production of electricity (UPME, 2016b). 

The potential environmental savings from increasing the shares of NCRRs in the energy grid can, 

however, be totally or partially offset by the so-called rebound effect (Freire-González & Font 

Vivanco, 2017). The rebound effect has been extensively studied for energy uses (Berkhout et al., 

2000; Binswanger, 2001; Brookes, 1990; Girod et al., 2010; Greening et al., 2000; Sorrell et al., 2009; 

Sorrell & Dimitropoulos, 2007; Weidema, 2008). This effect has caught the attention of scholars and 

public and private institutions during the last decades, due to its potential to fall short of key 

environmental targets (David Font Vivanco, Tukker, et al., 2016). Some examples include the United 

Nations Environment Programme (UNEP), the International Energy Agency (IEA), and the European 

Environment Agency (EEA). For further details about the rebound effect as a policy issue, see Font 

Vivanco et al. (2016). 
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Current trends show that NCRRs (particularly solar and wind) are both cheaper (Gielen et al., 2019; 

Kaberger, 2018) and have a better environmental performance than fossil fuels (Turconi et al., 2013). 

An increase in the share of NCRRs into the Colombian power grid may thus lead to a drop on the 

electricity price, causing an increase in available income, and consequently additional demand that 

offsets some or all of the initial expected environmental savings (Freire-González & Font Vivanco, 

2017). An increase in the demand for the product subject to an efficiency improvement, electricity in 

this case, is generally known as the direct rebound effect (Greening et al., 2000). The increased 

demand of other goods and services (e.g., food or housing) is commonly known as the indirect 

rebound effect (Greening et al., 2000). In some cases, direct and/or indirect rebounds have the 

potential of not only entirely suppress the environmental savings achieved, but also generate 

additional environmental issues, a phenomenon known as backfire effect (Sorrell et al., 2009). 

Rebound effects can be expressed through a wide range of environmental issues, and are sometimes 

framed under the environmental rebound effect (ERE) concept (Font Vivanco and van der Voet, 2014; 

Freire-González and Font Vivanco, 2017; Goedkoop et al., 1999). Key strengths of ERE applications 

are the use of technology-detailed environmental-economic models, such as life cycle assessment, 

and the use of life-cycle environmental impact indicators (e.g. impacts on ecosystems and human 

health) (Freire-González & Font Vivanco, 2017; Weidema, 2008). 

Given the fact that the ERE can undermine the efforts made by the Colombian government to 

decarbonize the electricity grid and the economy, the goal of this work is to obtain empirical evidence 

of the ERE from increasing the shares of NCRRs into the Colombian energy grid. To gain insight 

into the potential environmental consequences of a transition of the Colombian energy system to 

NCRRs (empowering by the issued law 1715). 

1.2 Objectives 

1.2.1 General objective 

Assessment of the environmental rebound effect of the Colombian household sector cause by the 

increase of wind power into the electricity grid. 

1.2.2 Specific objectives 

 

1. Propose a methodology to describe the environmental rebound effect combining different 

current approaches. 

2. Identify, through the variables population, affluence, and technology, the potential effect 

from electricity consumption on environmental impact. 

3. Measure the environmental impacts of the wind power electricity production in Colombia. 
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4. Estimation of the environmental rebound effect related with the electricity consumption 

caused by the increase of wind power sources in the Colombian electricity grid in several 

environmental impact categories. 

 

1.3 Hypothesis  

H1. The direct rebound effects for the Colombian household electricity consumption are likely to be 

larger than in other developing countries due to the existence of a scheme of subsides for the final 

price to pay for electricity. 

H2. Direct rebound effects would be higher at the interior of the country than in the coast due to 

demographic and economic conditions.  

H3. The incorporation of non-conventional renewable energy sources in the electrical energy supply 

may produce a change in the electricity price due to the technologies introduced have a lower marginal 

production cost compared to conventional technologies. 

H4. The environmental rebound effect of the Colombian household sector for the introduction of non-

conventional renewable energy sources into the energy grid are expected to be significant high 

(backfires) due to the amount of savings achieve. 
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Figure 1-3. Thesis structure 
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2. Description of the accumulative 

thesis. 

This doctoral thesis comprises eight chapters. All chapters have paper format and are self-

contained. Some chapters have already been published, others are in the process of publishing, 

another was written for this document. After the problem statement, Chapter three presents in 

detail the methodology followed to study the E(RE) in the Colombian household sector for 

increasing the shares of wind power into the power grid. For doing so, the approach to study the 

direct and indirect rebound effect through different models is explained.  

Chapter three develops a systematic theorical framework to calculate the direct and indirect 

environmental rebound effect and provide the necessary elements need to measure the marginal 

budget shares. 

Chapter four develops a critical review of Technological change and the rebound effect in the 

STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and. Technology) model 

to understand the diversity and value of the variables, scopes, assumptions, statistical approaches, 

and the environmental impacts commonly studied. The findings highlight that, despite the 

multiple applications and the high potential of the STIRPAT model, inconclusive results and/or 

knowledge gaps remain, notably: (1) a geographical imbalance in the scope of studies, (2) the 

almost exclusive focus on carbon emissions, (3) a lack of agreement on the choice of data, 

additional explanatory variables, and regression models, (4) a lack of consensus on how to 

approximate T (technology), and (5) a lack of explicit analyses of the (E)RE (environment 

rebound effect). 

Chapter five explores the relationship between urbanization and technological factors on 

Colombian household electricity consumption in several environmental impact dimensions 

(climate changes, eutrophication, acidification, and respiratory effects) by combining an extended 

STIRPAT model and LCA approach.  The findings suggest that urbanization have an extreme 

significant and positive effect on electricity consumption (an increase in 1% in urbanization will 

increase in 1.61% the electricity consumption), whereas the effect of urbanization was found to 

have a moderate effect on climate change (1% increase in the urbanization rate is likely to increase 

carbon emissions by 0.99%). For eutrophication, acidification, and respiratory effects, 

urbanization was found positive but it is not statistically significant. This result may suggest that 

urbanization may not be a major driver of eutrophication, acidification, and respiratory effects in 

Colombia. Moreover, energy intensity was found to have significant effects on electricity use and 

environmental impacts, although in less proportion as the urbanization. 

Chapter six carries out a hybrid life cycle assessment to estimate the environmental footprint 

associated with a wind farm of 19.5 MW of installed capacity in active duty. With respect to 

similar studies in other regions and general practice in the field, both direct (required on-site) and 

indirect (required in the supply-chain) services associated with the life cycle of the wind farm 

were included. The results show that the wind farm is associated with low global warming impacts 

(12.93 gr CO2 eq/kWh) compared with similar studies, mainly due to high wind speeds. 

Moreover, the inclusion of both direct and indirect services increases the environmental impacts 

across indicators (with respect to the results without services) from 0% (carcinogenic effects) to 

21% (terrestrial eutrophication). Further, sensitivity analysis suggests that the results are highly 
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dependent on the capacity factor, lifespan, and percentage of losses. We conclude that the 

inclusion of both direct and indirect services is not negligible in the life cycle assessment of wind 

farms and similar projects, particularly given the substantial services required, such as surveying, 

legal compliance, etc. Given the difficulty to obtain data on services, we conclude with some 

recommendations aimed at relevant stakeholders, such as tax benefits and public procurement 

guidelines. This study provides novel insights on the truncation issues related to omitting service 

inputs in electricity generation, an unprecedented feature. Thus, the results contribute to the 

increasing discussion about the role of service inputs in LCA studies. Moreover, for first time, an 

LCA study for an electricity generation system in Colombia is provided. While there are several 

life-cycle studies for wind plants in the literature, this study fills the gap for Latin-American 

economies. Last but not least, this study highlights the importance of testing the sensitivity of the 

results of LCA for wind farms with some key parameters, since the capacity factor, the lifespan, 

and the percentage of losses are determining.  

Chapter seven presents the framework for the direct rebound effect and reviews literature 

regarding the direct rebound effect for electricity consumption in the household sector, 

particularly studies for developing countries. Moreover, the direct rebound effect for all energy 

services consuming electricity in the household sector for different States in Colombia over the 

period 2005-2013 is empirically measured. The results suggest a national rebound effect of 83.4% 

and values ranging across regions between 64.7% (Atlantico) and 78.9% (Meta). This chapter 

provides novel insights of the rebound effect in developing countries. To the best of our 

knowledge; there are no such studies in South America. Furthermore, this study thus contributes 

to increasing discussion about the rebound effect in developing countries. Last but not least, this 

study also provides, for the first time, an empirically measurement of the direct rebound effect for 

27 States in Colombia. 

Finally, chapter eight combine the process-based life cycle approaches (P-LCA), re-spending 

models, and environmental extended input output models (EEIO) to study the environmental 

rebound effect in the household sector for increasing the shares of wind power into the Colombian 

power grid. The results show that the inclusion of the environmental rebound effect generally has 

a non-negligible impact on the overall environmental indicators across all the studied years. Such 

impacts ranging across impact categories from 4% (eutrophication) to 7,430% (photochemical 

oxidant creation) for the combined model, whereas for the single model the values fall on the 

ranges of 1% (eutrophication) to 9,277% (photochemical oxidant creation). Further, a sensitivity 

analysis of the elasticity price of the electricity and the price of the electricity reveals that the ERE 

varies in different ways, specifically, changes in these parameters could vary impacts, 

respectively, by up to about <1% and 38%. Backfire effects are presented for 8 of the 

environmental impacts studied in different magnitudes across the years, depending meanly of the 

savings available to re-spend. The results invite to look for the environmental consequences of 

increasing the shares of wind power into the power grid in the household sector. Given it 

relevance, the study concludes with some recommendations aimed at relevant stakeholders. This 

study provides, for the first time, a comprehensive evaluation of the potential consequences of an 

environmental energy law under the framework of the ERE. 

Chapter nine summarized the main discussions and future lines of research. A graphic schema of 

the chapters and how it contributes with the objectives of this doctoral thesis is presented below. 

It is worth noting that each chapter presents the methodology applied. Moreover, main findings 

and conclusions are presented at the end of each chapter. 
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Related with the goals (see figure 1.1) and hypothesis formulated in this doctoral thesis the chapter 

three provide the necessary elements to satisfy the first specific goal (propose a methodology to 

describe the environmental rebound effect combining different current approaches).  

Chapters four and five contribute to achieve the specific objective number two (Identify, through 

the variables population, affluence, and technology, the potential effect from electricity 

consumption on environmental impact). Chapter six serves to reach the third specific goal 

(measure the environmental impacts of the wind power electricity production in Colombia). 

Finally, jointly chapter seven and eight helps to achieve the specific goal number four of the 

research project (Estimation of the environmental rebound effect related with the electricity 

consumption caused by the integration of non-conventional renewable energy sources in the 

electrical energy supply in different environmental impact categories, in a study case). 

Particularly, chapter seven supports the H1 (The direct rebound effects for the Colombian 

household electricity consumption are likely to be larger than in other developing countries due 

to the existence of a scheme of subsides for the final price to pay for electricity), in developing 

countries the rebound effect is significantly higher RE>30% than developed countries RE<30% 

(see chapter seven). Additionally, this chapter provides a literature review that provides evidence 

to support the H2 (Direct rebound effects would be higher at the interior of the country than in 

the coast due to demographic and economic conditions).  

Chapter eight provides evidence to support several hypotheses posed in this research. H3 (The 

incorporation of non-conventional renewable energy sources in the electrical energy supply may 

produce a change in the electricity price due to the technologies introduced have a lower marginal 

production cost compared to conventional technologies) are supported with the energy model, in 

the worst case the price of the electricity will fall by 20% comparing with the reference, yet the 

model assumes that the price of the other components of the price different from the generations 

will remain constant, situations that is unlikely to happened. Additionally, The H4 (The 

environmental rebound effect of the Colombian household sector for the introduction of non-

conventional renewable energy sources into the energy grid are expected to be significant high 

(backfires) due to the amount of savings achieve). Backfire effects are presented for 8 of the 

environmental impacts studied in different magnitudes across the years, depending meanly of the 

savings available to re-spend. 

The results obtained across the different chapters allow us to answer important questions such as: 

What are the critical drivers related with the environmental impacts caused by the electricity 

consumption?  What can be the consequences related with implementation of the Law 1715/2014 

by which the non-conventional renewable energies are integrated in the electrical system?  Which 

can be the environmental impact caused by population, affluence, technology, and the 

approximation of the change of size in the electricity use? And what can be the best strategic 

policy to deal with the environmental rebound effect caused by the introduction of non-

conventional renewable energy source in the energy national system in the electricity 

consumption in Colombia? 
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3. Theoretical and methodological 

aspects 

3.1 Environmental rebound effect E(RE) model  

The ERE was originally introduced by Goedkoop et al. (1999) as the environmental pressures 

resulting from a function fulfillment optimization. This concept offers a holistic view of the 

environmental impacts, caused by an improvement in the efficiency of providing a service. The 

ERE allows to express the rebound effect as different environmental burdens, rather than solely 

energy use (David Font Vivanco, Tukker, et al., 2016). The ERE is generally expressed as a 

percentage of the environmental savings that are “taken back” (David Font Vivanco & Voet, 

2014b) as : 

%𝐸𝑅𝐸 =  (
𝑃𝑆−𝐴𝑆

|𝑃𝑆|
) ∗ 100 (3.1) 

with  

𝐴𝑆 = 𝑃𝑆 − (𝑃𝑆 + 𝐸𝑅𝐸) (3.2) 

Where PS are the potential or engineering environmental savings from increasing the shares of 

wind power, on the energy mix, with respect to the current grid (in our case, through product-

based LCA), and AS are the actual savings, including the rebound effect. Moreover, following 

Font Vivanco et al. (2016) and Font Vivanco and Voet (2014b) the ERE, expressed as a change 

in a given environmental indicator, can be calculated as: 

 

𝐸𝑅𝐸𝑒,𝑡 = 𝐸𝑅𝐸𝑑𝑖𝑟
𝑒,𝑡 + 𝐸𝑅𝐸𝑖𝑛𝑑

𝑒,𝑡   (3.3) 

Where 𝐸𝑅𝐸𝑑𝑖𝑟 accounts for the direct ERE from the increased electricity consumption, due to the 

cheaper electricity price, and 𝐸𝑅𝐸𝑖𝑛𝑑 represents the indirect ERE, from the re-spending effect, in 

other products other than electricity. 𝑒 represents the environmental burden, and t indicates time. 

Moreover, each single effect can be decomposed into a demand and an environmental or 

technology effect. The demand effect relates to the changes in demand due to changes in real 

income, whereas the technology effect is associated with the environmental burdens, associated 

with each unit of additional demand. Thus, 𝐸𝑅𝐸𝑑𝑖𝑟 and 𝐸𝑅𝐸𝑖𝑛𝑑 can be expressed as: 

𝐸𝑅𝐸𝑑𝑖𝑟
𝑒,𝑡 =  ∆𝑑𝑑𝑖𝑟,𝑡𝑠

𝑡 𝑏𝑡𝑠
𝑒,𝑡 (3.4) 

𝐸𝑅𝐸𝑖𝑛𝑑
𝑒,𝑡 =  ∑ ∆𝑑𝑖𝑛𝑑,𝑖

𝑡 𝑏𝑖
𝑒,𝑡  𝑠=1,…,𝑛 (3.5) 

With: 

∆𝑟𝑡 =  ∆𝑑𝑑𝑖𝑟,𝑡𝑠
𝑡 +  ∑ ∆𝑑𝑖𝑛𝑑,𝑖

𝑡
𝑠=1,..,𝑛  (3.6) 

Where ∆𝑑𝑑𝑖𝑟 denotes the change in demand for a given technology shares in the energy mix ts, t 

indicates time, and ∆𝑑𝑖𝑛𝑑 denotes the change in demand for a consumption group i (both in 

monetary terms), b refers to the environmental burdens per unit of demand, n equals the total 
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number of consumption groups, and ∆𝑟 corresponds to the total change in real income, due to the 

increasing shares of wind power into the energy mix. 

3.2 Environmental direct rebound effect  

The direct RE can be study through direct or indirect approaches, the direct approach is based on 

surveys and primary data, whereas the indirect approach is based on econometric studies and 

secondary data (Freire-González, 2011). 

Direct approach requires that the energy consumption must be known before and after the 

efficiency improvement to compare the actual energy savings respect to the expecting theorized 

savings. Measures of the direct RE through direct approaches are uncommon due to the data 

required (mainly through detailed and extensive surveys) consume high amount of resources (time 

and money) (Haas & Biermayr, 2000). Rebound effect can be simply measured by eq. (3.7) 

𝑅𝑒𝑏𝑜𝑢𝑛𝑑 𝑒𝑓𝑓𝑒𝑐𝑡(%) = 100 ∗ 
𝑒𝑥𝑝𝑒𝑐𝑡𝑖𝑛𝑔 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 − 𝑎𝑐𝑡𝑢𝑎𝑙 𝑠𝑎𝑣𝑖𝑛𝑔𝑠

𝑒𝑥𝑝𝑒𝑐𝑡𝑖𝑛𝑔 𝑠𝑎𝑣𝑖𝑛𝑔𝑠
      (3.7) 

Particularly, a rebound effect of 0% means full achievement of energy reduction, while 100% 

means complete failure. Particularly, values greater than 100% means that the energy efficiency 

improvements increase the overall amount of energy use, this phenomenon is known as ‘backfire 

effect’ (Sang-Hyeon, 2007).  

For the indirect approach, the direct RE can be study, under certain circumstances, through 

efficiency measures of the energy services (Berkhout et al., 2000; Khazzoom, 1980; Sorrell, 2007; 

Sorrell & Dimitropoulos, 2007). 

        η𝜀(𝐸) = η𝜀(𝑠) − 1            (3.8)                                                                                   

 η𝜀(𝐸) represents the efficiency elasticity of the demand for energy and η𝜀(𝑠) is energy efficiency 

elasticity of the demand for useful work for an energy service. When η𝜀(𝑠) = 0, there is no direct 

rebound effect. When η𝜀(𝑠)  > 0, and  η𝜀(𝐸) < 1 there is a positive direct rebound effect. Finally, 

when η𝜀(𝑠) > 1 means that the demand is elastic and is called “backfire” (Saunders, 1992) 

Since it is difficult to calculate ε (efficiency measurement), the direct rebound effect is often 

estimated from the price elasticity of energy service (Berkhout et al., 2000)  

        η𝜀(𝐸) = −𝜂𝑝𝑠
(𝑠) − 1           (3.9) 

This definition is easier to calculated than Eq. (4.8). However, this definition is based on two 

assumptions, symmetry and exogeneity. Symmetry implies that consumers respond in the same 

way to energy price decline and energy efficiency improvement, whereas exogeneity implies that 

energy prices' change can not affect energy efficiency (Wang et al., 2014). Furthermore, since 

data on energy demand is more available and accurate than data on useful work for a particular 

energy service a third definition based on price-elasticity of energy demand can be obtained, since  

𝑃𝑠 =
𝑃𝐸

𝜀
  (Sorrell, 2007; Sorrell & Dimitropoulos, 2007) 

𝑅𝐸𝑑𝑖𝑟 =  ∆𝑑𝑑𝑖𝑟,𝑡𝑠
𝑡 = −𝜂𝑝𝐸

(𝐸) − 1            (3.10)                                                     
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Where 𝜂𝑝𝐸
(E) is the price elasticity of the demand for electricity. Following Haas and Biermayr 

(2000), the price elasticity of electricity demand can be estimated using the following energy 

demand function: 

𝑅𝐸𝑑𝑖𝑟 = 𝜂𝑝𝐸
(𝐸) = 𝐿𝑛𝐸𝑡 = β1𝐿𝑛𝑌𝑡 + β2𝐿𝑛𝐼𝑡 + β3𝐿𝑛𝑍𝑡 + 𝑢𝑡             (3.11)                          

Where α is a constant, β1- β3 are the parameters to be estimated, with β1 = 𝜂𝑝𝐸
(E), and 𝑢𝑡 

represents the error term.𝐸𝑡 is the energy service in period t; 𝑌𝑡 is the price of the energy service 

in the period t;  𝐼𝑡 is the income variable in the period t; 𝑍𝑡 is a vector of other drivers that is 

sometimes considered, usually the price of the substitute energy service or the climate variable. 

The term u is the error term (Berkhout et al., 2000; Binswanger, 2001; Brookes, 1990; Girod et 

al., 2010; Greening et al., 2000; Sorrell et al., 2009; Sorrell & Dimitropoulos, 2007; Weidema, 

2008). 

The direct price effect estimates using equation (2.11) are described as changes in electricity 

demand as a percentage from the initial electricity demand. This measure needs to be translated 

to environmental indicators by means of LCA-based coefficients, namely environmental impacts 

per kWh. LCA-based coefficients correspond to the coefficient 𝑏𝑡𝑠
𝑒,𝑡

 from eq. (3.4). That is the 

environmental impact per demand unit from the production of electricity. 

3.3 Environmental indirect rebound effect 

To calculate the 𝐸𝑅𝐸𝑖𝑛𝑑, we need two different sub-models: a marginal consumption model and 

an EEIO model. The marginal consumption model allows us to know how the monetary savings 

obtained from the introduction of wind power are spend, by calculating the marginal budget shares 

(MBS) for each consumption group i. To calculate the MBS, we applied an Almost Ideal Demand 

System (AIDS). The AIDS is a popular consumer demand model introduced by Deaton and 

Muellbauer (1980), with properties that makes it preferable to competing models (Chitnis et al., 

2012; Deaton & Muellbauer, 1980). To build the re-spending model, we calculated the marginal 

budget shares (MBS), or the share of total savings that will be allocated to each consumption 

category i (e.g., food or housing). To do so, we assume a fixed individual income, and no long-

term savings, so all saved money is spent. The MBS for a given time period can be calculated 

following Deaton and Muellbauer (1980) as: 

𝑀𝐵𝑆𝑡
𝑖 =  𝛼𝑖 + ∑ 𝛾𝑠

𝑖𝑙𝑛𝑝𝑡
𝑠 +𝑠=1,...,𝑛   𝛽𝑖 (

𝑥𝑡
𝑠

𝑃𝑡
) (3.12) 

Where 𝑛 equals to the total number of consumption groups (s), x is total expenditures, P is defined 

here as the Stone’s price index, p is the price of a given category, t indicates time, and 𝛼 (constant 

coefficient), 𝛽 (slope coefficient associated with total expenditure) and 𝛾 (slope coefficient 

associated with price) are the unknown parameters. The Stone’s price index is defined as (Deaton 

& Muellbauer, 1980): 

𝑙𝑛𝑃𝑡 =  ∑ 𝑀𝐵𝑆𝑡
𝑠𝑙𝑛𝑝𝑡

𝑠
𝑠=1,…,𝑛  (3.13) 
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Once the MBS are obtained, the indirect effect, in monetary terms, can be calculated by 

multiplying the remaining change in real income (∆𝑟𝑟), by each MBS, for each consumption 

group i as: 

𝑅𝐸𝑖𝑛𝑑 = 𝛥𝑑𝑖𝑛𝑑
𝑡 =  ∑ 𝛥𝑟𝑟

𝑡𝑀𝐵𝑆𝑖𝑠=1,…,𝑛  (3.14) 

With: 

∆𝑟𝑟
𝑡 = ( 𝑑𝑎𝑡𝑠

𝑡 − 𝑑𝑡𝑠
𝑡 ) −  ∆𝑑𝑑𝑖𝑟,𝑡𝑠

𝑡 (3.15) 

Where d is the electricity demand in monetary terms for a given energy mix in ts (original energy 

mix without the introduction of additional wind power), and its corresponding alternative ats 

(energy mix with the additional wind power). Similar to the direct rebound in equation (3.11), 

indirect rebound in equation (2.14) needs to be translated into environmental indicators as the 

𝐸𝑅𝐸𝑖𝑛𝑑. To do so, an environmentally-extended input-output (EEIO) model is applied to obtain 

the environmental impact intensity (EII) (that is, the environmental impact per monetary unit) of 

each of the consumption categories (m). Details of the EEIO model can be found in Miller and 

Blair (2009). The 𝐸𝑅𝐸𝑖𝑛𝑑 can be calculated as: 

𝐸𝑅𝐸𝑖𝑛𝑑 = 𝑅𝐸𝑖𝑛𝑑𝐸𝐼𝐼                      (3.16) 

With 

𝐸𝐼𝐼 = 𝑆𝐿 = 𝑆(𝐼 − 𝐴)−1          (3.17) 

Where 𝐸𝑅𝐸𝑖𝑛𝑑 represents the indirect ERE, in environmental units, 𝑅𝐸𝑖𝑛𝑑  is the indirect effect of 

the additional spend in monetary terms, L is the Leontief inverse matrix, S the set of coefficients 

of environmental intensities. 
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Abstract.  

Technological change is key to understand the explanatory variables behind environmental 

impacts in the context of the STIRPAT (Stochastic Impacts by Regression on Population, 

Affluence and Technology) model. An adequate representation and analysis of the significance 

of the technology variable (T) in the STIRPAT model becomes crucial, even more if one aims to 

better understand underlying processes such as the (environmental) rebound effect (E)RE. A 

critical review of the application of the STIRPAT model has been conducted to understand the 

diversity and value of the variables, scopes, assumptions, statistical approaches, and the 

environmental impacts commonly studied. The findings highlight that, despite the multiple 

applications and the high potential of the STIRPAT model, inconclusive results and/or knowledge 

gaps remain, notably (1) a geographical imbalance in the scope of studies, (2) the almost exclusive 

focus on carbon emissions, (3) a lack of agreement on the choice of data, additional explanatory 

variables, and regression models, (4) a lack of consensus on how to approximate T, and (5) a lack 

of explicit analyses of the (E)RE. Our findings are useful to both policymakers and academics for 

method design, further research, and policy evaluation. 

Keywords. Environmental impacts, STIRPAT model, Technology, Rebound effect 

4.1 Introduction 

The IPAT equation was proposed in the 1970s to better understanding the influence of changes 

in population (P), affluence (A+), and technology (T) on environmental impacts (I) (Commoner, 

1972; Ehrlich and Holdren, 1972, 1971). In most IPAT applications, T is defined as the 

https://doi.org/10.1016/j.enpol.2019.03.044
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environmental impact per unit of economic activity (normally expressed as gross domestic 

product [GDP]) through the ratio I/GDP. Technical efficiency improvements are thought to be 

key to reduce the environmental impacts caused by anthropogenic activities (Sharon, 1994). 

Among IPAT applications, climate change is particularly popular, specifically on energy-related 

carbon emission studies (Chertow, 2000), yet research areas are diverse. 

The Intergovernmental Panel on Climate Change (IPCC) uses a reformulation of the IPAT model, 

called the KAYA equation, as the basis for the GHG emissions calculation, projections, and 

scenarios (S. Lin, Zhao, and Marinova 2009). Different authors have proposed various variations 

using the IPAT equation as a starting point. Waggoner & Ausubel (2002) proposed the ImPACT 

identity to identify the agents behind the driving forces and disaggregated T into consumption per 

unit of GDP and impact per unit of consumption. In this context, the impact is a consequence of 

the actions of parents, workers, consumers, and producers. Other authors proposed the ImPACTS 

identity (S. Lin, Zhao, and Marinova 2009; Z. Xu, Cheng, and GZ 2005), where S refers to social 

development and m to public management, arguing that social development and society have the 

capability to decrease environmental impacts, and that these variables are usually ignored in 

environmental assessments. Schulze (2002) proposed the IPBAT identity to capture the effect of 

behavioral choices (B), arguing that the IPAT equation does not explicitly encompass these 

choices. Nevertheless, B is not clearly defined, making its application problematic. Moreover, 

Diesendorf (2003) criticizes the IPBAT identity arguing that the behavior is already implicit in 

the IPAT equation. 

While the IPAT model and its variants offer many insights on the pathways that translate human 

actions into environmental impacts, it nevertheless suffers from a considerable theoretical 

limitation. Specifically, IPAT model assumes linearity between variables, meaning that an 

increase in 1% of one right-side variable will produce a 1% increase in the environmental impact. 

This causal relationship is generally assumed for simplicity, and it is rarely tested (Chertow 2000). 

This assumption does not allow for testing hypotheses regarding the value of a certain variable, 

or proving the consequences of a certain decision (e.g. energy or environmental policies). The 

IPAT model also suffers from a limited focus and scope in its applications. First, it generally does 

not include additional factors that are considered as driving forces of environmental change (Dietz 

and Rosa 1994). Second, according to Roca (2002), the variable T is usually incorrectly treated 

as a residual term encompassing everything that affects environmental change other than 

population or affluence. Furthermore, T is in some cases unknown and derived generally from the 

studied environmental impacts divided by the other two drivers (T= I/P∙A) (Wei 2011). 

To overcome some of these limitations, Rosa and Dietz (1998) proposed the STIRPAT model 

(Stochastic Impacts by Regression on Population, Affluence and Technology) as: 

𝐼𝑖 = 𝑎𝑃𝑖
𝑏𝐴𝑖

𝑐𝑇𝑖
𝑑𝑒𝑖    (4.1) 

The constant a ≠ 0 scales the model; b, c and d represent, respectively, the effects of population 

elasticity, affluence elasticity, and technology elasticity. Positive values in any or all of these 

coefficients means that the value of the right side variable will increase, while negative values 

means that the variable will decrease in certain proportion. York et al. (2003a) refers to those 

coefficients as an “ecological elasticity (EE).” The term e is the error term and represents random 

variables not observable or controllable in the model (IPAT’s proportionality assumption sets a = 

b = c= d = e = 1). The subscript i indicates that those quantities (I, P, A, T and e) vary across 

observational units. Using regression methods, this approach allows for testing hypotheses 
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regarding factors other than population and affluence that may contribute to environmental 

impacts (Dietz and Rosa, 1997). According to Wei (2011), the STIRPAT equation is used with 

two main purposes: First, to predict environmental impacts based on key driving forces; and 

second, to estimate causal effects between the driving forces. One of the strengths of the 

STIRPAT model is that it does not assume a causal linkage between the drivers that lead to the 

impact. Rather, it treats such linkages as hypotheses to be tested. In contrast to common 

applications of the IPAT equation, which assumes that technology is a factor related with 

technical parameters such as efficiency, the STIRPAT encourages consideration of cultural, 

institutional and political factors as drivers of environmental impacts (Dietz and Rosa, 1994). 

Furthermore, population and affluence can be broken down into forms that have more social 

meaning (Rosa and Dietz, 1998). However, the full potential of the STIRPAT model and its value 

for unravelling and better understanding the technology variable is not fully understood since no 

comprehensive literature review is available. 

Similarly to the STIRPAT model, decomposition analysis tools decompose a variable under study 

into different explanatory factors, such as technological, demand, and structural effects (Ang 

2015). Through decomposition analysis, the impact of a given factor is computed by letting that 

factor change while holding all the other factors at their respective base year values. While the 

STIRPAT model is used widely as a prospective tool, decomposition analysis has been applied 

mostly as a retrospective tool focusing on the study of the impacts of structural change (e.g. 

changes in industry product mix) and sectoral energy intensity change (e.g. changes in the energy 

intensities of industrial sectors) on trends in industrial energy use (Ang 2004). The STIRPAT 

model has been applied more broadly, while decomposition analysis has been historically applied 

in energy-related CO2 emission studies. This paper focuses on the STIRPAT model, for detailed 

information on decomposition methods, see Hoekstra (2003). 

This chapter carries out a critical review of 112 applications of the STIRPAT model with a focus 

on the role of technological change and related aspects. This approach is valuable for various 

reasons: First, T is usually treated as a residual term encompassing all factors other than 

population (P), and affluence (A+), meaning that the real implications that technology has on 

environmental change is usually not adequately considered. Second, while T is considered as a 

key factor to reducing environmental impacts through efficiency improvements, studies however 

rarely consider the so-called rebound effect (RE), or in a broader sense, the environmental 

rebound effect (ERE) (Goedkoop et al., 1999). The (E)RE is the change in consumption and 

production of goods and services and their associated environmental impacts as a consequence of 

a change in economic variables caused by an improvement in the efficiency of providing a service 

(Font Vivanco and Voet, 2014). The (E)RE has gained relevance among academic, public and 

private entities in different areas such as energy economics, transportation economics and 

environmental sciences (Font Vivanco et al., 2016b). 

The hypothesis put forward in this paper is that the STIRPAT model allows a more realistic 

measurement of the effect of technological change on environmental impacts, hence the role of 

the RE. This paper accompanies the critical literature review with a discussion on how to treat 

and measure the variable T, with a strong focus on the role of the RE. The findings help 

government and non-government agencies, policymakers, and academics in better understanding 

the role of technology as a driver of environmental change, as well as providing guidance for 

identifying and measuring the effects of the RE through the STIRPAT model. The main 

contributions of this paper are (1) a comprehensive review of 112 documents over the last 18 

years in order to gain insights on how the variable T has been measured, including the diversity 
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of regression methods, geographical scopes, and environmental issues studied, and (2) a 

discussion and guidance on how to approach the RE within STIRPAT models. 

This chapter is structured as follows: Section 4.2 briefly describes the research method used to 

carry out the literature review. Section 4.3 provides a detailed analysis of the 62 articles related 

to the STIRPAT model, with a focus on the type of variables used in the models, the kind of 

impact studied, and the definitions of technological change (represented through the variable T). 

Section 4.4 and section 4.5 discuss, respectively, the treatment of the rebound effect and the 

variable T, and section 4.6 concludes. Detailed information of the documents reviewed and the 

list of abbreviations can be found in Supplementary data S4.1 and a S4.2 respectively 

4.2 Materials and method 

To better understand how the variable T has been treated in the STIRPAT model and its variants, 

a comprehensive literature review has been carried out. The targeted scientific documents 

correspond to peer-reviewed scientific papers as well as grey literature (e.g. academic and official 

reports). The review includes specific case studies with quantitative estimates of different 

environmental impacts and studies including variables related to urbanization or industrialization. 

These variables are the most commonly used in STIRPAT models due to the fact that the levels 

of industrialization (IN) and urbanization (U) are widely associated with emissions, respectively, 

from the perspective of producers and consumers. The review also includes documents that 

provide valuable conceptual and/or methodological aspects of the STIRPAT model. Two criteria 

were applied to select the documents: a time criterion covering the period 2000 to date, and a 

keyword criterion whereby documents must include the following keywords: (‘STIRPAT’ OR 

‘Stochastic Impacts by Regression on Population, Affluence and Technology’) AND 

(‘urbanization’ OR ‘industrialization’ OR ‘rebound effect’). 112 relevant documents were 

identified during this review, covering up until the year 2018. This search was carried out using 

two approaches: 

• Via the online catalogues Scopus and Science Direct using a searching criterion based on 

all the possible combinations, anywhere in the document, of the following keywords: 

(“STIRPAT” or “Stochastic Impacts by Regression on Population, Affluence and Technology”) 

and (“urbanization” or “industrialization” or “rebound effect”). 

•  Via cross-citation analysis from the documents identified through the previous approach. 

The documents reviewed have been published in 42 different international journals in which the 

main subjects are Environmental Science, Earth and Planetary Sciences, and Energy. An 

increasing amount of publications over time is observed, with almost 50% of these during the 

period 2017-2018. Table 4.1 provides some general statistics. 

 

 

 

 

 



30 
 

 

Table 4-1. General statistics of the documents reviewed 

Subject  number studies % year number studies % 

Environmental 

Science 61 54% 2009 3 3% 

Earth and Planetary 

Sciences 10 9% 2010 3 3% 

Energy 25 22% 2011 4 4% 

Engineering 7 6% 2012 7 6% 

Economics, 

Econometrics and 

Finance 

Economics and 

Econometrics 3 3% 2013 5 4% 

Business, 

Management and 

Accounting 3 3% 2014 6 5% 

Agricultural and 

Biological Sciences 2 2% 2015 15 13% 

Mathematics 1 1% 2016 14 13% 

   2017 32 29% 

   2018 23 21% 

Total 112 100%   112 100% 

 

 

4.3 Review overview 

 

Table 4-2. Geographical Scopes 

Geographical Scope Number % 

Global 16 14% 

Continental  4 4% 

Mena region 1 1% 

China 85 76% 

Malasia 1 1% 

Nigeria 1 1% 

Pakistan 1 1% 

Norwegian 1 1% 

Taiwan 1 1% 

Azerbaijan 1 1% 

Total 112 100% 
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From the 112 documents identified, 16 studies (14% of the total) had a global scope, including 4 

studies focusing on countries of the Organization for Economic Co-operation and Development 

(OECD) (see Table 4.2). The major sample of the category of global scope are covered by studies 

that included between 53 and 140 countries including developing and developed countries. 

Additionally, 4 studies (4% of the total) had a continental scope: two from Africa and two from 

Asia. One study on Africa covers Nigeria, Kenya, Congo, Egypt and South Africa, whereas the 

other covers 49 African countries. One study on Asia covers China, Indonesia, India, Malaysia, 

Pakistan, Philippines, Thailand, and Vietnam, whereas the other covers Bangladesh, Hong Kong, 

India, Indonesia, Iran, Malaysia, Pakistan, Philippines, Singapore, Sri Lanka, and Thailand. 

Moreover, one study contains information of 20 countries of the Middle East and North Africa 

(MENA) region, and 6 studies have a national scope (6% of the total) on Malaysia Nigeria, 

Pakistan, Norwegian, Taiwan, and Azerbaijan. Most of studies (85 studies or 76% of the total), 

focus on China, yet with differing scopes: groups of provinces (32 studies) and cities (4 studies), 

specific provinces or cities (28 studies), and national scope (21 studies). 

The most common variables included in the classic STIRPAT model are U and IN. The first is 

measured by the share of the population living in urban areas, while the second is measured in 

various ways. While the majority of studies refer to IN as secondary sectors, some authors refer 

to the share of the secondary and tertiary sectors, also known as the service sector (S. Lin, Zhao, 

and Marinova 2009; Yanan Wang and Zhao 2015). Only in one case the industrialization variable 

refer to primary sectors (M. Wang et al. 2010). Other variables used include household size, age 

structure, and working age (see supplementary data S4.1 for a complete description). 

Regarding the environmental impacts analyzed, the most common practice is to set CO2 emissions 

as the dependent variable (see Table 4.3). This treatment is mainly due two reasons. First, CO2 

emissions are a global political issue, and second, there is a lack of accurate data to measure other 

environmental impacts. This limitation is important because other types of environmental 

impacts, such as acidification or eutrophication, may rise due to the efforts to reduce CO2 

emissions. When addressing CO2 emissions by setting energy consumption as a control variable, 

it merits noting that the results would be biased to support the hypothesis that environmental 

problems could be solved simply by business-as-usual growth, mainly because of two issues. 

First, a wrong interpretation of the parameters and resulting conclusions caused by the definition 

of CO2 emissions. Since CO2 emissions are measured indirectly from energy use in the datasets, 

CO2 emissions are defined by a linear function of different fuel commodities. As a result, 

controlling for the level of energy use in the model means that only the proportions of fuel types, 

and subsequently the “carbon intensity” of the fuel mix, are allowed to vary. Consequently, the 

models can only analyze carbon intensity rather than CO2 emissions. Second, a misspecification 

bias rising from the dependence between energy use and output measured commonly by GDP. 

Furthermore, the presence of an energy consumption variable into CO2 emissions models can 

lead to systematic volatility in its coefficients (Itkonen 2012; Jaforullah and King 2017). For 

practical considerations about addressing CO2 emissions through energy consumption see Brown 

and McDonough (2016). 

Recently, studies have increasingly addressed air pollutants. Qin and Liao (2015) studied the 

drivers behind the PM10 in 113 cities of China, while Effiong (2018) studied the same particles 

in Africa. Other studies focused on PM2.5 also in China but at different levels. Xu et al., (2016) 

focus at the provincial level, while Luo et al.,(2018), Xie et al.,(2018) and Xu and Lin (2018) 

focus at the national level. Outside of China, Ji et al., (2018) focus in 73 different countries. Other 

studies address a wide variety of air pollutants, such as SO2, N0x  and dust.(Diao et al. 2018; Ge 
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et al. 2018; Wei Li and Sun 2016; S. Lin, Sun, et al. 2017; S. Lin, Zhao, and Marinova 2009; 

Mikayilov et al. 2017; Munir and Ameer 2018; B. Xu, Luo, and Lin 2016). The results also show 

that little progress has been made in determining the magnitude of the different environmental 

impacts in developing countries, especially in central and South America. An important reason 

for this is that the data necessary to conduct such analyses, are generally not easily available in 

developing countries, and in some cases the data suffers from quality issues. The findings show 

that the research on this topic is mainly focused on China. This is because China is the largest 

producer of CO2 emissions and the Chinese government has set ambitious economical and 

development goals to reduce the emission intensity (CO2 emission per unit gross domestic 

product) in 2020 by 40–45%, relative to 2005 (Seligsohn and Levin 2010). The studies focused 

on China apply three different approaches: panel data at provinces and city levels, specific data 

of a province or city, and nation-wide data. 

 Table 4-3. Types of environmental impacts analyzed in the selected studies 

Environment pressure Number of studies % 

Ecological footprint 4 4% 

Energy ecological footprint 2 2% 

CO2 emissions 59 53% 

Water footprint 1 1% 

Change of lake area 1 1% 

Carbon emissions 1 1% 

Energy consumption of urban residential building, 

Urban residential energy consumption and CO2 

Emissions, Household Energy Consumption 

3 3% 

Energy or fuel consumption 4 4% 

CO2 emissions and (Energy use, or energy 

consumption, or electricity consumption) 
9 8% 

   
Transport energy use, private transport energy 

consumption, CO2 emissions for transport 
5 4% 

Air Pollution (C02, SO2, dust), (NO2, SO2, and 

PM10), (C,SOx,NOx emissions),PM2.5 emissions 
14 13% 

exhaust gases, waste water and solid waste 1 1% 

Pollutant comprehensive value: chemical oxygen 

demand; total phosphorus; total nitrogen. 
1 1% 

renewable and non-renewable energy consumption 1 1% 

Demand for improved environmental safety 1 1% 

Floor area of GSHP 1 1% 

Municipal infrastructure development 1 1% 

Natural gas consumption 1 1% 

CO2 emissions and Water use 1 1% 

weak and strong sustainability 1 1%  
  

Total 112 100% 
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4.4 STIRPAT and the Rebound Effect 

 

The rebound effect is a concept that has its roots in the field of energy economics. It was first 

theorized by Stanley Jevons in 1865, when he stated that improvements in energy efficiency did 

not lead to a reduction in the demand for energy, but the contrary. Later, the concept of the 

rebound effect reappears in the 80s and 90s with the Khazzom-Brookes postulate (Brookes 1990; 

Jevons 1865; Khazzoom 1980) and in the context of subsequent energy and climate change crises 

(Berkhout, Muskens, and Velthuijsen 2000; Musters 1995). Greening et al., (2000) provided a 

widely accepted classification of the rebound effect, classifying it into direct, indirect, and 

macroeconomic effects. The direct rebound effect can be measured through the efficiency or price 

elasticity of energy services. The indirect rebound involves further changes in consumption 

patterns caused by energy efficiency improvements. These patterns are captured through 

macroeconomic price variables rather than efficiency variables. Combination of Input Output 

models and re-spending models are commonly used to capture such effects. (Freire-González, 

2011) 

Recently, the importance and complexity of the rebound effect has been handled by diverse actors 

such as academic, public, and private entities in different disciplines such as energy economics, 

transportation economics, and environmental sciences. According to Font Vivanco et al. (2016), 

many intergovernmental organizations and international agencies, such as the European 

Environment Agency (EEA), the European Commission (EC), the International Energy Agency 

(IEA) the United Nations Environment Programme (UNEP), the Department of Energy and 

Climate Change in the United Kingdom (UK), the Irish Department of Communications, Marine, 

and Natural Resources, and the U.S. Department of Energy, have advocated for the importance 

of taking into account the rebound effect, given its impact on achieving environmental goals. 

Different definitions of the rebound effect can be found in the literature (Berkhout, Muskens, and 

Velthuijsen 2000; Binswanger 2001; Brookes 1990; Girod, de Haan, and Scholz 2010; Greening, 

Greene, and Di 2000; Sorrell and Dimitropoulos 2007; Sorrell, Dimitropoulos, and Sommerville 

2009; Weidema 2008). A definition that can encompass all of them is the following: the rebound 

effect is the change in consumption and production of goods or services as a consequence of a 

change in economic variables (such as income, price and financial gains or costs of product and 

material substitution) caused by the improvement in efficiency of providing an energy service 

(Font Vivanco and Voet 2014). Some authors refer to the environmental rebound effect (E)RE, a 

concept that has its roots in industrial ecology and was first introduced by Goedkoop et al (1999) 

as the environmental pressure resulting from a function fulfillment optimization. This concept 

offers a more holistic view of the environmental impacts caused by an improvement in the 

efficiency of providing a service, expressing the rebound effect through different environmental 

dimensions, such as material extraction, emissions, and waste. Detailed information about the 

rebound effect and the environmental rebound effect can be found in (Font Vivanco et al. 2016; 

Greening, Greene, and Di 2000; Sorrell and Dimitropoulos 2007). Moreover, Font Vivanco et al. 

(2014) presented a general framework to capture and assess the RE through the IPAT equation. 

Although the rebound effect has been recognized as an issue of matter by different public and 

private organizations(Font Vivanco, Kemp, and Voet 2016), it has not been fully explored in to 

SITRPAT framework. The reason may be explained by the fact that the STIRPAT itself allows 

to capture different impacts of technological chance by a multiple coefficients, which can 

represent an issue in order to interpret properly the rebound effect. However, taking in account 
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the classification of the rebound effect provided by Greening et al., (2000) it won’t represent a 

problem since different types of rebound effect are captured individually by different variables. 

In STIRPAT models, the direct rebound effect has been accounted by indirect measures of energy 

intensity (EI). Attempts to capture the indirect rebound effect individually or simultaneously with 

the direct rebound effect through the STIRPAT model have not been made. 

In consequence only eight of the reviewed studies (7% from the total) included, though implicitly, 

some reference to the direct rebound effect. In Beijing, China, Wang et al. (2012) included the EI 

(energy intensity), among other variables, to approach the magnitude of the drivers related with 

the CO2 emissions, and found a negative correlation. Concretely, a decrease of 1% in energy 

intensity lead to an increase of 0,095% in energy consumption. Moreover, Yang et al. (2015) 

concluded that a decrease of 1% in EI will lead an increase of 0.027% in carbon emissions. Wang 

and Yang (2014) mentioned the rebound effect when the variable T, measured as energy intensity, 

was found to be negatively correlated with the energy footprint of urban residents. Specifically, 

the authors found that a decrease by 1% in energy intensity led to an increase of 0,04% in energy 

consumption in China. Wang and Zhao (2015) measured T as the energy intensity and found a 

negative correlation between the energy intensity and the CO2 emissions in China for three regions 

aggregated by grade of development (-0.052 in underdeveloped regions, -0.181 in developing 

region, and -0.216 in highly developed region). Wang et al., (2017) used EI to understand the 

influence of T on the CO2 emissions in three regions of China. The authors found that the EI had 

a positive influence on the CO2 emissions and therefore an improvement of the technical 

efficiency would have increased CO2 emissions, a phenomenon also called backfire effect 

(Saunders 2008). The authors further acknowledged the complex relationship between 

technological progress and environmental improvements. For example, the introduction of LED 

lamps reduces energy consumption, yet their end-of-life requires additional energy. Furthermore, 

technological progress involves not only economic mechanisms (rebound effects), but also 

psychological mechanisms (mental rebound effects) (Santarius and Soland 2018). Erqian et al. 

(2017) found a negative correlation between EI and CO2 emissions in China, ranging among 

regions from -0.134% to -0.294%. He et al. (2017) found that the energy intensity EI is one of the 

most significant drivers behind the CO2 emissions in China, and claimed the need to introduce 

energy taxes to avoid the rebound effect. Lastly, Shahbaz et al. (2017) approximated T as the 

share of Industrialization IN and service sector SV and found a positive correlation between these 

variables and the energy consumption, arguing that the RE was not observed in this case. 

While the treatment of the rebound effect in STIRPAT applications is limited, it nonetheless 

provides insights for its measurement. The direct rebound effect can be defined as an efficiency 

elasticity of energy demand, where the actual energy saving will equal the predicted saving when 

this elasticity is zero (Sorrell and Dimitropoulos 2007). In other words, a 1% increase in energy 

efficiency will lead to a 1% decrease in energy demand in the absence of the rebound effect. In 

this sense, a STIRPAT model can be used to measure the rebound effect by calculating energy 

(or any resource) efficiency as a function of energy demand, where the estimated coefficient can 

be interpreted as a constant elasticity (Small and Van Dender 2005; Z. Wang and Lu 2014). In 

this sense, the above STIRPAT results would imply a rebound effect in the range of 78-96%. Such 

results may however indicate measurement issues if compared with the literature. For instance, 

Li and Han (2012) found that the rebound effect in the China’s tertiary’s industry is 33%, while 

Shao et al (2014) found a rebound effect around 30-80% depending of the data used. More 

generally, the literature provides an average rebound effect of around 30% (Greening, Greene, 

and Di 2000). Key reasons for such mismatch are twofold. First, despite the clear correlation 
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between energy and CO2 emissions, establishing causality between variables expressed in 

different dimensions (e.g. emissions and energy intensity) can lead to over/underestimate the 

rebound effect. Second, adequate isolation of key variables is essential for measuring the rebound 

effect. For example, variables such as IN and SV are too aggregated to establish causality between 

efficiency and emission changes. 

To adequately capture the rebound effect in STIRPAT model, the authors offer various 

recommendations for future research. First, decomposing the technology variable into variables 

of interest, such as resource efficiency, is often challenging. To overcome this issue, technology-

detailed tools such as life cycle assessment (LCA) have proven valuable in the context of IPAT 

models (Font Vivanco et al. 2014). LCA data is also useful to address multiple environmental 

pressures, a valuable aspect to assess cross-rebound effects (Freire-González and Font Vivanco 

2017). Also, choosing the variables to approximate T, in specific combinations of the variables 

IN, EI, and ES. IN is useful to measure the production of goods and services and defining the rate 

of energy consumed, in which the tertiary industry is less intensive in energy consumption. 

According to our review, this variable needs to be defined carefully in order to avoid 

misunderstandings in the results. EI is directly related to IN, which provides a measurement of 

the level of efficiency of the industries and is then translated into energy consumption. On the 

other hand, ES provides an understanding of the resources used to produce energy. Second, the 

choice of instrumental variable technique is key to avoid serial correlation, an issue it is discussed 

further in the following section. Lastly, it merits noting that indirect rebound and macro-economic 

effects may appear in a variety of other variables (overall economic growth, consumption of non-

energy products, etc.), therefore the economy-wide rebound effect (direct + indirect + 

macroeconomic) (Greening, Greene, and Di 2000) may be in fact captured via multiple variables 

(Font Vivanco et al. 2014; Wei and Liu 2017). 

No clear trends have been observed in the study of the rebound effect though the STIRPAT model. 

When the rebound effect has been taken into account, it has been modeled by measuring the 

energy efficiency, usually by indirect measures of the EI. Furthermore, all the reviewed studies 

focused on the direct rebound effect, thus overlooking indirect and economy-wide rebound effects 

(Greening et al., 2000). 

4.5 Technology as a driving force 

Rosa and Dietz (1994) point out the importance of reformulating T in the IPAT identity and the 

STIRPAT model. They recognize that T is not a single factor but comprises many separate factors 

that influence environmental impacts. In this sense, there are two different ways to assess the T 

using the STIRPAT model. First, T can be interpreted as the residual term in the STIRPAT model, 

since the residual term encompasses all factors other than P and A. Second, T can be interpreted 

as a set of variables theorized to influence impact per unit of production. Some authors argue that 

it is more suitable to assume T as the error term of the STIRPAT model, rather than estimating it 

separately because there is no clear consensus on which technology indicators are most adequate. 

Moreover, if T is interpreted by aggregating additional factors, it is necessary to ensure that these 

additional factors are conceptually consistent with the multiplicative specification of the model 

and that these variables do not bring multicollinearity issues into the model (Dietz and Rosa 1994; 

Wei 2011; York, Rosa, and Dietz 2003b, 2003a). This issue may be critical when using time series 

data for a single region, e.g. China. 
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From the reviewed studies, only four (4% of the total) used the error term to express the variable 

T following a conservative perspective of the implications of the technology. On the other hand, 

twenty studies (18% of the total) use a combination of different variables to measure T (see table 

4.4). Jia et al., (2009) used IN and U to measure T, while Cao et al., (2011) used EI and ES. Liddle 

and Lung (2010) used U, EI and  ES to approach T. Others authors used IN and U (Tang, Zhong, 

and Liu 2011; M. Wang et al. 2010). Poumanyvong et al. (2012) used U and SV as an 

approximation of T in their study of transport energy use in 99 countries. While Lin and Du (2015) 

applied these variables to approach the transport energy consumption in 30 provinces of China, 

and Li and Sun (2016) used the same variables to trace the air pollutants in Beijing.  

Using IN and EI as a proxy of T, Li et al. (2015) studied the CO2 emissions in Tianjin, China. 

Zhou and Liu (2016) and Zheng et al, (2016) used the same variables to approach T in a study of 

CO2 in 30 provinces of China and 73 cities of China, respectively. Yansui Liu et al. (2015) study 

the exhaust gases, wastewater and solid waste in 30 provinces in China with IN, SV and EI as 

approximation of T. Yu Liu et al. (2015) applied U, IN, SV and energy structure ES as 

approximation of T to measure the energy consumption in 30 provinces of China. Zhou et al. 

(2015) study the CO2 emissions and Energy consumption in 30 provinces of China using U, IN, 

SV and EI as approximation to T. Wang et al. (2017) combined EI with the time-specific effect 

TSE to understand the drivers behind three different industries (mining, manufacturing, and 

electricity and heat production) in China, arguing that TSE could be considered as a proxy of the 

technological progress on industrial carbon emissions controls. On the other hand, EI was taken 

as a proxy for technology-related environmental impacts. The study used two models based on A2 

and U2 , yet it is not clear how they measured TSE. Some used energy efficiency EF and IN as an 

approximation of T to measure the CO2 emissions in 29 provinces in China (S. C. Xu et al. 2016). 

Sheng and Guo (2016) combined IN, ES and environmental regulations ER to measure the CO2 

in 30 provinces of China. Finally, Miao (2017) approximates T by the energy price, temperature 

TEM, fuel price, and the number of public transportation ownership per person to measure the 

urban residential energy consumption and CO2 emissions in China. 

The most common practice is to use energy per unit of GDP as an approximation of T. However, 

Wei (2011) argues that EI can encompass carbon intensity CI represented by T only in the cases 

where the dependent variable under study is carbon emissions from energy consumption for a 

single region. In this case, carbon emissions need to be calculated with fixed emissions per unit 

of energy, and the energy structure does not change significantly over the period of the study. To 

overcome this issue, other authors used EF as an approximation of T, in which energy efficiency 

is denoted by the inverse of energy intensity (economic output per unit of energy consumption). 

However, the use of EF presents some inconsistencies. For example, Xu and Lin (2017a), and, 

Lin,(2017b) defined EF as energy consumption  divided by GDP, which is actually the definition 

of EI, while Nasrollahi and Saeed (2018) and Xu and Lin (2018) incorrectly refer to EF as the 

inverse of EI, while the inverse of EI is more precisely defined as energy productivity. On the 

other hand, Li et al. (2011) and Li et al. (2012) used energy productivity EPR to proxy T. Other 

scholars measure CI directly as approximation of T (Shahbaz et al. 2016; P. Wang et al. 2013; S. 

Wang, Fang, and Wang 2016; L. Wen, Cao, and Weng 2015; L. Wen and Liu 2016). 

Some authors chose to represent T with certain variables that encompass a better measurement of 

technology in their specific studies. For instance, York (2007) used U as approximation of T. To 

study the impact of demographic trends on energy consumption in the European Union, Chen et 

al. (2015) approximated U as the built up urban area, while Liddle (2013) used UD as a ratio 

between the population and the urbanized surface area of the metropolitan area. An important 
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distinction between urbanization (share of population living in urban areas) and urban density 

(either urban or total) should be made since there is a much stronger relationship between density 

and emissions/energy than between urbanization and those same variables. Liddle (2014), in a 

detailed review of 28 papers, highlights that those that included urbanization and/or urban density 

found that urbanization was positively associated with energy consumption and CO2 emissions, 

while higher population density was associated with lower levels of energy consumption and 

emissions. Furthermore, urban density was more correlated with energy efficiency than 

urbanization, U is defined as the percentage of the urban population in the total population that is 

itself a measure of proportion rather than an intensity measure, while UD is defined as a the Ratio 

between the population and the urbanized surface area and represent an intensity measure. Thus, 

researchers using U as a proxy of T are encouraged to use urban density since the variable T is 

associated by definition with efficiency/intensity. 

Other authors, such as Li and Lin (2015), Ji and Chen (2015), Qin and Liao (2015), and Sheng et 

al.,(2017), used the share of industry IN as the percentage of GDP to approximate T. Li and Wang 

(2013) and Yang et al.,(2017) used the share of the tertiary industry SV, as approximation of T. 

Poumanyvong et al. (2010) prefer to use the combination of IN and SV variables as an 

approximation of T in their study of CO2 emissions and energy use in 99 countries. Similar 

approaches are followed by Zhang and Lin (2012) for CO2 emissions in 29 provinces of China, 

Salim and Shafiei (2014) and Shafiei and Salim (2014) on energy consumption in the OECD 

countries, Guan et al. (2016) in the study of CO2 emissions in Ningxia Hui and Shahbaz et al. 

(2017) in a study of energy consumption in Pakistan, and Xing et al. (2017) investigated the effect 

of financial development (FD) on the CO2 emissions in China. 

There are many ways to express the impact of the technology. For instance, Ding et al. (2016) 

studied  household energy consumption in 30 provinces of China approximating T as TEM 

measured as the annual average temperature (◦C), while Wang et al. (2012) and Long et al.,(2017) 

refer to T as ecological footprint intensity (EFI) to understand the drivers of the ecological 

footprint in 31 provinces in China and 72 countries, respectively. Lin et al., (2017) used LAP as 

GDP per person employed to proxy T in 53 countries to understand the drivers behind CO2 

emissions. In a novel study, Wang et al. (2012) used R&D output index measured by the stock of 

technical patents associated with CO2 emissions as a representation of T to study the CO2 

emissions in Beijing. He et al. (2017) also used R&D in 29 provinces in China to assess the drivers 

behind the CO2 emissions, and Jiang and Lei (2017) used R&D to study the drivers behind the 

need for Ground-Source Heat Pump in China. According to Wang et al. (2012), the advantages 

of expressing T as research and development R&D are: (1) patents are closely related to 

innovation, (2) the statistical data related to patents is open to the public, and (3) patents can 

reflect technological innovation to a great extent. Li et al. (2017), however, argues that the use of 

R&D to measure technological progress is too general and proposed to use instead the 

environmental total factor productivity ETFP. According to the authors, ETFP can be measured 

by the Malmquist–Luenberger productivity index (ML). furthermore, the ML can be decomposed 

through mathematical operations into two different variables: technological progress into 

efficiency improvements (EIM) and technology innovations (TI). The authors also provide a 

method to further decompose IN into different variables. Cui et al. (2018) also applied ML without 

decomposition to study the energy consumption patterns in Shanxi, China. Finally, some studies 

either exclude or do not specify the variable technology in their analyses. For example, Liu et al 

(2017) assumed that technology efficiency remains relatively stable since they only cover four 

time periods. Other examples include the studies from Wen et al. (2017), Li et al. (2017), Ma et 
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al. (2017), Ma et al. (2017), Liu et al. (2017), Zhang et al. (2017), Zhang and Xu (2017), 

Mikayilov et al.,(2017), and Chai et al.,(2018). 

Despite some authors adding different variables to proxy the variable T, a correct proxy for T 

should be a measure of efficiency, since the variable T is defined as the environmental impact per 

unit of economic activity through the ratio I/GDP, such as EI. Additional variables may give 

additional information to understand the T in terms of energy structure (ES) or industrialization 

(IN). However, none of these variables can measure the effect of technology unless it is 

accompanied by some measure of efficiency. For example, ES is defined as the percentage of 

fossil fuels consumption (mainly coal) to total consumption, while IN is defined as a percentage 

of the increased value of industry to GDP, which are measures of proportion rather than an 

intensity measure. How to proxy T will also depend on the type of environmental pressure under 

study and the purpose of the study.  

The authors observe some historical trends are observed on the treatment of the variable T. First, 

although historically T has been modeled though U, IN, EI or through a combination of them, as 

of 2012 some authors proxy technology by adding novel variables such as R&D, CI, and TEM. 

Second, relate with the quantity of explanatory variables included in the models. In the recent 

years, with the development of more complex regression models that deal with several issues, 

such as multicollinearity and heteroscedasticity, the number of explanatory variables included has 

increased significantly. For example, the average number of variables included into the models 

before 2013 four whereas, the average number of variables included after 2013 are six. 

 

Table 4-4. Variables used to approximate T within applications of the 

STIRPAT model 

T approximation by number studies % 

Energy intensity EI 38 34% 

Energy efficiency EF 4 4% 

Error term 4 4% 

Research and Development R&D 3 3% 

carbon emission intensity CI 6 5% 

Annual average temperature (◦C) 1 1% 

Industrialization IN 6 5% 

Combination of different variables 20 18% 

Urbanization U 1 1% 

Urban density UD 1 1% 

Not clear or excluded 11 10% 

Service sector SV 2 2% 

Ecological footprint intensity EFI 1 1% 
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Industrialization and Service sector IN and SV 6 5% 

Labor productivity LAP 1 1% 

technological progress ML 2 2% 

energy productivity EPR 2 2% 

water intensity WI 1 1% 

Energy use EU 1 1% 

power consumption efficiency PCE 1 1% 

Total 112 100% 

 

This review shows that it is both valuable and possible to disaggregate T into multiple variables 

to better capture the effects of an explicit technological change. However, the issues of 

multicollinearity, autocorrelation and heteroscedasticity must receive detailed attention. There 

does not seem to be a common practice and the decision on how to overcome this issue appears a 

random consequence of the experience and background of the authors. The 42% of the authors 

seems to be inclined to use the OLS, PLS or RR the statistic issues of their regression models. 

While 16% of the samples choose to use the FE, GMM or DK in their studies. Others authors the 

7% seems to be inclined to perform spatial SEM or SDM models to solve the issues. On the other 

hand the 31% of the samples use a diversity of methods into their models. An important highlight 

is that some authors (4% of the studies) do not specify or at least let clear the type of regression 

model applied. This should be treated carefully since without a correctly description of the models 

the solution to the statistical problems remain as a question.(S. Lin, Sun, et al. 2017; S. Lin, Wang, 

et al. 2017; Shuai et al. 2018; T. Wen et al. 2017). Table 4.5 summaries the methods applied in 

the samples.  

Table 4-5. List of regression models applied 

Method 
Number 

studies 
% Method 

Number 

studies 
% 

Ordinary Least Square OLS 8 7% 
Generalized Method of 

Moments GMM 
6 5% 

Dynamic ordinary least 

Squares DOLS 
1 1% Augmented Mean Group AMG 1 1% 

Fully modified ordinary 

least squares FMOLS 
2 2% Threshold regression model TR 2 2% 

Partial Least Squares PLS 15 13% 
multilevel latent class regression 

model MLC 
1 1% 

Weighted Least Squares 

WLS 
1 1% 

heteroskedasticity-robust Fixed 

Effect model HRFE 
1 1% 

Fixed effect model FE 8 7% 
Random parameters model  

RPM 
1 1% 

Semi-parametric panel fixed 

effects SPFE 
3 3% 

vector error correction model 

VECM 
2 2% 
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Dynamic fixed effect DFE 1 1% 
Nonparametric additive 

regression models NPAR 
1 1% 

Semiparametric panel 

regression SPR 
1 1% two-stage least squares 2SLS 2 2% 

First-difference F-D 2 2% 
The geographically weighted 

regression GWR 
1 1% 

Ramdom effect RE 2 2% 
Autoregressive Distributed Lag 

Bound Test ARDLBT 
1 1% 

Ridge Regression RR 25 22% 
Newey-West standard errors N-

W 
1 1% 

Spatial error model SEM 1 1% 
Auto regressive distributed lag 

model ARDL 
1 1% 

Spatial Durbin model SDM 7 6% 
Vector Autoregressive model 

VAR 
1 1% 

Panel-corrected standard 

errors PCSE 
2 2% NOT SPECIFIED 4 4% 

Principal component 

analysis PCA 
1 1% Quantile regression QR 1 1% 

Driscoll–Kraay standard 

errors DK 
5 4%    

Total    112 100% 

 

From the review, three main issues merit closer attention. The first issue relates to the theoretic 

model chosen, particularly whether to define T as the error term or as one or more independent 

variables. Using the error term may be suitable when there is no available or accurate data that 

allows to properly define T. It may also be suitable when the study encompasses a broad part of 

the economy, and the definition of technology can be interpreted in different ways. However, 

using the error term is problematic since it may represent no only the influence of the technology 

but other social and psychological aspects. If there is available information, it is recommended to 

represent T as a set of different variables that capture the multiple dimensions of technology. The 

second issue relates to the level of detail of T, which limits the coverage and scope of the analysis. 

At the macro level, the combination of different variables, such as IN, EI, and ES, represent the 

most complete and suitable way to define T. IN provides information about the economic 

productivity and energy consumption, while EI measures directly the efficiency of the industry 

and ES allows capturing the resource productivity. Lastly, issues of multicollinearity and 

heteroscedasticity can arise from inadequate treatment of instrumental variables. To overcome 

such issues, there are different statistical techniques such as the Ordinary Least Square (OLS), the 

Partial Least Squares (PLS), the Ridge Regression (RR), the Generalization Method of Moments 

(GMM), the Feasible Generalized Least Squares (FGLS), or the Two-Stage Least Squares (2SLS). 

It is recommended to apply firstly OLS regression to test if the variables used in the model are 

not correlated. If so, it is recommended to first use the PLS regression to confirm that the variables 

are correlated, and then apply the RR. An alternative approach by some authors is to confirm 

correlation with the 2SLS or FGLS, and then use the GMM.  

It merits noting that, aside from statistical issues of multicollinearity and heteroscedasticity, 

heterogeneity, cross-sectional dependence, and nonstationary are other time-series cross-section 

issues that are often not addressed in STIRPAT studies. Liddle (2015) found a wide range of 
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income and population elasticity estimates from 18 reviewed studies that applied the STIRPAT 

formulation to address the CO2 emissions, and argued that an important reason of such variations 

was due to the treatment of heterogeneity and nonstationary. Heterogeneity could be solved by 

splitting the panel along income lines. Nonstationary issues can be solved by applying first 

difference, yet this approach would turn a given model into a short-run model (Brantley Liddle 

2014, 2015). Lastly, the common correlated effects mean group estimator CMG and the 

augmented mean group estimator AMG can solve the heterogeneity, cross-sectional dependence, 

and nonstationary issues (Brantley Liddle 2015). 

4.6 Conclusions and policy implications 

Technological change, or technology (T) in the context of the STIRPAT model, is widely regarded 

as key to reducing environmental impacts mostly through efficiency improvements. 

Consequently, it is fundamental to pay close attention on how the variable T has been modeled 

within the STIRPAT model. Even more if this variable is considered closely related to key issues 

such as the (environmental) rebound effect (E)RE. In this sense, this paper carried out a critical 

review of the applications of the STIRPAT model in order to guide a discussion related with the 

diversity and value of the variables, scopes, assumptions, statistical approaches, and the 

environmental impacts commonly studied. 

A critical assessment of the literature review points to various areas with inconclusive results 

and/or knowledge gaps. First, there is a geographical imbalance in the scope of the studies: while 

some regions such as China are relatively well-studied, others such as South America are 

unexplored. Second, CO2 emissions are the most commonly studied pressure even though the 

STIRPAT model allows many different environmental impacts, such as other types of emissions, 

material use, and waste. In this sense, the use of tools such as Life Cycle Assessment (LCA) can 

be useful to approach multiple environmental impacts (Font Vivanco et al. 2014). Third, there is 

not a clear consensus on how to define the variable T, as this can be included in the error term or 

as a myriad of explanatory variables. Fourth, the STIRPAT model offers a valuable yet underused 

platform to address the (E)RE from changes in technological efficiency. For instance, not only 

energy efficiency improvements, but broader and more complex efficiency measures (e.g. 

material use efficiency and exergy efficiency) can be included by properly disaggregating T. Also, 

the model allows to test the effect of different variables (e.g. information, resources, physical 

space, time and skills) that can trigger the (E)RE. 

Our findings can be useful to both academics and policymakers in different ways. For 

practitioners, the description of approaches and associated recommendations provided allows to 

better design specific applications of the STIRPAT model. Moreover, the identified knowledge 

gaps point the way to further research, especially regarding the geographical gap, the role of 

technological change and how to better represent it, capturing the (E)RE. For policymakers, how 

to curb environmental impacts effectively has been a persistent issue. The STIRPAT model offers 

a relatively simple and intuitive framework to understand key explanatory variables and 

refinements in scope and method can greatly aid policymaking. It is our understanding that, by 

refining the STIRPAT model to better capture the consequences of technological change, its 

application can shed new light into policy-relevant issues, including the rebound effect, but also 

the effectiveness of policies dealing with resource efficiency, circular economy, and resource 

nexus issues. 
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Abstract 

The relationship between urbanization and technological progress on environment, mainly CO2 

emissions, has been extensively studied in the last decades; however, little effort has been made 

to understand such relationships in developing countries. This work focuses on understanding the 

effects of urbanization and some technological factors on the Colombian electricity consumption. 

This topic is addressed from several environmental impact dimensions rather than solely focusing 

on CO2 emissions. An extended STIRPAT model, in combination with LCA approaches, was 

applied in a balanced panel dataset of 27 states, over the period of 2003 to 2018. Our findings 

suggest that urbanization is the major driver of electricity consumption and climate change in 

Colombia. Our results address the lack of information about this topic in developing countries 

and also, they contribute to understand the main features of emissions in Colombia and the key 

driving forces behind their environmental impacts. Finally, and given the current trends on 

population and urban growth, the author concludes with some recommendations aimed to relevant 

stakeholders. 

Keywords. Life cycle assessment, STIRPAT model, Urbanization, Environmental impacts. 

5.1 Introduction 

 

Urbanization and technological transformations (energy efficiency improvements) are tied to 

development process (Brant Liddle & Lung, 2010; S. Lin, Wang, Marinova, Zhao, & Hong, 

https://doi.org/10.1007/s11135-019-00961-y


53 
 

2017). As a result, people emigrate from rural areas (with agricultural-based economy) to urban 

areas (main cities with industrial economy) (Du, 2016). In the last decades, the urbanization 

process in Colombia has experienced an important acceleration; the percentage of  population 

living in urban areas increased from 40% in 1960 to 80% in 2018 (World Bank, 2019). These 

dynamics have risen the demand for resources and have established new pressures on the 

ecosystems (Poumanyvong & Kaneko, 2010). 

The observed expansion of urbanization boost the energy consumption in three different ways: 

First, the movement of people from urban to rural areas has forced agriculture activities to become 

more industrialized, as these are less labor intensive. Second, due to urban areas (food consumers) 

are separate from rural areas (food producers), more transport systems have been required to 

connect the two main economic agents (producers – consumers). Three, the industrialization 

process in urban areas has required more energy to produce economic outputs, making energy a 

normal good inside the market (Brantley Liddle, 2014).  

Such a relationship between urbanization and energy consumption has been extensively tested 

during the last years. Particularly, for developed countries and those members of the Organization 

for Economic Co-operation and Development (OECD) and developed in Europe (Brant Liddle & 

Lung, 2010; Brantley Liddle, 2014; Salim & Shafiei, 2014; Shafiei & Salim, 2014; Y. Wang, 

Zhang, Kubota, Zhu, & Lu, 2015; York, 2007) (see section 2 for detailed review), whereas there 

is poor evidence between urbanization and environmental. Velez and colleagues (2019) evidenced 

in a systematic literature review of 112 articles, a geographical imbalance on studies related to 

the above relationship. They found that 76% of the studies focused on China, whereas no studies 

were developed in South America.  

The objective of this work is to empirically analyze the effects that urbanization and technological 

changes have on electricity use in Colombia by evaluating different environmental dimensions 

rather than CO2 emissions. To achieve this objective, this study combines a well-established and 

accepted model to study the drivers that trigger environmental pressures (The stochastic impact 

by regression on population, affluence, and technology (STIRPAT) model) (P. Wang, Wu, Zhu, 

& Wei, 2013) with the life cycle assessment approaches (LCA). The LCA is a holistic approach 

widely used to study the environmental impacts caused by the production of goods and services 

in a wide spectrum of environmental impacts beyond CO2 emissions (Velez-Henao & Garcia-

Mazo, 2019). A balance panel dataset of 27 states, registered over the period of 2003 to 2018 was 

used as our case of study. Our findings suggest that an increasing urbanization has a significant 

and positive effect on electricity use and environmental pollution. 

The contribution of this work lies on three aspects. First, to the best of our knowledge, this is the 

first analysis of the effects of urbanization and technological changes in Colombia based on the 

STIRPAT model. Although there are several studies like this for developed economies (See 

section 3.2), our study fills the current lack of knowledge regarding these topics in developing 

economies, particularly in South America. Velez and colleagues (2019) pointed out that there is 

a geographical imbalance in this kind of knowledge (studies focus on European and Asian 

economies), with poorly evidence in Latin America economies. Second, this study provides 

unique data by examining the correlation between urbanization-pollution in Colombia, while a 

handful of studies includes it in a country panel data (K. Li & Lin, 2015; S. Lin et al., 2017; Long, 

Ji, & Ulgiati, 2016; Poumanyvong & Kaneko, 2010) this study allows to obtain more specific 

information regarding the impacts of urbanization on electricity consumption and the Colombia 

ecosystems. Finally, and not least, this study uses a LCA approach to measure the environmental 
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impacts produced as a consequence of the consumption of electricity from several environmental 

dimensions (Climate changes, eutrophication, acidification, and respiratory effects). All this 

taking into account that previous studies focused in a limited range of environmental impacts such 

as CO2 emissions, and others air pollutants contributing with climate e.g. SOx, NOx emissions 

(Vélez-henao et al., 2019), which are directly associated with the combustion of  fossil fuels and 

lead to a systematic omissions of the effects produced in other stages of the supply chain such as 

the extraction and transport of the energy sources.  

The development of this work is organized as follows: Section 5.2 present the literature review 

on the effects of urbanization in developing countries. Section 5.3 shows the materials and 

methods used to carry out the analysis. The STIRPAT model and the LCA approach which were 

applied to measure the different environmental impacts, are provided in this section. Furthermore, 

information regarding the data used is also presented. Section 5.4 shows the main results of our 

research and section 5.5 presents the discussion about our main findings. Finally, section 5.6 

provides our relevant conclusions and the policy implications of this work 

5.2 Literature review on the effect of urbanization and 

technological changes in developing countries 

The effect of urbanization on developed countries has been extensively studied in the last years, 

this has been observed mainly for countries which are members of the Organisation for Economic 

Co-operation and Development (OECD) and developed economies in Europe. York (2007) 

analyzed the effect of urbanization on energy consumption, among other demographic factors 

(such as population and age structure), for fourteen European Union Nations during the period of 

1960 to 2000. He concluded that urbanization does contribute to the increase of energy 

consumption in countries members of the European Union. In the same way, Liddle & Lung 

(2010) studied such influences for seventeen developed countries during the period of 1960 to 

2005. Their results suggested that urbanization in developed countries is positively associated 

with energy consumption in the residential sector. Otherwise, Salim & Shafiei (2014) and Shafiei 

& Salim (2014) found that urbanization increased the consumption of non-renewable energy and 

the CO2 emissions in OECD countries for the period between 1980 and 2011. Similar results can 

be found in Wang et al., (2015) for OECD economies along the period of 1960 to 2010. Whereas 

the empirical evidence for developing countries shows a geographical imbalance, studies focuses 

mainly in China and countries of the African and the South Asia continents (Vélez-henao et al., 

2019). 

Literature review points out that urbanization in China increase the amount of energy consumed 

and the pollutants emitted to the atmosphere. Lin et al., (2009) suggests that urbanization has a 

positive influence on the emissions of different pollutants (C, SOx NOx) in China. Analogous 

results can be found for different provinces, cities, and districts there. Jia and colleagues (2009) 

concluded that urbanizations has a positive influence on the ecological footprint in the province 

of Henan during the period of 1983 to 2006. Tang et al., (2011) found the same outcome in the 

province of Sichuan, Southwest China from 1995 to 2008. Liu, & Li (2015) for the city of Tianjin 

during the period of 1996 to 2012. Yang et al.,(2015) in Beijing from the period of 1984 to 2012. 

Sun et al.,(2013) in Beijing with not clearly specification for the period of time studied. Zhang et 

al., (2013) in  the city of Jiangmen between 1990 and 2010 and Mingwei Wang et al., (2011) for 

the Minhang District in Shanghai between 1998 and 2009. 
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Additionally, similar results can be found at different levels of aggregation, Zheng et al., (2016) 

at the city level, Zhou and colleagues (2015) at the region level, Sheng & Guo (2016)  at the 

province level, and  Kang  et al., (2016) in China as a whole. Surprisingly, Wang and colleagues 

(2010) suggested that enhancing the urbanization process is an effective way to reduce the 

environmental impact on the province of Jilin. Similarly, Yu Liu and colleagues (2014) indicated 

that the acceleration of urbanization restrains the increase of carbon emissions in a study at  the 

level region in China.  

Opposite to the results found for China, a positive relationship between urbanization and energy 

consumption and environmental impacts have been evidenced for developing countries located in 

Africa. This suggests that urbanization process decrease the amount of energy consumed and the 

environmental impacts produced. Madu (2009) suggested that an increasing  in urbanization rates 

will reduce the CO2 emissions in Nigeria. Similarly, Lin et al., (2016) concluded that urbanization 

has the potential to reduce the amount of CO2 emissions in different countries in Africa (Nigeria, 

Kenya, Congo, Egypt, and south Africa). Likewise, Effiong (2018) suggested that urbanization 

decreases the amount of CO2 and particulate matter (PM10) emissions in 49 countries in Africa. 

Shahbaz  et al., (2016) found a U-shape relationship in Malaysia, where urbanization initially 

reduces CO2 emissions, but after a threshold level, it increases CO2 emissions. Whereas Irfan & 

Shaw (2015) suggested that the relationship between urbanization and CO2 emissions in South 

Asian countries (India, Pakistan, and Bangladesh) follows an inverted U-shaped, where 

urbanization increases CO2 emissions but after a certain point, more urbanization leads to a fall in 

carbon dioxide emissions. Finally, Abdallh & Abugamos (2017) conducted a study for the 

countries of the MENA region (Middle East & North Africa) and concluded that urbanization 

process decrease CO2 emissions. 

To date, studies examining the urbanization-pollution relationship in Colombia are nascent. This 

study analyses the effect of urbanization and technological changes in several countries at 

different development stages and with low, middle and high income. There, Colombia is 

aggregated along other countries into the middle-income level. As an example, Poumanyvong & 

Kaneko (2010) suggested that the impact of urbanization on energy consumption and CO2 

emissions varies across the development stages of countries. Those, urbanization decreases 

energy use in the low-income group, while it is increased in the middle and high-income groups. 

Urbanization increased the CO2 emissions in all the income groups. Similarly, K. Li & Lin (2015) 

and Lin et al., (2017) concluded that urbanization increase the demand of energy and the amount 

of CO2 emissions in countries with middle level of income. Surprisingly, Long, Ji, & Ulgiati 

(2016) found that urbanization in all levels of income decrease the amount of environmental 

impacts, however the reason of such a results may be associated with the impact under study 

(ecological footprint). 

Existing studies show that the effect of urbanization on energy consumption and environmental 

impacts are positive for developed countries, whereas for developing countries at low-income 

level an increasing rate of urbanization decreases energy consumption and environmental 

impacts. At the contrary, in middle income level countries such relationship is positive. Moreover, 

they also showed that the effects of urbanizations in Colombia have not been deeply studied, 

supporting the motivations of this work.  
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5.3 Materials and methods 

This section presents the model and approaches applied to quantify different environmental 

pressures and their key drivers. Data collection and statistic evaluations are presented. 

5.3.1 Environmental impacts related with electricity production 

The Life Cycle Assessment (LCA) is a holistic approach, ruled by the ISO 14040 (ISO, 2006) to 

assess the environmental impacts of goods and services across the entire life of cycle, from the 

extraction of raw materials to the final disposal or recycling (cradle to gate). Over the past two 

decades, the LCA has been widely applied to assess the life cycle impacts of providing electricity 

through different energy resources (Arvesen and Hertwich, 2012; Turconi et al., 2013). This study 

uses the Ecoinvent 3.4 database (Ecoinvent, 2019) to measure the environmental impacts 

generated for the production of electricity. The Colombian energy system is composing for a mix 

of technologies such hydro, coal, thermal, wind, and solar which contributions vary across the 

years depending strongly on the climatic conditions (Figure 5.1). It is worth noting that the shares 

of wind resources in the energy system (green in the figure) have been historically low and barely 

accounts the 0,01% of the total shares, whereas the solar power was introduced into the national 

grid at the beginning of the 2018. 

 

Figure 5-1.Share of technologies for electricity production in Colombia during the periods 

2005-2013. Own elaborations base on (UPME, 2019a) 

The environmental impacts selected for this study were climate changes (CC), freshwater 

eutrophication (EUT), freshwater and terrestrial acidification (A), and respiratory effects (RES), 

the most common impacts used to study environmental issues of the energy production. Due to 

Ecoinvent database does not have detailed information for Colombia, the impact factors for the 

different unitary process for the production of electricity (e.g. Wind, Solar, Hydro, Coal, and Gas) 
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were taken from the Brazil. With such information the energy matrix for each year was built up 

base on the historical technology shares reported by the official entities (see table 5.1). This may 

introduce negligible uncertainties which are not significant due to the similitudes in the 

technology infrastructure and the geography conditions of both countries. The life cycle impact 

assessment (LCIA) was conducted using the life cycle impact characterization factors by 

International Reference Life Cycle Data System (ILCD) (European Commission, 2014) and 

provided by Ecoinvent 3.4, as a robust and widely used approach among LCA practitioners. Table 

5.1 summarizes the impact factors for different electricity production resources. 

Table 5-1. Impact factors for different electricity production resources that compose 

the Colombian energy system. Values in kg/KWh 

 

Impact category Hydro Carbon Gas Wind Solar 

Climate changes (CO2.eq.) 6.53E-02 9.26E-01 5.57E-01 1.57E-02 8.05E-02 

 Eutrophication( P-Eq) 1.69E-06 4.49E-04 4.14E-06 1.09E-05 7.12E-05 

 Acidification(mol H+-Eq) 
2.87E-05 7.59E-03 6.82E-04 1.00E-04 5.98E-04 

Respiratory effects (kg PM2.5-Eq) 6.24E-06 3.81E-04 2.61E-05 1.63E-05 7.83E-05 

Source: own elaboration based on Ecoinvent 3.4 (2019) 
 

5.3.2 STIRPAT model 

The IPAT equation was introduced in the 1970s to study the environmental impacts (I) through 

population (P), affluence (A+), and technology (T) (Commoner, 1972; Ehrlich & Holdren, 1971, 

1972). The IPAT equation has been extensively used in climate change studies, particularly on 

energy-related carbon emission studies (Chertow, 2000). This equation has suffered several 

reformulations over the last years, such as the Kaya equation, ImPACT, ImPACTS, IPBAT 

(Vélez-henao et al., 2019). Yet, the IPAT equation and their variants contain theoretical 

limitations, their formulations does not include and test additional factors that may trigger 

environmental changes (Thomas Dietz & Rosa, 1994) and also it treats the technology variable 

incorrectly (Roca, 2002). 

To tackle such limitations, Rosa and Dietz (1998) proposed the STIRPAT model (Stochastic 

Impacts by Regression on Population, Affluence and Technology) as: 

𝐼𝑖 = 𝑎𝑃𝑖
𝑏𝐴𝑖

𝑐𝑇𝑖
𝑑𝑒𝑖   (5.1) 

Where, the constant a ≠ 0 scales the model; b, c and d represent the effects of population elasticity, 

affluence elasticity, and technology elasticity, respectively. The term e is the error term. This 

approach allows for testing hypotheses regarding factors other than population and affluence 

which may contribute to environmental impacts (T Dietz & Rosa, 1997). According to Wei 

(2011), the STIRPAT equation is used with two main purposes: First, to estimate causal effects 

between the driving forces; Second, to predict environmental impacts based on key driving forces. 

STIRPAT model treats the linkage between variables as hypothesis to be tested and it allows a 

decomposition of population and affluence into forms that have more social meaning (Rosa & 

Dietz, 1998). This study extended the STIRPAT model to study the effect of urban dynamics and 
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technology factors on the electricity consumption, global warming potential, freshwater 

eutrophication, freshwater and terrestrial freshwater and terrestrial acidification, and respiratory 

effects. For doing so, urban density, energy structure, and temperature were included as variables. 

Furthermore, the price of the electricity and energy intensity were added to test the existence of 

the rebound effect in the electricity household consumption. 

The STIRPAT model can be extended as follows to study the drivers behind the household 

electricity consumption and different environmental impacts such climate change, eutrophication, 

acidification, and respiratory effects. Technology is broken down in energy intensity and energy 

structure. Urban density was included to test hypothesis of urban development minimizing the 

impact of demographic dynamics on the environmental impacts. The price of the electricity was 

included to test, rather than measure, the existence of the rebound effects in the household 

electricity consumption. 

𝐿𝑛 (𝐸𝑖𝑡) = 𝛼 +  𝛽1𝑃𝑖𝑡  + 𝛽2 𝐿𝑛 𝐺𝐷𝑃𝑖𝑡 + 𝛽3 𝑈𝑖𝑡 + 𝛽4 𝐼𝑁𝑖𝑡 + 𝛽5𝐿𝑛 𝐸𝐼𝑖𝑡 + 𝛽6 𝐸𝑆𝑖𝑡 + 𝑢𝑖𝑡  (5.2) 

𝐿𝑛 (𝐼𝑘𝑖𝑡) = 𝜑 +  𝛾1𝑃𝑖𝑡  + 𝛾2 𝐿𝑛 𝐺𝐷𝑃𝑖𝑡 + 𝛾3 𝑈𝑖𝑡 +  𝛾4𝐼𝑁𝑖𝑡 + 𝛾5𝐿𝑛 𝐸𝐼𝑖𝑡 + 𝛾6 𝐸𝑆𝑖𝑡 + 𝑣𝑖𝑡(5.3) 

Where the subscripts i and t denote the region and time respectively, α und 𝜑 are the constant, β1 

to β6 and 𝛾1 to 𝛾6 are the parameters to be estimated in the respective models. 𝑢𝑖𝑡  and 𝑣𝑖𝑡 

represents the error term. Eit: Represents the electricity consumption. 𝐼𝑘𝑖𝑡: Stands for the 

environmental footprint, in which the subscript k represents Climate change, freshwater 

eutrophication, freshwater and terrestrial acidification and Respiratory effects. Pit: represents the 

population size. 𝐺𝐷𝑃𝑖𝑡: Represent the income variable. 𝑈𝑖𝑡: represents the urban density. 𝐼𝑁𝑖𝑡: 

Industrialization rate. 𝐸𝐼𝑖𝑡: Energy intensity. 𝐸𝑆𝑖𝑡: Energy structure (Table 5.2 presents the 

definition of all the variables used in the study). 
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Table 5-2. Definition of the variables used in the study for the period of 2003 to 2018 

Variable Definition Unit of measurement 

Electricity consumption (E) Total household electricity consumption at the end of the year GWh 

Population (P) Total population at the end of the year Millions 

Per capita Gross domestic product (GDP) Total per capita GDP at the of the year 
Millions COP(2005 

constant prices) 

Urbanization (U) 
Proportion of population living in urban areas in each state at 

the of the year 
Percent 

Industrialization (IN) 
Share of the GDP produced for the industrial sector divided 

the total GDP  
Percent 

Energy intensity (EI) Total energy use divided by GDP GWh/106 

Energy structure (ES) share of fossil fuels in the electricity grid at the of the year Percent 

Climate change. (CC) Energy-related CO2 Eq emission  Ton 

Freshwater eutrophication (EUT) Energy-related P-Eq emission Ton 

Freshwater and terrestrial acidification (A) Energy-related mol H+-Eq emission Ton 

Respiratory effects, inorganics (RES) Energy-related respiratory effects, inorganics PM 2.5  Ton 
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5.3.3 Data sources and description 

Data used were gathering from different public entities. Total electricity consumption data was 

obtained from The superintendence of public services domiciliary ( SUI by his acronym in 

Spanish) (SUI, 2018). Income variable data, population and area of the states were obtained from 

the National Administrative Department of Statistics (DANE by his acronym in Spanish) (DANE, 

2018b). Environmental impacts data for the production of electricity were obtained from 

Ecoinvent 3.4 database (Ecoinvent, 2019). The data was collected yearly within 27 states of 

Colombia (Amazonas, Arauca, San Andrés y Providencia, Guania, Vaupés, and Vichada were 

excluded) along the period of 2003 to 2018. The exclusions are due to the lack or/and quality of 

the data associated with some important variables. The total number of observations per variable 

was 432. All the data is in constant prices of 2005. Table 5.3 present general statistics. 

Table 5-3. Summary statistic (Variables in natural logarithms. U, IN, EI are in 

percentage). 

Variable Obs. Mean Max Min Std.des 

E 432 6.697 9.560 2.707 1.338 

P 432 0.130 2.102 -2.376 0.897 

GDP 432 1.656 3.303 0.306 0.533 

U 432 0.677 0.998 0.378 0.150 

IN 432 0.093 0.286 0.005 0.067 

EI 432 11.511 12.378 8.569 0.526 

ES 432 0.229 0.328 0.129 0.055 

CC 432 5.204 8.107 1.186 1.345 

EUT 432 -3.038 0.071 -6.903 1.333 

A 432 -0.148 2.924 -0.045 1.332 

RES 432 -3.086 -0.019 -6.982 1.332 

 

Correlation among variables represent an issue in econometric studies due to it can bias the results 

and affects the interpretation of the variables. Total correlations between the environmental 

impacts (Figure 5.2 present the correlation factor for each variable) are due to different impacts 

which are direct derived from the quantity of electricity produced for the respective sources. 

Nevertheless, this does not bias the interpretation of the results because each environmental 

pressure is independently studied. 

. 
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Figure 5-2. Correlation amount variables: E. Electricity consumption. P. Population. GDP. Gross 

domestic product per capita. U. Urbanization. CC. Climate changes. EI. Energy intensity. ES. 

Energy structure. EUT. Eutrophication. A. Acidification. RES. Respiratory effects 

5.4 Results  

Nine models were developed to test the effect of population, GDP, urbanization, industrialization, 

energy intensity, and energy structure on the electricity consumption according to different 

environmental impacts (climate changes, eutrophication, acidification, and respiratory effects). 

For each model different tests were carried out to find the most appropriated model for the data. 

Breusch-Pagan test was applied to evaluate the presence of heteroskedasticity. Hausman test was 

applied to choose the more suitable model (fixed or random effects). 

The different tests suggest that the best model to represent the electricity use is the model (2). 

Breusch-Pagan test failed in rejecting the heteroskedasticity hypothesis; therefore OLS (model 1) 

estimations are bias. In order to tackle this issue, generalized least squares GLS model was 

evaluated. GLS is a well know model for being suitable in presence of heteroskedasticity. 

Moreover, Hausman test was used to determine whether GLS-FE (model 2) offers a better fit or 

RE (model 3) does. The hausman test suggested that GLS-FE (model 2) is more suitable than 

GLS-RE (model 3). So, results are discussed for GLS-FE (model 2) (See table 5.4 for results).  

.  

 

 

 



62 
 

Table 5-4. Estimation results for electricity use 

Variable OLS(1) GLS-FE(2) GLS-RE(3) 

Constant 

-4.9384***  -5.2771*** 

(-32.0069)  (-94.6244) 

P 

1.0381*** 1.1329*** 1.0336*** 

(112.8792) (12.3546) (141.4116) 

GDP 

0.7924*** 0.4492*** 0.8078*** 

(56.0608) (42.0027) (108.0521) 

U 

0.2950*** 1.6127*** 0.2035*** 

(5.9356) (3.9526) (4.7670) 

IN 

0.2619* -0.7011*** 0.9344*** 

(2.3508) (-4.4847) (229.7294) 

EI 

0.9015*** 0.9739*** 0.9344*** 

(68.6133) (295.8569) (229.7294) 

ES 

-1.8045*** -0.8921*** -1.8139*** 

(-15.4701) (-25.4268) (-47.1943) 

R2 0.9917 0.9969 0.9916 

F-statistic 8649.07(0.000)   
Chisq    
BP test 95.62(0.000)   
Hausman test  255.35(0.000) 255.35(0.000) 

Signif. codes:  ***p<0.001 ;  **p<0.01;*p<0.05; .p<0.1  

 

By order of importance U, P, EI, and GDP were found positive and significant related with 

electricity consumption. These results suggest that an increase of 1% in U will lead to an increase 

of 1.61% in electricity consumption, whereas an increase of 1% in P, EI, and GDP will produce 

an increase in electricity consumption of 1.32%, 0.97%, and 0.44%, respectively. At the contrary, 

IN and ES were found negative and significant related with electricity consumption. Particularly, 

an increase of 1% in IN and ES will reduce the consumption of electricity to 0.70% and 0.89%.  

For the CO2 emissions evaluations, Breusch-Pagan test failed in rejecting the of heteroskedasticity 

hypothesis, delivering biased estimations of OLS (model 4). Therefore, GLS (model 5 and model 

6) were performed to overcome the heteroskedasticity issues. Hausman test was applied to 

determinate if the model with fixed effects (model 5) is better than the model with random effects 

(model 6). Results showed that the model with fixed effects (model 5) offers a better fit for the 

data (Table 5.5). 
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Table 5-5. Estimation results for climate changes and key 

drivers behind the climate change for the Colombian with their 

respective test results 

Variable OLS(4) GLS-FE(5) GLS-RE(6) 

Constant 

-6.6767***  -7.0941*** 

(-35.7802)  (-107.2965) 

P 

1.0379*** 0.8587*** 1.0352*** 

(93.2731) (8.7714) (124.9418) 

GDP 

0.7381*** 0.3795*** 0.7548*** 

(43.1573) (40.1905) (88.8091) 

U 

0.3531*** 0.9968* 0.2637*** 

(5.8713) (2.2819) (5.4739) 

IN 

0.4418** -0.5666*** 0.3456*** 

(3.2769) (-3.8509) (5.1521) 

EI 

0.8766*** 0.9773*** 0.9159*** 

(55.1407) (327.9912) (192.9747) 

ES 
0.6714*** 1.7663*** 0.6621*** 

(4.7577) (62.4650) (17.7708) 

R2 0.9889 0.9962 0.9879 

F-statistic 5952.39(0.000)   

BP test 74.25(0.000)   
Hausman test  1230.8(0.000) 1230.8(0.000) 

t-values are shown in parentheses.  
Signif. codes:  ***p<0.001 ;  **p<0.01;*p<0.051; .p<0.1  

 

P. GDP. U. and EI were found to be significant and positive related to climate changes as an 

effect. Particularly, an increase of 1% in P will lead to an increase of 1.13% on CO2 emissions, 

whereas an increase of 1% in GDP will increase CO2 emissions on 0.44%. Similarly, EI is positive 

and statistically significant related with CO2 emissions. This suggests that a 1% increase in energy 

intensity will cause a 0.97% increase in CO2 emissions. Thus, higher consumption of energy leads 

to higher levels of CO2 emissions. Evaluating the variable of interest, it was found that U has a 

positive and statistically significant effect on CO2 emissions. A 1% increase in the urbanization 

rate is likely to increase carbon emissions by 0.99%. 

IN and ES were found to be negative related with CO2 emissions. This result may suggest that 

industrialization and energy structure may not be major drivers of CO2 emissions in Colombia. 

For the other environmental impacts (EU. A and RES) Breusch-Pagan test failed in rejecting the 

heteroskedasticity hypothesis leading to biased OLS estimations. Hausman test suggested that FE 

model via GLS regression fits properly for all the above-mentioned impacts (Table 5.6 present 

the models results for EUT, A and RES).  
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Table 5-6. Estimation results for eutrophication (model7), 

acidification (model 8) and respiratory effects (model 9) GLS 

estimation. 

Variable GLS-FE(7) GLS-FE(8) GLS-FE(9) 

Constant   
 

    
P 0.0534 0.1917* 0.2325* 

 (0.5481) (1.9934) (2.4188) 

GDP 0.1805*** 0.2114*** 0.2165*** 

 (13.4654) (17.3174) (17.8994) 

U -0.5960 -0.2787 -0.1660 

 (-1.2836) (-0.6142) (-0.3665) 

IN 0.3838* 0.2631. 0.2173 

 (2.3675) (1.6730) (1.3840) 

EI 0.9923*** 0.9900*** 0.9891*** 

 (316.296) (322.6389) (322.9398) 

ES 0.9376*** 1.3524*** 1.0124*** 

  (31.6692) (48.7855) (36.7293) 

R2 0.98321 0.98707 0.9874 

BP test 40.311(0.000) 42.288(0.000) 42.767(0.000) 

Hausman test 2796.2(0.000) 2958.7(0.000) 2007.7(0.000) 

t-values are shown in parentheses.  
Signif. codes:  ***p<0.001 ;  **p<0.01;*p<0.051; .p<0.1  

 

For EUT (model 7), the variables GDP, IN, EI, and ES were found to be positive and statistically 

significant. Particularly, an increase of 1% on GDP will lead to an increase on eutrophication 

problems of 0.18%. Whereas an increase of 1% in IN, EI and ES will increase eutrophication by 

0.38%, 0.99%, and 0.93%, respectively. Although, P was found to be positive correlated, both 

variables were statistically insignificant.  

The results for acidification (model 8) and respiratory effects (model 9) are similar in terms of 

variables significance. IN was found to have a positive impact on the respective environmental 

impacts; however, it was only significant at a 90% level of acidification. Whereas it was found to 

be insignificant for the respiratory effect. By order of importance ES, EI, GDP, and P were found 

to be positive related with the respective dependent variable, acidification (model 8) and 

respiratory effects (model 9). 

Urbanization was found to be negative for all the different environmental impacts but it is not 

statistically significant. These results may suggest that urbanization may not be a major driver of 

eutrophication, acidification, and respiratory effects in Colombia. 

5.5 Discussion 

Urbanization was found to have a significant and positive influence on electricity consumption 

(an increase of 1% in U will increase electricity consumption by 1.61%), and climate changes 

(1% increase in the urbanization rate is likely to increase carbon emissions by 0.99%), whereas 
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for acidification, eutrophication and respiratory effects it was found to be negative but statistically 

insignificant. 

The results found for acidification, eutrophication and respiratory effects (Table 5.6) may be 

explained for the fact that those environmental impacts are measured through the amount of 

electricity consumed. In this regard, the impacts for providing electricity in such impact categories 

may not be relevant compared with the impact of others activities that comes along with the 

urbanization process (e.g. pollutants generated in transport sector, which is a current issue in 

developing countries by its relationship with particular matter and human health) and which were 

omitted in this study. Moreover, given the fact that Colombia energy mix (See figure 3.1) is 

compound mainly by hydropower, the impacts associated with acidification and eutrophication 

are more likely to be present in rural areas, around the hydropower plants, than in urban areas, 

explaining why urbanization may not be a main driver in such impacts. 

 Our results do not match finding that suggest that urbanization decrease energy consumption and 

carbon emissions (Abdallh & Abugamos, 2017; Effiong, 2018; B. Lin et al., 2016; Madu, 2009; 

Shahbaz et al., 2016). Moreover, evidence suggests that the patters of urbanization in Colombia 

follow the same tendency described for China (Urbanization process increase energy use and 

pollutants at different levels of aggregation in China). 

The reason for such discrepancy may be the fact that Colombia is a developing country which can 

be grouped as a middle income level, similarly to China, comparing to Nigeria, Kenya, Congo, 

and other countries in Africa studied by Madu(2009), Lin et al., (2016). Abdallh & Abugamos 

(2017), and Effiong (2018). Such differences in income level has been reviewed by Poumanyvong  

& Kaneko (2010). K. Li & Lin (2015) and Lin et al.. (2017), suggesting that urbanization 

decreases energy use in the low-income group, while it increases it in the middle and high-income 

groups. Furthermore, urbanization increases the CO2 emissions in all the income groups. 

In the last 20 years the number of people living in urban areas has increased by 37%. At the same 

time, urban density have been raised by 5% (DANE, 2018a). This implies that urban areas are 

rather growing horizontally than vertically. The main reason for the positive relation between 

urbanization and electricity use may be the fact that in urban areas the electricity is a normal 

consumed good used to supply several energy services such as: refrigeration, lighting and water 

heating. Urban areas (residential sector) is the economic sector who most electricity demand in 

Colombia (40% of the total amount of electricity) (UPME, 2019b). 

The energy intensity was found to have a significant effect on electricity use and all the 

environmental impacts under study even if its proportion is lesser than the urbanization. The main 

reason of that is that energy intensity EI (The amount of energy needs to produce one unit of 

GDP) is a representation of the level of industrialization. This sector demanded the 29.36% of the 

total energy consumed in Colombia in 2016 (mainly carbon and natural gas). In terms of 

electricity demanded, it consumes a poorly proportion (12% of the total electricity demanded in 

2016) (UPME, 2019b). 

From the methodological point of view, the STIRPAT-LCA offers a more suitable and accurate 

framework to assess the environmental impact of different resources in the electricity production. 

First, LCA approach covers a wide range of environmental issues beyond CO2 emissions. 

Resources that produce less CO2 emissions comparing with fossil fuels could be linked to a larger 

emission of toxic substances (Font Vivanco & Voet, 2014). Second, CO2 emissions in the 

STIRPAT studies are indirect estimated by multiplying the consumption of an individual resource 
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(e.g. coal or gas) by their respective carbon emissions coefficient (H. Li, Mu, Zhang, & Li, 2011; 

S. Lin et al., 2009; Zhang et al., 2013). This approach neglects emissions associated with other 

stages of the supply chain for electricity production like facility infrastructure, transport and final 

disposal. The systematic omission of such details may lead to inaccurate recommendations for 

policy decisions. 

The limitations of the study are associated with two factors. First, the availability and quality of 

the data, the information regarding the electricity obtained from the SUI (2018) only has records 

since 2003, preventing a more rigorous study with a larger time horizon. Moreover, the data 

obtained systematically omitted information for some regions in Colombia (Amazonas, Arauca, 

San Andrés y Providencia, Guanía, Vaupés, and Vichada). Second, Information regarding the 

environmental impacts produced for the generation of electricity reported by the UPME (2019) 

are available for a imitated number of periods (2008, and 2013 until 2019), moreover, this 

information is reported aggregated, which means that the UPME reported the emission factor for 

the SIN (national interconnected system by his acronym in Spanish) as a total amount of CO2 

eq/per kWh, it is worth nothing that the emission factor is published only for the CO2 eq 

emissions. In order to tackle this issue, the information of the different environment impacts for 

the technologies that compose the Colombian energy system was obtained from the Ecoinvent 

data base 3.4, particularly the unit process for each technology was taking for Brazil as geography 

in absence of data for Colombia. 

Further research is needed to study the effect of urbanization and other technical factors in 

Colombia. They have to be performed at different levels of aggregation, particularly at income 

level. Given the fact that the evidence suggests that impact of urbanization depends on the level 

of income (urbanization increase the energy use and pollutants in high income levels and reduce 

the amount of pollutants in low income levels). Moreover, efforts to increase the time horizon are 

encouraged.  

5.6 Conclusions  

In this work a STIRPAT-LCA model to address the influence of urbanization and technological 

changes on electricity consumption at different environmental impacts dimensions. A panel data 

with 27 of the 33 states in Colombia along a time span of 2003 to 2018 was used. The results 

suggest that urbanization is the main driver behind the electricity consumption (1.61%) and 

climate change (0.99%), whereas for acidification, eutrophication and respiratory, an explicit 

relationship was not found. 

Giving the current trends on economic growth, it is likely that the population and urbanization 

process continue growing during the upcoming decades. This will lead to increasing pressures on 

the ecosystems and the economy which is facing a transition between the agro to the industry. In 

this matter, the Colombian government may focus in guaranteeing the urbanization process with 

a sustainable criterion. Energy politics may focus in decoupling electricity consumption from 

urbanization. E.g. promoting regulations for efficient building construction and the introduction 

of more efficient technologies in the households sector e.g. the replacement of old refrigerators 

to more efficient ones. Moreover, the government should strengthen and accompany the 

discussion processes around urban development strategies in such a way that the stakeholders can 

recognize the diversity of the territories and to ensure a coherent link between urban areas and 

ecosystems. 
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Joint efforts are needed to ensure sustainable urbanization processes; this will help us to create 

resilient and sustainable cities. Ass well as contributing to meet the commitments made by the 

country in the last COP21 which are concerning the reduction of the greenhouse emissions to 

20% by 2030, respect to the reference year of 2010. 
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Abstract 

To diversify and decarbonize its energy system, Colombia plans a sizeable increase in wind power 

by installing onshore wind farms in the Guajira region. While presumably superior to other 

alternatives in terms of environmental performance, this assumption cannot be tested due to the 

lack of studies in this region. We carry out a hybrid life cycle assessment to estimate the 

environmental footprint associated with an operational wind farm of 19.5 MW of installed 

capacity for various impacts. We include both direct (required on-site) and indirect (required in 

the supply-chain) services associated with the life cycle of the wind farm, an unprecedented 

feature in the LCA literature. The results show that the wind farm produces 13.45 gr CO2 eq/kWh 

for global warming impacts, and the inclusion of both direct and indirect services increase the 

environmental impacts across impacts (with respect to the results without services) from 8% 

(photochemical ozone formation) to 1918% (eutrophication). Further, a sensitivity analysis 

suggest that the results are particularly affected by the chosen capacity factor, lifespan, and 

percentage of losses. Findings invite to include both direct and indirect services as well as perform 

sensitivity analysis of key technical parameters in future life cycle assessments of wind farms. 

Given the difficulty to obtain data on services, we conclude with some recommendations aimed 

at relevant stakeholders. 

Keywords: Hybrid LCA, direct services, indirect services, wind power, case of study 

6.1 Introduction 

Colombia’s energy sector was responsible for about 35% of the total greenhouse gas (GHG) 

emissions emitted nationally in 2014 (236.6 Mton), just behind the agriculture sector, which 

contributed 55% of the total (IDEAM et al., 2018). The Colombian government plans a 

considerable boost in the share of renewable energies to satisfy the growing electricity demand 

while diversifying and decarbonizing the energy system (UPME, 2016). Specifically, the 

government plans to diversify the grid to protect the electricity system against climatic variations. 

https://doi.org/10.1016/j.jenvman.2021.112058
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Historically, the Colombian energy grid is highly dependent on hydro power (UPME, 2019), and 

such dependence makes the grid vulnerable to phenomenon such as the ”El Niño” and “La Niña”. 

Particularly,” El Niño” (south oscillation ENSO) takes place during the course of a year in both 

dry and rainy seasons, dramatically altering the reservoir levels. Such changes drive up the price 

of electricity because more carbon and gas resources are needed to support the system, and can 

even cause rationing of electricity (Velez-Henao and Garcia-Mazo, 2019). By increasing the 

shares of wind power in the power gird, the Colombian government also plans to endorse the 

sustainable development goals (SDG), especially SDG 7 (Ensure access to affordable, reliable, 

sustainable and modern energy for all) (United Nations, 2017) as well to satisfy the agreements 

made in the COP 21 to reduce national carbon emissions by 2030 (García Arbeláez et al., 2015). 

Among renewable energy sources, wind power is expected to receive a considerable boost, from 

a marginal 0.1% in 2016 to a 6% share of the grid in 2030 (UPME, 2016). Such an increase in 

capacity is planned to take place mostly by installing onshore wind farms in the Guajira region 

(UPME, 2016). 

Wind farms are generally associated with lower life-cycle environmental impacts than alternative 

energy sources (Turconi et al., 2013), yet such better performance relies importantly on various 

aspects, such as the capacity and energy loss factors. Given the lack of LCA studies on wind farms 

in Colombia, their environmental performance is mostly ignored. Moreover, a largely overlooked 

aspect in life cycle assessment (LCA) studies is the environmental impact associated with services 

that are required both directly (surveying services prior to infrastructure building and 

environmental impact studies) and/or indirectly (services in the supply chain of products), whose 

omission can lead to significant truncation errors and misestimation of results (Pomponi and 

Lenzen, 2018). For example, Suh (2006) found that 38% of GHG emissions in the U.S are caused 

by services once supply-chain emissions are accounted for. Similarly, Nansai and colleagues 

(2009) highlighted that the supply chains of services in Japan consume a considerable amount of 

energy and materials. More generally, Font Vivanco (2020) found that systematically including 

services in the life cycle inventory (LCI) database ecoinvent 3.4 leads to a 4-16% median increase 

in environmental footprints, depending on the impact selected and the treatment of capital, 

whereas Agez et al., (2020) found an average truncation due to missing services of 14% for 

climate change in ecoinvent 3.5. Beyond current knowledge at the level of national and global 

economies, it remains unclear the role of services in particular LCA case studies. Our hypothesis 

is that services play a role in the environmental performance of wind farms and similar 

infrastructures. This is because wind farms are associated with a variety of indirect services in 

their complex supply chains, but especially numerous direct services required to build and operate 

the site, such as surveying, operation and maintenance, and legal compliance. The main research 

questions addressed here are thus: what is the contribution of onshore wind farms in the Guajira 

region towards sustainability goals and what is the specific role of services? 

The goal of this study is to quantify the environmental performance of an operating onshore wind 

farm in the Guajira peninsula of Colombia with a focus on the role of services. To fulfill this goal, 

we carry out such an analysis using the integrated hybrid LCA approach proposed by Suh et al., 

(2002) and specifically the model developed by Suh et al., (2004). Hybrid LCA allows to improve 

system completeness (Joshi, 2000), in this case by incorporating indirect services from input-

output data as done by Font Vivanco (2020) and Agez et al., (2020). Among the different methods 

of hybridization (tiered, path exchange, matrix augmentation, and integrated), the integrated LCA 

approach offers a versatile and transparent framework that has been used in a fairly consistent 

manner in several studies (Crawford et al., 2018). For example, to assess offshore wind turbines 
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(Wiedmann et al., 2011), biodisel (Acquaye et al., 2012), and solar PV and micro-wind 

technologies (Bush et al., 2014). According to Joshi (2000), traditional methods suffer, among 

other, from problems of subjective boundary definition and aggregation. Process-based LCA (P-

LCA) often suffers from truncation as well as omission of resource use and emissions of upstream 

stages by setting subjective system boundaries (Huey et al., 2017; Lenzen, 2000). On the other 

hand, input–output LCA (IO-LCA) includes the whole economy as the system boundary, yet it 

suffers from aggregation issues as the product of interest is generally approximated by its 

commodity sector, an aggregation of a large number of heterogeneous products (Joshi, 2000; 

Lenzen, 2000). Hybrid LCA combines the strengths of both P-LCA and IO-LCA, resulting in a 

more robust method for environmental footprinting (Suh et al., 2004). 

Hybrid LCA approaches allow to bring analyses one step ahead by (1) integrating social and 

economic aspects, (2) expanding the level of analysis across sectors and regions, and (3) including 

scenarios and rebound effects (Onat et al., 2017). Regarding renewable energy technologies, 

Wang et al., (2020) applied a matrix augmentation hybridization method to assess the effects of 

bioethanol expansion in terms of job creation, energy use, and economic stimulus across different 

regions of China. Faturay et al., (2020) studied the economic and energy impacts of an energy 

wind expansion across different USA regions. Mikulić et al., (2018) studied the economic effects 

of new wind energy developments in Croatia. On the other hand, Zafrilla et al., (2014) applied a 

tiered hybrid approach to study the GHG emissions of a nuclear power plant in Spain across 

different regions. Finally, Vélez-Henao et al., (2020) studied the direct and indirect environmental 

rebound effects associated with wind power expansion on the residential sector in Colombia. 

By providing answers to our hypothesis, namely that services play a role in the environmental 

performance of wind farms, this study provides novel insights on the truncation issues related to 

omitting service inputs in electricity generation, an unprecedented feature. This study thus 

contributes to the increasing discussion about the role of service inputs in LCA studies. Compared 

with existing studies, this study includes the impacts of both the direct and indirect services. This 

study also provides, for first time, an LCA study for an electricity generation system in Colombia. 

While there are several LCA studies for wind plants in the literature (see section 2), this study 

fills the gap for Latin-American economies, the study found in Brazil is a fictive case. Last but 

not least, this study highlights the importance of testing the sensitivity of the LCA results of wind 

farms to key parameters. 

Our study is relevant to various stakeholders: policymakers will gain insight on the actual role of 

wind energy in achieving sustainability goals, whereas the energy provider will better understand 

the environmental hotspots associated with the plant. Lastly, LCA practitioners will gain insight 

on the role of technical and location-specific aspects as well as services in energy and broader 

studies. This paper is organized as follows: section 6.2 provides a literature review of LCA studies 

on onshore wind farms. Section 6.3 describes the case study, materials, methods, and data. Section 

6.4 shows the results, section 6.5 discusses the results, and section 6.6 concludes with the main 

findings of the study. 

6.2 Literature review of life cycle assessments of wind farms 

Wind power is associated with significantly less life-cycle GHG emissions compared to other 

electricity production technologies (Arvesen and Hertwich, 2012a; Turconi et al., 2013) (see 

Table 6.1 for climate change impact results). Such differences are associated mainly with two 
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factors (Bonou et al., 2016; BWEA, 2005; Lenzen and Munksgaard, 2006): the technical aspects 

of the wind turbine (e.g. capacity, efficiency, and the materials used in the manufacturing of the 

wind turbine) and the technical parameters of the wind farm (e.g., factor capacity, wind speed, 

lifetime, and the losses assumed). Furthermore, the robustness of the studies relies on the capacity 

of the LCA method to represent the whole system as incompleteness leads to systematic 

truncation errors and misestimation of results (Lenzen, 2000). Because system boundary 

definition relays on suggestive decision (Joshi, 2000), two or more P-LCAs with the same purpose 

may not be comparable (Agez et al., 2020). 

Table 6-1. Greenhouse gases (GHG) for different power plants, values in kg 

CO2-eq/KWh. 

  Carbon Gas Hydro Wind Solar 

Max 1.05E+00 1.00E+00 2.00E-02 1.30E-02 1.30E-02 

Min 6.60E-01 3.80E-01 2.00E-03 4.10E-03 1.90E-03 

Table based on Arvesen and Hertwich (2012a) and Turconi et al.(2013)  

 

Both P-LCA and IO-LCA highlight important aspects in an LCA for a wind power electricity 

production. P-LCA allows to model in a detailed way the technology and the technical and 

climatic parameters (capacity factor, percentage of losses, and wind speed) that influence the 

environmental performance of the plant. Through P-LCA it is also possible to include the use and 

end-of-life (EoL) stages. Within the latter, recycling processes have been recently acknowledged 

to highly influence the environmental impacts due to the possibility to grant positive credits 

(Garrett and Rønde, 2014). Recycling credits entail that recycling materials avoid the extraction 

of raw materials and that associated environmental impacts are avoided and can be given as 

credits. The implications of granting credits in the recycling stage of wind farms shows an 

increase in the environmental performance of about 30% (Garrett and Rønde, 2013; Oebels and 

Pacca, 2013). IO-LCA allows including complete information of the system boundaries, avoiding 

assumptions and technical omissions present in P-LCA models. The value of using IO-LCA to 

assess wind farms is however mostly ignored due to the lack of applications in the literature. In a 

pioneering study, Kumar et al., (2016) conducted an IO-LCA to include the stages of operation 

and maintenance (O&M) and decommissioning, with the latter representing around the 10% of 

the total emissions. 

The evidence suggests that, regardless of the LCA approach applied, the results vary considerably 

according to the technical parameters and assumptions made in each study (see Table 6.2 for the 

results of different LCAs of wind power plants with differing parameters and assumptions). 

Moreover, potentially valuable information regarding the technical parameters is sometimes 

omitted. For example, Ardente et al., (2008), Rajaei and Tinjum (2013), Rønde (2013), and Oebels 

and Pacca (2013) do not mention the percentage of losses assumed. Also, Ozoemena et al., (2018) 

do not mention the wind speed assumed, whereas Xu et al. (2018) do not mention the percentage 

of losses included into the study. The latter study stated that 20% of the materials were recycled, 

but it does not provide the quantity granted. Ardente et al. (2008), Bonou et al., (2016), and 

Chipindula et al., (2018) do not specify the quantity of credits granted in the recycling stage, 

whereas Oebels and Pacca (2013) granted a total of 2.60E-03 kg CO2-eq /kWh and Garrett, Rønde 

(2013) estimated total credits for recycling of 3.80E-03 kg CO2-eq/kWh. and Al-behadili and El-

osta (2015) estimated credits for recycling of 5.75E-03 CO2-eq/kWh, the highest amount of 

credits granted from the reviewed literature. A few studies have applied hybrid LCA models in 
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the context of wind power. Noori et al., (2015) quantified the direct and indirect environmental 

impacts of wind power in the USA. Arversen and Hertwich (2012b) studied the potential 

environmental impacts of a large-scale adoption of wind power in Europe. Lastly, Feng et al., 

(2014) calculated the CO2 emissions and water consumption of several electricity generation 

technologies (including wind) in China. 

This literature review points out to two key outstanding research gaps. First, existing studies show 

the importance of including complete information of the technical parameters as well as the 

environmental benefits credited by the recycling processes. Second, studies also show that 

services have been systematically omitted from wind power LCA studies, mostly because service 

industries are generally associated with low resource use and emissions (Nansai et al., 2009) and 

because current LCI databases applied in P-LCA have a poor description of service inputs aside 

from transport and waste management services (Font Vivanco, 2020). These findings support our 

approach of including comprehensive technical parameters, recycling credits, and service inputs 

to adequately assess the environmental performance of wind power. 
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Table 6-2. Summary of climate change impacts from existing life cycle assessment studies on wind power farms. 

Study Country 
Lifetime 

(years) 

Turbine Power 

(kw) 

Wind 

speed 

(m/s) 

Capacity 

factor (%) 

Losses 

(%) 

Climate change 

impact (kg CO2 

eq/kWh) 

Approach 

Lundie et al., (2019) Germany ND 2,000-3,000 ND ND ND 1.17E-02-1.83 E-02 IO-LCA 

Gomaa et al., (2019) Jordan 20 3,000 7-15 ND ND 9.11E-03 P-LCA 

Oguz and Eylul Sentürk 

(2019) 
Turkey 20 600 8.4 ND ND 1.06E-02 P-LCA 

Wang et al., (2019) China 20 2,000 ND ND ND 2.28E-02 P-LCA 

Gao et al., (2019) China 20 

850 6.4 

ND ND 

6.59E-02 

P-LCA 850 7.1 8.65E-02 

1,500 6.6 5.15E-02 

Xu et al., (2018) China 20 750-1,500 8.3 30 ND 8.6E-03 P-LCA 

Ozoemena et al., (2018) ND 25 1,500  ND 21-22 17 1.03E-02 – 1.66E-02 P-LCA 

Chipindula et al., (2018) USA 20 1,200-2,300 7.5 ND 35 5.84E-03- 7.35E-03 P-LCA 

Bonou et al., (2016) EU 20  2,300-3,200  8.5 ND 10 6.00E-03 – 5.00E-03 P-LCA 

Ji and Chen (2016) China 21 2,000 ND 25.8 ND 5.69E-03 IO-LCA 

Kummar et al., (2016) USA 25 1,500  ND ND ND 1.87E-02 IO-LCA 
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Table 6-2. continue         

Study Country 
Lifetime 

(years) 

Turbine Power 

(kw) 

Wind 

speed 

(m/s) 

Capacity 

factor (%) 

Losses 

(%) 

Climate change 

impact (kg CO2 

eq/kWh) 

Approach 

Al-behadili and El-osta 

(2015) 
Libya 20 1,650 ND ND ND 1.04E-02 P-LCA 

Noori et al., (2015) USA 20 2,000-3,000  ND ND ND 1.73E-02 

Hybrid 

LCA 

Feng et al., (2014) China 20 800 ND ND ND 4.64E-02 
Hybrid 

LCA 

Garrett and Rønde (2013) Worldwide 20 2,000 7- 9.2 ND ND 7.00E+03 – 1.00E-02 P-LCA 

Rajaei and Tinjum(2013) USA 26 1,800 6.5 -7 25 ND 1.87E-02 P-LCA 

Oebels and Pacca(2013) Brazil 20 1,500  7.8 34 ND 7.00E-03 P-LCA 

Arversen and Hertwich 

(2012b) 
Europe 20 1,200 N-D 23.6 ND 1.64E-02 

Hybrid 

LCA 

Ardente et al., (2008) Italy 20 660  ND 19 ND 1.48E-02 P-LCA 

ND No data available, P-LCA process-based life cycle assessment, IO-LCA input–output life cycle assessment. 
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6.3 Materials and methods 

In line with the ISO 14040:2006 and 14044:2006 standards (ISO, 2006), first we present the goal 

and scope of the study, followed by a description of the life cycle inventory (LCI). Finally, we 

describe both the foreground and background systems, including the method to include direct and 

indirect services. 

6.3.1 Goal and scope 

The purpose of the study is assessing the life-cycle environmental impacts associated with an 

onshore wind farm in Colombia. The wind power plant studied is the only wind farm currently 

operating in the Colombian national grid. The wind farm has a total installed capacity of 19.5 

MW and technical parameters for the operation as follow: a capacity factor of 42% (EPM, 2002), 

a percentage of losses of 10% due to the geographic conditions of the zone (Pinilla et al., 2009), 

and a lifespan of 20 years (Nordex, 2000; Pinilla et al., 2009). With which the wind farm produces 

72 GWh/year. Detailed information of the technical specification of the wind farm is presented in 

supplementary data S6.1. 

The study includes the manufacturing (manufacturing of the principal components and 

installation), operation and maintenance, transport (during all the stages of the system), and 

decommissioning and recycling (end of life [EoL]) stages and the foreground system is based on 

direct data collection from the project owners. The functional unit is 1 kWh of electricity delivered 

to the grid and the transmission has been excluded (see Figure 6.1). 

The life cycle impact assessment (LCIA) phase was carried out using the International Reference 

Life Cycle Data System (ILCD) methodology (European Commission, 2014), a robust and widely 

accepted approach among LCA practitioners. Ten impact categories where considered for 

comprehensiveness: freshwater and terrestrial acidification (A, in mol H+-Eq), climate change 

(CC, in kg CO2-Eq), carcinogenic effects (CE, in CTUh), ecotoxicity (ECOTOX, in 

CTUh.m3.yr), marine eutrophication (MEUT, in kg N-Eq), non-carcinogenic effects (NCE, in 

CTUh), ozone layer depletion (OD, in kg CFC-11-Eq), photochemical ozone creation (POC, in 

kg ethylene-Eq), respiratory effects, inorganics (RE, in kg PM2.5-Eq), and terrestrial 

eutrophication (TEUT, in mol N-Eq). 

6.3.2 Life cycle inventory 

The LCI analysis was based on a comprehensive collection of data. Specifically, data in physical 

units were collected for the stages of manufacturing, transport, operations and maintenance, and 

recycling, whereas data in monetary units for the direct services were collected mainly from the 

environmental studies required by the authorities to grant the different licenses needed to operate 

the project. 

6.3.2.1  Foreground System 

The foreground system comprises the manufacturing of the wind turbines as well as the tower and 

generators. It also includes the transport, the construction of the wind farm, the operation and 

maintenance, and the EoL stages. In addition, the configuration of the foreground system was 
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partly based on estimates and assumptions due to missing information from the plant owners. 

Specifically, some assumptions were needed to complete the construction as well as the operation 

and maintenance stages. Following Elsam (2004), each wind turbine was assumed to require 400 

m3 of soil removal and an associated use of 10 liters of diesel. Similarly, the mounting mobile 

cranes were assumed to consume 10 liters of diesel for the assembly of each turbine during the 

construction stage (Rydh et al., 2004). Moreover, according to Elsam (2004), each turbine 

consume 573 MWh of electricity. The maintenance stage was complemented with information 

provided by Ardente et al. (2008) regarding the replacement of one blade and 15% of the generator 

per turbine. Due to the fact that ecoinvent does not have unit process data for Colombia, 

alternative data was used. Specifically, the Colombian average electricity matrix between 2002 

and 2017 (76.7% hydro, 13.5% Gas, 9.7% Coal, Wind 0.1%) (UPME, 2014) was build up based 

on unit processes from Brazil, a region witch best matches the geographic and climatic conditions 

of Colombia (Supplementary data S6.3 for detailed information of the unit process used from 

ecoinvent 3.4 in the entire study). 

The foreground system includes service inputs associated with planning and studies carried out 

prior to the construction phase, mainly environmental studies required by the authorities to grant 

the different licenses required to operate the project. All the information was collected from a 

owners report (EPM, 2002) (see supplementary data S6.5). We differentiate between the service 

inputs directly associated with the wind farm and included in the foreground system (direct 

services) from those service inputs required upstream in the supply chain (indirect services), and 

included in the background system through the approach described in section 6.2.2. Detailed 

information of the foreground system is presented in supplementary data S6.2. 

6.3.2.2 Background system 

The background system is comprised by both LCI and input-output databases, which are inter-

linked using the IHLCA approach proposed by Suh et al., (2002) and specifically the model 

developed by Suh et al. (2004). Specifically, we linked each product from the foreground system 

(see section 6.2.1) to the LCI via the concordances presented in supplementary data S6.2-S6.4. 

The IHLCA approach allows to systematically include service inputs to the LCI system by linking 

this to an IO system into a single matrix. We here follow the approach by Font Vivanco (Font 

Vivanco, 2020), see equation 1, which linked the ecoinvent 3.4 and EXIOBASE 3.4 databases by 

means of a upstream cut-off matrix (Cu) (Suh et al., 2004). Because Colombia is not explicitly 

described in EXIOBASE 3.4, we here use instead the Global Trade Analysis Project (GTAP) 9 

database, containing 140 regions (including Colombia) and 57 industries. It is worth noting that 

the environmental extensions are taken from EXIOBASE since GTAP only describes CO2 

emissions. One of the main concerns regarding hybrid methods is double counting as parts of the 

economic system may be described twice (Crawford et al., 2018). In order to avoid this issue, we 

removed all the service inputs (other than transport and waste management) from the LCI system 

in order to prevent double counting when including these from the input-output system. 

The procedure described by Peter et al. (2011) was applied to build the multi-region input output 

(MRIO) model using the GTAP database, particularly the approach with endogenous international 

transport pool. The underlying code can be found in a dedicated online repository (GitHub, 2018). 

The upstream cut-off matrix (Cu) in eq.1, allows to extend the input structure of unit processes by 

including service inputs from the IO system. In other words, each element of the Cu represents 

monetary units of service inputs required to produce physical units of products. To build the Cu, 
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Font Vivanco (Font Vivanco, 2020) proposes a three-step approach. First, existing service inputs 

are removed from the LCI database except for transport and waste management, which are 

relatively well represented. Second, service input structures for each unit process (except for 

transport and waste management services) are obtained from their corresponding industries. 

Third, service input structures are scaled according to the product’s price and further corrected in 

case that economic balances are violated, namely when the cost of inputs exceed that of the 

product. Once all service input structures are obtained, these are introduced in the Cu. For detailed 

information of the approach and underlying assumptions we refer to Font Vivanco (Font Vivanco, 

2020). 

Using the IHLCA approach, a given environmental impact e (e.g., climate change) for any final 

demand was estimated using the Leontief model (Miller and Blair, 2009): 

 

𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡𝑒 = 𝑖𝑒
𝑇𝑥 = 𝑖𝑒

𝑇(𝐿𝑦) = (𝑐𝑒 ∘ 𝑠𝑒)𝑇(𝐻−1𝑦) (6.1)   

𝐻 = (
(𝐼𝐿𝐶𝐼 − 𝐴𝐿𝐶𝐼) −𝐶𝑑

−𝐶𝑢 (𝐼𝐼𝑂 − 𝐴𝐼𝑂)
) (6.2)  

𝑠𝑒 = (
𝑠𝐿𝐶𝐼

𝑠𝐼𝑂
) ; 𝑐𝑒 = (

𝑐𝐿𝐶𝐼

𝑐𝐼𝑂
)  (6.3) 

Where ILCI is an m × m identity matrix, AIO is a k × k technical coefficient matrix with the inter-

industry inputs needed to supply one output unit, ALCI is an m × m technical coefficient matrix 

with the inter-process inputs needed to supply one product unit, IIO is a k × k identity matrix, y is 

any given n × 1 final demand vector, with n being the total amount of unit processes (m) and 

industries (k), Cd is a m × k downstream cut-off matrix with product inputs to each industry 

(assumed to be a zero matrix),Cu is a k × m upstream cut-off matrix with industry inputs to each 

process, cLCI and cIO are respectively m × 1 and k × 1 impact characterisation factor vectors 

(impacts associated with each stressor), sIO is a k × 1 environmental stressors vector (stressors 

associated with a unit of output, sLCI is an m × 1 environmental stressors vector (stressors 

associated with a unit of product), si  is an n × 1 environmental stressor vector (stressors associated 

with a unit of product/output), ci is an n × 1 impact characterisation factor vector (impacts 

associated with a unit of stressor), the symbol ∘ represents the Hadamard product, L is the Leontief 

inverse matrix of direct and indirect inter-industry and inter-process inputs needed to satisfy a 

final demand unit, and i is an n × 1 impact coefficient vector (impacts associated with a unit of 

output), and the superscript T indicates transposition. 

 



82 
 

 

Figure 6-1. System boundary of the wind farm. LCA: Life cycle assessment, LCI: Life cycle 

inventory. GTAP: Global Trade Analysis Project database, MRIOT: multiregional input output 

table, IO-LCA: Input output life cycle assessment, P-LCA: Process based life cycle assessment 

6.3.2.3  Sensitivity analysis 

In order to increase robustness, support decision, and identify the most sensitive parameters that 

may affect the environmental profile of the wind farm, we conducted a sensitivity analysis of the 

capacity factor, the percentage of losses, and the lifespan of the plant. The reference parameters 

used in this study include a capacity factor of 42%, a percentage of losses of 10%, and a lifespan 

period of 20 years (see section 6.1). The values selected for the sensitivity analysis are based on 

the literature and correspond to percentage changes on the different parameters. The capacity 

factor ranges between 30% and 42%, with the high factor capacity of the wind farm being mainly 

related with the optimal climatic conditions of the region (EPM, 2002; Pinilla et al., 2009) while 

normal values ranges from 19% to 34% (see table 6.2). The percentage of losses ranges between 

10% and 5% assuming efficiency improvements in the electrical system. The lifespan of the wind 

farms is commonly defined by the producer, with 20 years being the reference value even though 

wind turbines may continue operating after maintenance and replacement of deteriorated parts. 

Some authors select 25 and even 26 years as a lifespan (Kumar et al., 2016; Ozoemena et al., 

2018; Rajaei and Tinjum, 2013). 

6.4 Results  

This section presents the results of the wind farm in the different environment impacts selected; 

moreover, results are presented for the direct and indirect services, and conclude with the results 

of the sensitive analysis. 
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6.4.1 environmental impacts by stages and components 

The findings (see Figure 6.2 for the environmental impacts by stage) show that the inclusion of 

both direct and indirect services has a non-negligible impact on the overall environmental 

footprint of the onshore wind power plant with the exception of ecotoxicity and carcinogenic 

effects impacts. For all impact categories, this increase describes a median relative change (with 

respect to footprint results without services) ranging across impact categories from 8% (ODP, 

POC, RE) to 21% (TEUT). Manufacturing is the stage with a higher share of environmental 

impacts from the total: ranging from 15% (ECOTOX) to 97% (CE). Further, operation and 

maintenance have a notable contribution of 0% (ECOTOX) to 13% (MEUT and POC). The 

decommissioning and recycling stage represents 1% (CE) to 116% (ECOTOX). The impacts 

associated with the transport are negligible for all the impact categories (<1%). Decommissioning 

and recycling have negative values (positive credits) for all the impact categories because those 

stages avoid the extraction of new material and resources (see Supplementary data 6.3 for detail 

of the unit process used).  

 

Figure 6-2. Life cycle environmental impacts associated with 1 kWh of electricity generated in 

the studied wind farm. A: freshwater and terrestrial acidification (in mol H+-Eq), CC: climate 

change (in kg CO2-Eq), CE: carcinogenic effects (in CTUh), ECOTOX: ecotoxicity (in 

CTUh.m3.yr), MEUT: marine eutrophication (in kg N-Eq), NCE: non-carcinogenic effects (in 

CTUh), OD: ozone layer depletion (in kg CFC-11-Eq), POC: photochemical ozone creation (in 

kg ethylene-Eq), RE: respiratory effects, inorganics (kg PM2.5-Eq), TEUT: terrestrial 

eutrophication (mol N-Eq). 

Environmental impacts are largely associated with the different components of the wind farm 

(manufacturing stage). Taking CC impact category as an example, the tower represents the 40% 

of impacts, whereas the rotor and the nacelle accounts for the 27% and 21% of the impact, 

respectively. While impacts associated with the foundation represent the 10% of the total impacts, 
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the cables and the transformer account jointly for just the 3% of the total impacts. Impacts by 

unitary process are similarly mainly associated with the unitary processes linked to the 

manufacturing stage (see Figure 6.3 for the top ten processes in terms of impacts in the different 

impact categories). Following with CC impacts, ten of the thirty-eight-unit processes associated 

with the wind farm represent the 94% of the total impacts, particularly the processes associated 

with the production of steel, reinforced glass fibre, concrete, and the epoxy resin represent jointly 

the 70% of the total impacts. Such high impacts are due to a combination of large amounts of 

physical inputs and the environmental impact intensity per unitary unit. 

 

Figure 6-3.Top ten processes in terms of impacts associated with the materials (as a percentage 

of the total impacts). A: freshwater and terrestrial acidification (in mol H+-Eq), CC: climate 

change (in kg CO2-Eq), CE: carcinogenic effects (in CTUh), Ecotox: ecotoxicity (in 

CTUh.m3.yr), MEUT: marine eutrophication (in kg N-Eq), NCE: non-carcinogenic effects (in 

CTUh), OD: ozone layer depletion (in kg CFC-11-Eq), POC: photochemical ozone creation (in 

kg ethylene-Eq), RE: respiratory effects, inorganics (kg PM2.5-Eq), TEUT: terrestrial 

eutrophication (mol N-Eq). 

6.4.2 Impact of direct services 

The impacts associated with the direct services are largery associated with bussines services 

(OBS) and government services (OSG). Taking CC as an example, these industries combinedly 

represent about the 70% of the total impact (see figure 4 for the share of impacts associated with 

direct services by industry). The CC impacts related to OBS are mostly associated with activities 

related to contigencies (23%), coordination (22%), and the hiring of profesional services such as 

ingeniering, anthropology, biology, social communication, and translation services (22%). The 

CC impacts associated with OSG are mostly related to social management (74%) and the 

expansion and equipping of the school (11%). It merits noting that there is sometimes a mismatch 

between costs and associated impacts. For example, although the service costs associated with 
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the electricity industry (ELY) are negligible (0.10% of the total direct services costs), this industry 

represents the 7% of the impacts. On the other hand, negligible results were found for the “water 

collection, purification and distribution” (WTR) industry (1%), albeit this industry represents the 

11% of the total direct service costs (see suplementary data table S6.4 for a summary of the direct 

services and their respective GTAP code, for a complete detail of the direct services included see 

supplementary data S6.5). 

 

Figure 6-4. Shares of direct services by industry. Other Business Services (OBS), Other 

Services (Government) (OSG), Other Transport (OTP), Other Machinery & Equipment (OME), 

Communications (CMN), Financial Intermediation (OFI), Electricity (ELY), Water (WTR). 

Complete descriptions of the economic sectors are provided in supplementary data S3. 

6.4.3 Impact of indirect services 

A large share of impacts from indirect services are associated with unit processes related to 

manufacturing processes (see Figure 6.5 for the top ten processes in terms of impacts associated 

with indirect services). For example, the processes associated with the production of electronics 

units, low-alloyed steel, and concrete represent jointly the 63% of the total impacts associated 

with indirect services for CC impacts. Such high impacts associated with indirect services are due 

to a combination of large amounts of physical inputs, high life-cycle GHG emissions from 

services, and large shares of services in the input structures. 
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Figure 6-5. Top ten processes in terms of impacts associated with indirect services (as a 

percentage of the total impacts from indirect services). A: freshwater and terrestrial acidification 

(in mol H+-Eq), CC: climate change (in kg CO2-Eq), CE: carcinogenic effects (in CTUh), 

ECOTOX: ecotoxicity (in CTUh.m3.yr), MEUT: marine eutrophication (in kg N-Eq), NCE: 

non-carcinogenic effects (in CTUh), OD: ozone layer depletion (in kg CFC-11-Eq), POC: 

photochemical ozone creation (in kg ethylene-Eq), RE: respiratory effects, inorganics (in kg 

PM2.5-Eq), TEUT: terrestrial eutrophication (mol N-Eq). 

6.4.4 Regional analysis 

Environmental impacts take place mainly abroad (see Figure 6.5 and Figure 6.6 for impacts 

associated with materials and energy inputs and services, respectively). Taking CC as an example, 

only 4.78% and 1.64% of impacts take place in Colombia for materials and energy inputs and 

services, respectively. For some other impact categories, it merits noting that up to 15% of impacts 

take place in Colombia. This is largely because the main components of the wind farm (tower, 

rotor, and nacelle) are imported from other economies. The high impacts taking place in Colombia 

from materials and energy inputs for TEUT and POC are mainly associated with two activities: 

transport activities (52% for TEUT and 49% for POC) and diesel burned during the construction 

of the wind farm (38% for TEUT and 36% for POC). Moreover, the high impact for OD from 

direct and indirect services is associated mainly with the governmental services and unspecified 

business services, with 59% and 26% of the total impacts, respectively. 
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Figure 6-6. Heatmap by region of the impacts associated with material and energy inputs (as a 

percentage of the total impact) for the top ten contributing regions in terms of climate change. 

A: freshwater and terrestrial acidification (in mol H+-Eq), CC: climate change (in kg CO2-Eq), 

CE: carcinogenic effects (in CTUh), ECOTOX: ecotoxicity (in CTUh.m3.yr), MEUT: marine 

eutrophication (in kg N-Eq), NCE: non-carcinogenic effects (in CTUh), OD: ozone layer 

depletion (in kg CFC-11-Eq), POC: photochemical ozone creation (in kg ethylene-Eq), RE: 

respiratory effects, inorganics (in kg PM2.5-Eq), TEUT: terrestrial eutrophication (mol N-Eq). 
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Figure 6-7. Heatmap by region of the impacts associated with direct and indirect services (as a 

percentage of the total impact) for the top ten contributing regions, plus Colombia, in terms of 

climate change. A: freshwater and terrestrial acidification (in mol H+-Eq), CC: climate change 

(in kg CO2-Eq), CE: carcinogenic effects (in CTUh), ECOTOX: ecotoxicity (in CTUh.m3.yr), 

MEUT: marine eutrophication (in kg N-Eq), NCE: non-carcinogenic effects (in CTUh), OD: 

ozone layer depletion (in kg CFC-11-Eq), POC: photochemical ozone creation (in kg ethylene-

Eq), RE: respiratory effects, inorganics (in kg PM2.5-Eq), TEUT: terrestrial eutrophication (mol 

N-Eq). 

6.4.5 Sensitivity analysis results 

The environmental performance of wind power plants depends importantly on the technical 

parameters selected. Parameters such as the capacity factor, the lifespan, and the percentage of 

losses are directly associated with the amount of electricity produced and hence the unitary 

environmental impacts associated with the power plant. The results suggest that the capacity 

factor is the most sensitive parameter (larger slope), followed by the lifespan and the percentage 

of losses (see Figure 6.8). Further, the ranges from the literature confirm the order of these 

parameters in terms of relevance for CC impacts: changes in these parameters could change 

impacts, respectively, by up to about -35%, 25%, and 5%. 



89 
 

 

   

Figure 6-8. Sensitivity analysis for technical parameters (lifespan, capacity factor, and 

percentage of losses). The dark colored dots correspond to the ranges of the technical 

parameters typically found in the literature (19-34% for the capacity factor, 10-17% for the 

percentage of losses, and 20-26 years for the lifespan), m: Slope of the regression line. 

6.5 Discussion 

The impact results of the wind farm under study fall into the range found in the literature (see 

Table 6.1) despite accounting for both direct and indirect services, which suggests that our results 

are on the lower bound of such range. Taking CC as an example, our results (1.29E-02 kg CO2-

Eq/kWh) are lower than those provided by comparable hybrid models such as those by Arversen 

and Hertwich (2012b) (1.64E-02 kg CO2-Eq/kWh), Noori et al.,(2015) (1.73E-02 kg CO2-

Eq/kWh), and Feng et al., (2014) (4.64E-02 kg CO2-Eq/kWh). Differences can be largely 

attributed to the high capacity factor of the plant of 42%, while other studies report lower values. 

Compared with P-LCA studies, our results are lower than those reported by Wang et al., (2019),  

Gao et al., (2019), Kummar et al., (2016), Rajaei and Tinjum (2013), and Ardente et al., (2008); 

but higher than those reported by Gomaa et al., (2019), Oguz and Eylul Sentürk (2019), Xu et al., 

(2018), Chipindula et al., (2018), Bonou et al., (2016), Ji and Chen (2016), Al-behadili and El-

osta (2015), and Oebels and Pacca (2013). The inclusion of both direct and indirect services could 

be a defining difference. 

Differences can be attributed to the parameter selection and the assumptions made during the 

operation and maintenance stage (see section 6.3). For example,  Oebels and Pacca (2013) did not 

specify the percentage of losses assumed or the credits granted in the recycling process. Gao et 

al.,(2019) do not mention the percentage of losses, either the capacity factor. Also, Ardente et 
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al.,(2008) and Rajaei et al., (2013) did not provide values for the percentage of losses and the 

recycling credits assumed.  

By process, and taking CC as example, manufacturing processes account for 80% of all the 

impacts, from which the tower, the rotor, and nacelle contribute the most with 39%, 27%, and 

21% from the total, respectively. This is somehow consistent with the literature, where 

manufacturing process are on the ranges from 60% to 80% (Ardente et al., 2008; Rajaei and 

Tinjum, 2013; Xu et al., 2018). Credits granted in the decommissioning and recycling stages are 

lower (2%) than reviewed studies (values ranging 5% and 35%) (Ardente et al., 2008; Xu et al., 

2018). These lower values are justified because the chosen LCA model grants credits for recycling 

materials, avoiding the extraction of future resources (labeled as substitution by system expansion 

or avoided burden method in the LCA literature). However, according to Arvesen and Hertwich 

(2012a), such models commonly use inappropriate methods and lack transparency overall. It is 

worth noting that in this study we did not apply the avoided burden method. Credits granted come 

solely from the background activities regarding the recycling stages. Regarding the type of 

approach (P-LCA and IO-LCA), Dolan and Heat (2012) argues after an exhaustive review that P-

LCAs of wind turbines are unlikely to differ substantially because the manufacturing stage, which 

accounts for about 60%-80% of all the environmental impacts, are to some extent similar. The 

main differences across studies are due to the technical parameters that affects the operation of 

the wind farm. 

The regional analysis suggests that environmental impacts for the wind farm are rather exporter 

than produced in situ. Regions like China and US contribute significantly to the total 

environmental impacts. Taking CC impact as example, China contributes to 11% of the total 

impact associated with materials and to 15% of the impacts associated with both direct and 

indirect services, whereas US contributes to 6% and 14% of the impact associated with materials 

and services, respectively (see Figure 6.5 and 6.6). The environmental impacts taking place 

locally are mainly associated with the services rather than with the material and energy inputs. 

Colombia contributes with less than the 5% of the impact associated with materials and energy 

and the 1.64% of the impact associated with services. The results suggest that choices regarding 

both the inclusion of services and the selection of technical parameters lead to noteworthy 

differences in the environmental impacts associated with the studied wind farm. It is worth noting 

that this is not a point against the use of wind energy, as the inclusion of these activities will likely 

also significant for the production of energy by fossil fuels. Regarding the truncation error from 

omitting services, our results suggest an overall truncation error of about 6% and 7% respectively 

for direct and indirect services and for CC impacts. Despite such an increase in CC impacts, the 

results for the wind farm under study are within the ranges found in the literature (see Table 6.1). 

The implications of including service inputs in this study appear to be more or less consistent with 

the broader LCA literature. For example, Ward and colleagues (2017) found that ignoring service 

sectors not covered by LCI databases in the US is associated with 3% to 13% median truncation 

errors for carbon footprints, depending on the sector group being analyzed. Font Vivanco (2020) 

found a similar level of truncation in the ecoinvent 3.4 database for climate change, in the range 

of 10%. Agez et al., (2020) found an average truncation of 14% for ecoinvent 3.5. Yu et al., (2020) 

reports an increase of about 20% when the value of engineering is included in Australian 

buildings.  

More broadly, hybrid LCAs considerably increase the environmental impacts of the studies by 

expanding the system boundaries, increasing robustness compared with traditional methods. 

Taking CC as example, our study suggests a difference around 14% compared with P-LCA. Such 
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differences in this study appear to be more or less consistent with the broader hybrid LCA 

literature. For example Wiedmann et al., (2011) report an increase of 111% in the CC for a wind 

power generation in the UK. Palma-rojas et al., (2017) found a difference of 97% for a bagasse-

derived ethanol produced in Brazil. Bush et al., (2014) present an increase of 20% for solar PV in 

UK. Huey et al., (2017) report differences on the ranges of 11% and 50% depending of the type 

of concrete. Li et al., (2020) found a difference on the range of 16%.  

The use of sensitivity analyses should be encouraged to add robustness to LCA studies, 

particularly to test the variability of the results with respect to technical parameters and the 

assumptions made to build the system boundaries. With regards to the technical parameters, the 

results suggest special attention to the capacity factor, the lifespan, and the percentage of losses, 

by this order. This means that future studies should be careful when choosing the values of these 

parameters. Moreover, the assumptions required to build the system should be clearly described 

and presented in order to facilitate comparisons and provide transparency. In this study, the 

assumptions made are mostly associated with the operation and maintenance of the wind farm 

due to missing information from the owner of the project. These assumptions are not expected to 

have a significant effect on the results because the operation and maintenance stage accounts as 

much 13% (MEUT, POC) of the total environmental impacts. Particularly, the emission factor 

for CC associated with the electricity consumption during this stage was 2.15E-01 Kg CO2/kWh, 

slightly higher than the value reported by the Colombian national authorities (2.10E-01 CO2/kWh) 

(UPME, 2020). Values reported by ecoinvent were preferred instead mainly because ecoinvent 

report emissions factors for different environmental categories, whereas the Colombian 

authorities only report values for CC. 

A limitation arises from using the environmental extensions from EXIOBASE 3.4 to complement 

the GTAP9 database, because both databases differ on the level of industry aggregation and base 

year, among other differences (Tukker et al., 2018) . Considering the scope of this study, such a 

limitation can be avoided by using a MRIO database which features both a high level of 

geographical coverage and extensive environmental extensions. For example, the Eora database 

(Lenzen et al., 2013) covers 190 countries, including Colombia, and includes several 

environmental extensions, of which only a few are homogenously reported for all countries. Using 

the Eora database, however, would limit the amount of environmental impact indicators used in 

this study. For example, Eora does not report PM2.5 emissions which are used to calculate 

respiratory effects from inorganic compounds. 

Limitations regarding the inclusion of services inputs (direct services) are mainly due to the 

limited information regarding the expenditures associated with the project. While detailed 

information concerning the environmental studies required by the authorities to grant the different 

licenses needed to operate the project was obtained, it was not possible to obtain similar data for 

the planning and management stages of the project (service consumers). This omission can lead 

to the underestimation of the impacts related to direct services.  Moreover, the limitations imposed 

by the IO-LCA regarding the high level of aggregation (Joshi, 2000; Lenzen, 2000) and the 

assumed proportionality between physical and monetary flows (Lenzen, 2000) may add 

uncertainties to the results. Aggregation issues exist because economic sectors, even in the most 

disaggregated IO tables, are actually a combination of heterogeneous production technologies and 

products with regards to input materials and environmental impacts (Suh et al., 2004; Suh and 

Huppes, 2005). Proportionality can alter the physical flow relationships between industries 

because of price inhomogeneity, particularly when inter-sectoral prices differ greatly between 

industries (Bicknell et al., 1998; Suh et al., 2004). According to Lenzen and Murray (2001), the 
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proportionality assumption can lead to non-negligible errors (up to 40% for Australian energy and 

climate change impacts). 

One of the advantages of using hybrid models is the possibility to perform life cycle sustainability 

analysis (LCSA) and similar analyses by including social and economic indicators which are often 

included in MRIO databases, such as value added and employment (Onat et al., 2017). We 

however did not include such additional indicators because there is currently no social nor 

economic extensions in ecoinvent that can be consistently integrated with those from 

EXIOBASE. The results show that the direct services associated with the environmental impact 

studies required by the authorities to build and operate large projects such as wind farms, which 

are usually excluded from LCAs, have a non-negligible impact on their environmental footprints. 

Including direct services may thus be relevant in projects with similar environmental compliance 

requirements, such as dams, roads, bridges, and tunnels, and particularly in projects that impact 

the lives of indigenous people. In the latter, consultation and land concessions are critical issues 

that require a comprehensive bargaining process, thus requiring high economic and time resources 

that may have a substantial associated footprint. 

6.6 Conclusions 

This paper carried out a hybrid LCA including services of an onshore wind farm of 19.5 MW of 

capacity installed, located in the high Guajira in Colombia. This wind farm is the first renewable 

energy project connected to the national grid. The main contributions of this study are being the 

first LCA study conducted in the country for any electricity production technology, second, we 

include both direct (required on-site) and indirect (required in the supply-chain) services 

associated with the life cycle of the wind farm, an unprecedented feature in the LCA literature, 

third, we highlighted the importance of the technical parameters of the wind farm on their 

respective environmental impacts. For policymakers as for the owners of energy projects and 

LCA practitioners this provides value knowledge on the role of wind energy in effectively 

achieving sustainability goals, by underlining the role of technical and location-specific aspects 

as well as services in energy and broader studies and providing environmental hotspots associated 

with wind projects.  

The results suggest that omitting service inputs leads to non-negligible truncations issues. By 

order of importance, services increase the amount of emissions between 0% (ECOTOX and CE) 

and 21% (TEUT) with respect to the results without services, meaning that environmental 

declarations may be underestimated. By life cycle stages, the manufacturing processes accounts 

for 80% of the impacts in CC, being the tower, the rotor, and the nacelle the most relevant 

components with 39%, 27%, and 21% from the total, respectively. Moreover, results highlight 

the importance to perform a sensitivity analysis of the technical parameters. Particularly, changes 

in the capacity factor, the lifespan, and the percentage of losses could vary impacts, respectively, 

by up to about -35%, 25%, and 5%. 

Owners of the project can achieve a better environmental performance by reducing the amount of 

steel required by the towers via improved design and/or by using recycled materials as well as by 

reducing and/or replacing the concrete with greener alternatives, such as mixing concrete with fly 

ashes (Lemay, 2017). Similarly, during the operation and maintenance stage, the use of renewable 

energy resources is encouraged. For example, the use of electricity inside the farm should be 

sourced whenever possible from electricity produced by the wind farm itself. Additionally, the 
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transport inside the farm could be fulfilled with electric cars or even by smaller, low-emission 

vehicles (e.g. bicycle) given the small size of the plant. 

In light of the relevance of direct services in LCA found in this study, our recommendation to 

improve the accuracy of LCA results and overcome the limited information regarding the 

expenditures associated with the project (direct services), is to create incentives for the publication 

of budget and expenditure data from the different stages of large infrastructure projects, such as 

public acknowledgement (e.g., eco-labels), requirements in public tenders, and tax benefits. For 

example, the World Bank discloses relevant information of the projects that receive their financial 

support. In Colombia, the law 1712 of 2014 (Law on Transparency and Access to Information) 

aims to guarantee the right of access to public information. This law, however, only regulates 

public organizations. In both cases, however, the time gap between data request and acquisition 

poses restrictions to the data collection and hinders related research. Moreover, tax benefits may 

be an effective instrument to incentivize data transparency, yet their application requires the 

agreement of different stakeholders: government, private sector, and civil society. Moreover, it 

requires a clear regulatory structure to make it effective. Increasing civil awareness may be first 

step to direct the efforts towards this alternative. 

Further research would benefit from increased data gathering efforts on the full costs associated 

with services rather than just the services associated with the environmental studies needed to 

implement the project. Full cost information is commonly omitted by the project owners for 

confidentiality reasons. Moreover, extending the boundaries of the study to include the 

manufactured capital inputs, such as machinery and buildings used in production, as well as 

broadening the environment assessment with social and economic indicators can provide further 

information of the life-cycle sustainability impacts of wind power.  
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Abstract 

Energy efficiency technologies have been worldwide promoted by police makers, government 

and non-governmental institutions to decarbonize economies. In such context, Colombian 

government forecasted a total energy savings of around of 9% at the end of 2021 by promoting 

energy efficiency technologies across the different economic sectors. However, such efficiency 

goals may not be fully achieved due to the existence of the rebound effect. The rebound effect 

has the potential not only of entirely suppressing the energy savings expected, but also of 

generating additional energy demand, a phenomenon known as backfire effect. Although the 

rebound effect has been extensively studied for developed countries, there is no empirical 

evidence of this phenomenon for South American countries. Hence, this study measures the direct 

rebound effect for all energy services consuming electricity in the household sector in Colombia 

along the period 2005-2013 by applying econometric techniques in a panel data for 15 states 

around the country. The results suggest a national rebound effect of 83.4% and values ranging 

across regions between 64.7% (Atlantico) and 78.9% (Meta). Our study points out that the 

rebound effect in Colombia follows a geographic patter, with high values at the interior of the 

country, which is relevant to various stakeholders in order to make informed decisions. 

Policymakers will gain knowledge on the role of the rebound effect in planning sustainability 

goals, whereas academics and practitioners will benefit of novel data regarding the role of the 

rebound effect in Latin American economies. Given the significance of our finding about rebound 

effect in a Latin America country, we conclude with some recommendations aimed at relevant 

stakeholders. 

Keywords. Electricity consumption; direct rebound effect; developing countries 

7.1 Introduction  

Colombian greenhouse gases (GHG) emissions accounted for about 236.9 Mton CO2  (IDEAM et 

al., 2018) in 2014 (the last year for which such data is available at the writing of this article) and 

it is projected to increase by 50% in 2030 (García Arbeláez et al., 2016). Therefore, and in line 
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with the worldwide efforts to defeat climate change, Colombian government compromised to 

reduce their GHG emissions in 20% by 2030. In order to achieve such compromises, the 

government recently issued several political instruments. Specifically, the government issued the 

national climate change policy (PNCC), the Colombian Low-Carbon Development Strategy 

(ECDBC), the National Climate Change Adaptation Plan (PNACC), the National Strategy for 

Reducing Emissions from Deforestation and Forest Degradation (ENREDD+), and the National 

Climate Finance Strategy (ENFCC) (MADS, 2017). 

One of the key strategies to consider within the PNCC is the promotion of energy savings through 

efficiency improvements in all the consume energy sectors from which residential sector has 

greatest potentials. Concretely, according to estimations of the Energy Mining Planning Unit 

(UPME), the most important energy authority in the country, residential sector has a savings 

potential of 0.73% on the energy to be consumed by 2022 (UPME, 2016a).   

Colombian residential sector accounted for 38% of the 58.7 TWh consumed in 2018 and it is 

expected to increase by about 2% yearly until 2030 (UPME, 2016b). Also, it is worth noting that 

electricity accounts for 51% of the total energy consumed in this sector, followed by natural gas 

(35%)(see figure 7.1) (UPME, 2016a). Among energy services, the consumption of electricity is 

mainly triggered by refrigeration, television, and lighting (see figure 7.2) (UPME, 2016a). 

Cooking is carried out with natural gas, LPG, and in a lesser extend with electricity. Such increase 

implies challenges in terms of climate change since the electricity sector accounted for  about 9% 

of the total greenhouse gases (GHG) emitted (IDEAM et al., 2018) in 2014.  

 

Figure 7-1. Amount of energy sources consumed in the Colombian residential (urban areas). 

Source: Energy Mining Planning Unit (UPME, 2019) 
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Figure 7-2. Colombian electricity consumption by the urban residential sector and destination 

uses in 2015. Others refer to services like ironing and washing - Source: Energy Mining 

Planning Unit (UPME, 2016a). 

Savings in this sector are expected to be achieved through the implementation of several programs 

such as: replacement of incandescent bulbs, inefficient refrigerators, air conditioning and other 

appliance; the implementation of efficient burners, designs, and construction for sustainable 

housing; the substitution of the firewood in the rural and marginal areas with Liquefied Petroleum 

Gas – LPG (UPME, 2010). 

Nevertheless, the effectiveness of such kind of programs may face two particular barriers.  A low 

demand for efficient equipment, and a less than expected effectiveness (Belaïd et al., 2018). 

Efficient equipment requires investment that low income household groups cannot afford since 

82% of the total residential sector is represented by low-income groups (SUI, 2018a). This 

situation forces the government to consider subsidies so these groups can buy new efficient 

equipment’s. The less expected effectiveness may be due to the bad quality of energy retrofits, 

errors in measuring energy efficiency, and the rebound effect (RE). In this paper we focused on 

studying the direct rebound impact (Belaïd et al., 2018). 

The rebound effect is a widely accepted phenomenon introduced by Stanley Jevons in the late 

nineteenth century (1865) and popularized in the last decades by Khazzom (1980) and Brookes 

(1990). An interesting debate about this topic can be found in Berkhout and colleagues (2000), 

and Muster (1995). General speaking the RE states that a change in the technical efficiency of an 

energy service can change the overall consumption pattern of this service, due to the behavioral 

responses of economic variables such as: income, price, financial gains, product costs, and 

material substitution (Font Vivanco & Voet, 2014).  Similar definitions of the RE can be found 

in the literature (Berkhout et al., 2000; Binswanger, 2001; Brookes, 1990; Girod et al., 2010; 

Greening et al., 2000; Sorrell et al., 2009; Sorrell & Dimitropoulos, 2007; Weidema, 2008). 

Recently, the RE has reached the interest of an important number of academic, public and private 

entities due to the fact that it can negatively affect the possible environmental savings planned 

through sustainable production policies and technologies (Maxwell et al., 2011). Some examples 

of these policies are the United Nations Environment Programme (UNEP), the International 
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Energy Agency (IEA), the European Commission (EC) and the European Environment Agency 

(EEA), among others (Font Vivanco et al., 2016). 

Thus, the main research question addressed here is: “which role the rebound effect plays in the 

developing Latin American economy?”. Thereby, the goal of this study is to empirically measure 

the direct RE for all the household services consuming electricity in Colombia by analyzing a 

panel data generated at 15 different states along 2005-2013. Although, there are several studies 

about the direct RE for countries members of the Organization for Economic Co-operation and 

Development (OECD) and for developed countries, these studies unlikely represents the 

situations of developing countries where empirical measures of this phenomenon are scarce. That 

is why, this study starts filling the gaps observed around this topic in Latin American economies, 

by providing novel insights about the direct RE in Colombia, since its value has been historically 

theorized rather than empirically tested. Literature suggests that the RE varies by region and that 

it is lower than in developing countries due to an unsaturated demand for energy services (Font 

Vivanco & Voet, 2014; Lu & Wang, 2016; Sorrell et al., 2009; Thomas & Azevedo, 2013; van 

den Bergh, 2011; Yu et al., 2013). We aimed to test these statements since there is limited 

empirical evidence of them (Yu et al., 2013). 

Our study is relevant to various stakeholders: government, non-government agencies, 

policymakers, and academics which can gain knowledge on the role of the rebound effect in 

achieving sustainability goals, whereas practitioners can gain insights into the role of the rebound 

effect in Latin American economies. The content of this paper is organized as follows. Section 

7.2 provides a literature review of the rebound effect studies for electricity consumption in 

developing countries. Section 7.3 presents the theoretical and methodological aspects of the study. 

Section 7.4 provides the results found in this study, whereas section 7.5 presents their associated 

discussion. Finally, Section 7.6 provides conclusions and final remarks. 

7.2 Rebound effect. Theorical aspect and literature review. 

This section presents a short description of the direct RE and a literature review of the RE of 

electricity consumption in developing countries. 

7.2.1 Rebound effect. 

Three types of rebound effect can be distinguish: (1) direct effect, (2) indirect effect, (3) economy-

wide effect (Greening et al., 2000). The direct effects are related with the change in consumption 

or production of a single energy service e.g. electricity. The indirect effects are associated with 

changes in consumption for other goods and services apart from the improved energy service. 

Both of these phenomena are considered microeconomic effects. The economy wide effects 

represent the effect on the macroeconomics and are the result of the joined direct and indirect 

effects. Direct effects are the most studied ones due to the lack of tools and the difficulty to 

measure the other types of rebound, which associate patters of consumption and macroeconomics 

(Font Vivanco & Voet, 2014).  

The direct RE has been extensively measured through two main approaches: quasi-experimental 

approach based on measures before and after the implementation of energy efficiency 

improvements, and econometric approach based on econometrics (Sorrell et al., 2009) . The quasi-

experimental approach is rare due to the requirement of high amount of data, typically collected 
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by surveys (Freire-González, 2011; Haas & Biermayr, 2000). Methodological issues for such 

approach are associated with measures based solely before–after comparisons, without the use of 

a control group or explicitly controlling for confounding variables and measures are not randomly 

selected adding selection bias in to the studies, moreover, possible bias associated with: small 

sample sizes, large variation in the relevant independent variable, and monitoring periods that are 

too short to capture long-term effects (Sorrell et al., 2009). The econometric approach proxies the 

RE through the elasticity price of the energy services under study, commonly by econometrics 

techniques such panel data, time series, and cross-sectional analysis (Belaïd et al., 2018). The 

Rebound effect can be simply measured by eq. (7.1)  

𝑅𝑒𝑏𝑜𝑢𝑛𝑑 𝑒𝑓𝑓𝑒𝑐𝑡(%) = 100 ∗  
𝑒𝑥𝑝𝑒𝑐𝑡𝑖𝑛𝑔 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 − 𝑎𝑐𝑡𝑢𝑎𝑙 𝑠𝑎𝑣𝑖𝑛𝑔𝑠

𝑒𝑥𝑝𝑒𝑐𝑡𝑖𝑛𝑔 𝑠𝑎𝑣𝑖𝑛𝑔𝑠
 (7.1) 

 

Particularly, a rebound effect of 0% means full achievement of energy reduction, while a 100% 

means complete failure. Values greater than 100% means that the energy efficiency improvements 

increase the overall amount of energy use, a phenomenon known as ‘backfire effect’ (Sang-

Hyeon, 2007). It is worth noting that the RE is commonly study under two different conditions: 

short and long term. Difference relies on either the variables are fully adjusted and in equilibrium 

(long term) or not (short term). 

Under certain circumstances, the direct RE can be studied using the econometric approach 

through efficiency measures of the energy services (Berkhout et al., 2000; Khazzoom, 1980; 

Sorrell, 2007; Sorrell & Dimitropoulos, 2007) as: 

        η𝜀(𝐸) = η𝜀(𝑆) − 1 (7.2) 

 

Where η𝜀(𝐸) represents the efficiency elasticity of the demand for energy and η𝜀(𝑠) is the energy 

efficiency elasticity of the demand for useful work on an energy service. When η𝜀(𝑠) = 0, there 

is no direct rebound effect. When η𝜀(𝑠)  > 0, η𝜀(𝐸) < 1 and there is a positive direct rebound 

effect. Finally, a η𝜀(𝑠) > 1 means that the demand is elastic and there exists “backfire” (Saunders, 

1992). Due to the difficulty to measure ε, the direct RE is mainly approached by the price on 

price-elasticity of energy demand as follows (Berkhout et al., 2000; Sorrell, 2007; Sorrell & 

Dimitropoulos, 2007). 

        η𝜀(𝐸) = −𝜂𝑝𝐸
(𝐸) − 1 (7.3) 

 

Where 𝜂𝑝𝐸
(E) represents the price elasticity of the energy demand (in this paper the price elasticity 

of the demand for electricity). Eq. (6.3) is based on symmetry and exogeneity assumptions. 

Symmetry implies that consumers respond in the same way to energy price decline and energy 

efficiency improvement, whereas exogeneity implies that energy prices change can not affect 

energy efficiency (Z. Wang et al., 2014).  

Lastly, as mention above the RE can be quantified, depending of the quality of data available, by 

different measures either the energy efficiency elasticity of the demand for useful work on an 

energy service or the price elasticity of the demand for electricity, among others (Sorrell & 

Dimitropoulos, 2007). It is worth noting that the latter one may overestimate the real value of the 

RE. preferer measures are the energy cost elasticity of the demand for useful work 𝜂𝑝𝑆
(𝑆) or the 
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energy cost elasticity of the demand for energy 𝜂𝑝𝐸
(𝑆). See Sorrel & Dimitropoulos ((2007) for 

detail definition and limitations of the different definition of the RE. 

7.2.2 Literature review of the rebound effect of electricity 

consumption in developing countries 

Literature suggest that the RE may be higher in developing countries due to the unsaturated 

demand for energy services (Font Vivanco & Voet, 2014; Lu & Wang, 2016; Sorrell et al., 2009; 

Thomas & Azevedo, 2013; van den Bergh, 2011; Yu et al., 2013). According with Van den Berg 

(van den Bergh, 2011) the magnitude of the RE is higher  in developing countries than in 

developed ones for several reasons. First, developing countries often show a higher growth rate 

than in developed countries, retaining higher potential for increased energy intensive-

consumption. Second, the cost of energy in developing countries is relatively higher than in 

developed countries. Third, developing countries are far from saturation in their consumption of 

essential energy services such as lighting. Fourth, developing countries may “technologically 

leap-frog”, in terms of energy-efficient technologies as well as new energy-using devices. Fifth, 

lower education and less availability of information in developing countries possibly contribute 

to decision-making by firms, households, and governments that do not take all relevant economic 

and associated energy use effects into account at the time to establish public policies. 

Empirical evidence of the direct RE for energy services consuming electricity in households 

among developing countries has focused on countries from Asia and Africa (see table 7.1). The 

value of the RE varies significantly depending on the region, the level of income and the method 

applied to test it. Zhang and Peng (2017) applied a panel threshold for the time span 2000–2013 

and suggested that the direct RE for the low-income household level in China is 68%, whereas 

for the high-income households level this effect was estimated to be 55%. Across regions 

(provinces), Wang et al. (2014) used a panel data with 30 provinces of China along the period 

1996-2010, suggesting that the direct  RE ranges 72% (short term) and 74% (long term).  

Measurements for the direct and indirect RE in China suggest that this phenomenon is 

significantly higher than the indirect rebound RE. Lu & Wang., (2016) applied an energy input-

output data E-I-O and scenarios simulation to study the direct plus indirect rebound effect in china 

with a provincial panel data from 1996 to 2010. Their results indicate that direct plus indirect 

partial rebound effect is 79% (long-term) and 78% (short-term) from which the direct effect is 

72% in the long-term and 74% in the short term. Similarly, Wang et al. (2016), applied similar 

models for estimating a direct and indirect RE in Beijing for the period 1990-2013 suggesting that 

the direct RE is 40% (long-term) and 15% (short-term), whereas the indirect RE in the short-term 

ranged from 8% to 21%, and the long-term effect ranged from 6% to 15%. Their results imply 

that efficiency improvements in residential electricity use had little effect on the implicit energy 

consumption associated with other goods and services in Beijing. 

Alternatively, Sang Hyeon (2007) found that the direct RE in south Korea ranged 38% (short 

term) and 30% (long term) during the period 1975–2005, and provide a direct RE estimation via 

surveys for air conditioners between 57–70%. Also, Alvi et al.,(2018) used the time series data 

from 1973 to 2016 generated in Pakistan and suggested a RE around 43% (short term) and 70% 

(long term).  
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Labidi and Abdessalem (2018) provide the only study that empirically measures the direct RE for 

an African country (Tunisia). Using a balanced panel data set for a sample of 21 cities in Tunisia 

over the period 1995, 2000, 2005 and 2010, the authors provided the highest measure of the 

studies reviewed (RE =81%). Moreover, they argued that the direct RE could be reduced to 71.9% 

if the subsidy granted for the residential electricity consumption is removed by the state. 

Results provided by Su (2018) in Taiwan are significant valuable given the fact that the author 

measures the RE though a survey rather than through aggregate data. In this case, measures are 

provided by different energy services such as air conditioner (72%), lightning (11%), TV (3%), 

and refrigeration (70%). Its study was carried on via surveys with 7677 household data between 

the period 2014-2017. Moreover, the author suggests an average 33% RE for all appliance 

consuming electricity. 

Finally, Fox and colleagues (2012) found a direct RE in US of 8%, whereas Freire-González 

(2010) estimated a direct rebound effect of 35% in the short term, and 49% in the long term in 

Catalonia Spain  

Literature review points out two critical outstanding research gaps. First, existing studies show 

that the rebound effect is significantly higher (RE> 30%) in developing than in developed 

countries (RE< 30%). Second, studies also show that measures in Latin American economies 

have been systematically omitted, mainly because the data required to conduct such studies are 

not available and have poor quality (Economic Consulting Associates, 2014; Sorrell & 

Dimitropoulos, 2007). These findings support the motivations of this study. 
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Table 7.1. Studies in developing countries related with the electricity residential consumption 

Author Country Rebound effect Magnitude % Method 

Sang-Hyeon (2007) South Korea  Direct 
38 Short term                           

30 Long term 
Price elasticity 

Freire-González (2010) Spain Direct 
35 Short term 

49 Long term 
Price elasticity 

Fox and colleagues 

(2012) 
US Direct 8 Long term Price elasticity 

Wang et al.,(2014) 

Lu and Wang (2016) 

China 

China 

Direct 

Direct plus 

Indirect 

72 Short term                             

74 Long term 
Price elasticity 

Price elasticity and Energy Input output data 
78 Short term              

79 Long term 

Wang et al.,(2016) 
Beijing, 

China 

Direct and  

Indirect 

16 Direct short term                   

40 Direct long term                           
Price elasticity and Energy Input output data 

   
8-21 Indirect short term                             

6-15 Indirect long term 
 

Zhang and Peng (2017) China Direct 72 Long term Price elasticity 

Labidi and Abdessalem 

(2018) 
Tunisia Direct 81 Long term Price elasticity 

Alvi et al.,(2018) Pakistan Direct 
42,9 Short term                

69,5 Long term 
Price elasticity 

Su (2018) Taiwan Direct 33 Long term Surveys  
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7.3 Theoretical and methodological aspects 

This section presents the econometric method and the different variables used to measure it in the 

study. 

7.3.1 Rebound effect 

This section presents the estimation of the RE for all energy services consuming electricity in the 

Colombian household sector. Following Haas and Biermayr (2000), the price and income 

elasticities can be estimated through econometric models. Thus, to measure the long-term RE 

among all energy services consuming electricity in the Colombian household sector, the following 

model is applied: 

𝐿𝑛(𝐸𝑖𝑡) = 𝛼 + 𝛽1𝐿𝑛 𝐸𝑃𝑖𝑡 + 𝛽2𝐿𝑛 𝐺𝑃𝑖𝑡 + 𝛽3 𝐿𝑛 𝐺𝐷𝑃𝑖𝑡 + 𝑢𝑖𝑡 (7.4) 

Where α is a constant, β1- β3 are the parameters to be estimated, with β1 = 𝜂𝑝𝐸
(E), and 𝑢𝑖𝑡 

represents the random error term. Eit: Is the explanatory variable and represents the electricity 

consumption in GWh per habitant (number of households with electricity services) in the state i 

and period t of the households. 𝐸𝑃𝑖𝑡: represents the price of electricity in the state i and period t. 

We calculate EP as a weighted average price for each year between the electricity price for the 

different household income levels. 𝐺𝑃𝑖𝑡: Price of the household gas, as substitute good, in the 

state i and period t. 𝐺𝐷𝑃𝑖𝑡: Represents the income variable per capita (number of households with 

electricity services) measured for the gross domestic product GDP divided by the number of 

households with electricity service in the state i and period t. This variable is selected as an 

estimation of the household income since the desegregated data for the income variable, provide 

by the official entity in charge, is in terms of GDP as a whole. 

Additionally, and given the fact that the consumption of electricity is strongly positive correlated 

with the winter or summer seasons, plenty studies include a climatic variable into their analysis. 

Several authors included the heating degree days HDD and/or the cooling degree days CDD as 

explanatory variables (Alvi et al., 2018; Freire-González, 2010; Haas & Biermayr, 2000; 

Hartman, 1988; Labidi & Abdessalem, 2018; Lu & Wang, 2016; Sang-Hyeon, 2007; Z. Wang et 

al., 2014; Zhang & Peng, 2017). Those studies have been conducted in countries of Europe and 

Asia which have seasonal temperatures. This implies that they experience extreme temperatures 

during the summer and winter, and therefore the consumption for calefaction or refrigeration 

raises the electricity consumption. In this study, the variable Heating Degree-Days (𝐻𝐷𝐷𝑖𝑡) (base: 

18°C) of Colombia in period t and state i has been included to account for the climatic variable; 

however, the statistical test suggested that the climatic variable is not significant for the 

Colombian case (see supporting information S7.1 for results of the model with 𝐻𝐷𝐷𝑖𝑡 variable). 

Therefore, the climatic variable was removed from the final econometric model. This meanly 

because Colombia is located in the tropic region and it does not have seasons. Then, the 

temperature does not change significantly over the year.  

It is worth mention that different models were develop in order to find the most suitable model 

for the analysis. A model without the variable GP and other with the GDP variable gross domestic 

product without any conversion were tested. Both models result less significance (see supporting 

information S7.2). 
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To determined which regression model applied (random effects, fixed effects, or pooled 

regression),  we follow Montero (2011) procedure. We use fixed effects because the null 

hypothesis of both Breusch-Pagan and Hausman was rejected, indicating that there exist un-

observable components associated with each department and there are systematic differences 

between the estimators (fixed and random). For a detail description of the procedure see the 

supporting information S7.3. 

7.3.2 Data collection 

Colombia counts with 33 states including the capital city (Bogotá). Information for all the 

variables mentioned above were collected for all the states along 2005-2017. However, and due 

to the lack of information and accuracy for some states, a sample of 15 states (Antioquia, 

Atlántico, Bogotá, Bolivar, Boyacá, Caldas, Cundinamarca, Cordoba, Huila, Magdalena, Meta, 

Risaralda, Santander, Tolima, and Valle del Cauca) was finally selected for the period 2005-2013. 

These states accounts for 56% of the gross domestic product and 80% of the total housing units 

in 2013 (DANE, 2018c, 2018a).  

Data of the total household gas and electricity consumption, the number of households, price of 

natural gas and electricity was obtained for every year and state under study from the 

superintendence of domiciliary public services (SUI by his acronym in Spanish) (SUI, 2018b) see 

supporting information S6.4 for descriptive analysis for the number of households with electricity 

services and price by income level). Data of the income was obtained from the National 

Administrative Department of Statistics (DANE by his acronym in Spanish) (DANE, 2018d), all 

the monetary variables are in constant price from 2005 and was collected for every year and state 

under study. The time period of the data is annually (see table 7.2). present some descriptive 

statistics for the sample. 

Table 7.2. Descriptive statistics of the variables of 15 States in Colombia, 2005–2013. 

Variable Mean Std. Dev. Min Max 

E 923.178 868.083 0.966 3,280.433 

EP 384.934 98.953 217.026 576.969 

GP 910.87 329.241 303.7163 2,2112.558 

GDP 0.152 1.237 0.015 14.401 

E. electricity consumption per subscriber of electricity services, EP. Electricity price, GP. Gas 

price, GDP gross domestic product per subscriber of electricity. All variables 2005 current 

prices. Source: author's calculus. 

 

7.4 Results 

Results for the RE at national level was estimate using a random effect model. The panel data 

regression suggests that the direct RE for all household energy services consuming electricity is 
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83.4% (see table 7.3). Thus, only 16.6% of the potential savings are achieved. Except for GDP, 

all the variables where significant at 90% or higher confidence level.  

 

Table 7-3 Random Effects Model: Total electricity demand in households 2005-

2013. Panel of 15 states of Colombia. Generalized Last Squares (GLS) estimation 

(cross-section weights). N=135. 

Variable Coefficient z-statistics Prob. 

α -6.3437  -6.14  0.000** 

lnEP -0.8345 -3.16 0.002 

lnGP 0.5539 2.8 0.005 

lnGDP -0.3368 -4.42 0 

Adjusted R-squared  
 

 

Within 0.0871   

Between 0.5673   

Overall 0.2371   

Wald Chi2 29.36  0.0000*** 

Signif. codes:  *** at 1%, ** at 5%, *a t 10%. 

To estimate price elasticities by states, we use the random-effects model with dummy variables 

for each of them; although the Breusch-Pagan test suggested not reject the null hypothesis that 

𝑉𝑎𝑟(𝑣𝑖) = 0. However, pooled regression estimates were equal to random effects ones 

(supporting information S7.5). Since it was not possible to estimate the slope interactions by states 

using the pooled model, we apply a random effect model to account for such effects. Due to the 

perfect collinearity found in this model, the natural log of energy price was omitted, then the 

estimation shows the state-rebound effect for every cross-section units. 

The results suggest that the direct RE for all household energy services consuming electricity in 

the long term, is present for all the states but in different ranges. We found values from 64.7% in 

Atlantico to 78.9% Meta (see table 7.4). Almost all the variables are significant at 90% of 

confidence except the log of GP and the states of Atlantico, Cordoba and Magdalena. 

 

 

Table 7-4 Random Effects Model: Total electricity demand in households 2005-2013. 

Generalized Least Squares (GLS) estimation (cross-section weights) with interactions 

between State dummy variables and Log of energy consumption. Yearly data for 15 

states. N=135 

Variable Coefficient z-statistics Prob. 

lnGP 0.551 1.64 0.103 

lnGDP -0.270 -2.96 0.004** 

lnEP_Antioquia -0.742 -1.74 0.084* 

lnEP_Atlantico -0.647 -1.51 0.133 

lnEP_Bogotá -0.732 -1.72 0.088* 
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lnEP_Bolivar -0.783 -1.83 0.07* 

lnEP_Boyacá  -0.706 -1.83 0.069* 

lnEP_Caldas  -0.749 -1.89 0.061* 

lnEP_Cundinamarca -0.725 -1.76 0.081* 

lnEP_Córdoba -0.710 -1.65 0.101 

lnEP_Huila -0.786 -1.83 0.07* 

lnP_Magdalena -0.659 -1.54 0.125 

lnP_Meta -0.789 -1.91 0.058* 

lnP_Risaralda -0.738 -1.84 0.068* 

lnP_Santander -0.775 -1.86 0.065* 

lnP_Tolima -0.783 -1.91 0.058* 

lnP_Valle_del_Cauca -0.718 -1.72 0.089* 

α -6.694 -6.42 0.000*** 

Adjusted R-squared 0.3025   

F-Statistic 4.42   

prob-F 0.000   

Root MSE 0.51565   

Signif. codes:  *** at 1%, ** at 5%, *at 10%. 

7.5 Discussion 

Results for the direct RE at national level are slightly higher (83.4%) compared with existing 

studies for developing countries (see Table 7.1). RE in Colombia appears to follow a geographic 

pattern, with higher values in those states located at the interior of the country (Meta, Huila, and 

Tolima), whereas low values (Atlántico, Magdalena, and Cordoba) were observed for those states 

located on the coast of the country. The reason for such patters is a high demand of electricity in 

the coast where the yearly average temperature is above 28 degrees (NOAA, 2017), thus the high 

amount of electricity is associated with the demand of additional energy services for refrigeration 

and air conditioning. These services are not needed or are consumed in smaller quantities in the 

center of the country, leading to a saturated energy consumption in the coast. In 2013 the monthly 

amount of electricity consumed by household in the coast was 239.12 kWh (Atlántico), 216.62 

kWh (Magdalena), and 182.14 kWh (Cordoba). At the interior of the country the consumption 

was 130.94 kWh (Meta), 118.58 kWh (Huila), and  100.26 kWh (Tolima) (DANE, 2018b; SUI, 

2018a). 

Difference between the result at national level (83.4%) and at the state level (64.7% - 78.9%) may 

be explained by the level of aggregation. Similar results were observed between the national and 

regional level for the long term RE for road freight transport in China. Wang & Lu (2014) 

estimated a long term RE of 84% at the national level, whereas for three different regions (eastern, 

central and western) the magnitude of the RE ranges from 52% to 80%. It is worth noting that 

results at national and state, other than at the regional level for the RE of residential electricity 

consumption were not found on the literature, therefore more adequate comparations were not 

possible. 

In our model and different from the studies reviewed (see table 7.1), the coefficient of the variable 

GDP is negative; this may be explained by the particular conditions of the Colombian electricity 
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sector. The household sector in Colombia is stratified in six levels according to the socioeconomic 

state and income. While levels one to three are considered low income, the level four, five and 

six jointly are labeled as middle and high income, respectively. Such disaggregation plays an 

important role in the residential electricity consumption given the existence of a scheme of 

subsides for the final price to pay for electricity. Particularly, there is a mixed subsidy system 

where the high-income levels and the commercial consumers pay an additional fee (contributions) 

on the price of electricity (20% of the price) to subsidize the low-income levels (cross-subsidy). 

Additionally, the Government subsidize a portion (direct subsidy) when the contributions are not 

enough (CREG, 1997a). This fact becomes significant given that low income households accounts 

for 80% residential electricity consumption in Colombia (SUI, 2018a) and receive up to 60% of 

subsides in the price of the electricity (CREG, 1997b). However, it is highlighted the coefficient 

of GDP was not significant in our model, which suggests that more research is needed to make 

significant conclusions. 

Comparing with existing studies, the contrasting results found here have several explanations (i) 

the data processed, (ii) the method applied, and (iii) the particularities of each country. Regarding 

the data and method applied our study used panel data at state level along nine years (2005-2013), 

whereas other authors include large timespan. Sang-Hyeon (2007) included data for thirty years 

(1975-2005). Wang et al.,(2014) evaluated four years (1996-2010) of a provincial data set in 

China, whereas Alvi et al., (2018) used an aggregate data with forty-three years (1973-2016) in 

Pakistan.  The above authors applied the method developed by  Hass and Biermayr (2000) and 

Dargay and Gately (1997) to tackle the assumption of symmetry (demand responds in the same 

way as the energy price and energy service price declines or increases) imposed in the theoretical 

framework (see section 6.3). Specifically, the method decomposes the price of the electricity in 

three different components, Pmax (the highest price in history), Pcut (prices fall), and Prec (price 

recovery) from which the Pcut stands for the direct RE. In this way, only the factors affecting the 

energy price drop are taking in account and overestimations are avoided. 

Other important difference is the type of data applied, while above studies use panel data for 

different states or provicens, Zhang & Peng (2017) used data for thirteen years (2000-2013) for 

income level (low, middle, and high). Particularly, Labidi & Abdessalem (2018) used a balanced 

panel data set for a sample of 21 cities in Tunisia over the period 1995, 2000, 2005, and 2010 and 

studied the rebound effect in two cases (with subsidies and without subsidies of the government 

for the electricity).  

Regarding the variables included in the econometric models, it is noted that the studies reviewed 

commonly include a variable accounting for a substitute good (in this case natural gas) and a 

climatic variable into their analysis, since the consumption of electricity is strongly positive 

correlated with the winter or summer seasons. In the case of the Colombia household sector, 

natural gas is used as a substitute of electricity mainly for cooking and in less proportion for water 

heating (see section 7.1)(UPME, 2016a). Significance of these variables in our models (see tables 

7.3-4) suggests that natural gas is positive correlated with the consumption of electricity, meaning 

that the consumption of electricity increase ones the price of the natural gas increase. A similar 

procedure is applied by Freire–Gonzáles (2010) but natural gas was excluded from the final 

models given his non-significance. 

Moreover, several authors (see table 7.1) applied an error correction model (ECM) to capture the 

effect of the RE in the short-term. Yet, in these models all the variables should be non-stationary 
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in order to perform correctly. In our study, these pre-conditions are not satisfied by all the 

variables (see supporting information S7.6), then the ECM cannot be performed since the 

variables are not co-integrated (they do not share a common stochastic path). The reason of such 

results may be explained by the small number of periods included in this study 2005-2013 (9 

years). 

Limitations of our study to be addressed in the future include. (i) The quality of the data obtained 

from national datasets has several gaps, especially for the information accounting for the number 

of households with electricity services; for some states, such data was available only along the 

period 2005-2013. Furthermore, when the data was available, there were gaps in information. 

Thus, the number of households with electricity services for all the income has missing values. 

(ii) Due to the lack of information for such level of desegregation, the household income variable 

had to be calculated as gross domestic product divided by the number of households with 

electricity services. More desegregated information for GDP in Colombia can be found for 

GDP/per capita, implying that this variable may add uncertainties into the results. (iii) The price 

of the electricity was estimated as a weighted average of the price of electricity for each household 

income level (Colombian electricity regulated market has six different prices for the electricity 

depending on the income levels). Low-income levels have a subsidy of up to 60% in the electricity 

price to pay. In contrast, the high-income levels have to pay a 20% extra contribution on the 

electricity cost (CREG, 1997b). Information to differentiate the price of the electricity without 

the number of subsidies and contributions was not possible to find. 

Furthermore, uncertainties included by the assumptions of symmetry and exogeneity may be 

present in the study. Authors like Hass and Biermayr (2000) and Dargay and Gately (1997) have 

cited the assumption of symmetry, as a matter of interest when studying the rebound effect. In 

our study, a model with a price decomposition was build up but the result was not significant (see 

supporting information S7.7 for model with price decomposition). Reasons for such results may 

be attribute to the quantity and quality limitations discussed above. Other source of uncertainties 

comes from (i) the  relationship between the rebound effect and the costs of capital (Freire-

González, 2010). It would be necessary to estimate the indirect and economy-wide effects to 

obtain the total magnitude of energy efficiency improvements in households. It is worth noting 

that the direct and indirect RE are likely to be inversely proportional. A large direct RE (e.g this 

study) implies that an important part of the savings will be re-spending in additional electricity 

consumption leaving less income to be re-spending in others services and (ii) the correlation 

between rising energy prices and investments in energy efficiency. Preferred measures of the 

direct rebound effect may include efficiency elasticities, energy service price elasticities, and 

energy price elasticities, in searching for controlling self-selection of efficient appliance purchase 

(Thomas and Azevedo, 2013); such measures become significant when the rebound effect is 

estimated through hybrid methods (direct + indirect rebound effect) (L. Wang et al., 2019). 

The combination of both limitations and uncertainties may bias the results. Therefore, it is worth 

mention that the R2 obtained in the general model (see table 6.3) indicate that the variables 

included in the model explain only 9% of the electricity consumption. Contrary to similar studies 

(see table 6.1) where variables such as electricity price, GPD, and population (here as the number 

of households with electricity services) explain more than 80% of the electricity consumption. 

Such differences may be attributed to (i) the quality of the data (discussed above) and (ii) the 

omission of variables that could be related to the electricity consumption, such as rates of 

ownership of electrical appliances, number of persons per household, age of the members in the 
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families, amount others (Su, 2018). Additionally, the variability associated to the variable number 

of households with electricity services may affect the results.  Hight variability across the years 

and income level was found for some states: Risaralda (between 15% - 155%) and Santander 

(14% - 176%). Whereas, low values of variability are presented in the states of Antioquia 

(between 2% - 17%) and Bogota (between 3% - 9%), where two of the most important cities 

(Medellin and Bogota, respectively) are located; the states of Cordoba and Huila follow similar 

patterns of variability (see supplementary information S7.6.1). 

Future research aims at different areas should cover efforts to improve the quality of the data and 

to insulate the effect of the subsidies and contribution from the electricity price. Furthermore, 

efforts should be made to study the direct rebound effect of residential electricity consumption at 

different levels of desegregation, as the RE change significantly depending on the level of income 

or the region. Results of this study suggest that the rebound effect follows a geographic pattern, 

yet the causes of such patters need to be studied. Future research should focus on studying the 

rebound effect at regional and city levels. Moreover, studying the rebound effect by income levels 

may reveal different patterns, particularly attributed to the fact that 80% of the Colombian 

population belongs to the low-income level. Finally, studies of different energy services, e.g., 

transport, should be encouraged mainly because the transport sector is responsible for around 12% 

of the GHG emissions in Colombia (IDEAM, 2016). Then, efficiency polices that seeks to reduce 

such values may not be achieved for the effect of the rebound effect. 

7.6 Conclusions 

The RE has been extensively studied in the last decades in developed countries for several energy 

services such as transport, household heating and cooling, and electricity (Sorrell et al., 2009). 

Measures for the RE in developing countries have been systematically omitted from literature and 

estimations are assumed rather than empirically measured. In this sense, this paper empirically 

estimates the direct rebound effect for all household energy services consuming electricity in 

Colombia, through a panel data of 15 states over the period 2005-2013. The results obtained 

indicate the existence of a direct rebound of 83.4% for the long-term, supporting the hypothesis 

that the rebound effect may be more significant in the developing than in developed countries. 

The RE has several implications for police makers given the fact that it can undermine the 

environmental savings planned through sustainable production policies and technologies 

(Maxwell et al., 2011). In this regard, the results show that the RE for electricity consumption in 

the Colombian household sector has a non-negligible value, which implies that a drop of 1% in 

the price of the electricity will increase the demand by 0.834%. This result is significantly 

important for the Colombian government due to the high number of resources that are planning 

to be invested in efficiency improvements for the production and consumption of electricity. 

Concretely, electricity efforts have been put into strategies for consumption improvements such 

as the replacement of refrigerators and LED bulbs. Then, not considering the rebound effect may 

reduce the effectiveness of such energy and environmental policies. 

Furthermore, it should be noticed that the potential savings gained by the above strategies are 

likely to be spent not only on energy services that are close to saturation such as lighting or 

refrigeration, but also on water heating, air conditioning and other services such as the internet. 

Additionally, income effects (indirect rebound effects) arising from such strategies should be 
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taken in account since indirect energy requirements of households are bigger than the direct 

energy requirements (Dimitropoulos, 2007). Such additional consumptions may increase the 

productivity of the country alongside the energy demand. Moreover, understanding the 

environmental impacts (environmental rebound effect) associated with the additional 

consumption of energy (both direct and indirect rebound effects) will provide a better perspective 

on the real implications of such efficiency improvements on the economy (Vélez-Henao et al., 

2020). 

The Colombian Government is encouraged to account for the importance of the rebound effect 

and develop instruments to control it in order to achieve the commitments made in the COP 21 

and the national efficiency targets. Some useful mechanisms to do it may be including economic 

instruments e.g., taxes and programs and campaigns, for the efficient use and saving of energy. 

Particularly, the last one has proven to have positive and significant impacts on the consumption 

of electricity e.g. the "Apagar Paga" campaign launched by the Government to reduce energy 

consumption through economic incentives, which also encouraged savings and penalize 

additional consumption based on average electricity consumption of the houses in the household 

sector. This example represents efforts that were translated into a significant reduction in the 

growth of consumption, a key factor to avoid given the emergency caused by the El Niño 

phenomenon in 2016-2017.  
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Abstract 

Colombia aims to diversify and decarbonize its energy sector by encouraging the use of non-

conventional renewable resources. Policies and/or measures to achieve this will presumably help 

to achieve national and international environmental goals, yet potential rebound effects may 

reduce its efficacy by triggering additional demand and environmental burdens. One of such 

rebound effects may take place as household demand rises in response to cheaper electricity prices 

due to the increasing shares of wind power. This study assesses the environmental rebound effect 

(ERE) in the household sector from increased shares of wind power into the Colombian power 

grid, across six environmental impacts and for the period 2020-2030. The method used combines 

life cycle assessment, input-output modelling, energy system modelling, econometrics, and re-

spending modelling. The results show that the ERE has the potential to partially, and even 

completely, offset any environmental savings (backfire effect), depending on the specific impact, 

year, and modelling choices considered. The magnitude of the ERE (as the percentage of potential 

environmental savings that are offset) ranges highly across impacts, from a negligible 1% 

(eutrophication) to a staggering 9,241% (photochemical ozone creation). The ERE has thus the 

potential to render decarbonization policies largely ineffective, which calls for rebound mitigation 

policies, such as environmental taxes. 

Keywords: Environmental rebound effect, non-conventional renewable resources, wind power, 

households, backfire effect. 

8.1 Introduction 

The energy sector in Colombia is the second largest emitter of greenhouse gas (GHG) emissions 

in the country, accounting for about 35% of the 236.9 Mton of CO2 emitted in 2014 (see figure 

https://doi.org/10.1016/j.enpol.2020.111697
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8.1).2 About 28% of the GHG emissions of the energy sector come from electricity and heat 

production (IDEAM et al., 2018), mainly from the combustion of coal and natural gas, which still 

have a substantial presence in the energy mix (70% hydro, 18% coal, 12% Gas, <1% wind in 

2014) (see figure 8.2) (UPME, 2019a). Moreover, the current energy mix poses challenges for 

ensuring a continuous electricity supply during climatic variations such as the “El Niño” 

phenomenon, due to rainfall decrease which feeds the dams (Vélez Henao and Garcia Mazo, 

2019). To meet the rising electricity demand while diversifying and decarbonizing the energy 

system, the Colombian government plans a sizeable increase in the share of non-conventional 

renewable resources (NCRRs, such as wind and solar power) (UPME, 2016a). Specifically, the 

government issued the law 1715, with the purpose of promoting energy and environmental 

efficiency in the energy sector (Congreso de la Republica, 2014). This policy seeks first to 

promote NCRRs to protect the electricity grid against the effects of the “El Niño” phenomenon. 

Second, to achieve the commitments made in COP 21 to reduce carbon emissions by 2030 (Vélez 

Henao and Garcia Mazo, 2019). Third, to align energy policies with the 7th sustainable 

development goal (SDG): guarantee the access for renewable and sustainable energy (United 

Nations, 2017). 

 

 

Figure 8-1. CO2-equivalent emissions by economic sector in Colombia for the period 1990-2014. 

IPPU: industrial process and product use; Energy others: oil refining, solid fuel manufacturing, 

manufacturing and construction industries, other sectors, and fugitive emissions; AFOLU: 

agriculture forestry and other land use (IDEAM et al., 2018). 

 
 

2 This was the last year available at the writing of this article. 
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Figure 8-2. CO2-equivalent emissions by electricity production technology. Source: own 

elaboration based on UPME (2019a) for the share of each technology in the energy mix and the 

CO2 eq emissions for each technology obtained from the ecoinvent 3.4 database. 

Consequently, the Colombian government plans a sizeable increase in the share of NCRRs to 

meet the rising of electricity demand (UPME, 2016a). Among these, wind power is expected to 

receive a considerable boost, from a marginal share of 0.1% in 2016 to a share between 2% and 

7% in 2030 (727 MW to 1,456 MW of new wind power installed). Such expansion will mainly 

depend on the available space in the Guajira region, where wind farms are expected to be installed. 

This expansion is expected to entail environmental savings in the production of electricity 

(UPME, 2016a). 

The potential environmental savings from increasing the shares of NCRRs in the energy mix can, 

however, be totally or partially offset by the so-called rebound effect (Freire-González and Font 

Vivanco, 2017). The rebound effect has been extensively studied for energy uses (Berkhout et al., 

2000; Binswanger, 2001; Brookes, 1990; Girod et al., 2010; Greening et al., 2000; Sorrell et al., 

2009; Sorrell and Dimitropoulos, 2007; Weidema, 2008). This effect has caught the attention of 

scholars and public and private institutions during the last decades, due to its potential to fall short 

of key environmental targets (Font Vivanco et al., 2016c). Some examples include the United 

Nations Environment Programme (UNEP), the International Energy Agency (IEA), and the 

European Environment Agency (EEA). For further details about the rebound effect as a policy 

issue, see Font Vivanco et al. (2016a). 

Current trends show that NCRRs (particularly solar and wind) are both cheaper (Gielen et al., 

2019; Kaberger, 2018) and have a better environmental performance than fossil fuels (Turconi et 

al., 2013). An increase in the share of NCRRs into the Colombian power grid may thus lead to a 

drop on the electricity price, causing an increase in available income, and consequently additional 

demand that offsets some or all of the initial expected environmental savings (Freire-González 

and Font Vivanco, 2017). An increase in the demand for the product subject to an efficiency 

improvement, electricity in this case, is generally known as the direct rebound effect (Greening 

et al., 2000). The increased demand of other goods and services (e.g., food or housing) is 
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commonly known as the indirect rebound effect (Greening et al., 2000). In some cases, direct 

and/or indirect rebounds have the potential of not only entirely suppress the environmental 

savings achieved, but also generate additional environmental issues, a phenomenon known as 

backfire effect (Sorrell et al., 2009). Rebound effects can be expressed through a wide range of 

environmental issues, and are sometimes framed under the environmental rebound effect (ERE) 

concept (Font Vivanco and van der Voet, 2014; Freire-González and Font Vivanco, 2017; 

Goedkoop et al., 1999). Key strengths of ERE applications are the use of technology-detailed 

environmental-economic models, such as life cycle assessment, and the use of life-cycle 

environmental impact indicators (e.g. impacts on ecosystems and human health) (Freire-González 

and Font Vivanco, 2017; Weidema, 2008). 

Given the fact that the ERE can undermine the efforts made by the Colombian government to 

decarbonize the electricity grid and the economy, the goal of this study is to obtain empirical 

evidence of the ERE from increasing the shares of NCRRs into the Colombian energy mix. To 

gain insight into the potential environmental consequences of a transition of the Colombian 

energy system to NCRRs (empowering by the issued law 1715), we conduct a case study based 

on a representative simplified energy model which accounts for half of the actual Colombian 

energy mix. We measure the ERE of a potential drop in the electricity price caused by the 

predicted increase of the share of wind power into the Colombian energy mix. An analysis like 

this has not yet been addressed in the literature. Compared to other measures of the ERE, this 

study provides, for the first time, a comprehensive assessment of the potential consequences of 

an environmental energy law under the framework of the ERE. Our study is relevant to both 

policymakers and practitioners. Policymakers will gain knowledge on the role of NCRRs in 

achieving sustainability goals, whereas practitioners will gain insights into the role of rebound 

effects in the context of multiple environmental pressures. The study of the ERE is in its infancy, 

with only a handful of empirical estimates available (Freire-González and Font Vivanco, 2017). 

This paper is organized as follows: section 8.2 provides the materials and methods applied to 

address the direct and indirect ERE from increasing the share of wind power in the Colombian 

energy mix. Section 8.3 shows the results for two case studies, section 8.4 the sensitivity analysis, 

section 8.5 discusses the results, and section 8.6 presents the main conclusions. 

8.2 Case study design, sources of data and methods 

This section briefly presents the electricity demand in Colombia by sectors, with a focus on the 

household sector. It further introduces the case of study, focusing on the ERE in the household 

sector due to a future increase in the shares of wind power in the energy mix. It concludes with a 

description of the data and methods used in the research. 

8.2.1 Colombia electricity demand in brief 

The Colombian final demand for electricity has been steadily increasing since 2006 (40.23 TWh) 

to 2018 (58.77 TWh),3 and such demand is expected to further increase by about 2% yearly until 

2030 (UPME, 2016a). The household sector represents the 42% of the total electricity 

consumption, whereas the industrial sector accounts for the 20%, and the construction, 

 
 

3 This is the last period with official data reported. 
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agriculture, and transport sectors represent jointly the 38% (UPME, 2019b). Consumption of 

electricity in urban households (85% of the total household sector) is dominated by energy 

services such as refrigeration, lighting, and cooking (UPME, 2016b). Low-income households 

consume more electricity (5.92%) compared with middle (3.01%) and higher (1.85%) income 

levels ones (The Word Bank, 2010). It is worth noting that around 88% from the total amount of 

households are connected to the energy mix (around 12 million of households) (SUI, 2018). 

8.2.2 Introduction of non-conventional renewable resources in the 

Colombian power grid 

This case study focuses on the ERE from households, due to the introduction of wind power in 

the Colombian power grid. The time horizon of the study is the period between 2019 and 2030, 

at the end of which the amount of wind power into the power grid will have achieved a relevant 

proportion (UPME, 2016a). Moreover, 2030 is the deadline to accomplish the carbon mitigation 

targets made in the COP 21 (MADS, 2017). A representative simplified energy model has been 

used4. It includes the main electric power plants within the current national energy system, 

representing 8,910.4 MW or 51% of the installed capacity in 2018. The rest of the plants are 

excluded due to the absence of data regarding their costs (installation, operation, and 

maintenance) (XM-Filial de ISA, 2018). Table S8.1 in the supplementary data shows the plants 

included in the study. 

To keep the relative shares of wind power between the energy mix and our simplified energy 

model, we have chosen the installation of 536 MW of additional wind power, which corresponds 

to around the 50% of the total installed capacity that is expected in 2022 (1,073 MW) (UPME, 

2019c). To measure the implications of the injection of 536 MW of wind power in the Colombia 

power system, we carry on a simulation of the electricity prices based on capacity factors and 

marginal production costs for selected periods (see supplementary data S8.1 for a detailed 

explanation of the energy system model, assumptions, and results). The study simulates an 

electricity demand of 28,557 GWh, with a yearly increase of 3.02% until 2030. The reference 

point corresponds to the case in which no additional capacity is installed, namely an energy mix 

with a limited participation of wind power (71.2% for hydro, 12.4% for coal, 6.4% for gas, and 

0.2% for wind). Against this reference, we consider a hypothetical installation of 536 MW of 

wind power to an energy mix that is less dependent on hydro power (69% for hydro, 13% for 

coal, 15 % for gas, and 4% for wind) in 2019. The estimation of the ERE is based on the yearly 

savings obtained from the reduction of the electricity price as result of the injection of 536 

additional MW of wind power. Such decrease stems mainly from the fact that wind power can be 

cheaper than conventional resources under specific operation, climatic, and economic conditions; 

even more considering the favorable wind conditions of the country. The price of electricity for 

household consumers is the sum of the different components of the energy market (generation, 

transmission, distribution, and commercialization), plus some components that reflect technical 

factors (losses and restrictions). Jointly, such components represent the 35%, 6%, 35%, 12%, 7%, 

and 5% of the electricity prices, respectively (supplementary data S8.3 presents the cost of the 

 
 

4 Energy model developed in Garcia-Mazo (2019)  
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electricity by component). For simplicity, it is assumed that, by introducing wind power, the cost 

of the electricity price components, other than generation, will remain constant. 

For completeness, we will develop two different approaches to model the ERE. The first approach 

(combined model) measures the direct and indirect ERE separately, as done in Wen et al. (2018), 

Thomas and Azevedo (2013a), Font Vivanco et al. (2015), Font Vivanco and Voet (2014), Freire-

González et al. (2017), and Freire-González and Font Vivanco (2017), by means of the own price 

elasticity of electricity demand and the marginal budget shares (MBS) (see section 7.3). The 

second approach (single model) uses solely the MBS to calculate the ERE, and therefore does not 

differentiate between the direct and indirect effects, as done by Makov and Font Vivanco (2018) 

and Brännlung et al (2007). 

8.2.3 Data sources 

Following Khazzoom (1980), at the microeconomic level, the direct rebound effect can be 

measured indirectly from the price elasticity of the demand for energy. This approach is the 

preferred among economists to measure the direct rebound effect since its allows to proxy the 

rebound effect without energy efficiency data (Freire-González, 2010). Consequently, in this 

study, we use a long-term price elasticity value of -0.959 for the rebound effect (see 

supplementary data S8.2 for econometric model and results), meaning that a 1% decrease in the 

electricity price will lead to a 0.959% increase in electricity demand. Later, in section 4, we carry 

out a sensitivity analysis to tackle the absence of measures for the direct rebound effect in the 

short-term, and possible misestimations. 

The price of the electricity by components for households in the reference year was obtained from 

the Superintendency of Domiciliary Public Services SUI (2018) (see supplementary data S8.3 for 

detailed information of the price of electricity by component). 

The life cycle impact assessment (LCIA) was conducted using the life cycle impact 

characterization factors from the International Reference Life Cycle Data System (ILCD) 

(European Commission, 2014) and provided by ecoinvent, a robust and widely used approach 

among LCA practitioners. Particularly, we present the ERE (expressed as a change in a given 

environmental indicator) in several impact categories: CC: climate change (in kg CO2-Eq); A: 

acidification (in mol H+-Eq); E: ecotoxicity (in CTUh.m3.yr); MEUT: marine eutrophication (in 

kg N-Eq); TEUT: terrestrial eutrophication (in mol N-Eq); CE: carcinogenic effects (in CTUh), 

NCE: non-carcinogenic effects(in CTUh); OD: ozone layer depletion (in kg CFC-11-Eq); POC: 

photochemical ozone creation (in kg ethylene-Eq); RES: respiratory effects (in kg PM2.5-Eq). 

Monetary savings were obtained by the difference between the price of the electricity for the 

reference year and the improved price of electricity for the different efficiency price scenarios 

developed, multiplied by the electricity consumption (See supplementary data S7.4 for detailed 

information of the scenarios developed and the monetary savings). 

Marginal budget shares (MBS) were obtained via the almost ideal demand model (see 

supplementary data S8.5). Household consumption expenditures (HCE) were obtained from 

United Nations world information database, for the years 2000-2016 (UN, 2018) (see 

supplementary data S7.6), and price indices for the HCE by type of product for the respective 

year were obtained from Banco de la República database (2019) (see supplementary data S8.7). 



 

124 
 

Data for the environmentally-extended input-output (EEIO) model was obtained from the Global 

Trade Analysis Project (GTAP) 9 database, containing 57 industries across 140 regions (including 

Colombia). The construction of a MRIOT, using the GTAP database, was done following the 

procedure described by Peter et al. (2011), specifically the variant with endogenous international 

transport pool. The specific tool used, ‘GDX_to_MRIOT_GTAPAgg’, written with the 

programming language R, can be found in GitHub (2018). 

8.2.4 Environmental rebound effect model.  

The ERE was originally introduced by Goedkoop et al. (1999) as the environmental pressures 

resulting from a function fulfillment optimization. This concept offers a holistic view of the 

environmental impacts, caused by an improvement in the efficiency of providing a service. The 

ERE allows to express the rebound effect as different environmental burdens, rather than solely 

energy use (Font Vivanco et al., 2016c). A detailed review of the foundations of the ERE can be 

found in Font Vivanco et al. (2016b). The ERE has been extensively studied for several regions, 

technologies, and environmental indicators. Estimations of the ERE can be found in the literature 

for general energy efficiency improvements in the household sector in US, China and Spain 

(Freire-González et al., 2017; Freire-González and Font Vivanco, 2017; Thomas and Azevedo, 

2013a; Wen et al., 2018), smartphones reuse in the US (Makov and Font Vivanco, 2018),  electric 

cars and transport innovations in Europe (Font Vivanco et al., 2016c, 2015; Font Vivanco and 

Voet, 2014), green consumption in Australia (Murray, 2013), and high-speed transport 

technologies (Spielmann et al., 2008). The ERE is generally expressed as a percentage of the 

environmental savings that are “taken back” (Font Vivanco and Voet, 2014) as : 

%𝐸𝑅𝐸 =  (
𝑃𝑆−𝐴𝑆

|𝑃𝑆|
) ∗ 100 (8.1) 

with  

𝐴𝑆 = 𝑃𝑆 − (𝑃𝑆 + 𝐸𝑅𝐸) (8.2) 

Where PS are the potential or engineering environmental savings from increasing the shares of 

wind power, on the energy mix, with respect to the current grid (in our case, through product-

based LCA), and AS are the actual savings, including the rebound effect. Moreover, following 

Font Vivanco et al. (2016c) and Font Vivanco and Voet (2014) the ERE, expressed as a change 

in a given environmental indicator, can be calculated as: 

 

𝐸𝑅𝐸𝑒,𝑡 = 𝐸𝑅𝐸𝑑𝑖𝑟
𝑒,𝑡 + 𝐸𝑅𝐸𝑖𝑛𝑑

𝑒,𝑡   (8.3) 

Where 𝐸𝑅𝐸𝑑𝑖𝑟 accounts for the direct ERE from the increased electricity consumption, due to the 

cheaper electricity price, and 𝐸𝑅𝐸𝑖𝑛𝑑 represents the indirect ERE, from the re-spending effect, in 

other products other than electricity. 𝑒 represents the environmental burden, and t indicates time. 

Moreover, each single effect can be decomposed into a demand and an environmental or 

technology effect. The demand effect relates to the changes in demand due to changes in real 

income, whereas the technology effect is associated with the environmental burdens, associated 

with each unit of additional demand. Thus, 𝐸𝑅𝐸𝑑𝑖𝑟 and 𝐸𝑅𝐸𝑖𝑛𝑑 can be expressed as: 

𝐸𝑅𝐸𝑑𝑖𝑟
𝑒,𝑡 =  ∆𝑑𝑑𝑖𝑟,𝑡𝑠

𝑡 𝑏𝑡𝑠
𝑒,𝑡 (8.4) 
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𝐸𝑅𝐸𝑖𝑛𝑑
𝑒,𝑡 =  ∑ ∆𝑑𝑖𝑛𝑑,𝑖

𝑡 𝑏𝑖
𝑒,𝑡  𝑠=1,…,𝑛 (8.5) 

With: 

∆𝑟𝑡 =  ∆𝑑𝑑𝑖𝑟,𝑡𝑠
𝑡 +  ∑ ∆𝑑𝑖𝑛𝑑,𝑖

𝑡
𝑠=1,..,𝑛  (8.6) 

Where ∆𝑑𝑑𝑖𝑟 denotes the change in demand for a given technology shares in the energy mix ts, t 

indicates time, and ∆𝑑𝑖𝑛𝑑 denotes the change in demand for a consumption group i (both in 

monetary terms), b refers to the environmental burdens per unit of demand, n equals the total 

number of consumption groups, and ∆𝑟 corresponds to the total change in real income, due to the 

increasing shares of wind power into the energy mix. 

Thus, from eq.(8.4) ∆𝑑𝑑𝑖𝑟,𝑡𝑠
𝑡  can be assessed, under certain assumptions (symmetry and 

exogeneity), by the following formula (Berkhout et al., 2000; Khazzoom, 1980; Sorrell, 2007; 

Sorrell and Dimitropoulos, 2007; Wang et al., 2014): 

∆𝑑𝑑𝑖𝑟,𝑡𝑠
𝑡 = −𝜂𝑝𝐸

(𝐸) − 1  (8.7) 

Where 𝜂𝑝𝐸
(E) is the price elasticity of the demand for electricity. Following Haas and Biermayr 

(2000), the price elasticity of electricity demand can be estimated using the following energy 

demand function: 

𝐿𝑛(𝐸𝑡) = 𝛼 + 𝛽1𝐿𝑛 𝐸𝑃𝑡 + 𝛽2𝐿𝑛 𝐺𝑃𝑡 + 𝛽3 𝐿𝑛 𝐺𝐷𝑃𝑡 + 𝑢𝑡  (8.8) 

 

Where α is a constant, β1- β3 are the parameters to be estimated, with β1 = 𝜂𝑝𝐸
(E), and 𝑢𝑡 

represents the error term. 𝐸𝑡 is the electricity demand in period t. 𝐸𝑃𝑖𝑡 represents the price of 

electricity in period t. 𝐺𝑃𝑡 is the price of the household gas in period t. 𝐺𝐷𝑃𝑡 represents the income 

variable in period t. For more details regarding the econometric approach applied and data 

sources, see supplementary information S8.2. 

 

The price of electricity (EP), can be obtained as the sum of different components of the value 

chain (CREG, 2005): generation (G), transmission (T), distribution (D), commercialization (C), 

losses (PR), and restrictions (R), of the electricity sector (a table with the cost for the different 

component of the final EC can be found in supplementary data S8.3) (SUI, 2018) as: 

𝐸𝑃 = 𝐺 + 𝑇 + 𝐶 + 𝐷 + 𝑃𝑅 + 𝑅 (8.9) 

The direct price effect estimates using equation (8.8) are described as changes in electricity 

demand as a percentage from the initial electricity demand. This measure needs to be translated 

to environmental indicators by means of LCA-based coefficients, namely environmental impacts 

per kWh. LCA-based coefficients correspond to the coefficient 𝑏𝑡𝑠
𝑒,𝑡

 from eq.(7.4) and the values 

used can be found in supplementary data S8.4. 

To calculate the 𝐸𝑅𝐸𝑖𝑛𝑑, we need two different sub-models: a marginal consumption model and 

an EEIO model. The marginal consumption model allow us to know how the monetary savings 

obtained from the introduction of wind power are spend, by calculating the marginal budget shares 

(MBS) for each consumption group i. To calculate the MBS, we applied an Almost Ideal Demand 

System (AIDS) (see supplementary information S8.5 for the AIDS model and results). The AIDS 

is a popular consumer demand model introduced by Deaton and Muellbauer (1980), with 

properties that makes it preferable to competing models (Chitnis et al., 2012; Deaton and 
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Muellbauer, 1980). To build the re-spending model, we calculated the marginal budget shares 

(MBS), or the share of total savings that will be allocated to each consumption category i (e.g., 

food or housing). To do so, we assume a fixed individual income, and no long-term savings, so 

all saved money is spent. The MBS for a given time period can be calculated following Deaton 

and Muellbauer (1980) as: 

𝑀𝐵𝑆𝑡
𝑖 =  𝛼𝑖 + ∑ 𝛾𝑠

𝑖𝑙𝑛𝑝𝑡
𝑠 +𝑠=1,...,𝑛   𝛽𝑖 (

𝑥𝑡
𝑠

𝑃𝑡
) (8.10) 

Where 𝑛 equals to the total number of consumption groups (s), x is total expenditures, P is defined 

here as the Stone’s price index, p is the price of a given category, t indicates time, and 𝛼 (constant 

coefficient), 𝛽 (slope coefficient associated with total expenditure) and 𝛾 (slope coefficient 

associated with price) are the unknown parameters. The Stone’s price index is defined as (Deaton 

and Muellbauer, 1980): 

𝑙𝑛𝑃𝑡 =  ∑ 𝑀𝐵𝑆𝑡
𝑠𝑙𝑛𝑝𝑡

𝑠
𝑠=1,…,𝑛  (8.11) 

Once the MBS are obtained, the indirect effect, in monetary terms, can be calculated by 

multiplying the remaining change in real income (∆𝑟𝑟), by each MBS, for each consumption 

group i as: 

𝑅𝐸𝑖𝑛𝑑 = 𝛥𝑑𝑖𝑛𝑑
𝑡 =  ∑ 𝛥𝑟𝑟

𝑡𝑀𝐵𝑆𝑖𝑠=1,…,𝑛  (8.12) 

With: 

∆𝑟𝑟
𝑡 = ( 𝑑𝑎𝑡𝑠

𝑡 − 𝑑𝑡𝑠
𝑡 ) −  ∆𝑑𝑑𝑖𝑟,𝑡𝑠

𝑡 (8.13) 

Where d is the electricity demand in monetary terms for a given energy mix in ts (original energy 

mix without the introduction of additional wind power), and its corresponding alternative ats 

(energy mix with the additional wind power). Similarly to the direct rebound in equation (8.8), 

indirect rebound in equation (7.13) needs to be translated into environmental indicators as the 

𝐸𝑅𝐸𝑖𝑛𝑑. To do so, an environmentally-extended input-output (EEIO) model is applied to obtain 

the environmental impact intensity (EII) (that is, the environmental impact per monetary unit) of 

each of the consumption categories (m). The EII values used can be found in supplementary data 

S7.10. Details of the EEIO model can be found in Miller and Blair (2009). The 𝐸𝑅𝐸𝑖𝑛𝑑 can be 

calculated as: 

𝐸𝑅𝐸𝑖𝑛𝑑 = 𝑅𝐸𝑖𝑛𝑑𝐸𝐼𝐼 (8.14) 

With: 

𝐸𝐼𝐼 = 𝑆𝐿 = 𝑆(𝐼 − 𝐴)−1 (8.15) 

Where 𝐸𝑅𝐸𝑖𝑛𝑑 represents the indirect ERE, in environmental units, 𝑅𝐸𝑖𝑛𝑑  is the indirect effect of 

the additional spend in monetary terms, L is the Leontief inverse matrix, S the set of coefficients 

of environmental intensities. 

8.3 Results 

This section presents the results for the environmental savings without taking in account the 

environmental rebound effect. Furthermore, the results of both the combined and single model 
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for three different years (2020-2025-2030) and for six different environmental impacts (climate 

change (CC), acidification (A), ecotoxicity (E), marine eutrophication (MEUT), carcinogenic 

effects (CE) ozone layer depletion (OD). Detailed results by year for all the environmental 

categories studied can be found in supplementary data S8.11 (combined model) and S8.12 (single 

model). 

8.3.1 Environmental savings without the environmental rebound 

effect 

Increasing the amounts of wind energy has positive effects on the environmental impacts 

produced by electricity generation (see table 8.3).Taking climate change (CC) as an example 

environmental savings ranging across the years under study from 0.7% (2006) to 2.8% (2024). 

Environmental savings are associated with the displacement of gas power by wind power (see 

supplementary data table S8.1.4 for the shares of generation in the reference and improved energy 

mix). Particularly the greater savings for the year 2024 is due to gas power is displaced to generate 

the 21% of the electricity to 19% in the improved energy mix. Similarly, the year with the smaller 

amount of savings, year 2026, is due to gas power is barely displaced to generate the 16% of the 

electricity to 14% in the improved energy mix. In both cases the displacement of gas power is due 

to the wind power, concretely the shares of wind power in the improved energy mix represents 

the 4% and 2% respectively. 

 

Figure 8-3 Environmental savings for increasing the shares of wind power into the energy mix 

without take in account the environmental rebound effect. CC: climate change (in kg CO2-Eq).  

8.3.2 Environmental rebound effect results 

The inclusion of both direct and indirect effects (combined model) has a notable impact on the 

environmental footprints from increasing the shares of wind power into the power grid (see figure 

8.4.A). Taking the year 2030 as example, for all individual footprints, such an increase describes 

a relative change (with respect to the footprint results without the ERE) ranging across impact 

categories from 42% (E) to 385% (MEUT). By individual effects (direct and indirect), the 𝐸𝑅𝐸𝑑𝑖𝑟 

is significantly higher than the 𝐸𝑅𝐸𝑖𝑛𝑑 for all the years studied. The values for the 𝐸𝑅𝐸𝑑𝑖𝑟 range 
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across impact categories from 41% (E) to 379% (MEUT), whereas the 𝐸𝑅𝐸𝑖𝑛𝑑 values range 

across impact categories from 1% (E) to 58% (A). 

The results for the ERE, when all the savings are allocated solely according to the MBS (single 

model), reveals slight differences compared with the combined model (see figure 7.4.B for the 

ERE based on the MBS for different years). Taking the year 2030 as example, for all individual 

footprints, such an increase describes a relative change (with respect to the footprint results 

without the ERE), ranging across impact categories from 11% (E) to 636% (A). In general, the 

single model shows higher values for the ERE than the combined model for half of the 

environmental impacts presented (A, CC, and OD), whereas, for the rest of the environmental 

impacts (MEUT, CE, and E), the impacts are higher in the combined model. Such differences are 

mainly due to the environmental impacts produced for the electricity infrastructure in each year. 

Specifically, the combined model takes into account the variability between the reference and 

improved energy mix for each year, and, therefore, the environmental efficiencies obtained by the 

introduction of wind power, whereas the single model does not take into account such 

environmental efficiencies, and uses a static value for the environmental impacts by the sector of 

electricity (see table S8.10.1 for the environmental impacts in different impact categories, per 

monetary unit, of the electricity sector). 

Backfire effects, which mean that environmental impacts increased beyond the savings gained 

from increasing the shares of wind power, are present in the two models and in various years. 

Taking the year 2025 as an example, for all individual footprints, such an increase describes a 

relative change (with respect to footprint results without the ERE) ranging across impact 

categories from 1,478% (CC) to 177% (E) for the combined model, whereas, for the single model, 

backfire effects ranging across impact categories from 2,111% (A) to 230% (MEUT). Such high 

values are explained by the high savings available to re-spend in additional electricity and other 

goods. Particularly, savings from changes in electricity prices for the year 2025 are 20.5%, with 

respect to the reference price, in the respective year. Savings per kWh in the year 2020 and 2030 

are 0.9% and 5.3%, respectively, with respect to the reference price, in the respective year. 

Generally speaking, greater savings are directly associated with higher environmental impacts in 

each impact category, by the increase of consumption of electricity and other goods. 
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. 

 

Figure 8-4. Environmental rebound effect (ERE) according to the combined model (A) (based 

on both price elasticities of demand and marginal budget shares) and the single model (B) 

(based entirely on marginal budget shares). CC: climate change (in kg CO2-Eq), A: 

acidification (in mol H+-Eq), E: ecotoxicity (in CTUh.m3.yr), MEUT: marine eutrophication (in 

kg N-Eq), CE: carcinogenic effects (in CTUh), OD: ozone layer depletion (in kg CFC-11-Eq). 

Emissions across the different consumption groups depend on two factors (see supplementary 

information S8.13): the amount of consumption in each expenditure type (MBS) and the 

environmental impact intensity (EII). Taking climate change (CC) as an example, while the 

environmental impact for groups such as housing, other expenditures, transport, clothing and 

communications seem to be driven for the MBS, the groups of recreation and health & education 

are driven by the EII. The group of housing consumes the 20.41% of the total savings (the highest 

across consumption groups) and represents the 18.65% of the total emissions. Other expenditures 

consume the 14.9% of the available savings and account for the 12.91% of the total emissions. 

Among these, transport consumes the 11.61% of the expenditures and produces the 4.59% of the 

total impact. Recreation consumes 16.81% of the savings and produces the 23.85% of the impact 

(the highest across consumption groups). 

Considering economic sectors (see supplementary informatio S8.13), the impacts vary 

significantly across the different consumption groups. The activities related with recreational, 

cultural and sporting activities produce the 99.99% of the impact in the group of recreation, 

whereas the activity of fishing accounts for <1% of the impacts. In the group of housing, the 

activities associated with construction and trade accounts for the 49.29% and 36.07% of the total 

impacts, whereas the consumption of electricity represents the 14.06% of the total impacts (or the 

2.62% of the total impacts across the fifty-three economic sectors). The impacts in the group of 

other expenditures are driven mainly by two of the twenty economic sectors assigned to this 

group: other business and services (44.56%) and Petroleum & coke (32.62%). Activities related 

with the transport consumption group are mainly driven by the air transport (84.6%), while other 

types of transport such as road, rail, pipelines, auxiliary transport activities and travel agencies 

represent the 12.70% of the total impacts. Environmental pressures for the communication group 



 

130 
 

are driven mainly by activities associated with post and telecommunications (91.60%). The 

activities of clothing, dressing and dyeing of fur; and textiles & man-made fibres produce, 

respectively, the 48.98% and 30.06% of the total impacts in the clothing consumption group. 

Finally, in the consumption group of food, impacts are significantly driven by two of the sixteenth 

activities assigned to this group. The production of sugar produces the 75.64% of the total 

impacts, whereas the cattle meat accounts for the 7.27% of the total impacts. 

It is worth noting that only ten of the fifty-three economic sectors accounts jointly for the 91% of 

the total environmental impact associated with the savings expenditures. Recreation & Other 

Services (23.85%), Government services: public administration and defense; compulsory social 

security, education, health and social work, amount others (19.09%), Sugar production (14.34%), 

Construction (9.19%), Trade: retail sales, wholesale trade and commission trade, hotels and 

restaurants, amount others (6.73%), Other Business Services (5.75%), Petroleum & Coke 

(4.21%), Air transport (3.88%), Electricity (2.62%), Cattle (1.38%). 

8.4 Sensitivity analysis 

The ERE from increasing the shares of wind power into the Colombian power grid depends 

importantly on the amount of savings available for re-spending. Parameters such as the price 

elasticity of the demand for electricity and the price of electricity itself are directly associated 

with savings, and hence with the environmental impacts associated to the consumption of 

electricity (𝑅𝐸𝑑𝑖𝑟) and other goods (𝑅𝐸𝑑𝑖𝑟). In order to determine the sensitivity of the ERE to 

these variables, we conducted a sensitivity analysis. The year selected for the sensitivity analysis 

was 2020, and the environmental category selected was climate change. As a reminder, the 

reference parameter for the price elasticity is -0.959 and the price of electricity is 0.16 cent/kWh 

(see section 8.2.1). The results show that savings have a bigger slope (higher sensitivity to 

changes) than the price elasticity. The change of the ERE with respect to changes in the price 

elasticity of the electricity demand has, in general, insignificant changes (values close to zero) 

because this variable determines how much additional electricity is consumed (direct ERE). In 

this sense, the environmental impacts associated with the additional consumption of electricity 

are significantly lower compared with the environmental impacts per monetary unit of the savings 

re-spent in other goods and services (see Figure 8.5). 
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Figure 8-5 Sensitivity analysis for price elasticity for the demand (red and blue) of electricity 

and price (green)  

8.5 Discussion  

The results obtained in this research suggest that the ERE associated with an increase in the shares 

of wind power into the Colombian power grid lead to considerable differences in the 

environmental performance. For the combined model, differences range across impact categories 

from 5% (E) to 6,109% (POC). By type of effect, the 𝐸𝑅𝐸𝑑𝑖𝑟 is significantly higher than 

the 𝐸𝑅𝐸𝑖𝑛𝑑. For 𝐸𝑅𝐸𝑑𝑖𝑟, values range across impact categories from 5% (E) to 5,242% (POC), 

whereas the 𝐸𝑅𝐸𝑖𝑛𝑑 values range across impact categories from <1% (E) to 1,417% (POC). In 

general terms, there is a negative correlation between direct and indirect rebound effects (Freire-

González, 2011; Lu and Wang, 2016). Indirect effects are higher at low values of direct rebound 

effect because more savings can be re-spent in consuming more goods and services. 

The results for the single model show slight differences compared with the combined model. In 

general, the ERE is high for the impact categories of A, CC, OD, POC, TEUT, NCE and RES, 

whereas, for the rest of the environmental impacts (MEUT, CE, and E), the ERE is higher in the 

combined model. The main reason for such differences is the high emissions per monetary unit 

associated with the 𝐸𝑅𝐸𝑖𝑛𝑑. 

It is worth noting that the differences between the values of the ERE in both models across the 

years are due to the savings obtained in each year. In particular, in the year 2025, the savings per 

kWh are up to 20.5% of the reference price in this year, while for the years 2030 and 2020 the 

savings are the 5.3% and 0.9% of the reference price in each year, respectively. For the years 

2024, 2026, and 2027 the ERE for all the environmental impacts is equal to zero due as there were 

no savings in those years. The variability across years is mainly due to the price of fossil fuels 

(coal and gas) and climatic variations across the years that affected the electricity production 

(capacity factor). For example, during “El Niño” there were lower precipitations, which increase 

the need for fossil fuels to satisfy the electricity demand, whereas during “La Niña” there were 

higher precipitations which lowered the need of fossil fuels and their price. Under such situation, 

an increase on the shares of wind power into the energy mix aims to prevent energy prices from 
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rising in times of low rainfall, by replacing the use of fossil fuels with wind power (see table 

S8.1.2 for the capacity factor used in each year for the calculation of the electricity prices; and 

see table S8.1.5 for the price of the electricity in the reference and improved energy mix, along 

the timespan of the study). 

Backfire effects can be found for the two models under study, yet with different a magnitude 

(amount of % change) depending on the year and the environmental impact analyzed. Particularly, 

backfire effects are likely to be higher in the single model. This is because, in the single model, 

all the savings are re-spent across the economy instead of a part of it, as in the combined model, 

in which part of the savings are consumed in electricity. In general terms, consuming electricity 

is associated with less environmental impacts than consuming additional goods and services from 

the entire economy. 

The high EII in terms of climate change for consumption groups such as recreation (23.85%) and 

health and education (19.08%) are explained by the fact that such activities are service-intensive 

consumers. In such regard, Suh (2006) estimated that services are responsible for about 38% of 

GHG emissions in the US when supply-chain-induced emissions were included. Similarly, Nansai 

and colleagues (2009) highlighted considerable energy and material requirements in the supply 

chain of services in Japan. Conversely, for the housing consumption group, the impacts associated 

with the economic sector of electricity represent the 2.62% of the total impacts of the indirect 

ERE. Such impacts are associated mainly with the fossil fuels (carbon and gas) on the energy mix 

that, in average, represent the 23% of the total shares of technologies of the national energy mix 

(see figure 8.2). 

Sensitivity analysis reveals that the ERE responds very differently to the selected parameters. The 

results suggest that the price elasticity has a negligible but positive influence on the ERE. 

Specifically, a 1% increase on the elasticity price will lead to an increase of the ERE of less than 

1% (0.023%). On the other hand, the price of the electricity has a significant, negative influence 

on the ERE. A 1% decrease on the price of the electricity will lead to an increase of the ERE of 

38.56%. This difference is explained by the fact that savings affect more significantly both the 

additional consumption of electricity (direct RE) and the amount of savings available to re-spend 

(indirect RE) than the elasticity price of the electricity. 

The high TEUT, NCE, POC and RES impacts for the 𝐸𝑅𝐸𝑖𝑛𝑑  stem from the large emissions 

coefficients in EXIOBASE. These high emissions per monetary unit are largely due to a 

combination of completeness and aggregation issues, as discussed in the literature (Joshi, 2000; 

Lenzen, 2000). Higher completeness means that EXIOBASE accounts for economic sectors and 

flows that are systematically missing in LCI databases. Aggregation issues refer to the use of 

homogeneous sectors which aggregate many activities with different emissions coefficients. 

The implications of increasing the shares of wind power into the power grid in the household 

sector from this study are consistent with the ERE literature, which describes both a high 

variability of magnitudes and a high prevalence of backfire. For instance, Alfredsson (2004) found 

that green consumption patterns in Sweden caused an ERE ranging from 7% to 300%. Tomas and 

Azevedo (2013a, 2013b) found an ERE ranging from 7% to 25% for transport and electricity in 

the US. A study by Font Vivanco and Voet (2014) on electric cars in Europe found ERE values 

ranging from -834,869% to 377%. Takase et al. (2005) described an ERE between 17% and 125% 

for transport, electricity, and food in Japan. 
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A number of sources of potential bias can be found. First, due the high level of aggregation of the 

household consumption expenditures (HCE) and their respective price indices. Second, due to the 

inherent uncertainties associated with the use of EEIO models, such as the level of sectorial 

aggregation, the linear production function assumption, the fixed technical coefficients, and 

vintage lags between emission data and IO tables (Thomas and Azevedo, 2013a). Double-

counting in the combined were handled by removing the impacts associated with the ELY 

(Electricity: production, collection and distribution) economic sector from the total amount of 

impacts associated with the indirect ERE. Other limitations are the MBS available, which contain 

aggregated information of consumption, where the different patterns of consumption of the 

household income levels are less clear. Low-income households consume more electricity, 

housing, and food than high-income households, which consume more health and other services 

e.g. financial products. Specifically, low income households consume the 51%, 6% and 4% of 

their income in food, energy, and health, whereas high income ones expend the 22%, 2%, and 6% 

respectively in the same activities (The Word Bank, 2010). 

From a technical point of view, some inherent particularities of wind power, like intermittency 

and its non-dispatchable nature (Abo-Khalil, 2013; Amusat et al., 2018; Flynn et al., 2016) pose 

challenges to the energy mix operation and control (Barelli and Ottaviano, 2019), thus increasing 

their cost (Amusat et al., 2018). Operation and control of the energy system could become more 

complex due to issues regarding its capacity to maintain generator synchronism when it is subject 

to a large disturbance (transient stability), the ability to restore steady-state conditions (voltage, 

current, power) after being subject to a small disturbance (small-signal stability), their ability to 

recover and maintain system frequency following a major generation–load imbalance (frequency 

stability), and their ability to maintain an acceptable voltage profile after being subjected to a 

disturbance (voltage stability) (Flynn et al., 2016). These problems during low consumption 

periods (Barelli et al., 2016) and/or times of system stress, have been traditional handled by wind 

power curtailment (Flynn et al., 2016). Detailed information regarding the technical impacts of 

wind power system stability can be consulted in Fynn et al., (2016). Moreover, rising costs in the 

operation and control of the energy system from the introduction of wind power, are due to several 

aspects. First, the construction of new transmission lines, given the fact that wind power plants 

are commonly located in isolated areas and so far from the consumption centers. Second, the 

integration of energy storage systems (ESS), mainly used to tackle intermittency issues (Amusat 

et al., 2018; Barelli et al., 2016, 2015; Barelli and Ottaviano, 2019; Ciupageanu et al., 2019). 

Third, the losses of efficiency operation and wear-and-tear costs of the thermoelectric plants, since 

they are often operated at part-load as fluctuating back-up power increasing the O&M cost 

(Barelli et al., 2015). It is worth noting that such challenges are likely to happen in energy mixs 

with wind power penetration higher than 20% (Barelli et al., 2016, 2015; Barelli and Ottaviano, 

2019; Flynn et al., 2016), while other authors recommend limiting the contribution of wind 

generation to about 30% to ensure energy system stability (Amusat et al., 2018). 

Future research could benefit from increasing efforts in gathering data from the different HCEs 

for different household income levels. More disaggregated HCE data, by type of expenditure and 

household level income, can provide more accurate and detailed information of the environmental 

impacts of the household sector. Moreover, including the whole energy system may yield more 

accurate data regarding electricity prices, since the total amount of savings has been proven to be 

the most sensitive parameter to measure the ERE. 
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8.6 Conclusions 

In this paper, we have measured the ERE in Colombian households due to increasing shares of 

wind power in the power grid under different modeling assumptions and across ten environmental 

indicators. This is the first study conducted for Colombia that seeks to measure the potential 

environmental consequences of an environmental and energy law. The results suggest that 

increasing the share of wind power into the power grid leads to a notable ERE, and also that 

backfire effects can take place under certain conditions. Specifically, backfire is likely to happen 

for the majority of the environmental impacts studied (except for E and CE), across all analyzed 

years, depending mainly on the energy mix configuration in each year, which determines the 

amount of savings available to be re-spend. 

In this regard, the Colombian government may work in several fronts. First, in fomenting the 

debate between academics and policy-makers. This would allow the stakeholders to recognize the 

importance of the ERE, and then support the development of transparent and simple tools to 

estimate it. Second, in increasing the awareness of consumers, e.g., by the implementation of 

smart meters to improve the visualization of consumption patterns, or by implementing energy 

efficiency campaigns. Third, in the development of economic instruments such as environmental 

taxation and energy pricing polices (Freire-gonzález and Puig-ventosa, 2015; van den Bergh, 

2011). Environmental taxation has been theorized to minimize the effects of the ERE in developed 

economies (Font Vivanco et al., 2016a), and the question remains about their effectiveness and 

practical implementation in developing countries. Energy pricing polices will prevent that 

reductions in the price of electricity are not fully translated into increased electricity consumption 

(Freire-gonzález and Puig-ventosa, 2015). Subsides to incentivize or disincentivize additional 

consumption of electricity may also have positive effects in mitigating the ERE, though its poses 

challenges, such as increased complexity when designing tax schemes. Particularly, previous 

experiences have shown that reward and penalty mechanisms have a positive effect in the 

consumption of electricity in Colombia. For example, in 2017 the government launched the 

campaign "Apagar Paga" to reduce electricity consumption by encouraging savings and 

penalizing additional consumption in the household sector. It entailed a significant reduction in 

the growth of consumption, a key factor to avoid rationing, given the emergency caused by “El 

Niño” phenomenon in 2016-2017. 

Optimal mechanisms to mitigate the ERE are based on target-oriented design and policy mixes, 

though it is important to highlight that any attempt to mitigate the ERE must take into account 

additional ERE and ways to mitigate it (Font Vivanco et al., 2016a). Such actions may help not 

only in mitigating the rebound effect, but also in contributing to effectively to achieve energy and 

environmental targets, e.g., those commitments made in COP21 and national targets. 

More broadly, the results of this research contribute to the emerging literature on rebound effects 

from developing economies, which generally describe larger magnitudes mainly due to lack of 

saturation for resource-intensive products, such as energy products and meat (Boardman, 1991; 

Chakravarty et al., 2015; Roy, 2000). This, in turn, brings up the issue of the incommensurability 

associated with rebound effects, where detrimental environmental impacts and desirable social 

welfare increases occur simultaneously across income groups. It is thus key that rebound 

mitigation measures consider the overall effect across income segments, so as not to disadvantage 

vulnerable groups. In this sense, the analysis of the ERE would not only need to be decomposed 

by income groups, but also to integrate measurements of social welfare gains, in line with current 

efforts in sustainability science. 
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9. Overall Conclusions, limitations 

and future research.  

This section presents the overall conclusions of the whole research. Moreover, the limitations 

found are discussed and future lines of research are presented. It is important worth noting that 

each chapter contains their own section of conclusions and limitations and therefore this section 

summarizes the most general conclusions so as not fall into meaningless repetitions. 

9.1 Overall conclusions  

The STIRPAT model is a suitable and consist framework to understand the drivers that trigger a 

wide variety of environmental impacts. Comparing with other models, mainly variations of the 

IPAT equation, the STIRPAT model allows to include additional factors that may be considered 

as driving force of environmental changes. In particular, the variable technology may be 

decomposed in different factors that capture in better sense the effect of technological changes on 

several environmental footprints. Findings suggest that there is a geographic imbalance scope, 

studies focus mainly in china whereas studies for South America remind unexplored. Moreover, 

studies reviewed focus mainly in CO2 emissions even though the STIRPAT model allows many 

different environmental impacts; extending STIRPAT-LCA model may be useful in addressing 

multiple environmental impacts. There is no clear consensus on how to define variable 

technology. Finally, the STIRPAT model, while providing a valuable framework, is still 

underused to address the rebound effect.  

By applying a STIRPAT-LCA model to address the influence of urbanization and technological 

changes on electricity consumption in Colombia at different environmental impacts dimensions, 

the results suggest that urbanization is the main driver behind the electricity consumption (1.61%) 

and climate change (0.99%), whereas for acidification, eutrophication and respiratory, an explicit 

relationship was not found. Moreover, the energy structure was found to play an important role 

on the Colombian electricity consumption. The evidence suggests a negative correlation of (-

0.89%) meaning that ones the energy structure, the shares of fossil fuels on the electricity grid, 

increase in 1% the consumption of electricity decrease by 0.89% this because the price of the 

electricity of fossil fuel is more expensive than the electricity produce by hydro power, thus, the 

final price of the electricity increase. Consequently, the energy structure is positive correlate 

(1.76%) with the amount of CO2 emitted, this is because the fossil fuels are more polluting that 

renewable resources. Finally, results do not match with the hypothesis that urbanization decrease 

energy consumption and carbon emissions (Abdallh & Abugamos, 2017; Effiong, 2018; B. Lin 

et al., 2016; Madu, 2009; Shahbaz et al., 2016). Moreover, evidence suggests that the patters of 

urbanization in Colombia follow the same tendency described for China (Urbanization process 

increase energy use and pollutants at different levels of aggregation in China).The reason for such 

discrepancy may be the fact that Colombia is a developing country which can be grouped as a 

middle income level, similarly to China, comparing to Nigeria, Kenya, Congo, and other countries 

in Africa studied by Madu(2009), Lin et al., (2016). Abdallh & Abugamos (2017), and Effiong 

(2018). Such differences in income level has been reviewed by Poumanyvong  & Kaneko (2010). 

K. Li & Lin (2015) and Lin et al.. (2017), suggesting that urbanization decreases energy use in 

the low-income group, while it increases it in the middle and high-income groups. Furthermore, 

urbanization increases the CO2 emissions in all the income groups. 
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Regarding the hybrid life cycle assessment for the wind farm, the results suggest that omitting 

service inputs leads to non-negligible truncations issues. By order of importance, services increase 

the amount of emissions between 0% (ECOTOX and CE) and 21% (TEUT) with respect to the 

results without services, meaning that environmental declarations may be underestimated. By life 

cycle stages, the manufacturing processes accounts for 80% of the impacts in CC, being the tower, 

the rotor, and the nacelle the most relevant components with 39%, 27%, and 21% from the total, 

respectively. Moreover, results highlight the importance to perform a sensitivity analysis of the 

technical parameters. Particularly, changes in the capacity factor, the lifespan, and the percentage 

of losses could vary impacts, respectively, by up to about -35%, 25%, and 5%. 

Additionally, the regional analysis suggests that environmental impacts for the wind farm are 

rather exporter than produced in situ. Regions like China and US contribute significantly to the 

total environmental impacts. Taking CC impact as example, China contributes to 11% of the total 

impact associated with materials and to 15% of the impacts associated with both direct and 

indirect services, whereas US contributes to 6% and 14% of the impact associated with materials 

and services, respectively. The environmental impacts taking place locally are mainly associated 

with the material and energy inputs rather than with the services. Colombia contributes with less 

than the 5% of the impact associated with materials and energy and the 1.64% of the impact 

associated with services. Regarding the truncation error from omitting services, our results 

suggest an overall truncation error of about 6% and 7% respectively for direct and indirect 

services and for CC impacts.  

Results for the direct RE at national level are slightly higher (83.4%) compared with existing 

studies for developing countries. RE in Colombia appears to follow a geographic pattern, with 

higher values in those states located at the interior of the country (Meta, Huila, and Tolima), 

whereas low values (Atlántico, Magdalena, and Cordoba) were observed for those states located 

on the coast of the country. The reason for such patters is: (1) a relative high price of the electricity 

for the states at the interior of the country, 403 $/kWh (Meta),370 $/kWh (Huila), and 400$/kWh 

(Tolima) comparing with the states at the coast: 333 $/kWh (Atlántico), 351 $/kWh (Magdalena), 

and 341 $/kWh (Cordoba). (2) a high demand of electricity in the coast where the yearly average 

temperature is above 28 degrees (NOAA, 2017), thus the high amount of electricity is associated 

with the demand of additional energy services for refrigeration and air conditioning. These 

services are not needed or are consumed in smaller quantities in the center of the country, leading 

to a saturated energy consumption in the coast. In 2013 the monthly amount of electricity 

consumed by household in the coast was 239.12 kWh (Atlántico), 216.62 kWh (Magdalena), and 

182.14 kWh (Cordoba). At the interior of the country the consumption was 130.94 kWh (Meta), 

118.58 kWh (Huila), and 100.26 kWh (Tolima) (DANE, 2018b; SUI, 2018a). This supports the 

hypothesis stated by Van den Berg (2011) how suggest that the rebound effect is positive 

correlated with the price of the electricity and negative correlated with the saturation for the 

consumption of essential energy services. 

It is worth mentioning that in our model the coefficient of the variable GDP is negative; this may 

be explained by the particular conditions of the Colombian electricity sector. The household 

sector in Colombia is stratified in six levels according to the socioeconomic state and income. 

While levels one to three are considered low income, the level four, five and six jointly are labeled 

as middle and high income, respectively. Such disaggregation plays an important role in the 

residential electricity consumption given the existence of a scheme of subsides for the final price 

to pay for electricity. Particularly, there is a mixed subsidy system where the high-income levels 



 

143 
 

and the commercial consumers pay an additional fee (contributions) on the price of electricity 

(20% of the price) to subsidize the low-income levels (cross-subsidy). Additionally, the 

Government subsidize a portion (direct subsidy) when the contributions are not enough (CREG, 

1997a). This fact becomes significant given that low income households accounts for 80% 

residential electricity consumption in Colombia (SUI, 2018) and receive up to 60% of subsides 

in the price of the electricity (CREG, 1997b). However, it is highlighted the coefficient of GDP 

was not significant in our model, which suggests that more research is needed to make significant 

conclusions. 

Finally, the ERE of the Colombian household sector for increasing the shares of wind power into 

the Colombian energy mix has a non-negligible impact on the overall environmental indicators 

studied across all the years. Such impacts ranging across impact categories from 5% 

(eutrophication) to 6,109% (photochemical oxidant creation) when the combined model is applied 

(direct + indirect). Whereas, for the single model (only indirect) the values fall on the ranges of 

1% (eutrophication) and 9,277% (photochemical oxidant creation). Furthermore, the sensitivity 

analysis of the elasticity price of the electricity and the price of the electricity reveals that the ERE 

varies in different ways, specifically, changes in these parameters could vary impacts, 

respectively, by up to about <1% and 38%. Backfire effects were present for 8 of the 

environmental impacts studied in different magnitudes across the years, depending meanly of the 

savings available to re-spend. 

9.2 Limitations 

Regarding the inclusion of services inputs (direct services) limitations are mainly due to the 

limited information regarding the expenditures associated with the project. While detailed 

information concerning the environmental studies required by the authorities to grant the different 

licenses needed to operate the project was obtained, it was not possible to obtain similar data for 

the planning and management stages of the project (service consumers). This omission can lead 

to the underestimation of the impacts related to direct services.  Moreover, the limitations imposed 

by the IO-LCA regarding the high level of aggregation (Joshi, 2000; Lenzen, 2000) and the 

assumed proportionality between physical and monetary flows (Lenzen, 2000) may add 

uncertainties to the results. Aggregation issues exist because economic sectors, even in the most 

disaggregated IO tables, are actually a combination of heterogeneous production technologies and 

products with regards to input materials and environmental impacts (Suh et al., 2004; Suh and 

Huppes, 2005). Proportionality can alter the physical flow relationships between industries 

because of price inhomogeneity, particularly when inter-sectoral prices differ greatly between 

industries (Bicknell et al., 1998; Suh et al., 2004). According to Lenzen and Murray (2001), the 

proportionality assumption can lead to non-negligible errors (up to 40% for Australian energy and 

climate change impacts). 

Moreover, from the methodological point, the limitations arising from using the environmental 

extensions from EXIOBASE 3.4 to complement the GTAP9 database, because both databases 

differ on the level of industry aggregation and base year, among other differences (Tukker et al., 

2018) . Considering the scope of this study, such a limitation can be avoided by using a MRIO 

database which features both a high level of geographical coverage and extensive environmental 

extensions. For example, the Eora database (Lenzen et al., 2013) covers 190 countries, including 

Colombia, and includes several environmental extensions, of which only a few are homogenously 

reported for all countries. Using the Eora database, however, would limit the amount of 
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environmental impact indicators used in this study. For example, Eora does not report PM2.5 

emissions which are used to calculate respiratory effects from inorganic compounds. 

Limitations associated with the measurement of the direct RE to be addressed in the future 

include. (i) The quality of the data obtained from national datasets has several gaps, especially for 

the information accounting for the number of households with electricity services; for some states, 

such data was available only along the period 2005-2013. Furthermore, when the data was 

available, there were gaps in information. Thus, the number of households with electricity 

services for all the income has missing values. (ii) Due to the lack of information for such level 

of desegregation, the household income variable had to be calculated as gross domestic product 

divided by the number of households with electricity services. More desegregated information for 

GDP in Colombia can be found for GDP/per capita, implying that this variable may add 

uncertainties into the results. (iii) The price of the electricity was estimated as a weighted average 

of the price of electricity for each household income level (Colombian electricity regulated market 

has six different prices for the electricity depending on the income levels). Low-income levels 

have a subsidy of up to 60% in the electricity price to pay. In contrast, the high-income levels 

have to pay a 20% extra contribution on the electricity cost (CREG, 1997b). Information to 

differentiate the price of the electricity without the number of subsidies and contributions was not 

possible to find. 

Furthermore, uncertainties included by the assumptions of symmetry and exogeneity may be 

present in the study. Authors like Hass and Biermayr (Haas & Biermayr, 2000) and Dargay and 

Gately (Dargay & Gately, 1997) have cited the assumption of symmetry, as a matter of interest 

when studying the rebound effect. In our study, a model with a price decomposition was build up 

but the result was not significant (see supporting information S7 for model with price 

decomposition). Reasons for such results may be attribute to the quantity and quality limitations 

discussed above. Other source of uncertainties comes from (i) the  relationship between the 

rebound effect and the costs of capital (Freire-González, 2010). It would be necessary to estimate 

the indirect and economy-wide effects to obtain the total magnitude of energy efficiency 

improvements in households. It is worth noting that the direct and indirect RE are likely to be 

inversely proportional. A large direct RE (e.g this study) implies that an important part of the 

savings will be re-spending in additional electricity consumption leaving less income to be re-

spending in others services and (ii) the correlation between rising energy prices and investments 

in energy efficiency. Preferred measures of the direct rebound effect may include efficiency 

elasticities, energy service price elasticities, and energy price elasticities, in searching for 

controlling self-selection of efficient appliance purchase (Thomas and Azevedo, 2013); such 

measures become significant when the rebound effect is estimated through hybrid methods (direct 

+ indirect rebound effect) (L. Wang et al., 2019). 

On the other hand, related with the estimation of the ERE a number of sources of potential bias 

can be. First, the high level of aggregation of the household consumption expenditures (HCE) and 

their respective price indices. Second, the inherent uncertainties associated with the use of EEIO 

models, such as the level of sectorial aggregation, the linear production function assumption, the 

fixed technical coefficients, and vintage lags between emission data and IO tables (Thomas and 

Azevedo, 2013a). Double-counting may be present in the combined model between the additional 

consumption of electricity (direct rebound effect) and the re-spent savings, which include the 

industrial sector of ELY (Electricity: production, collection and distribution). Other limitations 

are the MBS available, which contain aggregated information of consumption, where the different 
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patterns of consumption of the household income levels are less clear. Low-income households 

consume more electricity, housing, and food than high-income households, which consume more 

health and other services e.g. financial products. Specifically, low income households consume 

the 51%, 6% and 4% of their income in food, energy, and health, whereas high income ones 

expend the 22%, 2%, and 6% respectively in the same activities (The Word Bank, 2010). 

9.3 Future research 

Further research associated with the LCA of the wind farm would benefit from increased data 

gathering efforts on the full costs associated with services rather than just the services associated 

with the environmental studies needed to implement the project. Full cost information is 

commonly omitted by the project owners for confidentiality reasons. Moreover, extending the 

boundaries of the study to include the manufactured capital inputs, such as machinery and 

buildings used in production, as well as broadening the environment assessment with social and 

economic indicators can provide further information of the life-cycle sustainability impacts of 

wind power. 

Regarding the direct RE, future research aims at different areas should cover efforts to improve 

the quality of the data and to insulate the effect of the subsidies and contribution from the 

electricity price. Furthermore, efforts should be made to study the direct rebound effect of 

residential electricity consumption at different levels of desegregation, as the RE change 

significantly depending on the level of income or the region. Results of this study suggest that the 

rebound effect follows a geographic pattern, yet the causes of such patters need to be studied. 

Future research should focus on studying the rebound effect at regional and city levels. Moreover, 

studying the rebound effect by income levels may reveal different patterns, particularly attributed 

to the fact that 80% of the Colombian population belongs to the low-income level. Finally, studies 

of different energy services, e.g., transport, should be encouraged mainly because the transport 

sector is responsible for around 12% of the GHG emissions in Colombia (IDEAM et al., 2016). 

Then, efficiency polices that seeks to reduce such values may not be achieved for the effect of the 

rebound effect. 

On the other hand, associated with the ERE future research could benefit from increasing efforts 

in gathering data from the different HCEs for different household income levels. More 

disaggregated HCE data, by type of expenditure and household level income, can provide more 

accurate and detailed information of the environmental impacts of the household sector. 

Moreover, including the whole energy system may yield more accurate data regarding electricity 

prices, since the total amount of savings has been proven to be the most sensitive parameter to 

measure the ERE. 
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Supporting information S4-1. summary of surveyed STIRPAT model 

Table S4-1 supplementary data. summary of surveyed STIRPAT model 

Reference Data used Time period variables used Technology Environmental 

impact 

1.Jia et al.,(2009) Henan 

Province, China 

1983 to 2006 P,A,A2,U,IN Proxy by IN and U Ecological footprint 

2.Lin et al.,(2009) China 1978 to 2006 P,A,T,U,IN*,EI EI C,SOx,NOx emissions 

3.Madu (2009) Nigeria Not specified P,A,U Included in the error term Fuel consumption 

4.Poumanyvong and 

(2010) 

99 countries 1975 to 2005 P,A,U,IN,SV,EI Proxy by IN and  SV CO2 emissions and 

Energy use 

5.Wang et al.,(2010) West Jilin 

Province, China 

1986 to 2006 P,A,A2,U,U2,IN** Proxy by U,  its quadratic form 

and IN 

Ecological footprint 

6.Liddle and Lung 

(2010) 

OCDE (17 

countries) 

1960 to 2005 P,AE,A,U,EI,ES Proxy by U, EI and ES CO2 emissions and 

electricity 

consumption 

7.Wang et al., (2011) Minhang 

District, 

Shanghai, 

China 

1998 to 2009 P,A,EI,U EI CO2 emissions 

8.Tang et al.,(2011) Sichuan 

Province, China 

1995 to2008 P,A,A2,U,IN Proxy by U and IN Ecological footprint 

9.Li et al.,(2011) China 1990 to 2008 P,A,U,IN,EF EPR CO2 emissions 

10.Cao et al.,(2011) China 1985 to 2007 P,A,U,EI,ES Proxy by EI and ES coal CO2 emissions 

11.Wang et al.,(2012) Beijing, China 1997 to 2010 A,A2,U,IN,SV,EI,R&D R&D CO2 emissions 



 

151 
 

Supplementary data S4.1 (continued) 

Reference Data used Time period variables used Technology Environmental 

impact 

12.Zhang and Lin 

(2012) 

29 provinces of 

China 

1995 to 2010 P,A,U,IN,SV Proxy by IN and SV CO2 emissions and 

Energy use 

13.Zhu and Peng 

(2012) 

China 1978 to 2008 P,A,U,AE,HS Included in the error term Carbon emissions 

14.M. Wang, Song et 

al.,(2012) 

31 provinces of 

China 

2010 P,A,U,EFI,L,AE EFI Ecological footprint 

15.Li et al.,(2012) 30 provinces of 

China 

1990 to 2010 P,A,U,IN,EPR EPR CO2 emissions 

16.Poumanyvong et 

al., (2012) 

92 countries 1975 to 2005 P,A,U,SV Proxy by U and SV Transport energy use 

17.Ren et al.,(2012) Shenyang, 

China 

2011 to 2030 P,A,A2,U,EI EI CO2 emissions 

18.Liddle (2013) 35,85,47 

countries 

respectively 

1990, 1995 

and 2001 

P,A,UD U Private transport 

energy consumption 

19.Sun  et al.,(2013) Beijing, China Not specified P,A,U,IN,EI EI CO2 emissions 

20.Zhang et al.,(2013) Jiangmen, 

China 

1990 to 2010 P,A,U,IN,SV,EI EI CO2 emissions 

21.Wang et al.,(2013) Guangdong 

Province, China 

1980 to 2010 P,A,U,IN,SV,FT,CI, 

ES 

CI CO2 emissions 

22.Li and Wang 

(2013) 

Tianjin, china 1996 to 2011 P,A,U,EI,SV SV CO2 emissions 

23.Wang and 

Yang(2014) 

China 1999 to 2010 U,A,IN,SV,EI,EGN EI Energy ecological  

footprint 

24.Zhao et al.,(2014) China 1990 to 2009 P,A,U,D Included in the error term Water footprint 
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Supplementary data S4-1 (continued) 

Reference Data used Time period variables used Technology Environmental 

impact 

25.Liu et al.,(2014) 7 provinces of 

China 

2006 to 2010 P,A,U,EI, IN,ES,EP,FI EI CO2 emissions 

26.Yahui and 

Weiguang (2014) 

Chongqing, 

China 

1998 to 2011 P,A,U,E Included in the error term Energy consumption 

of urban residential 

building 

27.Salim and Shafiei 

(2014) 

OCDE 1980 to 2011 P,A,U,IN,SV,PD Proxy by IN and SV Renewable and non-

renewable energy 

consumption 

28.Shafiei and Salim 

(2014) 

OCDE 1980 to 2011 P,A,IN,SV Proxy by IN and SV CO2 emissions 

 29.Li et al.,(2015) Tianjin, China 1996–2012 P,A,A2,U,EI,IN,FI Proxy by EI and IN CO2 emissions 

30.Lin  and Du (2015) 30 provinces of 

China 

1997 to 2011 P,A,U,SV Proxy by U and SV transport energy 

consumption 

31.Wang and Zhao 

(2015) 

30 provinces of 

China 

1997 to 2012 P,A,U,IN*,FT,EI EI CO2 emissions 

32.Chikaraishi et al., 

(2015) 

140 countries 1980 to 2008 P,A,U,IN,SV,EI EI CO2 emissions 

33.Dai et al.,(2015) Jiangsu 

Province, china 

1990–2009 P,A,A2,EI,U,F EI COD, TN, TP 

34.Wen et al., (2015) China 1991 to 2011 P,A,U,IN,SV,ES,FT,CI CI CO2 emissions 

35.Liu et al.,(2015) 30 provinces of 

China 

2006 to 2012 A,U,IN,SV,ES,EP proxy by U,IN,ES and SV Energy consumption 

36.Yang et al.,(2015) Beijing, China 1984 to 2012 P,A,U,HS,AE,EI EI CO2 emissions 

37.Wang et al.,(2015) OCDE 1960 to 2010 A,U,U2,EI EI CO2 emissions 

38.Qin and Liao 

(2015) 

113 cities, 

china 

2004 and 2010 PD,A,IN IN NO2,SO2, and PM10 
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Supplementary S4-1 (continued) 

Reference Data used Time period variables used Technology Environmental 

impact 

39.Chen et al.,(2015) Wuhan, china 1990 to 2013 P,A,U U Change of lake area 

40.Zhou et al.,(2015) 30 provinces of 

China 

1990 to 2012 A,U,IN,SV,EI NOT CLEAR CO2 emissions and 

Energy consumption 

41.Li and Lin (2015)  73 countries 1971–2010 P,A,U,IN,EI I CO2 emissions and 

Energy consumption 

42.Yansui Liu et 

al.,(2015) 

30 provinces of 

China 

1990–2012 PD,A,A2,IN,SV,EI Proxy by IN,SV and EI Exhaust gases, waste 

water and solid waste 

43.Ji and Chen (2015) 29 cities and 

provinces of 

China 

1998 to 2010 P,A,U,IN IN Energy consumption 

44.Wen and Liu(2016) Hebei 

province, china 

1995 to 2013 P,A2,CI,U,ES,IN,FT CI CO2 emissions 

45.Guan et al.,(2016) Ningxia Hui, 

china 

1991 to 2011 P,A,A*,U,IN,SV Proxy by IN and SV CO2 emissions 

46.Kang, Zhao et 

al.,(2016) 

30 provinces of 

China 

1997 to 2012 P,A,EI,IN,U EI CO2 emissions 

47.Li and Sun (2016) Beijing , China 1990 to 2013 P,A,A2,SV,U Proxy by SV and U Air Pollution 

(CO2,SO2,dust) 

48.Xu et al.,(2016) 29 provinces of 

China 

1995 to 2011 P,A,A2,U,EF,IN Proxy by EF and IN CO2 emissions 

49.Wang et al., (2016) 30 provinces of 

China 

1995 to 2011 P,A,A2,ES,CI,I,SV,EI CI CO2 emissions 

50.Ding et al.,(2016) 30 provinces of 

China 

1997–2013 A,U,TEM TEM Household Energy 

Consumption 

51.Shahbaz et 

al.,(2016) 

Malaysia 1970 to 2011 U,U2,A,FT,CI CI CO2 emissions 
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Supplementary S4-1 (continued) 

Reference Data used Time period variables used Technology Environmental 

impact 

52.Sheng and Guo 

(2016) 

30 provinces of 

China 

1995 to 2011 P,A,U,IN,ES,ER Proxy by IN,ES and ER CO2 emissions 

53.Zhou and Liu 

(2016) 

30 provinces of 

China 

1990 to 2012 P,HS,U,AEA,IN,EI Proxy by IN and EI CO2 emissions 

54.Zheng et al.,(2016) 73 Cities in 

China 

2002 to 2012 P,A,A2,U,IN,EI Proxy by IN and EI CO2 emissions 

55.B. Xu et al.,(2016) 29 provinces of 

China 

2001 to 2012 P,A,U,EI EI PM2.5 emissions 

56.Lin et al.,(2016) Africa 1980 to 2010 P,U,A,A2,EI,ES EI CO2 emissions 

57.Long et al.,(2016) 72 countries 1980–2008           P,A,IE,U,IN                     EI Ecological footprint 

58.Xu and Lin (2017a)    30 provinces 

of China 

2000 to 2014 P,A,U,IN,EF,ES EF CO2 emissions 

59.Miao (2017) 216 prefecture-

level cities 

2013 P,A,PD,EP,TEM,PUB Proxy by EP,TEM, FPR and PUB Urban residential 

energy consumption 

and CO2 emissions 

60.He et al.,(2017) 29 provinces of 

China 

1995 to 2013 P,A,U,U2,IN,EI,R&D R&D CO2 emissions 

61.Shahbaz et 

al.,(2017) 

Pakistan 1972 to 2011 U,A,IN,SV,NC Proxy by IN and SV Energy consumption 

62.Lin and Omoju 

(2017) 

Asia 1990 to 

2013 

P,U,A,EI, PSI,RAIL EI CO2 emissions for 

transport 

63. Liu et al., (2017) Norwegian 2006 to 

2009 

P,P2,A,AE,U,UD,HS,LR No clear or exclued Transport energy use 

64. Yeh and Liao 

(2017) 

Taiwan 1990-2014 P,A,AE,IN,U I CO2 emissions 
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Supplementary S4-1(continued) 

Reference  Data used Time 

period 

variables used Technology Environmental 

impact 

65. Zhang et al., (2017) Henan 

Province, 

China 

1995-2014 P,A,A2,EI,U,SV EI CO2 emissions 

66.Lin et al.,(2017a) China 2006-2014 P,A,EI,U,UD,IN,FT EI Air Pollution 

(C02,SO2,dust) 

67. Wen et al.,(2017) China 1995, 

2000, 

2005, 

2010, 2014 

P,A,A2,U,ED No clear or exclued demand for improved 

environmental safety 

68.Abdallh and 

Abugamos (2017) 

Mena region 1980-2014 P,A, U,U2, EI EI CO2 emissions 

69.Jiang and Lei 

(2017) 

China 1998-2011 P,A,U,PEC,IN, R&D R&D GSHP 

70. Li et al.,(2017) China 2010 P,A,U,IN,SV,FAI,BM, 

PIUR 

No clear or exclued Municipal 

infrastructure 

development 

71. Ma et al., (2017b) China 2000-2015 P,U,SV,CI,CPB No clear or exclued CO2 emissions 

72. Yan et al.,(2017) China 1981-2013 P,A,ES,EI,IN,U,CC,LLR Proxy by ES,EI,CC,LLR CO2 emissions 

73. Erqian et al.,(2017) China 2000-2012 P,A,U,EI EI CO2 emissions 

74. Yu Liu et 

al.,(2017) 

China 2006-2010 P,A,U,EI,IN,EP,FI No clear or exclued CO2 emissions 
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Supplementary S4-1 (continued) 

Reference  Data used Time 

period 

variables used Technology Environmental 

impact 

75. Lin et al., (2017b) 53 Countries 1991-2013 P,A,U,IN,CI,EI,LAP,URE  

,PIC 

LAP CO2 emissions 

76. W. Li et al.,(2017) China 1997-2014 P,A,A2,ISR,IST,ISU,EIM 

,TI,ES,U,FI 

ML CO2 emissions 

77. Sheng et al., (2017) 78 Countries 1995-2012 P,A,IN,U IN Energy consumption 

78. Long et al.,(2017) 72 Countries 1980-2008 P,AIN,SV,EI EI Ecological footprint 

79. Yang et al.,(2017) China 2000-2010 P,A,U,SV SV Energy consumption 

80. Wang and 

Li,(2017) 

China 1980-2014 U,SV,A,EI,GA,BU EI CO2 emissions 

81. Wang et al.,(2017) China 2000-2013 A,U, A2,U2,EI,TSE Proxy by EI, TSE  CO2 emissions 

82. Xu and 

Lin,(2017b) 

China 2000-2014 P,A,EF,U,IN,ES EF CO2 emissions 

83. Yanan Wang et al., 

(2017) 

China 1997-2012 P,A,U,AE,EI,TEM EI CO2 emissions 

84. Xing et al.,(2017) China 2000-2013 A,IN,FD,FD2 IN CO2 emissions 

85. Wang and 

Lin,(2017) 

China 1980-2014 P,A,U,ES,EI 

 

EI CO2 emissions 
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Supplementary S4-1 (continued) 

Reference  Data used Time 

period 

variables used Technology Environmental 

impact 

86. N. Zhang et 

al.,(2017) 

141 Countries 1961-2011 P,A,U,U2,FT No clear or exclued CO2 emissions 

87. Zhang and Xu 

(2017) 

China 2004-2013 P,A,SV,LUPR,LD 

 

No clear or exclued CO2 emissions 

88. Mikayilov et 

al.,(2017) 

Azerbaijan 

 

1990-2014 P,A,U,EI No clear or exclued Air Pollution 

(C02,SO2,dust) 

89. Ma et al.,(2017a) China 2000-2015 P,U,,EI,SV,CCB,PCB No clear or exclued Energy consumption 

90. Effiong (2018) Africa 1990-2010 P,A,U,U2,EI EI CO2, and PM10 

91. Chai et al.,(2018) China 1984-2015 A,A2,ES,ES,EI,IN No clear or exclued Natural gas 

consumption 

92. Cui et al.,(2018a) Shanxi, China 1990-2015 P,A,U,ML ML Energy consumption 

93. Diao et al.,(2018) China 2006-2015 P,A,IN,EI,U,NC EI NOx emissions 

94. Ge et al.,(2018) China 2010-2015 P,A,U,EI EI NOx emissions 

95. Luo et al.,(2018) China 1999-2011 P,A,A2,U,IN,SV,ENI EI PM2.5 emissions 

96.(Y. Wang et al., 

2018) 

Beijing, China 1996-2016 P,A,U,EI,WI proxy by EI and WI CO2 emissions and 

Water use 
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Supplementary S4-1 (continued) 

Reference  Data used Time 

period 

variables used Technology Environmental 

impact 

97. W. Wang et al., 

(2018) 

East and South 

Coastal China 

2000-2015 P,A,U,IN,EI EI CO2 emissions 

98. Wang and 

Zhao,(2018a) 

China 1997-2014 HS,RC,EI,U,AE,WA EI CO2 emissions 

99. Shuai et al.,(2018) China 1995-2014 A,U,SV,FT No clear or exclued CO2 emissions 

100. Cui et al.,(2018b) Hebei, China 1995-2015 CI,IN**,A,U,P,AG,DD,O CI CO2 emissions 

101. Xie et al.,(2018) China 2003-2015 P,A,U,IN,FI,V,EI EI PM2.5 emissions 

102. Wu et al.,(2018) Qingdao, 

China 

1988-2014 P,A,A2,U,EI,ES,SV,FT EI CO2 emissions 

103. Nasrollahi and 

Saeed (2018) 

MENA and 

OECD 

countries 

1975-2015 P,A,A2,IN,EF EF Weak and strong 

sustainability 

104. Wang and Zhao 

(2018b) 

China 1997-2012 U,IN,EGN,NPV,IU,SV,EI EI CO2 emissions 

105. Zhang et 

al.,(2018) 

China 2005-2014 P,A,IN,EI,U,FT,LUPR EI CO2 emissions 

106. Xu and Lin 

(2018a) 

China 2001-2015 A,P,EF,U,IN,ES EF PM2.5 emissions 

107. Yang et al.,(2018) Zhejiang, 

China 

2006-2014 P,A,EI,U,ES,FT, 

PRE,MTA,HDD,CDD 

EI CO2 emissions 
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Supplementary S4-1 (continued) 

Reference  Data used Time 

period 

variables used Technology Environmental 

impact 

108. Ji et al.,(2018) 79 Countries 2001-2010 P,A,AE,U,IN,SV,EI IN,SV,EI PM2.5 emissions 

109. Munir and Ameer 

(2018) 

Asia 1980-2014 P,A,U,FT,EU EU SO2 emissions 

110. Xu and 

Lin,(2018b) 

China 1999-2015 P,A,EI,U,FT,IN EI CO2 emissions 

111. Wen et al.,(2018) China 2000-2014 P,A,U,IN,ES,EI,PCE,PGE PGE CO2 emissions 

112. Liu et al.,(2018) Fujian,China 1996-2016 P,A,U,IN,EI,FT,ES EI CO2 emissions 

A+ affluence, A2 quadratic form of affluence, A* Per capita annual disposable income of rural households, AE age structure, AG Agricultural machinery, BM Per capita city 

building and maintenance capital, BU build up areas, CC coal consumption rate, CCB carbon emission intensity in Chinese commercial building , CDD cooling degree day 

,CI carbon emission intensity, COD chemical oxygen demand, CPB  carbon emission intensity in Chinese public buildings , D diet structure change, DD disaster degree, E 

consumption structure, ED educational level, EF energy efficiency, EFI ecological footprint intensity, EGN engel ratio, EI energy intensity, EIM  efficiency improvement, 

ES energy structure, EPR energy productivity, EP energy price, ER environmental regulation, EU energy use, F financial support for rural areas, FAI Total fixed asset 

investment, FD Financial development , FD2 quadratic form of financial development, FI foreign investment, FPR fuel price, FT foreign trade degree, GA green areas per 

capita, GSHP floor area of Ground-Source Heat Pump, HDD  heating degree days, HS household size, IN industrialization, IN* refers to the share of secondary and 

tertiary(services sector) industry, IN** refers to primary, ISR industrial structure rationalization industry, ISU industrial structural upgrading, IST industrial structural 

transformation, IU internet use, L land, LAP Labor productivity , LF lad finance, LLR Line loss rat, LR share of households with private garden, LUP R land urbanization 

rate, MENA Middle East and North Africa, ML technological progress, MTA mean temperature anomaly, NC numbers of cars and buses , NPV Number of private vehicles, 

O Degree of opening to the outside, P Population,P2quadratic form of population, PCE power consumption efficiency, PD population density, PGE power generation 

efficiency, PIC intensity of real economy, PIUR Per capita disposable income of urban resident, PRE precipitation, PSI Private sector investment in the transport sector, 

PUB number of public transportation ownership per person, RAIL Rail infrastructure, RE renewable energy, R&D Research And Development, SV service sector, TEM 

denotes annual average temperature (◦C), TI  technology innovation, TN total nitrogen, TP  total phosphorus, TSE the time-specific effect, U urbanization, U2 quadratic form 

of urbanization, UD urban density, URE Urban employment level, V venden traffic density factor, WA wage ratio, WI water intensity. 
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Supporting information S4-2. List of abbreviations 

Table S4-2. List of abbreviations List of  abbreviations    
Abbreviation Description Abbreviation Description 

P  Population EF  Energy efficiency 

P2 Quadratic form of population L  Land 

AE  Age structure R&D  Research And Development 

A+  Affluence HS  Household size 

 A2  Quadratic form of affluence  FT  Foreign trade degree 

U  Urbanization  E  Consumption structure 

U2  Quadratic form of urbanization D  Diet structure change 

UD Urban density EP  Energy price 

IN Industrialization FI  Foreign investment 

IN*  
Refers to the share of secondary and tertiary 

(services sector) industry 
GDP  Gross domestic product 

IN**  Refers to primary industry PD  Population density 

SV  Service sector F Represents the financial support for rural areas 

EI  Energy intensity  A*  
Per capita annual disposable income of rural 

households 

ES  Energy structure TEM  Denotes annual average temperature (◦C) 

CI  Carbon emission intensity TN  Total nitrogen 

ER  
Environmental regulation 

TP  Total phosphorus 

PUB  
Number of public Transportation ownership 

per person 
 PSI  Private sector investment in the transport sector 

FPR  Fuel price RAIL  Rail infrastructure 
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Supplementary data S4-2. (continued)    
Abbreviation Description Abbreviation Description 

NC  Numbers of cars and buses EFI  Ecological footprint intensity 

COD  Chemical oxygen demand LR Share of households wiht private garden 

ED  Educational level MENA Middle East and North Africa 

GSHP Floor area of Ground-Source Heat Pump HA The central heating area 

PI Policy investment. PEC Per capita energy consumption 

FAI Total fixed asset investment BM Per capita city building and maintenance capital 

PIUR 

Per capita disposable income of urban 

resident 
CPB 

Carbon emission intensity in Chinese public buildings 

CC Coal consumption rate,  LLR Line loss rate 

LAP Labor productivity URE Urban employment level 

PIC Intensity of real economy IST Industrial structural transformation 

ISR Industrial structure rationalization ISU Industrial structural upgrading 

ML Technological progress EIM Denotes efficiency improvement 

TI   Technology innovation ETFP Environmental total factor productivity  

GA  Green areas per capita,  BU  Build up areas 
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Supplementary data S4-2. (continued) 

Abbreviation Description Abbreviation Description 

TSE The time-specific effect EPR  Energy productivity 

FD Financial development FD2 Quadratic form of Financial development 

LUPR   Land urbanization rate LF   Land finance 

CCB 
Carbon emission intensity in Chinese 

commercial buildings PCB Per capita commercial buildings 

ENI   PM2.5 concentrations WI Water intensity 

RC Residential consumption level WA Income ratio 

EGN  The Engel Coefficient RE Renewable  energy  

AG Agricultural machinery  DD Disaster degree 

O Degree of opening to the outside V Traffic density factor  

NPV Number of private vehicles IU Internet uses  

PRE  Precipitation  MTA  Mean temperature anomaly 

HDD Heating degree days CDD  Cooling degree days. 

EU Energy use PGE Power generation efficiency 

PCE Power consumption efficiency CMG Common correlated effects mean group estimator 

AMG Augmented mean group estimator   
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Hybrid life cycle assessment of an onshore wind farm in Guajira, Colombia. 

  

Johan-Andrés Vélez-Henaoa,b*, David Font Vivancoc 

 

 

Supplementary data 6-1.  Foreground data (LCI) wind farm 

Supplementary data 6-2. Background concordances 

Supplementary data 6-3. GTAP industries classification and direct services included in the 

foreground system 
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Supplementary data 6-1. Life cycle inventory 

Different types of data were collect depending of the process. The background process that 

encompasses mainly the manufacturing of the wind turbine was obtained from the technical sheets 

of the N60/1300 KW provided by the Nordex Company. Information of the type of materials in 

each component were scaling up from a Vestas V82-1.65 MW turbine (2006). 

Manufacturing 

The manufacturing process encompasses the production of the rotor, nacelle (including the 

generator, gearbox yam system, control system, brakes) and the tower, it’s also takes in account 

the lubricant and motor oils. Furthermore this study includes the construction of the foundations, 

the production of the 25000 KVA transformer and the internal and external cables of 13, 4 and 

110 KVA respectively. For the manufacturing a total of 2.329 MWh/per turbine has been assumed 

from Elsam Engineering A/S (2004) with the electricity of Europe from ecoinvent 3.4. 

Transport 

Transport of the main components of the wind turbine was included (ex. foundation). Two types 

of transport were modeled, the transport of the components from Europe to Colombia, by sea 

from Hamburg Germany to Bolivar port in the Guajira region in Colombia, and the transport by 

road from the harbor to the wind farm. According to the owner of the project 7.4 Km of roads 

were needed to connect the port with the wind farm. The transport during the operation and 

maintenance includes a passenger transport from the operation facility of the wind farm to the 

wind turbines, and the transport needed from the wind farm to the recycling facility or the landfill 

depending of the material has been also included. 

Construction. 

During the construction process building machines are needed mainly cranes and digging 

machines. For the cranes follows Rydh et al., (2004) each wind turbine requires 16 hours and 10 

L diesel oil. Furthermore for each wind turbine 400 m3 of soil is removed (11,9 m x 11,9 m, and  

2,5 m deep).Ecoinvent 3.4 was used for the digging machine. For the erection was necessary used 

mobile cranes, according with  Rydh et al., (2004) each turbine requires the  use of a crane for 16 

hours and 10 L diesel oil/ h, 0,8 kg/L. 42 MJ/kg, 2,35 kg CO2/L. finally 573 MWh/per turbine of 

electricity has been assumed from (Elsam Engineering A/S, 2004) 

The electricity mix of Colombia used during the processs of construction, operation and 

maintenance is 70,39% hydropower, 15,15% natural gas, 8,41% hard coal, 5,27% fuel oil,0,7% 

sugarcane and 0,1% wind power. This process has been modeled taking in account the statistics 

of the last 4 years of the electricity production in Colombia taken from the Energy Mining 

Planning Unit  UPME by his acronym in Spanish  (UPME, 2016b) 

Operation and Maintenance. 

According to different authors for onshore wind turbines twice per year a technician must carry 

out inspection of each turbine. This mainly includes surveillance of turbines and cables. Transport 

for 1 km per year/ turbine has been included in a passenger car.(Ardente et al., 2008; Elsam 

Engineering A/S, 2004; Vestas Wind Systems, 2006) 



 

165 
 

During the lifetime of the farm a replacement of 1 blade and 15% of the generator per turbine has 

been included (Ardente et al., 2008). Using the information of Rydh et al., (2004) and the 

specifications of Nordex (2000) the change of lubricants and motor needed were 10,4 and 254 kg 

per turbine four times/20 years. In this process a total of 896 MWh/per turbine of  electricity 

consumption has been assumed during the entire lifetime of the farm (Elsam Engineering A/S, 

2004) 

Decommissioning and recycling 

Since the wind farm still have 4 years more of operation (assuming the life time 20 years) and  no 

detailed data are actually available regarding Colombian wind farms the decommissioning and 

recycling process was modeled base on Vestas Wind Systems (2006) and Elsam Engineering A/S 

(2004) as follow, while other authors assumed a conservative value of 20% material recovery (Xu 

et al., 2018) 

Table S6-1.1. recycling shares  

Materials scenario 

Cast iron 90% recovery, 10% loss in landfill 

Steel, engineering 90% recovery, 10% loss in landfill 

Stainless steel 90% recovery, 10% loss in landfill 

Steel 90% recovery, 10% loss in landfill 

Cooper 90% recovery, 10% loss in landfill 

Aluminum 90% recovery, 10% loss in landfill 

Glass fibre 100% landfill 

Epoxy resin 100% landfill 

Plastic(polyethylene (PET) and 

styrene) 100% landfill 

Electronics 100% landfill 

Oil  
Foundation and roads left in place 

 

The foundation and roads are assumed to remain in place. For the decommissioning stage the 

same quantity of electricity and building machines used in the construction stage were assumed 

(ex. digging machine). A transport of 164 km was included to transport the materials from the 

wind farm to the landfill located in the capital of the state Rioacha. 

According with the manufactured of the wind turbine Nordex (2000) each turbine has the capacity 

to produce a total 11,388 GWh/per year assuming a capacity factor of 100% which means that 

the wind turbine is operating the 8640 hour of the year. The wind farm under study has a total of 

15 wind turbines (170,820 GWh/ per year). Taking in account the technical parameters of the 

wind farm: capacity factor of 42%, percentage of losses of 10% and a lifespan of 20 years the 

total amount of electricity produced by the wind farm is given by the following equation: 

Yield = ((170820000*fc)-((170820000*fc)*losses))*años 

Yield = ((170820000*0,42)-((170820000*0,42)*0,10))*20 =1291399200 kWh/20 years 
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Table S6-1.2. Overall LCI data for the production of 1 kWh of electricity. 

Item Material kg Input 

Rotor 

Steel, engineering kg 1.42E-05 

Steel kg 3.98E-05 

Epoxy resin kg 9.56E-05 

Cast iron kg 1.07E-04 

Glass fibre kg 1.43E-04 

Transport  tkm 2.57E-04 

Nacelle 

Electronics kg 3.80E-06 

Oil kg 3.80E-06 

Aluminum kg 6.34E-06 

Epoxy resin kg 9.13E-06 

Plastic kg 1.27E-05 

Glass fibre kg 1.37E-05 

Cooper kg 2.03E-05 

Steel kg 7.99E-05 

Stainless steel kg 9.89E-05 

Steel, engineering kg 1.65E-04 

Cast iron kg 2.28E-04 

Transport  tkm 4.12E-04 

Tower 

Oil kg 7.94E-06 

Copper kg 1.03E-05 

Plastic  kg 1.59E-05 

Electronics kg 1.75E-05 

Aluminum kg 2.06E-05 

Transport  tkm 6.89E-04 

Steel kg 1.00E-03 

Internal 

clables 

Cooper kg 2.79E-05 

Plastic  kg 4.99E-05 

Aluminum kg 5.73E-05 

Transport  tkm 8.67E-05 

external 

cables 

Cooper kg 2.25E-07 

Aluminum kg 8.99E-07 

Plastic high density kg 1.43E-06 

Transport  tkm 2.46E-05 

transformer 

25 MVA 

Rest: insulation,paint,wood,porcelain kg 1.26E-06 

Cooper kg 1.46E-06 

Transformer oil kg 2.30E-06 

Steel kg 5.59E-06 

Transport  tkm 1.02E-04 

electricity( for all the manufacturing process) KWh 1,89E-06 

operation and 

maintenance 

Electronics kg 5.36E-08 

Aluminum kg 8.94E-08 

Plastic kg 1.79E-07 
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Cooper kg 2.86E-07 

Steel kg 1.13E-06 

Stainless steel kg 1.39E-06 

Steel, engineering kg 2.32E-06 

Cast iron kg 3.22E-06 

Diesel MJ 4.37E-06 

Electricity KWh 1.09E-05 

Oil kg 1.16E-05 

Epoxy kg 2.19E-05 

Fibre glass kg 3.29E-05 

Transport tkm 3.34E-04 

recycling 

Steel(recycling) kg 
1,43E-03 

Cast iron(recycling) kg 
3,22E-04 

Steel, engineering(recycling) kg 
1,72E-04 

Stainless steel(recycling) kg 
9,53E-05 

Aluminum(recycling) kg 
9,30E-05 

Cooper(recycling) kg 
7,99E-05 

Cooper(landfill) kg 8.41E-06 

Aluminum(landfill) kg 9.78E-06 

Stainless steel(landfill) kg 1.00E-05 

Steel, engineering(landfill) kg 1.81E-05 

Electronics(landfill) kg 1.92E-05 

Cast iron(landfill) kg 3.39E-05 

Plastic(landfill) kg 9.01E-05 

Epoxy resin(landfill) kg 1.14E-04 

Steel(landfill) kg 1.50E-04 

Glass fibre(landfill) kg 1.71E-04 

Transport tkm 2.37E-03 

Oil kg 1.05E-02 
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Supplementary data S6-2. Concordance between the foreground and the background 

Table S6-2.1 concordances between the foreground and the background. Process from 

Ecoinvent 3.4 

Material process 

Cast iron Cast iron, at plant [RER] 

Steel steel converted, low alloyed, at plant  [RER] 

Steel, engineering reinforcing steel at plant  [RER] 

Glass fibre Market for glass fibre reinforced plastic, polyamide, injection moulded [GLO] 

Epoxy resin Market for epoxy resin, liquid [GLO] 

Stainless steel 
Market for sheet rolling, chromium steel [GLO] 

Market for steel, chromium steel 18/8 [GLO] 

Cooper 
Wire drawing, copper [RER] 

Market for copper [GLO] 

Plastic Polyethylene, HDPE, granulate, at plant [RER] 

Aluminium aluminum alloy ALMG3 at plant [RER] 

Electrinics Electronics production, for control units [RER] 

Lubricanting oil Market for lubricating oil [GLO] 

Dielectric oil 
Market for naphtha [RER] 

Bisphenol A production, powder [RER] 

Concrete Market for concrete, 20MPa [GLO] 

Electricity Europa Electricity, production mix RER [RER] 

Electricity Colombia 

Electricity production, hard coal [BR] 

Electricity production, wind, 1-3MW turbine, onshore [BR] 

Electricity production, oil [BR] 

Electricity production, natural gas, at conventional power plant [BR] 

Electricity production, hydro, reservoir, tropical region [BR] 

Cane sugar production with ethanol by-product [BR] 

Transport  

Transport, transoceanic freight ship [GLO] 

Market for transport, freight, lorry >32 metric ton, EURO3 [GLO] 

Market for transport, passenger car, small size, natural gas, EURO 3 [GLO] 

Construction machines 

Market for excavation, hydraulic digger [GLO] 

Diesel, burned in building machine [GLO] 

Market for road [GLO] 

Recyling 

Market for waste concrete [GLO] 

Market for electronics scrap from control units [GLO] 

Market for aluminum scrap, post-consumer [GLO] 

Market for scrap copper [GLO] 

Market for scrap steel [GLO] 

Market for waste glass [GLO] 

Market for waste plastic, mixture [GLO] 

Market for waste polystyrene [GLO] 

Market for waste polyethylene/polypropylene product [GLO] 
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Suplementary data S6-3 industries classification and direct services included in the foreground 

system 

Table S6-3.1. Description of the GTAP classification system 

GTAP Code Description 

53 isr Insurance: includes pension funding, except compulsory social security 

1 pdr Paddy Rice: rice, husked and unhusked 

2 wht Wheat: wheat and meslin 

3 gro Other Grains: maize (corn), barley, rye, oats, other cereals 

4 v_f Veg & Fruit: vegetables, fruitvegetables, fruit and nuts, potatoes, cassava, truffles, 

5 osd Oil Seeds: oil seeds and oleaginous fruit; soy beans, copra 

6 c_b Cane & Beet: sugar cane and sugar beet 

7 pfb Plant Fibres: cotton, flax, hemp, sisal and other raw vegetable materials used in 

textiles 

8 ocr Other Crops: live plants; cut flowers and flower buds; flower seeds and fruit seeds; 

vegetable seeds, beverage and spice crops, unmanufactured tobacco, cereal straw and 

husks, unprepared, whether or not chopped, ground, pressed or in the form of pellets; 

swedes, mangolds, fodder roots, hay, lucerne (alfalfa), clover, sainfoin, forage kale, 

lupines, vetches and similar forage products, whether or not in the form of pellets, 

plants and parts of plants used primarily in perfumery, in pharmacy, or for 

insecticidal, fungicidal or similar purposes, sugar beet seed and seeds of forage 

plants, other raw vegetable materials 

9 ctl Cattle: cattle, sheep, goats, horses, asses, mules, and hinnies; and semen thereof 

10 oap Other Animal Products: swine, poultry and other live animals; eggs, in shell (fresh or 

cooked), natural honey, snails (fresh or preserved) except sea snails; frogs' legs, 

edible products of animal origin n.e.c., hides, skins and furskins, raw , insect waxes 

and spermaceti, whether or not refined or coloured 

11 rmk Raw milk 

12 wol Wool: wool, silk, and other raw animal materials used in textile 

13 frs Forestry: forestry, logging and related service activities 

14 fsh Fishing: hunting, trapping and game propagation including related service activities, 

fishing, fish farms; service activities incidental to fishing 

15 coa Coal: mining and agglomeration of hard coal, lignite and peat 

16 oil Oil: extraction of crude petroleum and natural gas (part), service activities incidental 

to oil and gas extraction excluding surveying (part) 

17 gas Gas: extraction of crude petroleum and natural gas (part), service activities incidental 

to oil and gas extraction excluding surveying (part) 

18 omn Other Mining: mining of metal ores, uranium, gems. other mining and quarrying 

19 cmt Cattle Meat: fresh or chilled meat and edible offal of cattle, sheep, goats, horses, 

asses, mules, and hinnies. raw fats or grease from any animal or bird. 

20 omt Other Meat: pig meat and offal. preserves and preparations of meat, meat offal or 

blood, flours, meals and pellets of meat or inedible meat offal; greaves 
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Table S6-3.2. Total amount of direct services per activity 

Component US dollars* GTAP Code 

solid waste management program 

Coordination 12850 OBS 

labor force 3984 OSG 

technologist 9638 OBS 

plastic buckets 281 OSG 

plastic bags 107 OSG 

tipper rental 8031 OTP 

special waste container 268 OSG 

hand compactor 4283 OSG 

air quality management program 

technologist 6425 OBS 

driver 2142 OTP 

labor force 1328 OSG 

tank car rental 8031 WRT 

water transport 2677 WRT 

equipment’s various measurements 10709 OME 

landscape impact management program 

specialized professional 5354 OBS 

auxiliary 2677 OBS 

logistical material 8031 CMN 

Physical Plan Coordination 13653 OBS 

Vegetative Protection Program 

labor force 12957 OSG 

materials and equipment 5354 CMN 

others 2677 OBS 

contingencies 2099 OBS 

research project propagation species 13386 OBS 
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Table S6.3.2 Continue 

Component US dollars* GTAP Code 

domestic and wild fauna protection program 

technical resource 6425 OSG 

fiberglass spheres 2677 OME 

Equipment for studies 1606 OME 

warning signs 803 OMF 

taller 803 OSG 

coordination 27307 OFI 

information and communication 

social communicator 6024 OBS 

anthropologist 6024 OBS 

technologist 3614 OBS 

translator 803 OBS 

printed material 8031 CMN 

workshops visits 8031 OSG 

Job Generation 

social communicator 3012 OBS 

anthropologist 3012 OBS 

technologist 1807 OBS 

translator 1071 OBS 

printed material 1874 CMN 

environmental adduction 

social communicator 3012 OBS 

anthropologist 3012 OBS 

technologist 1807 OBS 

graduate in ethno-education 4819 OBS 

translator 803 OBS 

printed material 8031 CMN 

participation and community strengthening 

economist 6024 OBS 

anthropologist 6024 OBS 

technologist 3614 OBS 

sanitary engineer 3012 OBS 

translator 803 OBS 

printed material 7496 CMN 

information to officials 

anthropologist 3012 OBS 

social communicator 3012 OBS 

translator 402 OBS 

printed material 2677 CMN 
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Table S6.3.2 Continue 

Component US dollars* GTAP Code 

implementation and monitoring of compensatory measures 

water treatment plant 80314 WTR 

health post endowment 21417 OSG 

endowment school amplification 42834 OSG 

archaeological rescue and monitoring 

staff 23372 OBS 

support staff 9544 OBS 

transport 5328 OTP 

laboratory analysis 6431 OBS 

materials 535 CMN 

Technological Dissemination 

social communicator 3012 OBS 

anthropologist 3012 OBS 

engineer 3012 OBS 

translator 1071 OBS 

printed material 18740 CMN 

component US dollars* GTAP Code 

servitude and payment occupation territory 

payments occupation of territory 12850 OBS 

compensation 13921 OBS 

logistics 19543 OBS 

Contingencies  10% 51184 OBS 

environmental management plan 

pms+ air quality 

environmental engineer 4016 OBS 

sonometer 1285 OBS 

hi-vol equipment 8031 OME 

precision balance 3213 OME 

membranes 2677 ome 

sonometer 2409 OME 

transport 8031 OTP 

pms+ landscape quality control 

specialized professional 8031 OBS 

auxiliary 2570 OBS 

compass 161 OME 

flexometer 37 OME 

binoculars 535 OME 

photographic camera 1606 OME 

video recorder 803 OME 

paper and materials 268 CMN 

transport 5354 OTP 
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Table S6-3.2 continue 

Component US dollars* GTAP Code 

pms+ about vegetation 

forestry engineer 4350 OBS 

forestry technician 5220 OBS 

laborers 2158 OBS 

transport 5354 OTP 

materials and equipment 2677 CMN 

contingencies 1976 OBS 

pms+ about fauna 

biologist ornithologist 10709 OBS 

auxiliary 3427 OBS 

compass 80 OME 

binoculars 134 OME 

tape measure 37 OFI 

transport 5354 OTP 

Pms+ job generation 2677 OBS 

pms+ compensatory measures 13386 OBS 

pms+ technological divulgation 5354 OBS 

pms+ conflicts generated project 7496 OBS 

component US dollars* GTAP Code 

Monitoring plan 

coordinating committee 38551 OBS 

brigades 25701 OBS 

materials and equipment 16063 CMN 

operation and maintenance AO&M 

Line cost 

electric line use 304508 ELY 

maintenances 68760 ELY 

taxes 19646 ELY 

plant cost 392914  
operation 275040 ELY 

maintenance 628662 ELY 

staff support 176811 ELY 

Other cost 

surveillance 98228 OBS 

insurances 78583 ISR 

social management 294685 OSG 

administrative and financial 

management 19646 OFI 

*US 2011 constant dollars + Environmental management plans 
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Supplementary information S7-1 Estimation model selection 

 

Figure S7-1 Procedure to determine the estimation model. Taking form Granados (2011) 

According with Granados (2011) (see figure S7.1). The first step is to determined whether or not 

the panel data is balance, in this sense our panel data is a balance panel with 15 states and 

observations for all during the period 2005-2017. The next step is to determine whether or not the 

data set is a macro panel or not, in this sense 18 of the 33 states were excluded due to issues 

regarding the quality and availability of the data. Finally the Hausman test was to decide between 

random or fixed effect. The null hypothesis of both Breusch-Pagan (see table S7.1) and, Hausman 

(see table S7.2) is rejected, indicating that there exist un-observable components associated with 

each department, and there are systematic differences between estimators (fixed and random). 

TableS7-1 Test de Breusch-Pagan Random effect 

  Var sd=sqrt(Var) 

lnE 0.2037065 0.451335 

e 0.0991868 0.3149394 

u 0.0382649 0.195614 

      

Test: Var(u)=0   

chibar2(01)= 49.65   

Prob>chibar2= 0.000   
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Table S7-2. Test de Hausman 

  (b) (B)         (b-B) sqrt(diag(V_b-V_B)) 

fixed fixed random difference S.E 

lnEP -0.8088 -0.9590 0.1502378 0.167207 

lnGP 0.5113 0.6015 0.0901877 0.141080 

lnGDP -0.4413 -0.0608 0.167562 0.014979 

          

          

chi2(3) =(b-B)'[(V_b-V_B)^(-1)](b-B)   

  =7.52       

Prob>chi2 =0.0569       

 

Supplementary information S7.2 Breusch-Pagan Test  

Table S7-3. Breusch-Pagan Test fixed effects dummies 

variables by state 

  Var sd=sqrt(Var) 

lnE 0,2091746 0,4573561 

e 0,1007596 0,3174265 

u 0 0 

      

Test: Var(u)=0   

chibar2(01)= 0,0   

Prob>chibar2= 1,000   
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Supplementary information S7-3 results model with climatic variable 

Table S7-4: Random Effects Model (RE): Total electricity demand in 

households 2005-2013 with climatic variable. Panel of 15 states of Colombia. 

Generalized Last Squares (GLS) estimation (cross-section weights). 

variable coefficient t-statistics prob. 

α -5.3835 -7.93 0.000**  

lnEP -0.8921 -4.30 0.000** 

lnGP 0.5367 3.28 0.001** 

lnGDP -0.0605 -1.62 0.105 

lnHDD 0.0130 1.23 0.220 

Adjusted R-squared  
  

Within 0.0907   

Between 0.4853   

Overall 0.2976   

F-statistics 27.41  0.000*** 

Signif. codes:  ***p<0.01. **p<0.05. *p<0.1. 
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Supplementary information S7-4 error correction model 

To estimate the short-term effect of the direct rebound effect it is needed to develop an error 

correction model (ECM) (Freire-González, 2010; Sang-Hyeon, 2007; Wang & Lu, 2014). ECM 

is a specific econometrics model, which adopts a long-term co-integration equation as an 

instrument variable to solve the spurious regression problem (Wang & Lu, 2014). This model is 

the generalization of a partial adjustment model – Eq. (7.4) – with lags on endogenous and on 

exogenous variables, obtaining an estimation in differences. 

∆𝐿𝑛(𝐸𝑖𝑡) = 𝛼 + 𝛾1∆𝐿𝑛 𝐸𝑃𝑖𝑡 + 𝛾2∆𝐿𝑛 𝐺𝑃𝑖𝑡 + 𝛾3 ∆𝐿𝑛 𝐺𝐷𝑃𝑖𝑡 + 𝛾3 ∆𝐿𝑛 𝐸𝑖𝑡−1 + 𝜏𝑢𝑖𝑡−1 + 𝜀𝑖𝑡 

Where  𝑢𝑖𝑡−1 are the residuals resulting from estimations in eq 4, lagged one period – it represents 

the error correction term. In other to perform this model a precondition must be satisfied, all the 

variables should be non-stationary.  To test such condition in the variables the Harris-Tzavalis 

unit roots test was performed. The results shows that dependient variable (electricity consumption 

is stationary) with which the ECM model cannot be performed (See table S5.4 for the results). 

Table S7.4: Total electricity demand in households 2005-2013. Panel data 

fixed effects. 15 states. Yearly data. Error correction model 

variable statistic z-statistics prob. 

ln∆E 0.0347 -8.5388 0.000** 

ln∆EP 0.9127 2.7297 0.9968 

ln∆GP 0.7724 0.9294 0.8237 

ln∆GDP 0.3226 4.8442 0.000** 

Adjusted R-squared  
  

Within 0.3862   

Between 0.0126   

Overall 0.3270   

F-statistics 9.56  0.0000*** 

Signif. codes:  ***p<0.01. **p<0.05. *p<0.1. 

 

The price of the electricity and the gas are non-stationary, whereas the electricity consumption 

and the GDP are stationary (see table S7.4), with which the ECM cannot be performed because 

the variables are not co-integrated (they do not share a common stochastic path). 
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Supporting information S7-5 Model with price decomposition 

Table S7-5: Random Effects Model (RE): Total electricity demand in 

households 2005-2013 with climatic variable. Panel of 15 states of Colombia. 

Generalized Last Squares (GLS) estimation (cross-section weights). Model 

with price decomposition  

variable coefficient t-statistics prob. 

α -4.894 -7.18 0.000*** 

lnPmax -1.0009 1.28 0.000*** 

lnPcut 1.398 4.3569 0.748 

lnPrec 8.030 6.275 0.201 

lnGP 0.6023 3.82 0.000*** 

lnGDP -0.058 -1.56 0.118 

Adjusted R-squared  
  

Within 0.1094   

Between 0.4852   

Overall 0.2941   

F-statistics 27.35  0.000*** 

Signif. codes:  ***p<0.01. **p<0.05. *p<0.1. 
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Supplementary information S8-1: Energy system model: method, assumptions and results 

To measure the implications of the injection of 536 additional MW of wind power in the 

Colombian energy grid a representative simplified energy model has been used which includes 

the main electricity producing plants within the current national energy system (see table S8.1). 

Jointly the system model accounts for 8,910 MW of installed capacity (51% of the installed 

capacity at the end of the 2018) (CAISO, 2018; COLGENER S.A, 2008; CREG, 2013; García, 

Corredor, Calderón, & Gómez, 2013; Gensa, 2017; XM filiar de ISA, 2019). The whole system 

wasn’t possible to include due to the absence of data regarding the costs (installation, operation 

and maintenance) for all the plants that conform the energy system. The information for the 

capacity factor (See table S8.2) for the different technologies across the years was obtained from 

the (XM, 2019), moreover, data for the cost of the different components of the generation of 

electricity (installed cost, fixed and variable cost of operation and maintenance) was 

obtained(CAISO, 2018; eia & Administration, 2019; IRENA, 2018).The initial demand 

correspond to 28,557 GWh with a yearly increase of the electricity demand of 3.2% was assumed 

(see table S8-5). 

To calculate the yearly generation cost of electricity a dispatch was made. The dispatch of the 

plants was done by calculating the yearly marginal costs and the amount of electricity offered by 

each plants according with the installed capacity and the capacity factor. In this sense the plants 

with the lowest cost of generation are the first to be dispatched, until the final cost with which the 

demand for electricity for the respective year is reached. The cost of the last plant with which the 

demand is satisfied becomes the price of generation for each year (see table S8-4 and S8-7). This 

procedure was applied for the reference model (8,910.4 MW) and the improved model (8,910.4 

MW + 536 MW of wind power) (See table S8.6 for energy mix obtained from each model along 

the timespan). 

The yearly monetary savings for introducing the 536 MW of wind power were obtained from the 

difference between the final price of electricity (generation, transmission, distribution, 

commercialization, losses and restriction) of the reference model and the improved model (see 

table S8-8). After accounting the monetary savings, the direct and indirect rebound effect was 

calculated. The direct rebound effect was calculated upon the elasticity price of the electricity 

(95.9%) see supplementary data S8-2. As an example, if electricity price are 1% cheaper, with 

the selected elasticity of electricity demand, electricity demand would increase by 0.959%. With 

the elasticity the additional yearly demand of electricity was obtained (see table S8-9). Finally the 

savings available to re-spend in other goods and services different from electricity were obtained 

after taking in account the additional consumption of electricity from the original savings 

calculated (see table S8-10). 
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Table S8-1.1 Power plans included in the model. 

Plant Resource Capacity (MW) Life time 

San Carlos Hydro 1,240 40 

Guavio Hydro 1,240 40 

Chivor Hydro 1,000 40 

Pagua Hydro 600 40 

Guatapé Hydro 560 40 

Betania Hydro 540 40 

Tebsab  Gas 791 20 

Alban Hydro 429 40 

Tasajera Hydro 306 40 

Jepirahi Wind 18.4 20 

Playas Hydro 207 40 

Termosierra AB  Gas 353 20 

Zipaemg 5  Coal 63 30 

Paipa 3  Coal 70 30 

Jaguas Hydro 170 40 

Paipa 2  Coal 72 30 

Calima Hydro 132 40 

Paipa 1  Coal 36 30 

Termocalendaria 1  Gas 157 20 

Termocalendaria 2  Gas 157 20 

Flores 1 Gas Gas 160 20 

Paipa 4  Coal 160 30 

Tasajero 1  Coal 163 30 

Guajira 1  Coal 143 30 

Guajira 2  Coal 143 30 

Source. Own elaboration results from the energy model. 
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The capacity factor is defined as the resource (hydro, wind, thermal, etc.) availability both in terms of quantity and quality over a period of time of 

application(Gude, 2018), that is: 

𝐶𝐹 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑎 𝑝𝑜𝑤𝑒𝑟 𝑝𝑙𝑎𝑛𝑡
  

 

See table S8.2. For the capacity factor of different generation technologies during period 2000 until 2015. With the above information the capacity factor for the 

period 2019-2030 were calculated according with the following steps. First, the calculation of the capacity factor for each technology for monthly, taking in 

account the seasonality of this variable. Second, the calculation of the probability distribution each capacity factor using the software @RISK. Finally, the 

calculation of the capacity factor for each techology until 2030 year (See table S8.3). 

 

Table S8-1.2, we show the capacity factor of different generation technologies during period 2000 until 2015. 

capacity 

factor 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

Hydro 38.81% 18.26% 44.60% 48.58% 47.44% 52.02% 53.37% 56.88% 60.38% 53.39% 50.51% 59.85% 54.72% 52.29% 49.96% 46.58% 

Coal 29.16% 25.42% 29.71% 37.95% 19.19% 28.11% 38.94% 45.34% 33.54% 57.67% 56.05% 20.24% 32.75% 61.50% 64.53% 71.18% 

Gas 28.33% 18.15% 28.27% 19.96% 24.66% 27.26% 24.32% 23.71% 21.33% 36.03% 46.61% 20.81% 21.96% 21.39% 24.92% 32.19% 

Wind         31.43% 30.71% 39.03% 30.92% 33.41% 35.76% 23.90% 25.58% 34.00% 35.71% 43.52% 42.38% 

 

Table S8-1.3 Capacity factor 2019-2030 

Capacity 

factor 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 

Hydro 50.06% 52.74% 48.64% 43.33% 52.97% 51.83% 49.72% 57.85% 55.34% 50.58% 48.13% 52.93% 

Wind 40.68% 45.11% 45.37% 45.88% 34.27% 43.07% 37.42% 29.48% 27.51% 41.21% 45.73% 43.02% 

Gas 42.59% 50.38% 55.97% 45.79% 42.10% 57.81% 50.19% 46.55% 56.08% 43.76% 53.94% 44.26% 

Carbon 71.10% 78.88% 55.15% 96.82% 53.48% 28.25% 61.27% 76.70% 47.66% 59.35% 59.41% 64.77% 
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Electricity Cost 

 

The electricity cost taking into account the cost investment and generation cost (See table S8-4).   

Table S8-1.4. Marginal Cost ($US/MWh) 

 

Source. Own elaboration results from the energy model. 

 

Table S8-1.5 Yearly electricity demand 2019-2030. 

Year Demand(MWh) 

2019 28.557.600 

2020 29.471.443 

2021 30.414.529 

2022 31.387.794 

2023 32.392.204 

2024 33.428.754 

2025 34.498.474 

2026 35.602.426 

2027 36.741.703 

2028 37.917.438 

2029 39.130.796 

2030 40.382.981 

Source. Own elaboration results from the energy model. 

 

 

 

 

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

ALBAN 55,37     52,73     56,90     63,48     52,51     53,60     55,73     48,35     50,40     54,84     57,47     52,55    

BETANIA 51,34     48,90     52,75     58,82     48,70     49,70     51,67     44,86     46,75     50,85     53,27     48,73    

Calima 81,99     77,99     84,29     94,24     77,67     79,31     82,54     71,39     74,48     81,18     85,16     77,73    

Chivor 42,01     40,04     43,14     48,04     39,88     40,69     42,28     36,79     38,31     41,61     43,57     39,91    

Guatapé 50,73     48,32     52,12     58,12     48,12     49,11     51,06     44,34     46,20     50,24     52,64     48,16    

Guavio 39,19     37,37     40,25     44,79     37,22     37,97     39,44     34,35     35,76     38,82     40,64     37,25    

Jaguas 75,32     71,66     77,43     86,53     71,36     72,86     75,82     65,62     68,44     74,58     78,22     71,42    

Tasajera 61,92     58,94     63,63     71,05     58,69     59,92     62,32     54,02     56,32     61,32     64,28     58,74    

Pagua 49,60     47,24     50,95     56,81     47,05     48,02     49,92     43,35     45,17     49,12     51,46     47,09    

Playas 70,52     67,10     72,49     80,99     66,82     68,23     70,99     61,46     64,10     69,83     73,23     66,88    

San Carlos 35,99     34,17     37,05     41,59     34,02     34,77     36,24     31,15     32,56     35,62     37,44     34,05    

Eólica 61,89     56,03     55,72     55,12     73,05     58,58     67,09     84,58     90,45     61,13     55,30     58,64    

Eólica 1 68,84     62,30     61,95     61,28     81,30     65,15     74,64     94,16     100,72   67,99     61,48     65,21    

Guajira 1 192,97   166,21   151,57   180,87   194,97   147,39   166,76   178,22   151,30   188,35   156,53   186,45  

Guajira 2 193,37   166,61   151,97   181,27   195,37   147,79   167,16   178,62   151,70   188,75   156,93   186,85  

Paipa 1 118,01   103,17   95,05     111,30   119,12   92,73     103,47   109,83   94,90     115,45   97,80     114,40  

Paipa 2 94,74     83,37     77,16     89,60     95,59     75,38     83,61     88,48     77,04     92,78     79,26     91,97    

Paipa 3 93,36     82,10     75,94     88,27     94,21     74,17     82,33     87,16     75,82     91,42     78,02     90,62    

Paipa 4 190,84   164,23   149,68   178,81   192,83   145,52   164,78   176,18   149,41   186,25   154,61   184,36  

Tasajero 1 191,31   164,70   150,15   179,28   193,30   145,98   165,24   176,64   149,88   186,72   155,08   184,83  

ZIPAEMG 5 92,45     81,52     75,54     87,51     93,27     73,83     81,74     86,42     75,43     90,56     77,56     89,79    

FLORES 1 103,98   96,92     124,70   84,95     127,59   212,62   115,47   98,75     139,22   118,16   118,08   110,98  

TEBSAB 50,09     48,33     55,26     45,34     55,99     77,21     52,96     48,79     58,89     53,63     53,61     51,84    

Termocalendaria 1 99,17     92,89     117,59   82,25     120,15   195,75   109,38   94,52     130,49   111,77   111,70   105,39  

Termocalendaria 2 100,72   94,29     119,59   83,40     122,22   199,66   111,19   95,96     132,81   113,64   113,56   107,10  

Termosierra AB 64,43     61,16     74,02     55,62     75,36     114,72   69,75     62,01     80,74     70,99     70,95     67,67    
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Table S8-6. Energy grid for the references (without increasing the shares of wind) and the 

improved energy system (plus 536 MW wind). Sources. Results of energy model supporting 

information S8.1. 

 

Reference 

years 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 

Technologies                         

 Hydro  71% 69% 69% 64% 75% 74% 70% 72% 73% 73% 69% 73% 

 Wind  0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

 Coal  12% 13% 10% 17% 9% 5% 11% 12% 8% 10% 10% 11% 

 Gas  16% 18% 21% 18% 16% 21% 19% 16% 19% 17% 20% 16% 

Total energy grid 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Improved (reference +Plus 536 MW Wind) 

Technologies                         

 Hydro  69% 67% 67% 61% 73% 71% 68% 71% 71% 70% 66% 70% 

 Wind  4% 4% 4% 4% 3% 4% 3% 2% 2% 4% 4% 4% 

 Coal  13% 13% 10% 18% 10% 5% 11% 12% 8% 11% 11% 11% 

 Gas  15% 16% 19% 16% 15% 20% 17% 14% 18% 15% 19% 15% 

Total energy grid 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Source. Own elaboration results from the energy model. 

Table S8-7. Yearly price of electricity 2019-2030. Sources. Results of energy model supporting 

information S8-1 and supporting information S8-2.1. 

 

Years 

Reference 

generation price 

($COP/KWh) 

Improved 

generation 

price 

($COP/KWh) 

Reference 

electricity 

price 

($COP/KWh) 

Improved 

electricity 

price 

($COP/KWh) 

% 

savings 

2019 183.5 163.7 494.5 474.8 4.0% 

2020 174.3 169.9 485.3 480.9 0.9% 

2021 217.0 188.1 528.0 499.2 5.5% 

2022 279.1 244.7 590.2 555.7 5.8% 

2023 229.6 197.6 540.7 508.6 5.9% 

2024 213.0 213.0 524.1 524.1 0.0% 

2025 371.7 231.4 682.7 542.4 20.5% 

2026 183.4 183.4 494.5 494.5 0.0% 

2027 220.2 220.2 531.3 531.3 0.0% 

2028 427.1 421.9 738.2 732.9 0.7% 

2029 426.8 421.5 737.8 732.6 0.7% 

2030 435.9 396.4 747.0 707.5 5.3% 

Source. Own elaboration results from the energy model. 
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Table S8-8. Yearly monetary savings.  

 

Years 
Savings current 

$Millions COP 

2019  564876.33 

2020  129835.43  

2021  877680.54 

2022  1080237.70  

2023  1039144.14  

2024  -    

2025  4839958.73 

2026  -    

2027  -    

2028  199555.89   

2029  205941.68  

2030  1595182.55   

Source. Own elaboration results from the energy model. 

 

Table S8-9. Yearly Direct rebound effect 2019-2030 in MWh. 

 

 

 

Years 
Direct rebound 

(MWh) 

2019 1095396.01 

2020 256559.797 

2021 1594003.98 

2022 1755372.04 

2023 1843076.95 

2024 0 

2025 6798740.58 

2026 0 

2027 0 

2028 259254.615 

2029 267679.423 

2030 2048030.45 

 

Source. Own elaboration results from the energy model. 
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Table S8-10. Yearly indirect rebound effect 2019-2030 in $ Millions COP. 

 

 

Year 
Indirect rebound 

($ Millions COP) 

2019 44827.13 

2020 6453.518 

2021 81983.52 

2022 104702.37 

2023 101730.95 

2024 0 

2025 1152266.69 

2026 0 

2027 0 

2028 9546.22 

2029 9852.38 

2030 146302.47 

Source. Own elaboration results from the energy model. 

 

Model validations 

 

To validate the model, the amount of electricity generated by each plant included in the simplified 

model was initially compared with the amount of real energy generated by those plants in the year 

2019. The results graphically show that the plants follow the generation trend of the real system 

(see figure S8-1.1) 

 

 
 

Figure S8.1 yearly electricity generation predicted vs real values in 2019 

 

Additionally, the MSE "mean squared error" was calculated with a value of 119.4. An acceptable 

value for the proportions handled (values in GWh). After confirming that the values obtained 

comply with the assumptions of normality (Shapiro-Wilk normality test) and homocedasticity 

(Bartlett test), the model was validated by means of the "Test t de Student" test to determine 

whether the values obtained by the model are statistically significant when compared with the real 
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data. According to the test performed at a 95% significance level, it can be concluded that there 

is no statistical difference between the model used and the actual values for energy generation. 

 

Test the Shpairo-Wilk results 
Shapiro-Wilk normality test 
 
data:  datos$predichos - datos$reales 
W = 0.94903, p-value = 0.2384 
 

 

Test the Bartlett results 
Bartlett test of homogeneity of variances 
 
data:  values by ind 
Bartlett's K-squared = 0.3368, df = 1, p-value = 0.5617 
 

Test t.student test results: 

 
Paired t-test 
data:  datos$predichos and datos$reales 

t = 1.1746, df = 24, p-value = 0.2517 

alternative hypothesis: true difference in means is not equal to 0. 95 percent confidence interval: 

-67.46915- 245.70166 

sample estimates: 

mean of the differences 8.911.626 
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Supplementary information S8- 2: Econometric model and results for the elasticity price of 

the electricity. 

Follow Haas and Biermayr (2000) the price and income elasticities are estimated using 

the following econometric model. 

𝐿𝑛(𝐸𝑖𝑡) = 𝛼 + 𝛽1𝐿𝑛 𝐸𝑃𝑖𝑡 + 𝛽2𝐿𝑛 𝐺𝑃𝑖𝑡 + 𝛽3 𝐿𝑛 𝐺𝐷𝑃𝑖𝑡 + 𝑢𝑖𝑡  

In which α is a constant, β1- β3 are the parameters to be estimated, and 𝑢𝑖𝑡 represents the 

random error term. Eit: Is the explanatory variable and represents the electricity 

consumption in GWh per habitant (number of households with electricity services) in the 

state i and period t of the households.𝐸𝑃𝑖𝑡: represents the price of electricity in the state i 

and period t. EP was calculated as an average price for each year between the electricity 

price for the different household income levels𝐺𝑃𝑡: Price of the household gas in the state 

i and period t. 𝐺𝐷𝑃𝑖𝑡:Represents the income variable per capita (number of households 

with electricity services) measured for the gross domestic product GDP divided by the 

number of households with electricity service in the state i and period t. This variable is 

selected as a proxy of the household income due to the fact that the more desegregated 

data for the income variable provide by the official entity in charge is in terms of GDP as 

a whole. 𝐻𝐷𝐷𝑡: Represents the Heating Degree-Days of Colombia in period t (base: 

18°C) has been taking in account to include a climatic variable; however the statistical 

test demonstrated that the climatic variable is not significant for the case of Colombia 

(see table S8.2 for results of the model with 𝐻𝐷𝐷𝑡 variable). Therefore the climatic 

variable has been removed of the econometric model. 

Data collection 

Colombia counts with 33 states including the capital city (Bogota). Information for all the 

variables mentioned above where collected for all the states during the years 2005-2017, 

however due to the lack of information and accuracy for some states a sample of 15 states 

for the period 2005-2013 were finally selected, jointly this states accounts for the 56% of 

the gross domestic product and the 80% of the total housing units in 2013 (DANE, 2018b, 

2018a).  

Data of the total household gas consumption, the number of households, price of natural 

gas and electricity for the period 2005-2017 was obtained of the superintendence of public 

services domiciliary (SUI by his acronym in Spanish) (SUI, 2018). Data of the income 

was obtained of National Administrative Department of Statistics (DANE by his acronym 

in Spanish) (DANE, 2018b), all the monetary variables are in constant price from 2005. 

The time period of the data is annually.  

The panel data regression suggests that the direct RE for all household energy services 

consuming electricity is 95.9% (see table S8.2.1). Thus, only 5.1% of potential savings 
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achieved. Except for GDP, all the variables proved where significant at 10% or more level 

of confidence. 

 

Table S8-2.1: Random Effects Model (RE): Total electricity demand in 

households 2005-2013. Panel of 15 states of Colombia. Generalized 

Last Squares (GLS) estimation (cross-section weights). 

variable coefficient t-statistics prob. 

α -5.133 -8.03 0.000**  

lnEP -0.959 -4.78 0.000** 

lnGP 0.6015 3.84 0.000** 

lnGDP -0.0608 -1.63 0.104 

Adjusted R-squared  
  

Within 0.0901   

Between 0.4732   

Overall 0.2829   

F-statistics 24.69  0.0000*** 

Signif. codes:  ***p<0.01. **p<0.05. *p<0.1. 

 

Table S8-2.2: Random Effects Model (RE): Total electricity demand in 

households 2005-2013 with climatic variable. Panel of 15 states of 

Colombia. Generalized Last Squares (GLS) estimation (cross-section 

weights). 

variable coefficient t-statistics prob. 

α -5.3835 -7.93 0.000**  

lnEP -0.8921 -4.30 0.000** 

lnGP 0.5367 3.28 0.001** 

lnGDP -0.0605 -1.62 0.105 

lnHDD 0.0130 1.23 0.220 

Adjusted R-squared  
  

Within 0.0907   

Between 0.4853   

Overall 0.2976   

F-statistics 27.41  0.000*** 

Signif. codes:  ***p<0.01. **p<0.05. *p<0.1. 
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Supplementary information S8-3: Price of the electricity by component for the year 2017. 

Table S8-3.1 presents the price of the electricity by components for the most representative companies during the year 2017. 

Table S8-3.1. Average electricity price by component for the most representative companies during the year 2017. 

 $COP/kwh average % regarding the CUV 

Company G T D C PR R Cuv G T D C PR R Cuv 

Electricaribe (caribe) 148.47 28.71 119.23 60.93 28.90 24.38 410.61 0.36 0.07 0.29 0.15 0.07 0.06 1.00 

Epm unificado antioquia 158.98 28.71 175.03 40.36 31.10 24.38 458.55 0.35 0.06 0.38 0.09 0.07 0.05 1.00 

Codensa bogota 160.08 28.71 162.61 42.32 29.70 24.38 447.79 0.36 0.06 0.36 0.09 0.07 0.05 1.00 

Eemcali cali 186.66 28.71 162.06 40.15 35.16 24.38 477.10 0.39 0.06 0.34 0.08 0.07 0.05 1.00 

Epsa valle 169.12 28.71 162.06 72.42 32.26 24.38 488.93 0.35 0.06 0.33 0.15 0.07 0.05 1.00 

Essa santander 168.28 28.71 160.35 52.95 32.15 24.38 466.80 0.36 0.06 0.34 0.11 0.07 0.05 1.00 

Cens n santander 169.22 28.71 160.35 52.40 32.32 24.38 467.36 0.36 0.06 0.34 0.11 0.07 0.05 1.00 

Chec caldas 170.20 28.71 160.35 76.64 32.47 24.38 492.73 0.35 0.06 0.33 0.16 0.07 0.05 1.00 

Enertolima tolima 175.01 28.71 190.14 65.17 33.28 24.38 516.68 0.34 0.06 0.37 0.13 0.06 0.05 1.00 

Emsa meta 167.44 28.71 193.39 57.43 32.57 24.38 503.91 0.33 0.06 0.38 0.11 0.06 0.05 1.00 

Electrohuila huila 167.11 28.71 162.61 74.71 31.16 24.38 488.67 0.34 0.06 0.33 0.15 0.06 0.05 1.00 

Ebsa boyaca 171.88 28.71 162.61 83.36 32.73 24.38 503.65 0.34 0.06 0.32 0.17 0.06 0.05 1.00 

Enerca casanare 187.20 28.71 193.39 51.51 35.26 24.38 520.44 0.36 0.06 0.37 0.10 0.07 0.05 1.00 

Average 169.20 28.71 166.47 59.26 32.23 24.38 480.25 0.35 0.06 0.35 0.12 0.07 0.05 1.00 

 

Prices in current COP/KWh. CUV:Unitary variable cost. generation (G), transmission (T), distribution (D), commercialization (C), losses (PR), and 

restrictions (R). Source (SUI, 2018) 
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Table S8-3.2. Average electricity of generation for the most representative companies during the year 2017.  

Generation 

  January February march April May June July August September October November December average 

Electricaribe (caribe) 128.1 132.62 163 153.06 142.47 134.29 135.18 138.16 159 164.27 166.1 166 148 

Epm unificado 

antioquia 128.1 132.62 163 164.21 160.83 158.27 165.29 163.5 165 169.53 169.5 168 159 

Codensa bogota 154.15 159.17 169.11 157.58 153.95 152.08 155.41 158.34 162 165.84 167.4 166 160 

Emcali cali 152.03 189.94 195.04 192.83 190.29 187.88 185.49 186.75 182 186.14 195.4 197 187 

Epsa valle 159.3 170.68 170.98 171.58 170.05 168.91 168.56 169.14 169 169.57 169.8 171 169 

Essa satander 154.19 166.73 175.12 169.2 166.17 163.17 170.1 165.77 168 172.22 175.2 173 168 

Cens n santander 151.08 170.5 173.56 171.11 166.18 170.52 170.94 171.36 171 171.8 172 170 169 

Chec caldas 155.17 165.96 174.63 169.54 165.93 170.04 175.72 175.78 173 173.16 173.9 169 170 

Enertolima tolima 164.87 174.11 177.56 176.95 170.64 175.15 174.81 176.46 177 177.71 176.5 178 175 

Emsa meta 166.77 166.37 169.74 164.67 163.46 163.22 168.79 168.73 166 169.28 170.1 172 167 

Electrohuila huila 152.03 189.94 195.04 162.43 158.98 165.43 163.89 164.2 158 164.16 166.5 165 167 

Ebsa boyaca 154.04 168.79 175.45 167.9 168.46 175.77 173.22 174.14 177 176.15 175.7 176 172 

Enerca casanare 187.84 190.81 187.53 184.9 189.2 187.01 186.33 183.73 192 185.77 185.2 187 187 

Prices in current COP/KWh. CUV:Unitary variable cost. Source (SUI, 2018) 
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Table S8-3.3. Average electricity of commercialization for the most representative companies during the year 2017.  

Commercialization 

  January February march April May June July August September October November December average 

Electricaribe (caribe) 61.22 58.62 60.6 66.45 62.99 59.51 58.17 58.96 60 61.42 61.85 61.4 60.9 

Epm unificado 

antioquia 39.58 39.22 40.19 41.31 39.62 40.48 40.48 40.56 40.8 40.55 40.55 40.9 40.4 

Eodensa bogota 41.64 39.84 41.46 44.04 43.85 41.7 41.94 41.01 43.8 42.9 43.64 42.1 42.3 

Emcali cali 40.31 39.55 37.13 41.84 40.24 40.92 41.19 40.5 40.8 40.45 39.34 39.6 40.2 

Epsa valle 67.78 72.78 74.22 73.67 72.73 74.04 75.5 71.29 72.8 70.42 70.77 73.1 72.4 

Essa satander 51.47 51.3 51.86 55.32 51.6 52.71 51.97 54.37 54.7 52.64 53.45 54 52.9 

Cens n santander 48.55 49.42 54.48 57.49 55.23 53 51.7 52.08 53.1 51.58 50.72 51.4 52.4 

Chec caldas 73.4 73.84 74.72 76.44 77.43 78.84 76.57 77.93 77.3 78.87 75.03 79.3 76.6 

Enertolima tolima 64.31 65.05 64.36 64.75 66.08 65.7 65.21 65.76 65.7 63.96 65.34 65.8 65.2 

Emsa meta 57.45 54.83 59.13 60.93 54.65 56.09 55.9 57.78 59 59.81 56.6 57 57.4 

Electrohuila huila 70.31 75.51 72.62 75.46 77.64 77.32 78.25 74.77 75.9 74 71.25 73.5 74.7 

Ebsa boyaca 79.71 83.5 81.72 79.93 86.88 82.78 84.59 84.31 85.7 82.4 84.25 84.6 83.4 

Enerca casanare 47.29 48.69 49.1 50.05 52.51 51.14 48.57 52.62 53.6 53.55 55.87 55.1 51.5 

Prices in current COP/KWh. CUV:Unitary variable cost. Source (SUI, 2018) 
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Table S8-3.3. Average electricity of restrictions for the most representative companies during the year 2017.  

Restriction 

  January February march April May June July August September October November December average 

  24.33 23.68 20.46 20.03 27.81 26.4 26.9 28.27 25.8 22.42 21.15 25.3 24.4 

Prices in current COP/KWh. CUV:Unitary variable cost. Source (SUI, 2018) 

 

Table S8-3.4. Average electricity of losses the most representative companies during the year 2017.  

Losses 

  January February march April May June July August September October November December average 

Electricaribe (caribe) 25.41 26.48 31.71 29.88 27.51 25.18 26.88 27.89 30.3 31.67 32.26 31.7 28.9 

Epm unificado 

antioquia 28.7 31.32 32.91 31.35 29.97 29.01 31.51 31.75 31 32.06 32.06 31.6 31.1 

Codensa bogota 28.67 29.8 31.65 29.52 28.29 27.09 29.12 30.12 29.6 30.73 31.24 30.6 29.7 

Emcali cali 29.36 35.92 36.99 36.44 35.19 34.02 35.26 35.53 34 35.27 37.15 36.7 35.2 

Epsa valle 30.52 32.71 32.95 32.88 32.03 30.83 32.37 33.01 32 32.47 32.8 32.5 32.3 

Essa satander 29.69 32.09 33.75 32.67 31.13 30.26 32.64 32.45 31.8 32.84 33.61 32.8 32.2 

Cens n santander 29.17 32.73 33.48 33.02 31.13 31.41 32.79 33.38 32.3 32.78 33.18 32.4 32.3 

Chec caldas 29.85 31.95 33.88 32.56 31.11 31.27 33.57 34.12 32.6 33.05 33.47 32.2 32.5 

Enertolima tolima 31.51 33.56 34.09 33.77 32.16 31.91 33.44 34.24 33.3 33.84 33.94 33.7 33.3 

Emsa meta 34.85 35.13 32.76 31.79 31 30.71 32.41 32.93 31.5 32.4 32.84 32.6 32.6 

Electrohuila huila 29.36 31.45 32.21 31.38 29.95 30.32 31.61 32.19 30.1 31.59 32.25 31.5 31.2 

Ebsa boyaca 29.67 32.4 33.71 32.28 31.76 31.98 33.15 33.85 33.3 33.73 33.76 33.2 32.7 

Enerca casanare 35.22 36.05 35.71 35.08 35.23 33.85 35.34 35.45 35.6 35.16 35.37 35 35.3 

 

  

Prices in current COP/KWh. CUV:Unitary variable cost. Source (SUI, 2018) 
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Table S8-3.5. Average electricity of transmission for the most representative companies during the year 2017.  

Transmission 

  January February march April May June July August September October November December average 

  29.56 30.51 31.92 31.16 24.48 21.26 29.11 32.91 26.4 30.06 30.44 26.7 28.7 

Prices in current COP/KWh. CUV:Unitary variable cost. Source (SUI, 2018) 

 

Table S8-3.6. Average electricity of distribution for the most representative companies during the year 2017.  

Distribution 

  January February march April May June July August September October November December average 

Electricaribe (caribe) 118.21 121.57 121.47 124.07 117.96 116.94 118.21 118.98 119 119.83 115.9 118 119 

Epm unificado 

antioquia 173.01 172.65 174.69 175.35 173.17 173.42 176.99 176.61 174 175.99 178.1 176 175 

Codensa bogota 166.64 164.75 159.61 161.24 167.23 163.86 156.85 157.73 167 167.35 161.3 158 163 

Emcali cali 164.45 160.54 158.12 164.13 163.73 159.8 157.87 162.75 168 166.17 160.1 159 162 

Epsa valle 164.45 160.54 158.12 164.13 163.73 159.8 157.87 162.75 168 166.17 160.1 159 162 

Essa satander 173.01 172.65 174.69 175.35 173.17 173.42 176.99 176.61 174 119.83 115.9 118 160 

Cens n santander 173.01 172.65 174.69 175.35 173.17 173.42 176.99 176.61 174 119.83 115.9 118 160 

Chec caldas 173.01 172.65 174.69 175.35 173.17 173.42 176.99 176.61 174 119.83 115.9 118 160 

Enertolima tolima 189.12 188.92 189.59 188.09 191.48 190.29 191.68 189.72 190 190.11 190.1 193 190 

Emsa meta 197.2 197.2 192.04 195.86 193.86 188.88 189.68 195.39 195 190.31 190.1 195 193 

Electrohuila huila 166.64 164.75 159.61 161.24 167.23 163.86 156.85 157.73 167 167.35 161.3 158 163 

Ebsa boyaca 166.64 164.75 159.61 161.24 167.23 163.86 156.85 157.73 167 167.35 161.3 158 163 

Enerca casanare 197.2 196.04 193.21 195.86 193.86 188.88 189.68 195.39 195 190.31 190.1 195 193 

Prices in current COP/KWh. CUV:Unitary variable cost. Source (SUI, 2018) 
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Supplementary information S8-4: Environmental footprints of current and improved energy matrix. 

Table S8-4.1. Environmental impacts for different energy technologies (impact/KWh). 

International Reference Life Cycle Data System (ILCD) impact characterization factors  

Tag Geography CC A E MEUT TEUT CE NCE OD POC RES 

Hydro  Brazil 0.0653 2.87E-05 0.0587 7.37E-06 8.09E-05 1.22E-09 2.19E-09 3.89E-10 3.60E-05 6.24E-06 

Hard coal  Brazil 0.9261 0.0076 4.9570 9.75E-04 1.07E-02 5.96E-08 2.09E-07 2.58E-09 2.69E-03 3.81E-04 

Wind  Brazil 0.0157 0.0001 2.0454 1.95E-05 1.93E-04 8.10E-09 1.87E-08 1.20E-09 6.35E-05 1.63E-05 

Natural gas  Brazil 0.5575 0.0007 0.2910 2.09E-04 2.26E-03 2.06E-09 1.16E-08 3.71E-08 7.65E-04 2.61E-05 

Source. Ecoinvent 3.4 (2019) 

 

 

Table S8-4.2. Environmental impacts for producing 1 KWh of electricity with the reference and improved energy mix across the period 2019-2030. 

 

 CC A E MEUT TEUT CE NCE OD POC RES 

  BASE KWH 

2019 0.2518 0.0011 0.7066 1.60E-04 1.75E-03 8.59E-09 2.93E-08 6.63E-09 4.83E-04 5.59E-05 

2020 0.2619 0.0011 0.7261 1.66E-04 1.82E-03 8.80E-09 3.02E-08 7.17E-09 5.03E-04 5.74E-05 

2021 0.2508 0.0009 0.5825 1.43E-04 1.56E-03 7.02E-09 2.41E-08 8.26E-09 4.44E-04 4.65E-05 

2022 0.3064 0.0015 0.9622 2.14E-04 2.34E-03 1.16E-08 4.01E-08 7.53E-09 6.35E-04 7.55E-05 

2023 0.2224 0.0008 0.5516 1.29E-04 1.41E-03 6.76E-09 2.28E-08 6.37E-09 3.97E-04 4.41E-05 

2024 0.2116 0.0005 0.3526 9.76E-05 1.06E-03 4.28E-09 1.44E-08 8.25E-09 3.21E-04 2.89E-05 

2025 0.2491 0.0010 0.6263 1.48E-04 1.62E-03 7.59E-09 2.60E-08 7.51E-09 4.55E-04 4.98E-05 

2026 0.2436 0.0010 0.6739 1.53E-04 1.67E-03 8.22E-09 2.80E-08 6.39E-09 4.63E-04 5.35E-05 

2027 0.2262 0.0007 0.4825 1.21E-04 1.32E-03 5.88E-09 1.99E-08 7.62E-09 3.81E-04 3.89E-05 

2028 0.2373 0.0009 0.6127 1.42E-04 1.55E-03 7.47E-09 2.54E-08 6.74E-09 4.35E-04 4.87E-05 

2029 0.2551 0.0010 0.6211 1.49E-04 1.63E-03 7.49E-09 2.57E-08 8.08E-09 4.62E-04 4.94E-05 

2030 0.2388 0.0010 0.6338 1.46E-04 1.59E-03 7.73E-09 2.63E-08 6.57E-09 4.44E-04 5.03E-05 
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 CC A E MEUT TEUT CE NCE OD POC RES 

  ENVIRONMENTAL EFFICIENCY KWh 

2019 0.2471 0.0011 0.7978 1.62E-04 1.78E-03 9.12E-09 3.09E-08 6.11E-09 4.87E-04 5.79E-05 

2020 0.2567 0.0011 0.8189 1.68E-04 1.84E-03 9.34E-09 3.17E-08 6.62E-09 5.06E-04 5.95E-05 

2021 0.2444 0.0009 0.6737 1.44E-04 1.57E-03 7.49E-09 2.53E-08 7.73E-09 4.43E-04 4.80E-05 

2022 0.2996 0.0015 1.0687 2.16E-04 2.36E-03 1.22E-08 4.19E-08 6.81E-09 6.38E-04 7.79E-05 

2023 0.2190 0.0009 0.6289 1.31E-04 1.43E-03 7.21E-09 2.41E-08 5.97E-09 4.01E-04 4.58E-05 

2024 0.2058 0.0005 0.4326 9.77E-05 1.06E-03 4.64E-09 1.53E-08 7.86E-09 3.19E-04 2.98E-05 

2025 0.2447 0.0010 0.7101 1.50E-04 1.64E-03 8.08E-09 2.73E-08 7.03E-09 4.59E-04 5.17E-05 

2026 0.2418 0.0011 0.7477 1.57E-04 1.72E-03 8.75E-09 2.96E-08 5.95E-09 4.71E-04 5.59E-05 

2027 0.2238 0.0008 0.5452 1.23E-04 1.34E-03 6.27E-09 2.11E-08 7.27E-09 3.85E-04 4.06E-05 

2028 0.2324 0.0010 0.7013 1.44E-04 1.57E-03 7.95E-09 2.67E-08 6.27E-09 4.38E-04 5.04E-05 

2029 0.2487 0.0010 0.7145 1.50E-04 1.64E-03 7.98E-09 2.70E-08 7.53E-09 4.61E-04 5.10E-05 

2030 0.2340 0.0010 0.7232 1.48E-04 1.61E-03 8.22E-09 2.77E-08 6.09E-09 4.46E-04 5.21E-05 

Climate change (CC), acidification (A), ecotoxicity (E), marine eutrophication (MEUT), terrestrial eutrophication (TEUT), carcinogenic effects (CE), non-

carcinogenic effects (NCE), ozone layer depletion (OD), photochemical ozone creation (POC), and respiratory effects-inorganics (RES).  Ecoinvent 3.4 

source. Ecoinvent (2019) 
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Table S8-4.3. Environmental savings between the reference and improved energy mix across the period 2019-2030.  

 CC A E MEUT TEUT CE NCE OD POC RES 

SAVINGS KWh 

2019 0.0047 -3.24E-05 -9.12E-02 -2.45E-06 -2.66E-05 -5.33E-10 -1.52E-09 5.19E-10 -3.84E-06 -2.02E-06 

2020 0.0052 -3.20E-05 -9.28E-02 -2.29E-06 -2.49E-05 -5.39E-10 -1.53E-09 5.52E-10 -3.25E-06 -2.02E-06 

2021 0.0064 -2.05E-05 -9.12E-02 -9.12E-07 -9.68E-06 -4.68E-10 -1.25E-09 5.29E-10 4.43E-07 -1.46E-06 

2022 0.0068 -3.74E-05 -1.06E-01 -2.44E-06 -2.66E-05 -6.31E-10 -1.79E-09 7.20E-10 -2.79E-06 -2.38E-06 

2023 0.0034 -2.83E-05 -7.73E-02 -2.32E-06 -2.52E-05 -4.53E-10 -1.30E-09 4.00E-10 -4.11E-06 -1.74E-06 

2024 0.0058 -1.01E-05 -8.00E-02 -3.81E-08 -1.01E-08 -3.59E-10 -9.09E-10 3.91E-10 2.14E-06 -8.86E-07 

2025 0.0044 -2.96E-05 -8.38E-02 -2.20E-06 -2.39E-05 -4.90E-10 -1.39E-09 4.86E-10 -3.36E-06 -1.85E-06 

2026 0.0017 -4.30E-05 -7.38E-02 -4.06E-06 -4.45E-05 -5.27E-10 -1.61E-09 4.35E-10 -8.78E-06 -2.43E-06 

2027 0.0024 -2.76E-05 -6.26E-02 -2.38E-06 -2.60E-05 -3.95E-10 -1.16E-09 3.50E-10 -4.60E-06 -1.64E-06 

2028 0.0049 -2.63E-05 -8.86E-02 -1.82E-06 -1.97E-05 -4.86E-10 -1.35E-09 4.76E-10 -2.33E-06 -1.71E-06 

2029 0.0064 -2.21E-05 -9.34E-02 -1.05E-06 -1.13E-05 -4.85E-10 -1.31E-09 5.47E-10 1.48E-07 -1.55E-06 

2030 0.0048 -2.77E-05 -8.94E-02 -1.97E-06 -2.14E-05 -4.97E-10 -1.39E-09 4.82E-10 -2.72E-06 -1.78E-06 

Climate change (CC), acidification (A), ecotoxicity (E), marine eutrophication (MEUT), terrestrial eutrophication (TEUT), carcinogenic effects (CE), non-

carcinogenic effects (NCE), ozone layer depletion (OD), photochemical ozone creation (POC), and respiratory effects-inorganics (RES).   
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Supplementary information S8-5: Yearly marginal budget shares of the AIDS model 

𝑀𝐵𝑆𝑡
𝑖 =  𝛼𝑖 + ∑ 𝛾𝑠

𝑖𝑙𝑛𝑝𝑡
𝑠 +

𝑠=1,...,𝑛

  𝛽𝑖 (
𝑥𝑡

𝑠

𝑃𝑡
) 

Where 𝑛 equals to the total number of consumption groups (s), x is total expenditures, P is 

defined here as the Stone’s price index, p is the price of a given category, t indicates time, and 𝛼 

(constant coefficient), 𝛽 (slope coefficient associated with total expenditure) and 𝛾 (slope 

coefficient associated with price) are the unknown parameters. 

Table S7-5.1. Coefficients of the AIDS model. Estimation Method: Linear Approximation (LA) 

with Stone Index (S). 

Coefficients Estimate Std, Error t value Pr(>|t|) 

alpha 1 3.2844 0.6813 4.8211 0.0000 

alpha 2 1.6233 0.4025 4.0328 0.0001 

alpha 3 -1.1452 0.5442 -2.1045 0.0386 

alpha 4 0.9241 0.4782 1.9322 0.0570 

alpha 5 -0.9004 0.5609 -1.6052 0.1125 

alpha 6 -2.9390 0.6065 -4.8457 0.0000 

alpha 7 -0.7185 0.4434 -1.6206 0.1092 

alpha 8 0.8714 1.0004 0.8711 0.3864 

beta 1 -0.1075 0.0237 -4.5441 0.0000 

beta 2 -0.0493 0.0140 -3.5264 0.0007 

beta 3 0.0421 0.0189 2.2250 0.0290 

beta 4 -0.0294 0.0166 -1.7655 0.0814 

beta 5 0.0369 0.0195 1.8934 0.0621 

beta 6 0.1060 0.0211 5.0323 0.0000 

beta 7 0.0265 0.0154 1.7180 0.0898 

beta 8 -0.0253 0.0348 -0.7269 0.4695 

gamma 1 1 0.1391 0.0385 3.6157 0.0005 

gamma 1 2 -0.0394 0.0141 -2.7927 0.0066 

gamma 1 3 -0.0356 0.0196 -1.8116 0.0739 

gamma 1 4 0.0206 0.0161 1.2801 0.2044 

gamma 1 5 -0.0109 0.0243 -0.4482 0.6552 

gamma 1 6 -0.0745 0.0288 -2.5887 0.0115 

gamma 1 7 -0.0353 0.0171 -2.0620 0.0426 

gamma 1 8 0.0360 0.0441 0.8157 0.4172 

gamma 2 1 -0.0394 0.0141 -2.7927 0.0066 

gamma 2 2 0.1006 0.0173 5.8254 0.0000 

gamma 2 3 -0.0877 0.0143 -6.1147 0.0000 

gamma 2 4 -0.0115 0.0165 -0.6981 0.4872 

gamma 2 5 0.1077 0.0196 5.4832 0.0000 

gamma 2 6 -0.0620 0.0124 -4.9910 0.0000 

gamma 2 7 -0.0326 0.0096 -3.3983 0.0011 
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gamma 2 8 0.0249 0.0276 0.9034 0.3692 

gamma 3 1 -0.0356 0.0196 -1.8116 0.0739 

gamma 3 2 -0.0877 0.0143 -6.1147 0.0000 

gamma 3 3 0.1308 0.0213 6.1384 0.0000 

gamma 3 4 0.0358 0.0165 2.1768 0.0326 

gamma 3 5 -0.0978 0.0240 -4.0818 0.0001 

gamma 3 6 0.0278 0.0187 1.4836 0.1420 

gamma 3 7 0.0079 0.0131 0.6053 0.5468 

gamma 3 8 0.0186 0.0294 0.6334 0.5284 

gamma 4 1 0.0206 0.0161 1.2801 0.2044 

gamma 4 2 -0.0115 0.0165 -0.6981 0.4872 

gamma 4 3 0.0358 0.0165 2.1768 0.0326 

gamma 4 4 0.0526 0.0266 1.9790 0.0514 

gamma 4 5 -0.0298 0.0231 -1.2891 0.2012 

gamma 4 6 -0.0293 0.0141 -2.0821 0.0407 

gamma 4 7 0.0023 0.0114 0.2055 0.8377 

gamma 4 8 -0.0407 0.0322 -1.2649 0.2097 

gamma 5 1 -0.0109 0.0243 -0.4482 0.6552 

gamma 5 2 0.1077 0.0196 5.4832 0.0000 

gamma 5 3 -0.0978 0.0240 -4.0818 0.0001 

gamma 5 4 -0.0298 0.0231 -1.2891 0.2012 

gamma 5 5 0.1303 0.0388 3.3560 0.0012 

gamma 5 6 -0.0297 0.0217 -1.3669 0.1756 

gamma 5 7 -0.0030 0.0166 -0.1824 0.8558 

gamma 5 8 -0.0669 0.0406 -1.6456 0.1039 

gamma 6 1 -0.0745 0.0288 -2.5887 0.0115 

gamma 6 2 -0.0620 0.0124 -4.9910 0.0000 

gamma 6 3 0.0278 0.0187 1.4836 0.1420 

gamma 6 4 -0.0293 0.0141 -2.0821 0.0407 

gamma 6 5 -0.0297 0.0217 -1.3669 0.1756 

gamma 6 6 0.0892 0.0384 2.3237 0.0228 

gamma 6 7 0.0429 0.0184 2.3310 0.0224 

gamma 6 8 0.0356 0.0349 1.0180 0.3119 

gamma 7 1 -0.0353 0.0171 -2.0620 0.0426 

gamma 7 2 -0.0326 0.0096 -3.3983 0.0011 

gamma 7 3 0.0079 0.0131 0.6053 0.5468 

gamma 7 4 0.0023 0.0114 0.2055 0.8377 

gamma 7 5 -0.0030 0.0166 -0.1824 0.8558 

gamma 7 6 0.0429 0.0184 2.3310 0.0224 

gamma 7 7 0.0172 0.0169 1.0161 0.3128 

gamma 7 8 0.0007 0.0262 0.0253 0.9799 

gamma 8 1 0.0360 0.0441 0.8157 0.4172 

gamma 8 2 0.0249 0.0276 0.9034 0.3692 

gamma 8 3 0.0186 0.0294 0.6334 0.5284 

gamma 8 4 -0.0407 0.0322 -1.2649 0.2097 
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gamma 8 5 -0.0669 0.0406 -1.6456 0.1039 

gamma 8 6 0.0356 0.0349 1.0180 0.3119 

gamma 8 7 0.0007 0.0262 0.0253 0.9799 

gamma 8 8 -0.0082 0.0839 -0.0972 0.9228 

 

  R-squared 

  values of expenditures shares values of quantities 

1 0.8377 0.9775 

2 0.9797 0.9975 

3 0.8642 0.9918 

4 0.9676 0.9849 

5 0.974 0.9993 

6 0.9241 0.9833 

7 0.5804 0.9492 

8 -1.9243 0.9905 

 

1: Food, 2: Housing, 3: Clothing, 4: Health and Education, 5: Recreation, 6: Transport, 7: 

Communication, 8: Other expenditure
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Table S8-5.2. Marginal budget shares Colombian household income for the years 2000-2016. 

year Food Housing Clothing Health and Education Recreation  Transport Communication Other expenditures  

2000 0.192 0.230 0.076 0.091 0.150 0.082 0.036 0.142 

2001 0.195 0.226 0.075 0.091 0.150 0.086 0.037 0.140 

2002 0.203 0.225 0.070 0.090 0.150 0.085 0.037 0.140 

2003 0.195 0.223 0.069 0.087 0.152 0.094 0.040 0.140 

2004 0.190 0.220 0.068 0.084 0.155 0.101 0.043 0.140 

2005 0.187 0.216 0.067 0.084 0.158 0.105 0.044 0.140 

2006 0.186 0.214 0.068 0.081 0.159 0.109 0.044 0.140 

2007 0.186 0.209 0.068 0.080 0.160 0.112 0.045 0.141 

2008 0.194 0.205 0.064 0.080 0.161 0.109 0.042 0.145 

2009 0.191 0.209 0.063 0.080 0.163 0.110 0.042 0.142 

2010 0.191 0.209 0.061 0.078 0.166 0.111 0.042 0.142 

2011 0.186 0.203 0.063 0.077 0.168 0.117 0.043 0.143 

2012 0.183 0.201 0.065 0.078 0.170 0.119 0.043 0.141 

2013 0.178 0.201 0.065 0.078 0.173 0.122 0.044 0.139 

2014 0.176 0.200 0.064 0.077 0.177 0.124 0.044 0.138 

2015 0.183 0.199 0.061 0.076 0.177 0.122 0.043 0.140 

2016 0.184 0.197 0.062 0.076 0.176 0.123 0.042 0.139 

Average 0.185 0.204 0.064 0.078 0.168 0.116 0.043 0.141 

Source. (DANE, 2018a) 
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Supplementary information S8-6: Colombian Household consumption expenditures (HCE) for the period 2000-2016 by DANE classification.  

Table S7.6.1 Colombian Household consumption expenditures (HCE) for the period 2000-2016. 

Year 

Total expenditures 

$Billions COP Food Housing Clothing 

Health and 

Education Recreation  Transport Comunication Other expenditures  

2000 144135 0.1960 0.2307 0.0750 0.0902 0.1507 0.0813 0.0332 0.1429 

2001 158693 0.1963 0.2268 0.0742 0.0907 0.1473 0.0855 0.0361 0.1430 

2002 170777 0.1999 0.2243 0.0705 0.0898 0.1488 0.0877 0.0372 0.1418 

2003 186790 0.1953 0.2243 0.0684 0.0879 0.1514 0.0920 0.0395 0.1411 

2004 205750 0.1910 0.2216 0.0693 0.0848 0.1549 0.0970 0.0399 0.1416 

2005 223748 0.1882 0.2178 0.0693 0.0832 0.1585 0.1026 0.0412 0.1392 

2006 249279 0.1842 0.2142 0.0684 0.0820 0.1606 0.1059 0.0463 0.1383 

2007 278688 0.1838 0.2071 0.0674 0.0803 0.1610 0.1127 0.0481 0.1396 

2008 304921 0.1931 0.2019 0.0629 0.0796 0.1645 0.1115 0.0479 0.1385 

2009 318887 0.1936 0.2060 0.0596 0.0798 0.1641 0.1112 0.0444 0.1413 

2010 342565 0.1868 0.2075 0.0610 0.0777 0.1648 0.1180 0.0445 0.1398 

2011 379450 0.1842 0.2022 0.0661 0.0760 0.1667 0.1234 0.0441 0.1374 

2012 406316 0.1824 0.2015 0.0652 0.0757 0.1686 0.1239 0.0423 0.1403 

2013 429195 0.1765 0.2006 0.0666 0.0775 0.1740 0.1201 0.0435 0.1412 

2014 461575 0.1756 0.2002 0.0647 0.0773 0.1754 0.1227 0.0430 0.1411 

2015 499215 0.1804 0.2007 0.0618 0.0783 0.1758 0.1200 0.0413 0.1417 

2016 545678 0.1926 0.1987 0.0598 0.0762 0.1771 0.1146 0.0381 0.1430 

Source. (UN, 2018) and Banco de la Republica database (2019). 
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Supplementary information S8-7: Price indexes for the HCE during the period 2000-2016. 

Table S7.7.1 price indexes for the HCE for the period 2000-2016.  

year Food Housing Clothing 

Health and 

Education Recreation  Transport Communication 

Other 

expenditures  

2000 53.11 68.56 91.94 57.27 76.58 58.49 62.48 65.32 

2001 58.71 71.48 94.35 63.49 82.03 63.31 70.57 70.27 

2002 65.12 74.39 95.00 69.35 86.34 66.52 78.46 76.59 

2003 68.59 79.04 96.40 75.32 90.85 74.41 86.66 81.02 

2004 72.31 82.92 97.75 80.59 94.74 80.69 91.72 84.96 

2005 77.06 86.33 98.33 84.71 97.14 84.72 100.23 87.48 

2006 81.44 89.93 98.62 89.18 97.59 89.97 93.93 91.63 

2007 88.37 93.76 100.25 94.97 100.03 94.88 96.17 95.68 

2008 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

2009 99.68 104.26 99.70 104.94 100.53 100.33 100.89 103.83 

2010 103.76 108.10 98.37 109.46 101.11 103.13 100.61 107.13 

2011 109.23 112.19 98.90 113.45 100.79 106.29 103.89 109.36 

2012 111.98 115.58 99.64 118.29 101.33 107.83 105.53 110.75 

2013 112.93 118.75 100.58 123.54 103.19 109.33 108.43 111.89 

2014 118.23 123.13 102.08 127.82 106.09 112.87 110.93 114.35 

2015 131.05 129.75 105.13 134.59 110.88 118.37 116.13 122.24 

2016 140.51 136.02 109.31 145.55 115.37 123.66 121.61 131.11 

Source Banco de la Republica database (2019). 
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Supplementary information S8-8: Concordance between COICP and HCE classification system. 

Table S7.8.1 Concordance between COICP and HCE classification system.  

 

HCE classification system 

COICP 

code COICP 

Food 1 Food and non-alcoholic beverages 

Other expenditures  2 Alcoholic beverages, tobacco and narcotics 

Clothing 3 Clothing and footwear 

Housing 4 Housing, water, electricity, gas and other fuels 

Housing 5 Furnishings, household equipment and routine maintenance of the house 

Health and Education 6 Health 

Transport 7 Transport 

Communication 8 Communication 

Recreation  9 Recreation and culture 

Health and Education 10 Education 

Recreation  11 Restaurants and hotels 

Other expenditures  12 Miscellaneous goods and services 

Source. Banco de la Republica database (2019) and UN(2018) 
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Supplementary information S8-9: Concordance between HCE and GTAP classification system. 

Table S7.9.1. Concordance between HCE and GTAP classification system. 

HCE GTAP Code Description 

Clothing 7 pfb 
Plant Fibres: cotton, flax, hemp, sisal and other raw vegetable materials 

used in textiles 

Clothing 12 wol Wool: wool, silk, and other raw animal materials used in textile 

Clothing 27 tex Textiles: textiles and man-made fibres 

Clothing 28 wap Wearing Apparel: Clothing, dressing and dyeing of fur 

Clothing 29 lea 
Leather: tanning and dressing of leather; luggage, handbags, saddlery, 

harness and footwear 

Comunication 31 ppp 
Paper & Paper Products: includes publishing, printing and reproduction of 

recorded media 

Comunication 51 cmn Communications: post and telecommunications 

Food 1 pdr Paddy Rice: rice, husked and unhusked 

Food 2 wht Wheat: wheat and meslin 

Food 3 gro Other Grains: maize (corn), barley, rye, oats, other cereals 

Food 4 v_f 
Veg & Fruit: vegetables, fruitvegetables, fruit and nuts, potatoes, cassava, 

truffles, 

Food 5 osd Oil Seeds: oil seeds and oleaginous fruit; soy beans, copra 

Food 6 c_b Cane & Beet: sugar cane and sugar beet 

Food 9 ctl 
Cattle: cattle, sheep, goats, horses, asses, mules, and hinnies; and semen 

thereof 

Food 10 oap 

Other Animal Products: swine, poultry and other live animals; eggs, in shell 

(fresh or cooked), natural honey, snails (fresh or preserved) except sea 

snails; frogs' legs, edible products of animal origin n.e.c., hides, skins and 

furskins, raw , insect waxes and spermaceti, whether or not refined or 

coloured 
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Food 11 rmk Raw milk 

Food 19 cmt 

Cattle Meat: fresh or chilled meat and edible offal of cattle, sheep, goats, 

horses, asses, mules, and hinnies. raw fats or grease from any animal or 

bird. 

Food 20 omt 

Other Meat: pig meat and offal. preserves and preparations of meat, meat 

offal or blood, flours, meals and pellets of meat or inedible meat offal; 

greaves 

Food 21 vol 

Vegetable Oils: crude and refined oils of soya-bean, maize (corn),olive, 

sesame, ground-nut, olive, sunflower-seed, safflower, cotton-seed, rape, 

colza and canola, mustard, coconut palm, palm kernel, castor, tung jojoba, 

babassu and linseed, perhaps partly or wholly hydrogenated,inter-esterified, 

re-esterified or elaidinised. Also margarine and similar preparations, animal 

or vegetable waxes, fats and oils and their fractions, cotton linters, oil-cake 

and other solid residues resulting from the extraction of vegetable fats or 

oils; flours and meals of oil seeds or oleaginous fruits, except those of 

mustard; degras and other residues resulting from the treatment of fatty 

substances or animal or vegetable waxes. 

Food 22 mil Milk: dairy products 

Food 23 pcr Processed Rice: rice, semi- or wholly milled 

Food 24 sgr Sugar 

Food 25 ofd 

Other Food: prepared and preserved fish or vegetables, fruit juices and 

vegetable juices, prepared and preserved fruit and nuts, all cereal flours, 

groats, meal and pellets of wheat, cereal groats, meal and pellets n.e.c., other 

cereal grain products (including corn flakes), other vegetable flours and 

meals, mixes and doughs for the preparation of bakers' wares, starches and 

starch products; sugars and sugar syrups n.e.c., preparations used in animal 

feeding, bakery products, cocoa, chocolate and sugar confectionery, 

macaroni, noodles, couscous and similar farinaceous products, food 

products n.e.c. 
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Health and Education 56 osg 

Other Services (Government): public administration and defense; 

compulsory social security, education, health and social work, sewage and 

refuse disposal, sanitation and similar activities, activities of membership 

organizations n.e.c., extra-territorial organizations and bodies 

Housing 43 ely Electricity: production, collection and distribution 

Housing 44 gdt 
Gas Distribution: distribution of gaseous fuels through mains; steam and hot 

water supply 

Housing 45 wtr Water: collection, purification and distribution 

Housing 46 cns Construction: building houses factories offices and roads 

Housing 47 trd 

Trade: all retail sales; wholesale trade and commission trade; hotels and 

restaurants; repairs of motor vehicles and personal and household goods; 

retail sale of automotive fuel 

Housing 57 dwe 
Dwellings: ownership of dwellings (imputed rents of houses occupied by 

owners) 

Other expenditures 53 isr Insurance: includes pension funding, except compulsory social security 

Other expenditures 8 ocr 

Other Crops: live plants; cut flowers and flower buds; flower seeds and fruit 

seeds; vegetable seeds, beverage and spice crops, unmanufactured tobacco, 

cereal straw and husks, unprepared, whether or not chopped, ground, 

pressed or in the form of pellets; swedes, mangolds, fodder roots, hay, 

lucerne (alfalfa), clover, sainfoin, forage kale, lupines, vetches and similar 

forage products, whether or not in the form of pellets, plants and parts of 

plants used primarily in perfumery, in pharmacy, or for insecticidal, 

fungicidal or similar purposes, sugar beet seed and seeds of forage plants, 

other raw vegetable materials 

Other expenditures 13 frs Forestry: forestry, logging and related service activities 

Other expenditures 15 coa Coal: mining and agglomeration of hard coal, lignite and peat 

Other expenditures 16 oil 
Oil: extraction of crude petroleum and natural gas (part), service activities 

incidental to oil and gas extraction excluding surveying (part) 
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Other expenditures 17 gas 
Gas: extraction of crude petroleum and natural gas (part), service activities 

incidental to oil and gas extraction excluding surveying (part) 

Other expenditures 18 omn 
Other Mining: mining of metal ores, uranium, gems. other mining and 

quarrying 

Other expenditures 26 b_t Beverages and Tobacco products 

Other expenditures 30 lum 
Lumber: wood and products of wood and cork, except furniture; articles of 

straw and plaiting materials 

Other expenditures 32 p_c 
Petroleum & Coke: coke oven products, refined petroleum products, 

processing of nuclear fuel 

Other expenditures 33 crp 
Chemical Rubber Products: basic chemicals, other chemical products, 

rubber and plastics products 

Other expenditures 34 nmm Non-Metallic Minerals: cement, plaster, lime, gravel, concrete 

Other expenditures 35 i_s Iron & Steel: basic production and casting 

Other expenditures 36 nfm 
Non-Ferrous Metals: production and casting of copper, aluminium, zinc, 

lead, gold, and silver 

Other expenditures 37 fmp 
Fabricated Metal Products: Sheet metal products, but not machinery and 

equipment 

Other expenditures 40 ele 
Electronic Equipment: office, accounting and computing machinery, radio, 

television and communication equipment and apparatus 

Other expenditures 41 ome 
Other Machinery & Equipment: electrical machinery and apparatus n.e.c., 

medical, precision and optical instruments, watches and clocks 

Other expenditures 42 omf Other Manufacturing: includes recycling 

Other expenditures 52 ofi 
Other Financial Intermediation: includes auxiliary activities but not 

insurance and pension funding (see next) 

Other expenditures 54 obs Other Business Services: real estate, renting and business activities 

Recreation 14 fsh 
Fishing: hunting, trapping and game propagation including related service 

activities, fishing, fish farms; service activities incidental to fishing 
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Recreation 55 ros 

Recreation & Other Services: recreational, cultural and sporting activities, 

other service activities; private households with employed persons 

(servants) 

Transport 38 mvh Motor Motor vehicles and parts: cars, lorries, trailers and semi-trailers 

Transport 39 otn Other Transport Equipment: Manufacture of other transport equipment 

Transport 48 otp 
Other Transport: road, rail ; pipelines, auxiliary transport activities; travel 

agencies 

Transport 49 wtp Water transport 

Transport 50 atp Air transport 

Source. Own elaborations base on GTAP9. 
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Supplementary information S8-10: Environmental impact per monetary unit of each of the consumption categories (m). 

Table S8.10.1. Environmental impact per monetary unit of each of the consumption categories (m). values in kg/1 million dollars (2011 constant prices).  

 

Sectors CC A E MEUT TEUT CE NCE OD POC RES 

ISR 164128.9053 1240.8056 37522.8501 17.0807 3903.7598 0.0003 0.0639 0.0114 610.9933 111.4053 

PDR 634369.8025 4432.9872 191837.8623 76.9751 14128.2652 0.0012 0.3371 0.0153 1043.5406 413.6402 

WHT 243277.9046 11503.1607 9703.1954 400.9032 51608.1918 0.0001 0.0141 0.0042 263.1471 330.7176 

GRO 199952.4750 4224.1930 55744.8447 116.1425 17251.7032 0.0004 0.0979 0.0082 468.2421 223.3121 

V_F 563051.7943 12698.4939 119901.4949 347.9621 51733.9800 0.0009 0.2096 0.0187 1233.5749 649.8500 

OSD 407214.1609 9153.4598 972612.4828 80.4296 15991.5763 0.0052 1.7024 0.0137 1340.5261 1327.4987 

C_B 5443155.8827 145088.3514 1159300.4189 4474.4164 614760.1027 0.0072 1.9942 0.2777 14607.0639 7404.4999 

PFB 221325.9729 2745.6104 141323.3472 34.6209 6671.8888 0.0009 0.2513 0.0079 539.4031 275.7414 

OCR 401050.2986 5384.8687 105182.6849 103.1829 19549.6264 0.0007 0.1849 0.0142 927.6463 419.9025 

CTL 3135135.0592 76617.3466 463262.8412 2257.0435 320617.5951 0.0034 0.8433 0.0577 3740.4692 2905.6939 

OAP 944865.6842 17675.7957 1764135.1960 139.2066 29937.8772 0.0097 3.0970 0.0375 3069.9849 2516.7446 

RMK 1138340.4312 23972.6009 77704.6211 794.4415 105963.0054 0.0005 0.1351 0.0100 888.6414 684.7979 

WOL 1203781.4809 24399.8272 3451344.5350 41.9302 20342.7188 0.0184 6.0376 0.0239 3595.4161 4647.0753 

FRS 1560518.4848 122846.7411 114633.3200 3152.2470 591039.5113 0.0008 0.1997 0.0108 668.6510 2162.1326 

FSH 197615.4606 2575.9159 115694.5023 23.8986 8181.6805 0.0013 0.2187 0.0075 467.5254 240.5899 

COA 2624992.5249 1828.9657 36686.3371 12.1393 3651.9107 0.0002 0.0667 0.0046 1281.6904 303.3543 

OIL 4403124.0645 4096.8837 134697.8651 21.6161 9887.2847 0.0008 0.2360 0.1815 9474.6542 363.9008 

GAS 2052059.7824 2547.9156 76644.3909 13.0767 8427.8998 0.0004 0.1343 0.0634 3268.5063 157.4139 

OMN 2424684.0274 163287.9801 27109655.1154 176.5949 73378.4423 0.1435 47.3782 0.1058 22449.9974 30901.7276 

CMT 79185.3333 1070.7999 26462.6262 21.3260 3692.9314 0.0002 0.0494 0.0100 482.1454 169.7979 

OMT 537039.3356 4447.1773 219376.3301 52.0826 11683.9567 0.0013 0.3920 0.0110 799.5463 437.6921 
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VOL 299691.4560 13239.4314 144585.2346 310.8774 58751.0907 0.0009 0.2558 0.0105 616.5847 422.9735 

MIL 239347.2637 2730.9535 167629.2045 27.7531 6350.0108 0.0010 0.2974 0.0082 554.8100 325.3759 

PCR 375792.7217 6909.6555 869568.2930 25.2595 7867.2682 0.0048 1.5249 0.0160 1377.1583 1152.0825 

SGR 5468890.5385 58417.8883 6555312.0446 120.9712 73812.9075 0.0355 11.4898 0.2137 15111.2179 11373.5613 

OFD 690199.1753 7459.6282 256051.4174 133.8330 23763.2486 0.0016 0.4549 0.0273 1599.7504 720.6132 

B_T 1824683.9220 23036.1727 1522656.0291 180.7869 52594.5774 0.0085 2.6825 0.0446 3434.2925 3955.7728 

TEX 50175.3878 653.2468 44961.6757 7.0232 1475.0906 0.0003 0.0794 0.0018 128.3251 75.7895 

WAP 283702.9707 3183.2751 133609.7539 39.6490 8176.6031 0.0009 0.2378 0.0078 532.0580 294.5806 

LEA 373324.8554 3923.9204 158004.0969 39.8096 9492.7519 0.0010 0.2818 0.0131 840.2833 411.1248 

LUM 40788.3002 564.0006 24860.1563 9.9748 1742.1703 0.0002 0.0439 0.0017 104.7735 52.7490 

PPP 140744.9370 1738.9358 33931.3959 10.3007 3533.4746 0.0002 0.0603 0.0060 385.2327 187.7401 

P_C 4167954.4448 25085.6216 2491421.1324 46.3387 28204.1340 0.0135 4.3607 0.3232 17155.9037 3680.2856 

CRP 757151.2304 6632.7497 227891.6978 36.8067 12000.0659 0.0013 0.4006 0.0192 1261.9160 580.7133 

NMM 5190184.5027 20052.0308 318402.3550 38.1415 53655.8530 0.0021 0.5838 0.0131 2313.3853 4713.6846 

I_S 2467143.3679 13847.1692 2526437.9289 88.3537 28962.9536 0.0140 4.4625 0.0293 3151.6586 3078.2674 

NFM 865618.8911 75968.3453 566915.2391 45.2335 13711.8384 0.0063 1.3684 0.0130 6294.4642 4432.2456 

FMP 146286.1640 1430.9411 100422.9624 13.6741 3037.2887 0.0006 0.1815 0.0071 436.5299 171.1585 

MVH 148414.5962 1653.3329 140723.8463 5.4305 2965.1097 0.0008 0.2513 0.0161 872.6291 227.7275 

OTN 96608.7608 1055.7571 48281.3283 14.2319 2910.1507 0.0003 0.0866 0.0049 286.7572 106.0947 

ELE 197997.8027 2947.9172 41923.2121 56.8856 9493.9511 0.0003 0.0742 0.0089 523.9235 232.0023 

OME 392158.4964 2871.7282 65961.0255 10.1056 5813.0331 0.0006 0.1330 0.0053 477.0042 236.0547 

OMF 1469509.6380 9590.2995 95373.6620 40.1338 21170.1189 0.0007 0.1750 0.0309 1975.3264 685.4203 

ELY 107723193.1423 570613.3088 1431203.7929 343.4960 811448.6656 0.0159 2.2877 0.3431 44082.7253 30712.7097 

GDT 246193.0369 3094.2500 83826.6234 64.0560 10822.3658 0.0005 0.1489 0.0070 435.7186 204.3473 

WTR 177927.9285 1982.9725 92419.4742 21.8533 4889.1058 0.0006 0.1639 0.0053 354.5778 231.4056 

CNS 890962.3160 5458.4953 345767.9788 25.9469 18063.6891 0.0025 0.6648 0.0467 2751.9558 829.0108 

TRD 2497462.2703 18692.5232 469213.2737 238.5771 71315.6627 0.0027 0.7641 0.1400 7363.2325 1995.7751 
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OTP 4184468.4331 25378.2624 259523.6722 89.6206 49296.8757 0.0019 0.4464 0.0750 4997.0705 1686.0914 

WTP 176869.4818 2340.5255 169278.2320 19.9294 5911.5061 0.0016 0.3109 0.0059 429.4996 265.4497 

ATP 572461.8149 3545.1383 63347.5944 36.7405 13614.6326 0.0005 0.1127 0.0129 818.5357 234.5290 

CMN 651309.3244 20513.3940 212594.1258 46.1591 11819.6737 0.0020 0.4535 0.0314 2972.8291 1304.5113 

OFI 1032342.9873 6542.2016 96330.4697 35.5369 13898.8003 0.0007 0.1668 0.0214 1371.5213 453.0284 

OBS 1039718.2546 7060.7458 217614.0567 62.0936 17546.5834 0.0015 0.3946 0.0464 2668.6771 748.2287 

ROS 2148576.9367 13426.5817 171088.1255 117.6962 32451.1697 0.0015 0.3248 0.0494 2937.4070 1049.9298 

OSG 3695234.9683 19726.2766 456108.4055 218.9923 54672.4373 0.0035 0.8384 0.3491 16721.0572 1922.3934 

DWE 88881.6136 1267.8181 81525.0192 20.7428 3388.2979 0.0005 0.1431 0.0038 246.4672 132.6881 

 

Climate change (CC), acidification (A), ecotoxicity (E), marine eutrophication (MEUT), terrestrial eutrophication (TEUT), carcinogenic effects (CE), non-

carcinogenic effects (NCE), ozone layer depletion (OD), photochemical ozone creation (POC), and respiratory effects-inorganics (RES).  ISR: insurance, PDR: 

Paddy Rice, WHT: Wheat, GRO: Other Grains, V_F: Veg & Fruit, OSD: Oil Seeds, C_B: Cane & Beet, PFB: Plant Fibres, OCR: Other Crops, CTL: Cattle, 

OAP: Other Animal Products, RMW: Raw milk, WOL: Wool, FRS: Forestry, FSH: Fishing: hunting, COA: Coal, OIL:Oil, GAS:Gas, OMN: Other Mining, 

OMT: Other Meat, VOL: Vegetable Oils, MIL: Milk, PCR: Processed Rice, SGR: Sugar, OFD: Other Food, B_T: Beverages and Tobacco products, TEX: 

Textiles, WAP: Wearing Apparel, LEA: Leather, LUM: Lumber, PPP: Paper & Paper Products, P_C: Petroleum & Coke, CRP: Chemical Rubber Products, 

NMM: Non-Metallic Minerals, I_S: Iron & Steel, NFM: Non-Ferrous Metals, FMP: Fabricated Metal Products, MVH: Motor Motor vehicles and parts, OTN: 

Other Transport Equipment, ELE: Electronic Equipment, OME: Other Machinery & Equipment, OMF: Other Manufacturing, ELY: Electricity, GDT: Gas 

Distribution, WTR: Water, CNS: Construction, TRD: Trade, OTP: Other Transport, WTP: Water transport, ATP: Air transport, CMN: Communications, OFI: 

Other Financial Intermediation, OBS: Other Business Services, ROS: Recreation & Other Services, OSG: Other Services (Government), DWE: Dwellings. 

Source. Own elaboration base on GTAP9. 
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Supplementary information S8-11:  Environmental rebound effect results for the combined model. 

Table S8.11.1. Environmental rebound effect (ERE) combined model.  

Environmental rebound effect ERE combined model 
 

CC A E MEUT TEUT CE NCE OD POC RES 

2019 220% 153% 34% 257% 315% 66% 123% 53% 545% 151% 

2020 46% 34% 8% 64% 73% 15% 24% 11% 145% 31% 

2021 223% 292% 39% 835% 1128% 85% 200% 89% 6109% 269% 

2022 272% 266% 57% 501% 624% 109% 213% 64% 1449% 257% 

2023 414% 222% 47% 327% 449% 92% 211% 104% 664% 245% 

2024 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2025 1478% 1159% 177% 1399% 2752% 335% 1435% 453% 4108% 1499% 

2026 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2027 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2028 35% 29% 5% 55% 68% 11% 22% 10% 144% 28% 

2029 28% 35% 5% 98% 122% 11% 23% 11% 2383% 31% 

2030 285% 239% 42% 385% 553% 85% 215% 83% 1021% 256% 

Climate change (CC), acidification (A), ecotoxicity (E), marine eutrophication (MEUT), terrestrial eutrophication (TEUT), carcinogenic effects (CE), non-

carcinogenic effects (NCE), ozone layer depletion (OD), photochemical ozone creation (POC), and respiratory effects-inorganics (RES). Source. Own 

elaboration. 
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Table S8-11.2. Direct Environmental rebound effect (ERE) combined model.  

  Direct Environmental rebound combined model 

  CC A E MEUT TEUT CE NCE OD POC RES 

2019 203% 131% 34% 255% 256% 66% 78% 45% 487% 110% 

2020 43% 31% 8% 64% 64% 15% 18% 10% 135% 26% 

2021 201% 234% 39% 824% 848% 84% 106% 77% 5242% 172% 

2022 246% 226% 56% 496% 498% 108% 131% 53% 1279% 183% 

2023 367% 173% 46% 322% 324% 91% 106% 85% 555% 150% 

2024 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2025 1091% 656% 167% 1344% 1352% 325% 386% 285% 2691% 549% 

2026 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2027 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2028 32% 25% 5% 54% 55% 11% 13% 9% 129% 20% 

2029 26% 30% 5% 98% 100% 11% 14% 9% 2140% 22% 

2030 246% 181% 41% 379% 383% 84% 101% 64% 831% 148% 

Climate change (CC), acidification (A), ecotoxicity (E), marine eutrophication (MEUT), terrestrial eutrophication (TEUT), carcinogenic effects (CE), non-

carcinogenic effects (NCE), ozone layer depletion (OD), photochemical ozone creation (POC), and respiratory effects-inorganics (RES).Source. Own 

elaboration.  
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Table S8-11.3. Indirect Environmental rebound effect (ERE) combined model.  

  Indirect Environmental rebound combined model 

  CC A E MEUT TEUT CE NCE OD POC RES 

2019 17% 22% 0% 2% 59% 0% 45% 7% 58% 41% 

2020 2% 3% 0% 0% 9% 0% 6% 1% 10% 6% 

2021 22% 59% 1% 11% 279% 1% 94% 13% 867% 97% 

2022 25% 40% 1% 5% 126% 1% 82% 11% 170% 74% 

2023 47% 49% 1% 5% 125% 1% 106% 19% 109% 95% 

2024 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2025 387% 503% 10% 55% 1400% 10% 1048% 169% 1417% 949% 

2026 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2027 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2028 3% 4% 0% 0% 13% 0% 8% 1% 15% 8% 

2029 2% 5% 0% 1% 22% 0% 8% 1% 243% 9% 

2030 39% 58% 1% 7% 170% 1% 114% 18% 190% 107% 

Climate change (CC), acidification (A), ecotoxicity (E), marine eutrophication (MEUT), terrestrial eutrophication (TEUT), carcinogenic effects (CE), non-

carcinogenic effects (NCE), ozone layer depletion (OD), photochemical ozone creation (POC), and respiratory effects-inorganics (RES).Source. Own 

elaboration. 
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Supplementary information S8-12: Environmental rebound effect results for the single model. 

Table S8-12.1. Environmental rebound effect (ERE) single model. 

 Environmental rebound effect ERE  single model 

 CC A E MEUT TEUT CE NCE OD POC RES 

2019 216% 272% 5% 29% 747% 5% 570% 94% 734% 516% 

2020 44% 61% 1% 7% 177% 1% 126% 20% 193% 115% 

2021 232% 627% 8% 114% 2992% 9% 1007% 134% 9277% 1039% 

2022 259% 410% 8% 51% 1300% 8% 843% 117% 1759% 763% 

2023 484% 505% 10% 50% 1280% 10% 1081% 197% 1112% 971% 

2024 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2025 1625% 2111% 41% 230% 5881% 42% 4404% 709% 5952% 3986% 

2026 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2027 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2028 55% 89% 1% 10% 269% 2% 170% 27% 322% 162% 

2029 42% 106% 1% 18% 470% 2% 176% 24% 5085% 179% 

2030 420% 636% 11% 72% 1856% 12% 1242% 202% 2067% 1169% 

Climate change (CC), acidification (A), ecotoxicity (E), marine eutrophication (MEUT), terrestrial eutrophication (TEUT), carcinogenic effects (CE), non-

carcinogenic effects (NCE), ozone layer depletion (OD), photochemical ozone creation (POC), and respiratory effects-inorganics (RES). Source. Own 

elaboration. 
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Table S8-12.2. Direct Environmental rebound effect (ERE) single model.  

Direct Environmental rebound single model 

 CC A E MEUT TEUT CE NCE OD POC RES 

2019 5.67% 4.35% 0.00% 0.03% 7.52% 0.01% 0.37% 0.16% 2.83% 3.75% 

2020 1.15% 0.98% 0.00% 0.01% 1.79% 0.00% 0.08% 0.03% 0.74% 0.84% 

2021 6.09% 10.01% 0.01% 0.14% 30.14% 0.01% 0.66% 0.23% 35.76% 7.55% 

2022 6.80% 6.55% 0.01% 0.06% 13.10% 0.01% 0.55% 0.20% 6.78% 5.54% 

2023 12.68% 8.06% 0.01% 0.06% 12.90% 0.01% 0.70% 0.34% 4.29% 7.05% 

2024 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

2025 42.60% 33.69% 0.03% 0.27% 59.24% 0.06% 2.87% 1.23% 22.94% 28.96% 

2026 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

2027 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

2028 1.44% 1.42% 0.00% 0.01% 2.71% 0.00% 0.11% 0.05% 1.24% 1.18% 

2029 1.10% 1.69% 0.00% 0.02% 4.73% 0.00% 0.11% 0.04% 19.60% 1.30% 

2030 11.01% 10.15% 0.01% 0.09% 18.70% 0.02% 0.81% 0.35% 7.97% 8.49% 

Climate change (CC), acidification (A), ecotoxicity (E), marine eutrophication (MEUT), terrestrial eutrophication (TEUT), carcinogenic effects (CE), non-

carcinogenic effects (NCE), ozone layer depletion (OD), photochemical ozone creation (POC), and respiratory effects-inorganics (RES). Source. Own 

elaboration.   
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Table S8-12.3. Indirect Environmental rebound effect (ERE) single model.  

  

Indirect Environmental rebound single model 

 CC A E MEUT TEUT CE NCE OD POC RES 

2019 211% 268% 5% 29% 739% 5% 570% 93% 731% 512% 

2020 43% 60% 1% 7% 176% 1% 126% 20% 192% 114% 

2021 226% 617% 8% 114% 2962% 9% 1006% 134% 9241% 1032% 

2022 252% 404% 8% 51% 1287% 8% 843% 117% 1752% 757% 

2023 471% 497% 10% 50% 1267% 10% 1080% 197% 1108% 964% 

2024 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2025 1582% 2078% 41% 230% 5822% 42% 4401% 708% 5929% 3958% 

2026 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2027 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2028 54% 88% 1% 10% 266% 2% 170% 27% 321% 161% 

2029 41% 104% 1% 18% 465% 2% 176% 24% 5065% 177% 

2030 409% 626% 11% 72% 1838% 12% 1241% 201% 2059% 1160% 

Climate change (CC), acidification (A), ecotoxicity (E), marine eutrophication (MEUT), terrestrial eutrophication (TEUT), carcinogenic effects (CE), non-

carcinogenic effects (NCE), ozone layer depletion (OD), photochemical ozone creation (POC), and respiratory effects-inorganics (RES). Source. Own 

elaboration.    
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Supplementary information S8-13. Shares of the Marginal budget shares (MBS) and environmental impact intensity (EII) in percentage for 

each consumption group and their associated economic sectors in terms of climate change. 

Consumption 

group 
Economic sector % MBS % EII 

Consumption 

group 
Economic sector % MBS % EII 

Recreation 
 

16.81% 23.85% 
 

Lumber 0.47% 0.01% 
 

Fishing 0.01% 0.00% 
 

Petroleum & coke 1.53% 4.21%  
Recreation & Other Services 16.80% 23.85% 

 
Chemical rubber products 0.02% 0.01% 

Health & 

Education 

 
7.82% 19.09% 

 
Non-metallic minerals 0.00% 0.00% 

 
Other Services (Government) 7.82% 19.09% 

 
Iron & steel 0.00% 0.00% 

Housing 
 

20.41% 18.65% 
 

Non-Ferrous metals 0.10% 0.05%  
Electricity 0.04% 2.62% 

 
Fabricated metal products 0.56% 0.05%  

Gas distribution 0.66% 0.11% 
 

Electronic equipment 0.18% 0.02%  
Water 0.00% 0.00% 

 
Other machinery & equipment 0.48% 0.13%  

Contraction 15.62% 9.19% 
 

Other manufacturing 0.63% 0.61%  
Trade 4.08% 6.73% 

 
Other financial intermediation 0.66% 0.45%  

Dwellings 0.01% 0.00% 
 

Other business services 8.37% 5.75% 

Other 

Expenditures 

 
14.09% 12.91% Transport 

 
11.61% 4.59% 

 
Insurance 0.01% 0.00% 

 
Motor vehicles and parts 0.33% 0.03%  

Other crops 0.00% 0.00% 
 

Other transport equipment 0.07% 0.00%  
Forestry 0.11% 0.11% 

 
Other transport  0.21% 0.58%  

Coal 0.00% 0.00% 
 

Water transport 0.75% 0.09%  
Oil 0.00% 0.00% 

 
Air transport 10.26% 3.88%  

Gas 0.00% 0.00% Communication 
 

4.31% 1.42%  
Other mining 0.77% 1.24% 

 
Paper & paper products 1.28% 0.12%  

Beverages and tobacco products 0.21% 0.25% 
 

Communications 3.03% 1.30% 
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Supplementary information S8-13. Continued 

Consumption 

group 
Economic sector % MBS % EII 

Clothing 
 

6.42% 0.53%  
Plant fibres 0.06% 0.01%  
Wool 0.11% 0.09%  
Textiles 4.80% 0.16%  
Wearing Apparel 1.38% 0.26%  
Leather 0.06% 0.02% 

Food 
 

18.52% 18.96%  
Paddy Rice 0.00% 0.00%  
Wheat 0.12% 0.02%  
Other Grains 3.20% 0.42%  
Veg & Fruit 0.00% 0.00%  
Oil Seeds 0.00% 0.00%  
Cane & Beet 0.00% 0.00%  
Cattle 0.67% 1.38%  
Other Animal Products 0.37% 0.23%  
Raw milk 0.00% 0.00%  
Cattle meat 2.24% 0.12%  
Other Meat 0.70% 0.25%  
Vegetable Oils 2.26% 0.45%  
Milk 1.19% 0.19%  
Processed Rice 0.81% 0.20%  
Sugar 3.97% 14.34% 

  Other Food 2.98% 1.36% 
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