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• A. Boubekki, U. Kröhne, F. Goldhammer, W. Schreiber, and U. Brefeld. Data-
driven analyses of electronic text books. In Solving Large Scale Learning Tasks.
Challenges and Algorithms, 2016.

• S. Mair, A. Boubekki, and U. Brefeld. Frame-based Data Factorizations. Pro-
ceedings of the International Conference on Machine Learning, 2017.

• J. Reubold, A. Boubekki, T. Strufe, and U. Brefeld. Infinite Mixtures of Markov
Chains. New Frontiers in Mining Complex Patterns. 2018.

• A. Boubekki, S. Jain, and U. Brefeld. Mining User Trajectories in Electronic
Text Books. Proceedings of the International Conference on Educational Data
Mining, 2018.

• A. Boubekki and U. Brefeld. Mining Trajectories. Submitted to Data Mining
and Knowledge Discovery, 2019.

• A. Boubekki, M. Kampffmeyer, R. Jenssen, and U. Brefeld. Theoretically
Grounded Centroid-based Deep Clustering. Submitted to the International
Conference on Machine Learning, 2020.

Year of publication: 2020

Published online on the website of the University Library:
http://www.leuphana.de/ub

http://www.leuphana.de/ub






Abstract

Online behaviors analysis consists of extracting patterns from server-logs.
The works presented here were carried out within the “mBook” project
which aimed to develop indicators of the quantity and quality of the learn-
ing process of pupils from their usage of an eponymous electronic textbook
for History. In this thesis, we investigate several models that adopt dif-
ferent points of view on the data. The studied methods are either well
established in the field of pattern mining or transferred from other fields
of machine learning and data-mining.

We improve the performance of archetypal analysis in large dimensions
and apply it to unveil correlations between visibility time of particular
objects in the e-textbook and pupils’ motivation. We present next two
models based on mixtures of Markov chains. The first extracts users’
weekly browsing patterns. The second is designed to process sessions
at a fine resolution, which is sine qua non to reveal the significance of
scrolling behaviors. We also propose a new paradigm for online behaviors
analysis that interprets sessions as trajectories within the page-graph. In
this respect, we establish a general framework for the study of similarity
measures between spatio-temporal trajectories, for which the study of
sessions is a particular case. Finally, we construct two centroid-based
clustering methods using neural networks and thus lay the foundations
for unsupervised behaviors analysis using neural networks.

Keywords: online behaviors analysis, educational data mining, Markov mod-
els, archetypal analysis, spatio-temporal trajectories, neural network





Zusammenfassung

Die Online-Verhaltensanalyse beschäftigt sich mit der Extraktion von
Mustern aus Server-Logs. Die hier vorgestellten Arbeiten wurden im
Kontext des ”mBook“-Projekts durchgeführt, das zum Ziel hat, Indika-
toren für Qualität und Quantität von Lernprozessen von Schülern zu en-
twickeln, die auf deren Nutzung eines elektronischen Lehrbuchs für das
Fach Geschichte basieren. Wir untersuchen mehrere Modelle, die unter-
schiedliche Sichtweisen auf die Daten einnehmen. Die verwendeten Meth-
oden sind entweder bereits im Gebiet des pattern mining etabliert oder
wurden aus anderen Bereichen des maschinellen Lernens und des Data
Mining übertragen.

Wir verbessern die Leistungsfähigkeit der Archetypenanalyse für hochdi-
mensionale Daten decken mit ihrer Hilfe Zusammenhänge zwischen der
Sichbarkeitszeit von bestimmten Objekten im elektronischen Lehrbuch
und Lernmotivation der Nutzer auf. Wir stellen außerdem zwei Mixtur-
modelle auf der Basis von Markow-Ketten vor. Das erste dient zur Extrak-
tion von Mustern im wöchentlichen Browsing-Verhalten der Nutzer. Das
zweite verarbeitet Sessions auf eine feiner-granulären Ebene, und erlaubt
so, bedeutsame Verhaltensweisen im Scrolling aufzuzeigen. Wir stellen des
Weiteren ein neues Paradigma der Online-Verhaltensanalyse vor, das Ses-
sions als Trajektorien von Nutzern im Seitengraph interpretiert. In dieser
Hinsicht schaffen wir einen Rahmen für die Untersuchung von Maßen für
die Ähnlichkeit von räumlich-zeitlichen Trajektorien, in welchem die Anal-
yse von Sessions einen Spezialfall darstellt. Schlussendlich demonstrieren
wir zwei Clusteringverfahren mittels zentroidbasierter neuronaler Netze
und legen damit die Grundlagen für unüberwachte Mustererkennung unter
Verwendung neuronaler Netze.

Schlüsselwörter: Online-Verhaltensanalyse, Bildungsdatenanalyse, Markow-
Modelle, Archetypenanalyse, räumlich-zeitlich Trajektorien, künstliches neu-
ronales Netz
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Mathematical Notation
N set of non negative integers
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pdf probability density function
iif if, and only if
wrt with respect to
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Chapter 1

Introduction

Since humans are rational animals [9], the study of their behavior, be it online, may
uncover personality traits or intentions. Online Behavior Analysis (OBA) is part
of the broader field of pattern mining. It aims to extract information relevant to a
specific application from the online traces left by users. It has proven successful in
several domains, such as online advertisement [64], e-commerce [45, 158], or streaming
services [227]. It has also been used in network security, where the access to critical
resources can be granted or not depending on the users activity [153, 70]. In our case,
we focus on applications to educational science.

The emerging field of educational data mining (EDM) [16, 15] offers multiple use-
cases for OBA. The one that interests us here is the study of pupils’ usage of a History
electronic textbook, called the mBook. Interestingly enough, little is known about the
impact of electronic aids on learning. As we shall see, the analysis of pupils’ behaviors
can reveal patterns that correlate with different levels of competency or motivation.
In a long run, OBA for EDM could also be used as a tool for teachers to better
grasp the dynamic within a class group, and for educational specialists to evaluate
pedagogical approaches.

The research presented here contributes to OBA in general and with a focus on
educational data mining. We propose several approaches with different perspectives
on the data collected from the mBook, which yields equally diverse insights into
the pupils’ behaviors. Without going into too much technicalities, we present in
the following an introduction to online behavior analysis. We then give some key
information about the “mBook“ project. After a survey of the research in the fields
of OBA and EDM, we outline our contributions.

1



1.1 Online Behavior Analysis

The term “behavior”, i.e., the way a person acts, is an intuitive and subjective concept
that is sadly not prone to a formal definition. Yet, “the set of actions a person
undertakes” may serve as an approximation, albeit with shortcomings. First, in
order to be computationally processed, these actions must be encoded in a digital
format, resulting necessarily in a loss of information. Furthermore, they can only be
interpreted within a context. Consider a user clicking repetitively and frantically on a
“refresh“ button to refresh an online feed (e.g., news or social network) . Depending
on the context, this sequence of clicks very close in time could be interpreted as
excitement or frustration (e.g., due to a small bandwidth).

Online Behavior Analysis splits into three steps: representation, modeling and
clustering. One could also add a step for interpretation and exploitation of the results,
but it is usually carried out in a second time. Nevertheless, by whom and how the
outcomes are used affects several upstream choices. Prior to reviewing each step of
OBA, we discuss issues related to the collection and pre-processing of the data.

Data and Pre-Processing

The base material of OBA are the traces of the interactions between the clients and
a web-service. The data is stored on the server-side in the so-called log-files. The
granularity of the tracking and description of events may vary with the technology
used. However, the data must contain at least keys to identify the action, the user,
the session, and the time the event occurred. Time is a transversal dimension in the
data. It appears as connection times, which can be used to distinguish behaviors in
class or at home. As we shall see, speed of scrolls, which is computed from the events’
timestamps, characterizes different types of pupils .

Events can only be fully interpreted within a context. A challenge is, therefore, to
capture as much of it as possible in the logs in a format that can be later transformed
into features by a pre-processing of the data. For example, not all pages in the mBook
have the same learning potential. It is, therefore, interesting to include the list of ob-
jects visible by the users. In practice, the granularity of the data collection comes
as a trade-off. If on one hand, a large population and a precise context are required
for finer analyses and to give statistical guarantees. On the other hand, this means
larger log-files, which lead to storage and computational scalability issues.Privacy
issues are also a concern [201], particularly since the introduction of the European
General Data Protection Regulation, or GDPR [216]. It is thus necessary to decide
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beforehand on a compromise between available resources, privacy protection, and the
granularity of the tracking. Especially, since these choices affect the implementation
of the web-service, the pre-processing of the log-files, as well as their analysis.

Representations, Models and Clusterings

Modeling starts with the choice of a data representation. That is the structure given
to the raw data which emphasizes specific characteristics of the data. The model
itself can then be described as a set of assumptions between these characteristics. For
example, logs can be represented as chronologically ordered sequences of events. A
common model using such a representation assumes that past events influence the
future ones. Note that representation and models are not always dissociated, since
the later usually implies the former. We chose to stress the distinction since several
models use the same type of representation.

Naive session models, such as bag-of-words [247], omit the sequential nature of
the data and only consider the frequencies of events separately or in tuples. This
is troublesome because shuffling data does not change the frequency of events, but
changes the latent behaviors. In any case, probabilistic approaches are preferable.
They put distance between the model and the data and, therefore, better generalize.

Regarding sequence models, there are two points of view: sessions can be modeled
either as ongoing processes or as complete realizations thereof. The first approach
qualified as local, focuses on the transitions between events. The relevance of an
observation depends only on the previous ones: if a user opens a new page, she will
likely start scrolling through it. As a result, the probability of observing an entire
session is proportional to that of the last event. In contrast, for global approaches
the probability of an observation also depends on the future events: if a user opens a
gallery, she has likely clicked and scrolled several times in the past. Note that these
two points of view generally yield different results. One shortcoming of sequence-
based models is that a single model governs the entire sequence. This is equivalent to
assuming that users consistently maintain the same behavior throughout the session,
which is not necessarily true.

Grouping or clustering similar behaviors allows to further generalize the analysis.
To do this automatically, one needs a measure of similarity. However, there is as yet
no unequivocal definition. In the case of web-sessions, it is not even clear how to
compare them. It could based on their duration, the content viewed, or the actions.
A standard solution is to embed the sessions into a vector space where the distances
are well studied and defined. However, learning such an embedding can be tedious.
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Another approach is to rely on mixtures of probabilistic models. The idea is to assume
that sessions are realizations of several of models. That way optimizing the model
also returns a clustering.

1.2 The “mBook“ Project

Most of the works that we present here have been done in the context of the “mBook“
project [225]. The cooperation between educational specialists for History, educa-
tional psychologists, and computer scientists spread between the academic years 2013-
2014 and 2016-2017. The objective of this pioneering project in educational science
in Germany was to evaluate the impact of an electronic textbook, called mBook, on
the learning process of secondary school pupils.

Traditional evaluations of textbooks include interviews and analyses of in-class
video recordings [102]. Log-files allow for less intrusive evaluation methods that reduce
the bias induced by the presence of a researcher in the classroom and guarantee the
anonymity of the users. Nevertheless, the analysis of the log-files does not replace
usual protocols but complements them. For example, it is almost impossible to decide
from the logs alone if there is more than one pupil in front of the screen.

An Electronic Textbook

The structure of mBook resembles to its paper-counterparts. The page graph of the
website is a tree with extra edges to allow a linear reading. Five chapters cover An-
tiquity, Middle Age, Renaissance, 19th century, the 20th and 21st centuries together,
plus a chapter on methods.

Figure 1.1 shows a mock-up of a generic page of the mBook. It consists of a suc-
cession of text, galleries, audios, videos, and interactive information boxes. Galleries
comprise pictures related to the text. Some audio or video files are directly integrated
into the web-page and can be visualized from there. Expandable information boxes
provide additional information or exercises. A navigation bar is always visible at the
bottom of the screen. Users can reach the previous or next page (like in a paper-based
book), or jump to the summary of the current section (central button). The bar also
doubles as a toolbar for adding notes or highlighting parts of the text.

The Data-set

Throughout the thesis, we restrict the study of the mBook to a single period ranging
from January 31st to July 11th 2017. This corresponds to 2,197 sessions from 400
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Figure 1.1: Mock-up of the mBook.
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users, of whom 195 are pupils (537 sessions) who have passed a standardized test in
July 2017 that evaluates five psychometric factors: competencies, knowledge, and mo-
tivation for History, as well as access and skills with information and communication
technologies (ICT). The competencies and knowledge scores [152] are estimated using
a 1-PL model [79]. The last three are inferred from MCQ tests. The distributions of
the scores are displayed in Figure 1.2.

Figure 1.2: Distributions of the psychometric scores and their respective box-plots.

1.3 Literature Review

The analysis of online behavior has accompanied the spread of the Internet and is part
of the broader field of pattern mining. One of the first models called sequential pattern
mining is based on the apriori algorithm [5] and identifies the most frequent tuples
of observations. It has a wide range of applications in the field of web mining [69,
186, 232, 190, 135, 3, 212]. Association rules [4] condition the frequency of the co-
occurrences on the frequency of one element of the pair, introducing that a way some
causality. The confidence of the rule A → B is equal to the frequency of the tuple
(A,B) divided by that of the singleton A. A famous application of this model is the
prediction of shopping carts [47, 266, 74, 75]. Rule construction extends to more than
two objects, resulting in chains of association rules. Markov chains can be considered
as their probabilistic equivalents [54]: the expected transition probability between
two observations mirrors the confidence an association rule.

Markov chains are standard to model user behaviors [54, 183, 81, 38]. The hidden
Markov model (HMM) [21] does not model observations but latent, or hidden, states
that in turn emit the observations. It is used to solve many problems [63, 154, 189,
182], including for behavior analysis [260, 138, 103]. Several models derive from it.
For example, the infinite hidden Markov model [20, 242] integrates a Dirichlet process
to let the optimization find the most appropriate number of hidden states given the
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data. The hidden semi-Markov model [198, 261] combines two layers of HMM: one
governs the latent states; the other one governs the number of observations emitted
by these states. To some extent, we can consider that recurrent neural networks [221]
generalize Markov models. In particular, the memory of the long-term memory cells
(LSTM) [128] or recurrent gated units (GRU) [66] resembles a dynamic order of a
Markov chain but that evolves with the data.

We identify three phases, throughout the history of online behavior analysis, In
its early days, the focus was on personalizing the user experience. This implies act-
ing on the layout of the website [54, 184, 191, 118] or on the results of the search
engines [69, 119]. The latter has opened a second phase under the drive of recom-
mender systems [64, 158, 227]. Although collaborative filtering remains the standard
approach in the field [45, 201], recent methods make greater use of context [265] and
neural networks [90, 125, 249]. Nonetheless, the benefits of these so-called neural rec-
ommendations are being questioned [72]. In its most recent developments, research
in OBA focuses on the analysis of social networks [252, 25, 111], and in particular,
on the detection of bots [76, 244].

Use-cases of OBA in educational research reflect “regular” applications. Although
frequentist approaches are still frequently used [78, 39], advanced machine learning
and data mining techniques are increasingly being employed for EDM [217, 15].

One specificity of educational sciences is the opportunity to have high-quality
labeled of the data as well as information outside of the logs [147, 136, 259]. For
example, the analysis of student’s curricula, represented as sequences of courses and
exams taken by students, has been used to predict grades or to customize future
curricula. Computerized adaptive testing raises issues that are reminiscent of general
recommender systems [173]. The first is to predict a student’s success based on
sequences of assigned or selected questions [120]. Another is the customization of
these sequences to improve performance or influence the learning process [27, 151].
Lastly, the problem of robot detection finds an equivalent in the analysis of learning
behaviors in massive open online courses (MOOC) [96, 103], especially to detect and
explain dropouts [39].

1.4 Outline and Contributions

The “mBook“ project is an ideal framework for the transfer of classical methods from
OBA to EDM. Nevertheless, we also develop and improve data-mining techniques for
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behavior analysis in general. The work presented here makes thus several genuine
theoretical contributions in the fields of machine learning and data-mining.

Chapter 2 contains a definition of general dissimilarity measure and an intro-
duction to mixture models. The remaining chapters are organized according to an
increasing complexity of the representation of the sessions. In each, we take a different
stand on the data and propose a model accompanied with an application using the
mBook data. Chapter 3 is dedicated to archetypal analysis where sessions correspond
to points on a simplex. In Chapters 4 and 5, we propose two Markov chains models
that can leverage different context and level of granularity of the data. A new per-
spective on user behaviors is investigated in Chapter 6 where sessions are represented
as spatio-temporal trajectories within the page graph. Finally, Chapter 7 serves as
an opening. We present there two neural networks architectures for centroid-based
clustering which constitute our first step toward a deep learning approach for online
behavior analysis.

In the following, we give a short summary of each chapter and of their contribu-
tions.

Archetypal Analysis and Content Analysis

Previous works have measured motivation based on the actions of online learn-
ers [126, 143]. We go further with regard to two aspects. Firstly, we do not focus
on events but on the visibility times of certain contents, which are only accessible
through a careful pre-processing of the data. Secondly, we show how to use archety-
pal analysis (AA) in this context. A naive factor analysis leads to a single statistically
significant correlation between time spent in galleries and motivation. It is not much.
Archetypal analysis extracts three more correlations.

The idea behind archetypal analysis is to represent data-points as convex combi-
nations of factors, or archetypes, lying on the convex hull of the data-set. This allows
for a straightforward interpretation of the factorization, but at the cost of inefficient
calculations. To alleviate this issue, we show that the factorization can be efficiently
computed by a quadratic program, namely the active-set method of Lawson and Han-
son [161]. We prove that this algorithm also identifies the set of points of the convex
hull, called the frame, which is considered a complex problem. In an effort to improve
the scalability of AA, we propose an approximation restricting the whole optimiza-
tion to the frame only. The heuristic is that a good approximation of the latter also
gives a good approximation of the data. On the downside, the non-unique and sparse
solutions returned by the active-set algorithm might hinder the interpretation of the
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reconstruction weights. We propose, thus, a method to compute dense representa-
tions. Empirical evaluations of the novel method yield similar reconstruction errors
as baseline competitors while being faster to compute. This speed-up is particularly
beneficial for model selection.

Markov Chain and Periodic Behaviors

Markov models are standard methods in behavior analysis [54] due to their inter-
pretatibility. The underlying idea exploits the sequential nature of user behaviors
and translates user sessions into Markov processes, i.e., observations depend on their
predecessors. Regrettably, most of the approaches based on Markov chains focus
on the pure sequence of events, without taking into account contextual information.
Haider et al. [117] include temporal dependencies like daily or weekly periodicity.
We refine their approach by using truly periodic distributions and conditioning the
observation of a page on the chapter. We derive an Expectation-Maximization-based
algorithm (EM) [80] to cluster users and their sessions according to their behavior.
While k-means produces trivial and insignificant groups, our methodology success-
fully discovers the main navigation patterns. The analysis of the user clustering over
a week suggests that behaviors may also be influenced by the teachers.

Bayesian Markov Chains and Scrolling Behaviors

The EM falls short on two aspects. Firstly, as greedy optimization strategy it may
lead to poor local optima, requiring several random initializations. Second, a model
selection based on information criteria fails if the model is too complex or when the
number of instances is too low, which is common in educational science. We, therefore,
develop the infinite mixtures of Markov chains (iMMC) to avoid these shortcomings.
Our model extends the hierarchical Dirichlet process (HDP) to Markov processes:
one Dirichlet process governs the cluster assignments and another one models the
Markov transitions. Computations are eased thanks to a degree k-weak limit approx-
imation [133]. Our empirical study of scrolling patterns within the mBook, used as a
model for reading style, reveals correlations with psychometric scores.

Trajectories for Online Behaviors

Since the same vocabulary can describe movements in a museum and online, we pro-
pose to apply the same methods for both. To the best of our knowledge, this is the first
time that such an approach has been adopted. Spatio-temporal data is ubiquitous,
but the theory is often application dependent. For example, there is no prevailing
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definition of a similarity measure between trajectories. We propose a formalization
of the study of spatio-temporal trajectories as well as an unambiguous classification
of their similarity measures. We obtain theoretically grounded properties, which are
never all satisfied by existing measures. To fill this gap, we devise a novel measure
based on the Laplace distributions and the Kullback-Leibler divergence. It is equiva-
lent to the normalized point-wise distance with a penalty for different duration of the
trajectories. Empirically, we observe that our measure performs better or on par with
state-of-the-art competitors while having a linear time complexity and being robust
to sampling rates and time units. We further derive behavior indicators from tra-
jectory clusters that characterize the dynamic within a class group and the teaching
style.

Deep Clustering as a Unifying Method

The temptation to use deep learning is great particularly to leverage its ability to
learn efficient representations for multiple tasks. With this contribution, we take the
first step to merge modeling and clustering of online behavior, reducing many choices
to that of an architecture. We present an end-to-end (deep) clustering network. The
network in its simplest form consists of a two layer autoencoder (AE), where the loss
function is derived from Gaussian mixture models (GMM). A deep variant can be
obtained by adding more layers for expressivity so that the loss function sums up the
reconstruction losses of an AE and a relaxation of the GMM-based loss. On average,
our models empirically outperform traditional clustering techniques like k-means and
GMMs and also perform better or equal to existing (deep) clustering architectures
while being less reliant on pre-training.

1.5 Previously Published Work

Some works presented in this thesis have already been published or are under review.
In the following we list them and give a brief summary of the respective contributions
to the papers.

(1) A. Boubekki, U. Kröhne, F. Goldhammer, W. Schreiber, and U. Brefeld. To-
ward Data-Driven Analyses of Electronic Text Books. Proceedings of the Inter-
national Conference on Educational Data Mining, 2015.
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(2) A. Boubekki, U. Kröhne, F. Goldhammer, W. Schreiber, and U. Brefeld. Data-
driven analyses of electronic text books. In Solving Large Scale Learning Tasks.
Challenges and Algorithms, 2016.

These works build upon a previous work of Haider et al. [118]. I extended it with the
true periodic Gaussian based distribution and adapted it to the chapter/page/gallery
structure of the mBook. I also provided the implementation and carried out the
experiment.

(3) S. Mair, A. Boubekki, and U. Brefeld. Frame-based Data Factorizations. Pro-
ceedings of the International Conference on Machine Learning, 2017.

Together with Sebastian Mair, we investigated archetypal analysis. We tested several
approaches that never came into fruition, before Seb looked into NNLS. I reviewed
the main proof and helped with the experiments.

(4) J. Reubold, A. Boubekki, T. Strufe, and U. Brefeld. Infinite Mixtures of Markov
Chains. New Frontiers in Mining Complex Patterns. 2018.

Jan Reubold had some previous work on mixture models and Dirichlet processes.
For this work, I helped with the formalization, the implementation, and provided the
application on the mBook.

(5) A. Boubekki, S. Jain, and U. Brefeld. Mining User Trajectories in Electronic
Text Books. Proceedings of the International Conference on Educational Data
Mining, 2018.

(6) A. Boubekki and U. Brefeld. Mining Trajectories. Submitted to Data Mining
and Knowledge Discovery, 2019.

I supervised Shailee Jain during her bachelor thesis investigating my idea to represent
online behaviors as trajectories. In (5), we worked together to list requirements that
a measure should satisfy to obtain interpretable clusters. In (6), I revamped the idea
of the trajectories and built the theory of trajectory measures from scratch. The
development of the theory made clear the need for a new classification scheme of
trajectory measures. I also derived a new measure that extends the one used in (5)
and provided larger set of applications.
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(7) A. Boubekki, M. Kampffmeyer, R. Jenssen, and U. Brefeld. Theoretically
Grounded Centroid-based Deep Clustering. Submitted to the International
Conference on Machine Learning, 2020.

I uncovered the relation between GMM and autoencoder. Michael helped me to
formalize the presentation in terms common to the deep learning community.
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Chapter 2

Preliminaries

In the first section, we provide a definition for a dissimilarity measure on a set and
introduce the notion of a point at infinity. The subsequent sections are dedicated
to the mixtures of Markov chains (MMC) and their inference. Section 2.2 recalls
standard definitions. In Section 2.3, we introduce the mixtures of Markov chains and
discuss their optimization based on the Expectation-Maximization algorithm [80].
In the following Section 2.4, we take a Bayesian perspective on the MMC, discuss
the Gibbs sampler [104] as an inference algorithm for Bayesian mixtures, and its
similarities with the EM. Section 2.5 reviews Dirichlet processes and their integration
into mixture models. Using an explicit indexation of a Dirichlet process, we show that
the usual transition from a finite mixture to an infinite mixture [23] is degenerate.
The chapter ends with the theorem of Ishwaran and Zarepour [133], which shows that
Bayesian mixing models can be used to approximate Dirichlet process based mixture
models.

Note that the sections dealing with the mixtures of Markov chains are in purpose
written in a less formal tone. They are designed to serve as lecture notes and target
students in Master with basic knowledge in Probability [35]. Each section starts with
a paragraph describing motivations and heuristics involved. It is followed by a more
rigorous presentation punctuated with remarks.

2.1 Dissimilarity Measures and Point at Infinity

To cluster automatically objects, we need to estimate their similarity. Although
the task is omnipresent in data mining, there is no consensus on the definition. In
this section, we fix the definition of a dis/similarity measure valid throughout the
manuscript. Moreover, we introduce the notion of point at infinity for a measure,
that will prove handy to model missing data or the end of a sequence.
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Throughout, the section, (Ω, d) is the metric space of all the possible observations,
equipped with a distance d. The space can be discrete (e.g., the set of the nodes of
a graph and the shortest path distance) or a real vector space with the euclidean
distance.

Dissimilarities

We base our definitions on the metric axiomatic [229].

Definition 2.1 (Dissimilarity). A dissimilarity measure, or semi-metric, on Ω is a
bivariate function d : Ω2→R≥0 satisfying the following conditions for any elements
x, y, z of Ω:

d(x, y) ≥ 0 and d(x, x) = 0 (non-negativity),

d(x, y) = d(y, x) (symmetry),

d(x, y) = 0⇔ x = y (identity of indiscernibles).

If d also satisfies the triangle inequality, it is called a distance or metric:

d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

From a semantic point of view, dissimilarities and similarities have an inverse
behavior: analogous objects have a small dissimilarity but a high similarity. We
formalize here this intuition and bound similarity measures between 0 and 1.

Definition 2.2 (Similarity). A similarity measure on Ω is a bivariate symmetric
function s : Ω2 → [0 , 1] such that:

∀(x, y) ∈ Ω2, s(x, y) = 1⇔ x = y.

In accordance with the generalization function of Shepard [229], the inverse of the
exponential of a dissimilarity is a similarity.

Lemma 2.1 ([229]). If d is a dissimilarity measure on Ω, exp(−d) is a similarity
measure on Ω.

The conversed is also true.

Lemma 2.2. If s is a similarity measure on Ω, − log(s) is a dissimilarity measure
on Ω.
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It is often handy to add an auxiliary element to Ω to account for missing or
corrupted data. This state is virtually inaccessible from normal point, hence we
model it as a point at infinity.

Definition 2.3 (Point at Infinity). A dissimilarity on Ω can be extended to R+∞
≥0 by

adding a point to Ω, called a point at infinity or an infinite point, noted ∞, such that
for any element x of Ω:

x 6=∞⇔ d(x,∞) = +∞ and d(∞,∞) = 0.

Consequentially, for a similarity s it holds: ∀x ∈ Ω, x 6=∞, s(x,∞) = 0.

Note that, the value of the point at infinity depends on the measure. The formal-
ization of the notion of dissimilarity if further studied in Chapter 6, where we propose
a new classification of dissimilarity measures for trajectories.

2.2 Mixture Models and Markov Chains

Consider the task of prolonging the sequences of the following data-set:

S =
{
s1 = AABAABAAA, s2 = AAABAABAA,
s3 = BBABBABBB, s4 = BBBABBABB

}

A naive approach consists of drawing randomly the new events using the transition’s
frequencies between elements. The frequency contingency table Cont(S) organizes
row-wise these frequencies: a cell gives the transition’s frequency in S from the ele-
ment indexing the row to the one indexing the column:

Cont(S) =
A B

A .5 .5
B .5 .5

The table is uninformative, although a pattern is clearly apparent in the data: the
two first and two last sequences are mirrored. This observed pattern is well captured
by the contingency tables for each pair:

Cont({s1, s2}) =
A B

A .67 .33
B 1 0

Cont({s3, s4}) =
A B

A 0 1
B 33 .67

Therefore, although s1, s2, s3, s4 appear together in the same data-set, we would use
different contingency tables to augment the two first and two last sequences. In other

15



word, we assume that the data was generated by two different processes. This idea is
the basis of mixture models, and in particular, since we deal with sequences, mixtures
of Markov chains (MMC).

Optimizing, or learning, a mixture of models, amounts to determining its differ-
ent generative processes, or models. Maximum likelihood estimation (MLE) is a basic
solution: it maximizes the likelihood that the data was generated by the mixture.
The calculations are generally simple and the Expectation-Maximization (EM) algo-
rithm [80] provides an efficient optimization scheme. However, the method does not
yield any statistical guarantee of the results. As a remedy, it can be assumed that the
models are governed by parameters drawn from a priori known distributions. The op-
timization problem becomes thus to learn the prior distributions whose expected val-
ues are the parameters that maximize the likelihood of the data. For a careful choice
of prior distributions, the calculations are straightforward and the expected value and
variance have closed forms. Such a view on the problem is said Bayesian, while the
associated optimization scheme is called maximum a posteriori estimation (MAP).

One aspect has not yet been raised: the number of models, or components. In
the example, two components seem to be a reasonable choice. However, four is also
a good answer. To find the best value, a grid search combined with specific criteria
does the job, but it is ineffective. An advanced solution involves some stochasticity
via the use of Dirichlet processes.

Although mixture models are often used for clustering, this is not their raison
d’être. Their purpose is to explain how the data were generated. Groups of instances
most likely generated by the same model do indeed constitute a clustering of data,
but this is a by-product.

In the following, we first give formal definitions of a stochastic process, a Markov
chain, and a mixture model. Next, we describe the mixture of Markov chains, the
Bayesian approach, and their respective inference using MLE and MAP. Finally, we
discuss the use of Dirichlet processes. Note that similar explanations and construc-
tions can be used for any mixture, e.g., Gaussian mixture models.

2.2.1 Definitions

To avoid ambiguities, we recall a list of basic definitions.

Definition 2.4 (Random Variable). A random variable (RV) is a function from a
probability space [208] into a measurable space.
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The realization of a random variable, also referred to as an observation, is the out-
come of a random draw of a possible value of the RV with respect to its probability
distribution.

Although, the Bayes’ rule is usually considered as a theorem, we use it as the
name of a formula. That way, we include it in a Definition and do not present a
proof [35].

Definition 2.5 (Bayes’ rule). Let X be a set of observations (data-set) and Θ a set
of parameters (of a model), the following formula is called the Bayes’ rule:

p(Θ|X ) = p(X|Θ) p(Θ)
p(X ) . (2.1)

The terms in the formula have specific names.

• p(X|Θ): likelihood (of the data-set given the model),

• p(Θ|X ) : posterior probability of Θ,

• p(Θ) : prior probability of Θ,

• p(X ) : evidence.

More generally, the adjectives posterior and prior indicate if the probability is condi-
tioned on X or not.

Just like the multinomial distribution generalizes the binomial distribution, the
Dirichlet distribution generalizes the Beta distribution.

Definition 2.6 (Dirichlet distribution). A Dirichlet distribution of order K > 1 with
parameter α ∈ RK

≥0 \ {0K}, is noted Dir(α). The pdf on x ∈ SK has for value

Dir(α)(x) = 1
Beta(α)

K∏
k=1

xαk−1
k , (2.2)

where Beta(·) is the Beta function [35]. If α = α1K, the distribution is said sym-
metric and noted Dir(α).

The aggregation property is a key feature of the Dirichlet distribution.

Lemma 2.3 (Aggregation).

〈X1, X2, X3〉 ∼ Dir(α1, α2, α3)⇒ 〈X1, X2 +X3〉 ∼ Dir(α1, α2 + α3). (2.3)

This property generalizes to any order.
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2.2.2 Markov Chains

Formally, the term “Markov chain” designates a discrete stochastic process satisfying
the Markov condition. Let us define each of these terms.

Definition 2.7. Let (U ,A, p) be a probability space, I an arbitrary set called index
set, and M a measurable set called sample set. A stochastic process SP indexed by
I with value in M is the set of random variables:

SP = {Xt : U →M, ∀t ∈ I}. (2.4)

If I is discrete, the process is said discrete. If the random variables follow the same
distribution, the latter gives the process its name.

Definition 2.8. A Markov Chain of order n is a discrete stochastic process that
satisfies the Markov property, i.e., without loss of generality I ⊂ N and :

∀t ≥ n, p(Xt+1|Xt, . . . , X1) = p(Xt+1|Xt, . . . , Xt+1−n). (Markov Property)

A chain is fully defined by the initial probability p(X1) and the transition probabilities
p(Xt+1|Xt, . . . , Xt+1−n). If the latter is constant with respect to t, the Markov chain
is said homogeneous.

Remark that the Markov property induces an order on the process’ random vari-
ables, such that they actually form a sequence. Therefore, a sequence of observations
is the realization of all the process’ random variables. In online behavior analysis, we
usually make the following assumptions:

• The process is indexed by the positive integers: I = N;

• The sample set M, or alphabet, is included in Ω and is finite with cardinal M ;

• The alphabet contains a point noted ∞ that marks the end of an observed se-
quence, which leads to the notion of length:

A sequence 〈Xi〉N is of length T ∈ N, if ∀t ≤ T, Xt 6=∞;

• The Markov chain is of order one:
∀t ∈ N, p(Xt+1|Xt, . . . , X1) = p(Xt+1|Xt);

• The Markov chain is homogeneous:
∀(t, τ) ∈ N2, p(Xτ+1|Xτ ) = p(Xt+1|Xt);
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• The transitions follow categorical distributions with parameter the row-vectors
of the row-stochastic matrix θ:

∀a ∈M, θ(m, ·) ∈ SM ,
∀(t, a) ∈ N×M, (Xt+1|Xi = a) ∼ Cat (〈θ(a,m)〉M) = Cat (θ(a, ·)).

We add two assumptions of our own:

(1) Sequences are prepended with ∞;

(2) No sequence is empty, i.e., of length 0.

These two choices have broader consequences. On the bright side, sequences always
start the same way, hence the initial probability of any element ofM is null except for
∞ for which it is 1. The first real observation is thus obtain by transitioning from the
infinite point, i.e., the first observation is drawn from a categorical distribution with
parameters θ(∞, ·). This assumption has the practical benefit that only the transition
probability matrix, 〈θ(m,m′)〉M×M, needs to be estimated. On the other hand, it
theoretically challenges the notion of length of a sequence. Indeed, assumption (3)
implies that the self-transition probability of∞ is zero. Therefore, once an∞marking
the end of a sequence is drawn, the next event is necessarily different from ∞ and
another sequence starts. Consequently, sequences never end. That is why we defined
the length of a sequences as the index of the last non infinite observation.

If our assumptions are theoretically troublesome, their practical advantages, be it
on legibility and implementation, largely compensate.

2.2.3 Mixture Models

Φ zi

siθk

NK

Figure 2.1: Graphical model
of a general mixture model.

A mixture of models is a hierarchical generative model
that develops as follows: First, select a compo-
nent/mixture; Second, Generate an observation from
the its model.

Let us consider a finite mixture with K ∈ N com-
ponents whose models are parameterized on a space
Ξ, with parameters θ = 〈θk〉K ∈ ΞK . The ran-
dom variable z, modeling the assignment to a compo-
nent, follows a categorical distribution with parameter
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Φ = 〈φk〉K ∈ SK . The latter, also called mixture weights, represent the prior proba-
bilities of the components. The generation of an observation s is described as follows:

z ∼Cat(Φ),

s ∼Model(θz).
(2.5)

A plate diagram is given in Figure 2.1. Fitting a mixture model to a data-set boils
down to learning the mixture weights and the parameters of each model, Θ = {Φ,θ}.
If necessary, a clustering can then be derived from the assignments.

2.3 Mixture of Markov Chains

Assuming previous notation, the generation of a sequence s = 〈st〉N from a mixture
of Markov chains (MMC) is described as follows:

z ∼Cat
(
Φ
)
,

s1|∞ ∼Cat
(
θz(∞, ·)

)
,

st|st−1 ∼Cat
(
θz(st−1, ·)

)
.

(2.6)
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Figure 2.2: Graphical model of a
mixture of Markov chains.

Figure 2.2 depicts a plate diagram of the model.
We introduce now more notation to define the
model from its likelihood.

Let S = {si}N be a set of N iid sequences.
Each sequence si = 〈s(i)

t 〉1≤t≤Ti of length Ti ∈
N, Ti > 0 is defined over a finite alphabetM (in-
cluding ∞) of cardinality M . The random vari-
ables of the sequences’ assignments are regrouped
in Z = {zi}N . The likelihood of a sequence s is:

L(s; Θ) = p(s|Θ) =
K∑
k=1

p(z = k|Φ)
T+1∏
t=1

p(st|st−1, z = k,θ) =
K∑
k=1

φk
T+1∏
t=1

θk(st−1, st),

(2.7)

where Θ = {Φ,θ}. This formula is an abuse of notation, because s does not appear
as a random variable. Recall that an observed sequence is a realization of a Markov
chain. Thus, a rigorous way to write the likelihood is:

L(s; Θ) = p(X1 = s1, . . . , XTi = sTi , XTi+1 =∞, . . . |Θ). (2.8)

Because it is too cumbersome, we avoid the proper notation and use the imperfect one.
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2.3.1 Expectation-Maximization

The maximum likelihood estimation (MLE) of a mixture model lends itself well to the
Expectation-Maximization (EM) algorithm [80, 253], that we describe in this section.
Let us recall first Jensen’s inequality as it will be crucial in the following derivations.

Lemma 2.4 (Jensen’s inequality). Let f be a real concave function, 〈ak〉K ∈ SK a
stochastic vector, for any K points x1, . . . , xK ∈ R:

K∑
k=1

akf(xk) ≤ f
( K∑
k=1

akxk

)
, (2.9)

with equality if x1 = . . . = xK or f is linear.

Q-function

An MLE aims to find the set of parameters Θ maximizing the log-likelihood:

` (S; Θ) = log p (S|Θ) =
N∑
i=1

log
K∑
k=1

p (si, zi = k|Θ) (2.10)

Unfortunately, the sum inside the log makes the problem intractable. It can be taken
out using Jensen’s inequality at the cost of having a lower-bound instead. To achieve
this, we introduce the line stochastic matrix Γ ∈ RN×K = 〈γik〉1≤i≤N

1≤k≤K
such that for

any i ∈ [1 . . N ], 〈γik〉K∈SK . Jensen’ inequality implies that:

` (S; Θ) =
N∑
i=1

log
K∑
k=1

γik
p
(
si, zi = k|Θ

)
γik

≥
N∑
i=1

K∑
k=1

γik log
p
(
si, zi = k|Θ

)
γik

= Q(Θ,Γ).

(2.11)

This inequality holds for any choice of Γ. Therefore, for a fixed set of parameters Θ∗,
the function Γ 7→ Q(Θ∗,Γ) can be maximized using the Lagrange multipliers [35].
Using the stochasticity of Γ, we recognize that the maximum is reached when the γ̂ik
are equal to the posteriors of the zi:

γ̂ik = p(si, zi = k|Θ)∑K
l=1 p(si, zi = l|Θ)

= p(zi = k|si,Θ). (2.12)
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For this choice, Q(Θ∗, Γ̂) is constant with respect to k, and thus, equal to the likeli-
hood of the model:

Q(Θ∗, Γ̂) =
N∑
i=1

K∑
k=1

γ̂ik log
p
(
si, zi = k|Θ∗

)
p(zi = k|si,Θ∗)

=
N∑
i=1

K∑
k=1

γ̂ik log p(si|Θ∗)

=
N∑
i=1

log p(si|Θ∗)

= ` (S; Θ∗) .

(2.13)

In turn, if we fix Γ∗, a Lagrange optimization of Θ 7→ Q(Θ,Γ∗) yields the following
solutions:

φ̂k =
∑N
i=1 γik∑K

l=1
∑N
j=1 γjl

= 1
N

N∑
i=1

γik,

θ̂k(u, v) =
∑N
i=1 γikηuv(si)∑K

l=1
∑N
j=1 γjlηuv(sj)

,

(2.14)

where (u, v) ∈M2 and ηuv(si) is the number of transitions from u to v in si.

Implementation

The previous derivations sketch the EM algorithm: alternatively maximizing Q with
respect to Γ and Θ. Algorithm 1 describes the different steps. Note that the E and
M steps are also referred to as Expectation and Maximization steps, respectively.

Algorithm 1 EM for a mixture model.
Require: S = {si}N : input sequences

1: Initialize randomly Θ(0) and Γ(0)

2: repeat
3: E-step: Compute Γ(t) = argmaxΓ Q(Θ(t−1),Γ) (Equation 2.12)
4: M-step: Compute Θ(t) = argmaxΘ Q(Θ,Γ(t)) (Equations 2.14)
5: until convergence

Let Θ̂ be the set of parameters at convergence.
6: Compute Γ̂ = argmaxΓ Q(Θ̂,Γ) (Equation 2.12)
7: For all i, compute zi = argmaxk γ̂ik
8: return Z = {zi}N

Dempster et al. [80], later extended by Wu et al. [253], gave a proof that for some
mixtures satisfying certain conditions, the sequence 〈Θ(t),Γ(t)〉N produced by the
algorithm surely becomes stationary, i.e., the algorithm converges. In the particular
case of a mixture of Markov chain, the proof is simpler.
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Theorem 2.1 ([80]). The log-likelihood increases after each iteration of the EM de-
scribed in Algorithm 1, thus converges toward a local maximum.

Proof. Each step of the algorithm solves a maximization problem, hence the value
of Q increases after each E and M-step. In particular, after each E-step (Equa-
tion 2.13), Q(Θ(t−1),Γ(t)) = `

(
S; Θ(t−1)

)
. Hence, between two successive E-steps, the

log-likelihood increases: `
(
S; Θ(t−1)

)
≤ `

(
S; Θ(t)

)
.

Since the parameter space (SK × (SM)M) is a compact sub-space of a real vector
space, the log-likelihood is upper-bounded. Given that ` is non-positive by defini-
tion and that its value increases after every two E-steps , the algorithm necessarily
converges toward a local optimum.

In practice, convergence is declared when the difference between two successive
iteration is smaller than a threshold. However, there is no guarantee that the solution
is the global maximum. The algorithm is thus usually run several times with different
random initializations, to find an optimal solution.

Clustering

There are two points of view on how to compute a clustering. A first approach is to use
the components’ likelihood, which groups together sequences that are most likely gen-
erated by the same model. Another stand is to use the posteriors, p(zi = k|si) = γik.
This second method is more common and it is the one used in Algorithm 1. Accord-
ingly, γik are also called the clusters’ responsibilities [54].

Related Works

To avoid sub-optimal solutions, Broniatowski et al. [49] proposed the stochastic EM
(SEM). Between the E and M steps, the assignments are drawn from the posteriors,
such that the γi are one-hot vectors. These sampling might decrease the number
of active clusters, which can rapidly lead to the trivial solution. To avoid such a
situation, the algorithm re-samples the assignments until the number of clusters is
stable, and only then the M-step starts. The SEM algorithm is also guaranteed to
converge to a local maximum, although it might present erratic behaviors. As a
remedy, Celeux and Diebolt [58] proposed to simulate an annealing [149] from SEM
to EM. This way, the algorithm benefits in its early stage from the stochasticity of
SEM to escape from sub-optimal regions. Later, the progressive shift toward EM
accelerates the convergence.
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In the case of a large data-set, the estimation of the posteriors may be expensive.
A solution is to use mini-batches [17], or to update the model after each instance: an
approach called incremental EM [202] (iEM). The latter is guaranteed to converge,
but not necessarily to the same optimum as EM [114]. On the other hand, the one-at-
a-time strategy makes it particularly suitable for online (on-the-fly) applications [170].
Offline, the order the data-set is browsed can also be modified, for example, to favor
instances with high perplexity.

2.4 Bayesian Mixture Model

s
(i)
ts

(i)
t−1

θk(m, ·)

ziΦα

β
Ti + 1

NK,M

Figure 2.3: Graphical model
of a Bayesian mixture of
Markov chains.

Taking a Bayesian perspective on a model con-
sists of assuming that the parameters are random
variables The inference scheme aims thus to find
the distributions for which the parameters max-
imizing the likelihood of the data are the most
likely. This is can be done by maximizing the
posterior distribution, which gives the optimiza-
tion strategy its name: Maximum a posteriori es-
timation (MAP).

To follow this line of thinking, we need to de-
fine the distributions governing the parameters, also called the prior distributions. A
Bayesian mixture of Markov chains (BMMC) requires two priors whose characteris-
tics are defined by some hyper-parameters α and β. The plate diagram of Figure 2.3
describes such a setting, that is summarized as follows:

Φ ∼PriorΦ(α),

θk ∼Priorθ(β),

z ∼Cat(Φ),

s ∼Markov Chain(θz).

(2.15)

The posterior probability of the mixture’s parameters factorizes as follows:

p(Φ,Θ,Z|S) ∝ p(S|Φ,θ,Z)p(Φ,θ,Z). (2.16)

Note that, since Z is unknown, it is also considered a parameter. This formula is not
computable yet, as the prior distributions are not explicitly provided by the model.
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2.4.1 Conjugate Distribution

There is no restriction on the choice of prior distributions. However, for some choices,
the optimization problem is easier to compute. Raiffa and Schlaifer [214] introduced
the notion of a conjugate distribution.

Definition 2.9 ([214]). A prior distribution is conjugate to its posterior if

1. the resulting posterior is easy to calculate and to sample,

2. the expectations of some utility functions (e.g., expected value) have a closed-
form,

3. the posterior and the prior belong to the same family of distributions.

Remark that at this step a parallel can be draw with the construction of the Q-
function for MLE. Both inference schemes rely on an arbitrary choice to make the
optimization tractable: the Γ for MLE, the conjugate distribution for MAP.

Mixture Weights

Let us consider the case of the mixture weights as an example of how to choose
a proper conjugate prior distribution. According to Bayes’ rule and independence
between variables, the posterior and prior of Φ are proportional:

p(Φ|Z) ∝ p(Z|Φ)p(Φ). (2.17)

If we suppose that the assignments are known:

p(Z|Φ) =
N∏
i=1

φzi =
K∏
k=1

φNkk , (2.18)

where Nk = ∑N
i=1 δzik is the number of data-points assigned to component k. The

right term looks like the pdf of a Dirichlet distribution (Equation 2.6) with parameter
〈Nk + 1〉K . The Dirichlet distribution seems, therefore, to be a good candidate for
the prior. As a matter of fact, if the prior distribution of Φ is a symmetric Dirichlet
distribution with hyper-parameter α > 0, the posterior becomes proportional to a
Dirichlet distribution with parameters 〈Nk + α〉K :

p(Φ|Z) ∝ p(Z|Φ)p(Φ) =
K∏
k=1

φNkk

K∏
k=1

φα−1
k =

K∏
k=1

φNk+α−1
k (2.19)
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To summarize: If the prior follows a symmetric Dirichlet distribution, the posterior
is easy to calculate; the posterior and the prior are both from the same family of
distributions; the expected value of the posterior has a simple closed form:

E[φk|Z] ∝ Nk + α

N +Kα
. (2.20)

Consequently, the posterior and the prior are conjugate in the sense of Definition 2.9
Note that the Dirichlet prior does not need to be symmetric, however, without this
assumption the formulas are more complex.

Transition Probabilities

The transitions from u ∈ M follows a categorical distribution. Hence, the same
reasoning as for Φ applies, such that:

∀k ∈ [1 . . K], ∀v ∈M, E[θk(u, v)|Z] =
∑N
i=1 δzikηuv(si) + β∑

w∈M
∑N
i=1 δzikηuw(si) +Mβ

, (2.21)

where ηuv(si) is the number of transitions from u to v in si, and β a hyper-parameter.

2.4.2 Gibbs Sampler

Recall that MAP aims to learn the prior distributions for which the expected values
of the parameters maximize the likelihood. Often, the computations of the expected
value are intractable. However, if all but one parameter are known, one can sample
the missing parameter multiple times from its posterior and obtain a good enough
approximation of its expected value. This heuristic is at the core of Markov Chain
Monte Carlo methods [188], such as Metropolis-Hastings algorithm [122] and the
Gibbs sampler [104, 57]. While the former rejects samples that do not pass some
tests, the latter accepts them all. In this text, we focus on the latter.

Implementation

The idea of the Gibbs sampler is to draw each parameter alternatively, given all
the others. After a random initialization, the operation is repeated until the sample
means are statistically significant. The repetition creates a Markov chain as described
in Algorithm 2. The sampling of φ(t)

k depends on φ(t−1)
k+1 , that itself depends on φ(t−1)

k .
Per transitivity, the sequence 〈φ(t)

k 〉N satisfies the Markov property. The algorithm
is proven to let the empirical distributions of each parameter converge toward their
respective true posteriors [57] since these are stationary points of their respective
Markov chain.
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Algorithm 2 Gibbs sampler for a mixture model.
Require: S = {si}N : input data, T : number of iterations, B: burn-in period

1: Initialize randomly Θ(0) = (Φ(0),θ(0),Z(0))
2: for t = 1 . . . T do
3: for k = 1 . . . K do
4: Sample φ(t)

k from φk|Φ(t)
:k−1,Φ

(t−1)
k+1: ,θ

(t−1),Z(t−1),S
5: end for
6: for k = 1 . . . K do
7: Sample θ(t)

k from θk|Φ(t),θ
(t)
:k ,θ

(t−1)
k+1: ,Z(t−1),S

8: end for
9: for i = 1 . . . N do

10: Sample z(t)
i from zi|Φ(t),θ(t),Z(t)

:i−1,Z
(t−1)
i+1: ,S

11: end for
12: end for
13: return Θ̂ = 1

T−B
∑T
t=B Θ(t)

In contrast to EM, the estimates at convergence are less dependent on the ini-
tialization. On the other hand, the first ones maintain a strong dependence with the
initial states. Therefore, the final estimation does not include them (burn-in period).

Auto-correlation

The Markov chain described by 〈Θ(t)〉N in Algorithm 2 induces an auto-correlation
between samples of successive iterations. Consequently, the algorithm may not ex-
haustively explore the parameters’ space, leading to a biased estimation of the poste-
rior. The blocked Gibbs sampler reduces this influence by sampling several variables
at the same time, e.g., sample Φ as a whole from a Dirichlet distribution instead of
each φk from univariate Beta distributions. The collapsed Gibbs sampler integrates
out some variables, if the resulting formula has a closed-form. Let us consider the
reassignment of zi, noted ẑi. Using the independence between variables (Figure 2.3),
the update of Algorithm 2 is as follows:

p(ẑi = k|Φ,θ,Z−i,S) = p(ẑi = k|Φ,Z−i,S)

∝ p(ẑi = k, si|Φ,Z−i)

= p(ẑi = k|Φ,Z−i) p(si|Z−i, ẑi = k)
(2.22)

where Z−i = Z \ {zi} and the superscript ·(t) are omitted. To sample the new
ẑi independently from Φ, a collapsed Gibbs sampler integrates out Φ from p(ẑi =
k|Φ,Z−i), i.e., it is summed over all the possible values of Φ. Since the prior of Φ is
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a Dirichlet distribution, we obtain:

p(ẑi = k|Z−i) =
∫

Φ
p(ẑi = k,Φ|Z−i)∂Φ

=
∫

Φ
p(ẑi = k|Φ,Z−i) p(Φ|Z−i)∂Φ

= E[φ̂k|Z−i] = N−i,k + α

N +Kα
,

(2.23)

with N−i,k = Nk − δzi,k. The last line derives from Equations 2.19 and 2.20. The
assignments can now be sampled from a simple formula, which highlights the benefits
of the collapsed Gibbs sampler.

Relation with EM

A Gibbs sampler and an incremental stochastic EM (iEM [202] + sEM [49]) are
similar. Both can be split into three steps repeated until convergence: for each data-
point (i) compute the assignment’s posterior probabilities, (ii) draw a new assignment,
(iii) maximize the other parameters. The difference is that the estimations of the
posteriors in iEM do not exclude the current point.

2.5 Dirichlet Processes and Mixture Models

We have seen how to infer the parameters of a mixture of models, except for the
number of models, K. The standard approach remains the grid search which implies
learning the model for several values of K. The best value is then chosen using the
elbow rule [218] of the curve of the likelihood at convergence, or some criteria from
information Theory such as the Akaike information criterion (AIC) [6, 53] or the
Bayesian information criterion (BIC) [226]. The approach we present here let the
optimization learn the number of components.

The rationale is to let K vary more or less randomly. However, this induces some
theoretical challenges: when the number of mixtures changes, the dimension of Φ
changes, and thus the order of its Dirichlet prior distribution. A first solution is to
consider that there is an infinite number of components. At first sight, this may
contradict the definition of a Dirichlet distribution which relies on a simplex of finite
dimension, but the aggregation property provides a workaround. Nevertheless, this
strategy reaches its limit when it comes to updating the values of the prior. A more
robust approach requires a change of paradigm. The idea is to consider vector Φ∗ as a
realization of a Dirichlet process (DP) somehow indexed by the number of non-empty
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components plus one. That is, Φ∗ is a random variable that follows a Dirichlet distri-
bution of order K + 1 with parameters depending on the index. The extra dimension
serves to model the creation of a new component in the mixture, i.e., an increase of
the prior’s order. Formally, any update of the Dirichlet distribution’s parameters or
order corresponds to a change of index of the stochastic process.

In the following, we formalize this heuristic and consider the case of a symmetric
Dirichlet process. In practice DPs are cumbersome to implement since the size of
some tables may vary. We discuss thus, in the last paragraph, a finite approximation.

2.5.1 Dirichlet Processes

Let us first give the original definition of Ferguson [98].

Definition 2.10 ([98]). Let (U ,A) be a measurable set with a finite measure α,
a Dirichlet process (DP) with parameter α is indexed by the set of the measurable
partitions of U . For every partition 〈Ek〉K with K > 1 and Ek ∈ A, DPα(〈Ek〉K) is a
random variable on the set of the probability mass functions on (Ω,A), P , such that
〈P (Ek)〉K is the Dirichlet distribution Dir(〈α(Ek)〉K).

The random vector 〈P (Ek)〉K can as well be seen as a vector of SK , which would
be in line with Definition 2.6 of the Dirichlet distribution. Therefore, we propose an
alternative definition using simplices instead of probability mass functions. Moreover,
the finite distribution is replaced by a scaled probability.

Definition 2.11. Let (U ,A) be a measurable set with a probability H and α > 0,
a Dirichlet process (DP) with parameter αH is indexed by the set of the measurable
partitions of U .

For a finite, measurable partition 〈Ek〉K of size K > 1,

z ∼ DPαH(〈Ek〉K)⇔ z ∈ SK and z ∼ Dir(〈αH(Ek)〉K). (2.24)

For a countably infinite, measurable partition, 〈Ek〉N,

z ∼ DPαH(〈Ek〉N)⇔ z ∈ S∞ and
∀k ≥ 1, (z1, . . . , zk,

∑∞
l=k+1 zl) ∼ Dir

(
αH(E1), . . . , αH(Ek), α− αH

(
∪kl=1El

) )
(2.25)

This last equation is a consequence of the aggregation property (Lemma 2.3) and
of the σ-additivity of the measure H.
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Figure 2.4 depicts a plate diagram of the Dirichlet process based mixture of Markov
chains (DP-MMC), which can be summarized as follows:

Φ∗ ∼DPαH(E)

z ∼Cat(Φ∗)

s ∼Markov Chain(θz).
(2.26)

where E is a partition of the index set of the DP.
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Figure 2.4: Graphical model of a Dirichlet process based mixture of Markov chains.

2.5.2 Symmetric DP

In order to have a better insight into DPs, we exhibit a family of partitions of R≥0

that induces symmetric Dirichlet distributions of any order K > 1.

Lemma 2.5. There exists a measurable set (U ,A), a probability H, and a countable
collection of measurable partitions of U , 〈EK〉K∈N, with EK = 〈e(K)

l 〉1≤l≤K+1, such
that for any k ∈ N and l ∈ [1 . . K + 1], H

(
e

(K)
l

)
= 1

K+1 .

Proof. A solution is realized for U = R≥0, A its Borel set, H = Exp(1)1, and the
intervals defined for any K ∈ N and l ∈ [1 . . K + 1] as follows:

e
(K)
l =

− log
(
K + 2− l
K + 1

)
,− log

(
K + 1− l
K + 1

). (2.27)

When the DP is indexed by EK , the model is equiavlent to a Bayesian mixture
model with K+1 components (Equation 2.15). The extra dimension of Φ∗ models the
opportunity to increase the order. If zi is reassigned to an already opened component,
the model’s parameters are updated accordingly to the optimization scheme of a

1pdf of the exponential distribution with parameter 1.
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BMMC. If the draw returns zi = K + 1, the index of DPαH is set to EK+1 and the
mixture has now K+2 components. Furthermore, Φ∗ gains one more dimension, zi is
set equal to K+1, and the model’s parameters are updated as in a BMMC with K+2
components. According to Equations 2.23, the expected posterior proabilities of Φ are:

for 1 ≤ k ≤ K, E[φ∗k|Z] =
Nk + α

K+1
N + α

,

E[φ∗K+1|Z] =
α

K+1
N + α

.

(2.28)

Simplification

The symmetry allows for a major simplification: a fixed family of partitions. Accord-
ing to the theory, two DPs with K components may be indexed by different partitions
with different H-measure. However, since the symmetry constraint ensures a constant
measure for a specific K, these partitions are all equivalent.

Degenerative Symmetrization

Beal et al. [23] introduce symmetric DPs without including the probability of opening
a new component inside Φ. Using the aggregation property, they split the assignment
phase in two steps. First, it is decided whether a new cluster is open with a fixed
probability proportional to α. If not, the point is assigned to an already opened cluster
using Φ. To remove the dependency of this last draw on the size of the mixture, they
let K tend to infinity. We claim that this presentation is degenerate. First, if K
is infinite, the the first step is irrelevant. Second, at the limit, the prior of Φ is a
Dirichlet distribution with all weights null, which is not well defined. Nevertheless,
we admit that once the components are populated, that second issue disappears.

An equivalent but non-degenerate construction relies on Φ∗, H = Exp(1) and a
DP indexed with the following collection of measurable partitions of R, 〈FK〉K∈N:

∀K ≥ 1, FK = {u(K)
l }1≤l≤K+1,

∀l ∈ [1 . . K], u
(K)
l = [al, b(K)

l ] and u
(K)
K+1 = R \{u(K)

l }1≤l≤K .

a1 = 0, al = 1− log(e−
l−1∑
j=1

e−j) and b
(K)
l = 1− log(e− e−l−K).

For a given K ≥ 1, H(u(l)
K ) = e−K+1 for any l ∈ [1 . . K] and H(u(K)

K+1) = 1−Ke−K+1.
As K tends toward infinity, b(K)

l becomes closer to al, and the intervals u(K)
l converge

toward the singletons and H(u(l)
K ) → 0. On the other hand, the complementary set
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expands until its measure becomes 1. At the limit, we obtain the following infinite
partition:

F∞ = {al}N ∪ (R \N) = {ul}N ∪ u∞,

∀l ∈ N, αH(ul) = 0, and αH(u∞) = α.
(2.29)

Here again, if a reassignment opens a new cluster, the index of the DP may change for
another partition, but equivalent to F∞. Hence, we can assume that the indexing par-
tition remains the same. Using the aggregation property of the Dirichlet distribution
and Equation 2.25, the prior of Φ∗ is well defined:

∀K ≥ 1, Φ∗ ∼ Dir(0, . . . , 0︸ ︷︷ ︸
K

, α). (2.30)

In the construction of Beal et al. [23], the Φ does not have the extra dimension,
hence its prior Dirichlet distribution is Dir(0K), which is not well defined.

2.5.3 Approximation

If an infinite number of clusters is theoretically attractive, in practice it is prob-
lematic. The value of K changing, the size of the table storing the components’
parameters can not be fixed in advance, which hinders computationally efficiency of
any implementation. Regarding the interpretability, an infinite or even a potentially
large number of clusters prohibit any analysis of the groupings. Lastly, in an offline
scenario, the number of clusters is anyway upper-bounded by the number of instances
in the data-set.

In a landmark paper Ishwaran and Zarepour [133] show that for K big enough,
Bayesian mixture models are good approximations of DP mixture models. Their
approximation is called a degree k-weak limit approximation.

Theorem 2.2. [133] Let Z(K) and Z∞ be two sets of assignments obtained from a
Bayesian mixture model with K components and a DP mixture model, respectively.
Let DK and D∞ equal the number of distinct values in Z(K) and Z∞, respectively. If
H is nonatomic, then

K!
K l(K − l)! ≤

p(DK = l)
p(D∞ = l) ≤ N

αl
K , for l = 1, . . . ,min(N,K).

Both bounds converge to 1 as K →∞.

Formally, the previous theorem guarantees that the clusterings obtained from a
Bayesian mixture model tend (up to a permutation) to the distribution of indices
of clusterings obtain with a DP mixture model, when the number of components
increases. This is equivalent to say that the groupings are equivalent at infinity.

32



Chapter 3

Archetypal Analysis and Content
Analysis

0 5 10 15 20 25
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Figure 3.1: The factors of NMF (blue
squares) are far from the data. Besides,
only two a necessary to define the envelop-
ing cone. On the other hand, Archetypal
Analysis makes the est out of three fac-
tors (orange circles) and form a polyhedron
that follows the distribution of the data.

Several studies have shown that the time
spent reading a page or completing exer-
cises is an indicator of the level of pupils’s
motivation [126, 143]. In this chapter,
we follow this line of research but from
a content perspective. We choose to
model behaviors using visibility times
of different types of content and look
for correlations with pupils’ motivation.
Naively representing a session using only
the shares of each object in the total du-
ration is sub-optimal. As we shall see, in
this case, some correlations cancel each
other out. Instead, we reconstruct the
time distributions from factors close to
the data, and in greater number than the
number of dimensions. This way, we ob-
tain a better understanding of the rela-
tionships between the objects themselves as well as with motivation.

Centroid-based methods provide factors close to the data, but cluster weights are
designed to indicate the closest centroid, not to reconstruct points from them. Matrix
factorization techniques lend themselves better to this problem. Two major methods
are singular value decomposition (SVD) [233], and non-negative matrix factorization
(NMF) [206, 163]. The former uses the eigenvectors of the data-matrix as factors,
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while the second looks for an enveloping cone (blue in Figure 3.1). These methods give
good reconstruction losses, but their factors lack interpretability. First, the factors
may be far from the data. Stochastic NMF for clustering [11, 12] or with convex
constraints [85] improve this aspect, though. Moreover, the number of relevant factors
is limited to the number of dimensions (see Figure 3.1).

Cutler and Breiman [71] studied the problem of calculating interpretable factors.
Their idea is to define an enveloping polyhedron using points, or archetypes, on the
convex hull of the data-set. This way, any point within the polyhedron can be rep-
resented without loss as a convex combination of the archetypes. To ensure that the
factors are on the boundary, the archetypal analysis (AA) calculates them as convex
combinations of the data-points. The reconstruction loss then pushes them towards
the boundary. Several variants have been recently proposed [197, 65, 228].

Because it relies on two stochastic matrices, AA can be very heavy to calculate.
Since the archetypes lie on the convex hull, a simple idea is to reduce their search
to the convex combinations of the frame, i.e., the vertices of the convex hull. We
propose to go one step further and approach AA by only reconstructing the frame.
Indeed, any data-points can be expressed losslessly as a convex combination of points
of the frame. So a good approximation of the latter would contain enough points to
yield a reduced reconstruction loss. The idea is similar to that of Thurau et al. [239],
who propose to approximate the frame using two-dimensional projections. However,
they add an unnecessary approximation layer to the problem.

At first glance, the calculation of the exact frame is the solution to the de-
scribed problem. However, it is a very demanding task. Standard approaches like
Quickhull [18] are infeasible in high dimensions because of dispensable triangula-
tions. Discarding the triangulation leads to linear programming (LP)-based solu-
tions [88, 204, 89] that test whether a point at-hand is included in the convex-hull:
much ado for only a single point. In addition, duplicates in the data cause false
negatives to duplicated extreme points. In the following, we (i) show that the exact
frame can be computed by a quadratic program (QP), (ii) reduce the optimization
to an existing algorithm, and (iii) provide theoretical and empirical justifications for
the developed method.

The remainder is structured as follows. Section 3.1 reviews archetypal analysis
and Section 3.2 contains the main contributions: a new computational method for
finding the frame and a frame-based matrix factorization. Section 3.3 reports on
our empirical results. In Section 3.3.3, we use our method to analyze and interpret
behaviors from the mBook.
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3.1 Archetypal Analysis

Let X = {x1, . . . ,xN} be a set of N points of RM summarized by matrixX ∈ RN×M ,
the goal of archetypal analysis (AA) [71] is to find a factorization of the data with
K ∈ N factors, such that

X = ABX = AZ, (3.1)

where A ∈ RN×K and B ∈ RK×N are row-stochastic, and the column-vectors of
Z ∈ RK×M correspond the factors or archetypes, 〈zk〉K . The formula says that the
data-points are convex combinations of the archetypes, while these are themselves
convex combinations of the data-points:

∀i ∈ [1 . . N ], ai· ∈ SK , xi =
K∑
k=1

aikzk,

∀k ∈ [1 . . K], bk· ∈ SN , zk =
N∑
i=1

bkixi.

The factorization can be obtained by minimizing the residual sum of squares (RSS)

min RSS(k) = ‖X −AZ‖2
F = ‖X −ABX‖2

F .

The optimization problem is non-convex inA andB, but convex if one matrix is fixed.
It can be solved by alternatively computing A and B as outlined in Algorithm 3.
Cutler and Breiman [71] proved that the archetypes lie on the boundary of the convex-
hull of the data X for 1 < K < N . From a geometrical point of view, AA yields
an approximation of the convex-hull with K vertices. Points inside the polyhedron
formed by the archetypes are reconstructed in a lossless way, while those outside are
approximated by their orthogonal projection onto this polyhedron. Thus, minimizing
the RSS also minimizes the quantity of these projections.

3.1.1 Convex Hull and Frame

The convex-hull of a set of RM can be defined in various ways [29]. We give here,
two definitions.

Definition 3.1. Let X be a set of RM , its convex-hull Conv(X ) is:

1. The intersection of all convex sets containing X .

2. The set of all the convex combinations of points in X .
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Algorithm 3 Archetypal Analysis (AA)
Input: data matrix X, number of archetypes K
Output: factor matrices A,Z
Z = initial guess of archetypes on X
while not converged do

for i = 1, 2, . . . , N do
ai· = argmin

a∈SK
‖Z>a− xi‖2

2

end for
Z = (A>A)−1A>X
for l = 1, 2, . . . , K do
bl· = argmin

b∈SN
‖X>b− zl‖2

2

end for
Z = BX

end while

In the case of a discrete set, we distinguish the set of the vertices of the convex-hull.

Definition 3.2. The frame of X , Frame(X ), is the set of the points of the boundary
of X , ∂X . The proportion of points in X belonging to the frame is called the frame
density.

The frame consists thus of the extreme points of X . Those points cannot be
represented as convex combinations of other points rather than themselves. Note that
a set and its frame share the same convex-hull, i.e. Conv(Frame(X )) = Conv(X ).

We state now two straightforward properties that will become handy in the re-
mainder. First, given a point, the maximizer of the inner-product relatively to that
point is an extreme point, i.e., it belongs to the frame of the set.

Lemma 3.1. Let X be a finite discrete set of RM , then

∀x ∈ X , argmax
x′∈X

(
x>x′

)
∈ Frame(X )

Proof. Continuity, and convexity of the inner-product imply that its maximum on a
compact set is realized by an extreme point of the domain. Since the domain X is
finite, it is compact. Therefore, the maximum belongs to the frame of X .

Furthermore, every point of the domain lies in the convex span of some points on
the frame.

Proposition 3.1. Every point x of a finite discrete set X ⊂ RM can be written as a
convex combination of at most M + 1 points of Frame(X ).
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Proof. See Brondsted [48].

In the remainder, we assume N > M and note F the frame of X . It is of cardinal
P and summarized by matrix F ∈ RP×M .

3.2 Frame-AA

The optimization pushes archetypes toward the convex-hull of the data [71]. We use
this property to approximate and speed up AA.

3.2.1 Motivation

Given that the archetypes lie on the convex-hull, it is possible to restrict the search of
the archetypes to the frame F . We intend to go one step further. Since the frame F
and the data X yield the same convex-hull, the better the archetypes approximate the
frame, the lower is the loss. The idea is depicted in Figure 3.2. Although archetypal
analysis is only computed on the frame, as seen in the right subplot, it yields almost
identical archetypes as AA computed on the whole data-set (left). Moreover, the
reduced number of points yields a faster convergence.

The construction develops as follows. First, we factorize the frame using AA:

F = AFBFF = AFZ, (3.2)

where AF ∈ RP×K and BF ∈ RK×P are both row-stochastic. Then, the archetypes
Z are used to compute the weight matrix A ∈ RN×K for all the data-points. This
procedure is called Frame-AA and is presented in Algorithm 4. Note that the idea does

AA on all data AA on the frame

ConvexHull AA Frame-AA

Figure 3.2: Computing the archetypes from the whole data-set (left) or from the
frame (right) yields very similar solutions.

37



Algorithm 4 Frame-AA
Input: Data-matrix X, number of archetypes K ∈ N
Output: Factor matrices A,Z
F = Frame(X)
AF ,Z = ArchetypalAnalysis(F , K)
A = 0N×K
for i = 1, 2, . . . , N do
ai· = argmin

a∈SK
‖Z>a− xi‖2

2

end for

not only apply to standard archetypal analysis as presented in Cutler and Breiman [71]
but also to all variants thereof [197, 65, 19].

Assuming a low frame density, i.e., P � N , the polyhedron of a sufficient approx-
imation of the frame, and therefore of the convex-hull, includes most of the interior
points. On the other hand, the problem tends toward a standard AA and the speed up
vanishes as the frame density increases, i.e., P → N . However, based on the nature
of the problem, we claim that AA makes no sense in high frame density scenarios. In
such a case, almost all points are projected, unless K is close to N , which is usually
not the case.

In Algorithm 4, we assume that the frame F or equivalently the frame matrix F
is already given. In the following section, we present a novel algorithm for efficiently
computing the frame of a discrete data-set. Before that, we show now that AA can
be solved efficiently using a standard non-negative least squares algorithm.

3.2.2 Representation

Archetypal analysis aims to represent any point of X as a convex combination of
points from the frame. Formally, for any point y ∈ X , AA looks for a ∈ RN such
that:

X>a = y
a ∈ SN = 1 ∧ ai 6= 0⇒ xi ∈ F .

(3.3)

This problem can be reduced to a least-squares problem.

Theorem 3.1. Let X̂ ∈ RN×(M+1) and ŷ ∈ RM+1 be the augmentation of X and y:

∀i, j ∈ [1 . . N ]× [1 . . M ], x̂ij = xij, x̂i(M+1) = 1, ŷj = yj, ŷM+1 = 1.

For y ∈ X , the following problems are equivalent.

(i) X>a = y : a ∈ SN ∧ ai 6= 0⇒ xi ∈ F .
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(ii) X̂>a = ŷ : a ≥ 0 ∧ ai 6= 0⇒ xi ∈ F .

(iii) argmina≥0
1
2‖X̂

>a− ŷ‖2
2 : ai 6= 0⇒ xi ∈ F .

Proof. (i) is equivalent to (ii) as it integrates the stochasticicty constraint into the
system of linear equations. Proposition 3.1 assures that (i) has a solution. Hence,
min 1

2‖X
>a− ŷ‖2

2 = 0. Meaning that a solution of (iii) is also a solution to (ii) and
hence (i).

Without the frame condition on a, problem (iii) of Theorem 3.1 is equivalent to
the non-negative least squares (NNLS) problem which is a special case of a quadratic
problem (QP). The active-set method from Lawson and Hanson [161] is proven to
yield a least-squares estimate of this unconstrained problem (Algorithm 5). We prove
that it also provides a solution to the problems of Theorem 3.1.

Theorem 3.2. The active-set method from Lawson and Hanson [161] solves the prob-
lems of Theorem 3.1.

Proof. Let a be the solution returned for the problem:

argmin
a≥0

1
2‖X̂

>a− ŷ‖2
2.

Accordingly to Algorithm 5, if aj 6= 0, at some iteration t, w(t)
j was the greatest

coefficient of w(t), i.e.,

j = argmax
{i | a(t)

i =0}
{w(t)

i } = argmax
{i | a(t)

i =0}
{x̂i

(
ŷ − X̂>a

)
}

Lemma 3.1 implies that xj belongs to the frame. Therefore, a is also a solution of
the three equivalent problems of Theorem 3.1. Algorithm 5 can hence be used in
archetypal analysis to compute matrix A.
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Algorithm 5 Lawson and Hanson’s active set algorithm
Input: Augmented matrix X̂ and augmented data-point ŷ
Output: Solution a with ai ≥ 0
P = ∅
Z = [1 . . N ]
a = 0N
w = −∇f(a) = X̂(ŷ − X̂>a)
while Z 6= ∅ and ∃ w[Z] ≥ ε do
l = argmaxj{ wj | j ∈ Z }
Z = Z \ {l}
P = P ∪ {l}
X̂P = X̂[:,P ] ∈ R(M+1)×|P|

z = argminz ‖X̂>P z − ŷ‖2
2

z[Z] = 0
J = { j ∈ P | zj ≤ ε }
while |J | > 0 do
α = min{ sj

sj−zj | j ∈ J }
a = a+ α · (z − a)
for i = 1, 2, . . . , N do

if i ∈ P and |ai| ≤ ε then
P = P \ {i}
Z = Z ∪ {i}
X̂P [:, i] = 0

end if
end for
z = argminz ‖X̂>P z − ŷ‖2

2
z[Z] = 0

end while
a = z
w = −∇f(a) = X̂(ŷ − X̂>a)

end while
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Densification

Figure 3.3: The point inside a quadrilat-
eral is the convex combination of two dif-
ferent sets of three extreme points.

Consider the example given in Fig-
ure 3.3: the point inside the quadrilat-
eral is a convex combination of two com-
binations of three extreme points. How-
ever, to analyze the archetypes weights
(A) and their distribution, it is necessary
that these do not depend on the order of
the data-points. The solutions returned
by NNLS do depend on the order and
have up to M + 1 non null coefficients,
which is sparse if K > M + 1. We pro-
pose to build an unequivocal and dense solution out of it.

If a point is on, or is projected onto, a face of the archetypal polyhedron (AP),
the solution of NNLS is unique (faces are sub-spaces of dimension up to M − 1).
The problem is thus concentrated on the data-points inside the polyhedron. Recall
that, these can be reconstructed losslessly from the archetypes. An unequivocal
representation is the mean of all lossless representations. This solution has also the
property to be dense.

Proposition 3.2. For any data-point x inside the archetypal polyhedron formed by Z:

(i) The set of vectors a of SK such that Z>a = x is finite and non empty.

(ii) For any archetype zk, k ∈ [1 . . K], there exists a vector a ∈ SK such that
Z>a = x and ak! = 0.

Proof. (i) Let C be the set of vectors reconstructing losslessly x from the archetypes.
Since NNLS returns such a solution, C is non empty. It is also finite, because any
reconstruction relies on a combination of the K archetypes that are in finite numbers.

(ii) Let zk, k ∈ [1 . . K], be an archetype and consider the line L passing through
it and x. Since x is inside the archetypal polyhedron and that the latter is the convex
hull of the archetypes, L intersects AP twice: in zk and žk. The data-point x being in-
side the segment connecting these two points, it is a convex combination of them. The
point žk being on the border of the AP, it can be expressed as a convex combinations
of the vertices (also archetypes) of the face supporting it. Hence x can be recon-
structed in a lossless manner using a combination of archetypes, including zk.
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Algorithm 6 Dense Archetypal Analysis
Input: Data-matrix X, number of archetypes K
Output: Factor matrices A,Z
A,Z = ArchetypalAnalysis(X, K) (using NNLS)
PZ = { all the combinations of M + 1 column-vectors of Z }
for i = 1, 2, . . . , N do

if #{ail > 0, l ∈ [1 . . K]} = M + 1 then
ai·, c = 0K , 0
for Z ′ ∈ PZ do
a = NNLS(Z ′, x̂i)
if ‖Z>a− x̂i‖2

2 < ε then
ai· = ai· + a
c = c+ 1

end if
end for
ai· = 1

c
ai·

end if
end for

Algorithm 6 computes a dense solution from that of AA by computing the mean
representations. The initial values of A and Z are computed using AA or Frame-AA
and NNLS. If a point inside the AP is recognized by the number of non null coefficients
of its reconstruction. For such a point, NNLS is run with all the M + 1 combinations
of archetypes, and the average of the solutions reconstructing exactly the data-point
stored in the matrix weight A. Note that if K ≤ M , the archetypal polyhedron is
flat, its interior is empty, thus all the data-points are considered on the border.

3.2.3 Generalization

In the previous section, we represented a single point as a convex combination of
points of the frame. By doing so for every point in the data-set, we obtain the
frame F of X . Algorithm 7 summarizes this procedure, called NNLS-Frame, and
Corollary 3.1 proves this claim.

Corollary 3.1. Algorithm 7 computes the frame F of X .

Proof. According to Theorem 3.2, the indices of the positive coefficients of each vector
ai (i ∈ [1 . . N ]) refers to points on the frame. Besides, every extreme point can
only be defined as a convex combination of itself: the associated weight vector has a
single positive coefficient. Therefore, the union of these indices yields the indices of
the elements of the frame.
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Algorithm 7 NNLS-Frame
Input: Augmented matrix X̂
Output: Indices of ext. points F
F = ∅
for i = 1, 2, . . . , N do
a = NNLS(X̂, x̂i)
F = F ∪ { j ∈ [1 . . N ] : aj > 0 }

end for

Complexity Analysis

There are two main computations inside Algorithm 5: the computations of the neg-
ative gradient w and the resolution of the unconstrained least-squares problem

z = argmin
z
‖X̂>P z − x̂‖2

2.

The latter can be rewritten as z[P ] = (X̂PX̂>P )−1X̂Px̂. The complexity of the
unconstrained least-squares step is O((M + 1)#(P)2) and dominates the first main
computation. Since no more than M + 1 points are sufficient for the solution (Theo-
rem 3.2), the outer while-loop is executed at least M + 1 times and the average size
of P is 1

2(M +1). Therefore, the complexity of the NNLS method is O(1
4(M +1)4) on

average. Hence, the complexity of NNLS-Frame presented in Algorithm 7 does not
exceed O

(
N
4 (M + 1)4

)
.

Computing the Frame efficiently

One way to speed up the frame computation is a divide-and-conquer approach. The
underlying principle is stated in the following lemma.

Lemma 3.2. Let A and B be non-empty discrete sets, it holds that:

Conv(A ∪ B) = Conv
(

Conv(A) ∪ Conv(B)
)
.

The idea is as follows. Let X (1) ∪ . . . ∪ X (K) be a partition of X such that the
cardinal Nk of every subset X (k) should be significantly smaller than that of X , i.e.,
Nk � N . The assumption of having a pairwise disjunction is not necessary but
reasonable. Instead of the whole data-set X , Algorithm 7 is now executed on every
subset X (k) for k = 1, 2, . . . , K. Finally, the frame of X is obtained by merging the
frames of every subset and run our approach again on it. The procedure is summarized
in Algorithm 8. Note that the for-loops of Algorithms 4, 7, and 8 can be parallelized.
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Algorithm 8 Divide-and-Conquer strategy of NNLS-Frame
Input: data X , number of splits K ∈ N
Output: indices of extreme points F
X = ⋃K

k=1X (k) with X (k) ∩ X (l) = ∅ for k 6= l
F = ∅
for k = 1, 2, . . . , K do
Fk = NNLS-Frame(X (k))
F = F ∪ Fk

end for
F = NNLS-Frame(XF)

3.3 Experiments

3.3.1 Computing the Frame

In this section, we study the computation of the frame. The experiments rely on
the same synthetic data-set1 as in Dulá and López [89], which was generated ac-
cording to a procedure described in López [175]. The data-sets consist of N =
2,500, 5,000, 7,500, 10,000 data-points with M = 5, 10, 15, 20 dimensions with a frame
density of 1, 15, 25, 50, 75 percent, respectively.

LP-based approaches [88, 204] discover up to one extreme point per iteration.
On the other, accordingly to Theorem 3.2, NNLS-frame finds up to M + 1 extreme
points. This behavior is illustrated in Figure 3.4. The graph shows the percentage
of discovered extreme points against the percentage of iterations conducted on a
synthetic data-set with N = 2,500 points in 5 dimensions with various frame densities.

1http://www.people.vcu.edu/˜jdula/FramesAlgorithms/SyntheticData/

Figure 3.4: Percentage of discovered
extreme points versus percentage
of iterations on synthetic data-set
with N = 2,500 data-points in R5.

Figure 3.5: Timing results for the
divide-and-conquer approach on
synthetic data with N = 10,000
points with 5 dimensions.
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Figure 3.6: Timing results on synthetic data with N = 10,000 points.

The lower the frame density the faster the frame is being discovered. Even for a frame
density of 75%, the discovery is faster than the linear growth (dashed line) expected
from a LP-based approach. Hence, if an approximation of the frame is sufficient an
early termination is possible.

In Figure 3.6, we compare NNLS-Frame to two LP-based baselines proposed by
Ottmann et al. [204] and Dulá and Helgason [88]. The code is taken from Dulá and
López [89]. For compatibility, we implemented our approach in the same programming
language. The plot shows that for N = 10,000 and every configuration our approach is
always faster than the baselines. We obtain similar results on the remaining data-set
(N = 2,500, 5,000, 7,500).

The divide-and-conquer approach with three partitions cuts the run-time in half
for each frame density configuration evaluated (Figure 3.5). Hence, even a small
number of partitions leads to a substantial speed up. Note that, Although it is not
the case here, the partitions can be processed in parallel.

3.3.2 Matrix Factorization

We compare now Frame-AA to several baselines including standard archetypal anal-
ysis (AA) [71], ConvexHull-NMF (CH-NMF) [239], Convex-NMF (C-NMF) [85] and
standard NMF [163]. Frame-AA and AA are implemented in Python. For CH-NMF
and C-NMF we use pymf 2, and scikit-learn 3 for NMF. Table 3.1 depicts the real
world data-sets used for this experiment. The frame sizes and the frame densities are
computed with our NNLS-Frame.

Table 3.2 reports on the results for K = 6 in terms of reconstruction error mea-
sured with the Frobenius norm. We obtain similar results for K = 8, 10, 12. The

2http://pypi.python.org/pypi/PyMF
3http://scikit-learn.org
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Table 3.1: Real world data-sets sorted with respect to their frame density.
Data-set N M P frame density
Banking2 12456 8 715 5.74%
Banking1 4971 7 345 6.94%

USAFSurvey 2420 6 368 15.21%
yeast 1484 8 242 16.31%

Banking3 19939 11 4960 24.88%
SpanishSurvey 600 5 150 25.00%

swiss-heads 200 6 115 57.50%
skel2 507 10 431 85.01%
ozone 330 10 308 93.33%

number of iterations executed per algorithm is fixed to 100 in order to obtain fair
results. We use random initializations for all algorithms and report averages over 36
repetitions. Our method Frame-AA yields similar error as AA. The lowest errors are
achieved with NMF. The most comparable baseline CH-NMF, which approximates
the frame instead of computing it exactly, returns an error approximately 20% larger.
The worse results are returned by C-NMF. In summary, Frame-AA performs similarly
to standard AA and much better than CH-NMF and C-NMF.

Usually, it is a priori not known how to choose the latent dimensionality K. A
standard approach, the so-called elbow rule, requires several runs for different values
of K to be executed. In such a scenario, our approximative approach is particularly
beneficial. Frame-AA requires the computation of the frame F before archetypes
can be located. However, once the frame is complete, it can be used for testing any
number of archetypes. It is, hence, interesting to see the cumulative time taken by
the methods when evaluating several configurations, say K = 4, 6, 8, . . . , 16.

We use the USAFSurvey data-set to illustrate this scenario (see Figure 3.7).

Figure 3.7: Cumulative time for several evaluations of K as well as reconstruction
error for USAFSurvey data-set.
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Table 3.2: Average Frobenius norm reported on 36 repetitions with random
initializations for K = 6. ”-” indicates failure of the method due to negative data.

Data-set Frame-AA AA CH-NMF C-NMF NMF
Banking2 90.08 72.35 - - -
Banking1 67.20 58.97 - - -

USAFSurvey 904.22 902.07 1239.67 2192.30 688.35
yeast 5.43 5.02 9.18 7.04 3.52

Banking3 134.30 131.81 - - -
SpanishSurvey 94.84 93.51 117.91 254.92 32.14

swiss-heads 75.05 74.67 87.06 116.07 47.16
skel2 64.84 64.87 77.78 101.73 51.75
ozone 1532.12 1669.70 - - -

Frame-AA is the fastest method for K = 4 despite that this first evaluation in-
cludes the computation of the frame (Figure 3.7 left). Since the frame is static for a
data-set, it is reused in all the remaining computations. Note that we can obtain even
faster computations for Frame-AA using the divide-and-conquer strategy as outlined
in Algorithm 8.

The reconstruction error is shown in the right plot of Figure 3.7. Once again,
Frame-AA yields errors similar to those of standard AA, which is computed on the
whole data-set. The other baselines, C-NMF and CH-NMF, perform much worse.

3.3.3 Behavioral Archetypes

Figure 3.8: Average visibility
time-ratio of the five most in-
formative contents.

We study here the relationships between the
amount of time the pupils see certain type of
objects on the mBook and their motivation to
study History. We consider the five most infor-
mative class of objects: text, text with a picture
(Text/Pic), text with a picture linked to a gallerie
(Text/Gal), galleries (always full screen), and ex-
pandable information boxes (Boxes). To compare
sessions of various duration, we measure the ra-
tio between the visibility time of each object in
a session and the total duration. Since, there are
more than five classes of objects (e.g. tile, loss of
focus, etc.), the ratios do not sum up to 1.
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Figure 3.9: The ten archetypes found by Frame-AA. For legibility the labels are
omitted (see Figure 3.8).

Archetypes

We analyze here the 537 sessions from January 31st to July 11th 2017. After pre-
processing, including the removal of sessions where none of the five contents were
visible, 354 sessions remain. The average time distribution of the five selected objects
is shown in Figure 3.8. The archetypes of the best solution out of 30 runs of Frame-
AA are depicted in Figure 3.9, where the labels are not repeated for legibility. We
compare only dense solutions computed using Algorithm 6.

The most frequent archetype A1 models users spending most of their time on non
informative content. In contrast, for A3 each of the three text-based contents are
visible during 25% a session. Archetypes A5, to A9 describe different ways of using
the information-boxes.

Psychometric Correlations

The naive approach to this analysis is to use the visibility distribution raw (Fig-
ure 3.8). The Pearson’s r correlation coefficients between the visibility ratio for each
object and the motivation score are reported in Table 3.3. The only statistically sig-
nificant relationship links the motivation to the time spent on galleries. The same
analysis using the archetypal representation yields four significant correlations (Ta-
ble 3.4). The significant correlation of the naive approach is here associated to A10
with a similar coefficient. These figures show that a high motivation implies more
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Table 3.3: Pearson’s r coefficients between visibility ratio of five objects and the
motivation score. Statistical significance (p < 0.05) is indicated in bold.

Text Text/Pic Text/Pic+ Boxes Gallerie
Motivation -0.032 0.071 0.03 -0.072 0.17

Table 3.4: Pearson’s r coefficients between archetypes’ weight and the motivation
score. Statistical significance (p < 0.05) is indicated in bold.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

-0.143 -0.01 0.107 0.016 -0.038 0.098 -0.038 -0.156 -0.019 0.169

time spent on rich content (A3), and less time on less informative ones (A0). Para-
doxically, there is a negative correlation between boxes and motivation. The very
imbalance distribution of A8 suggests something unexpected: users see more boxes
than texts. A deeper analysis of sessions close to A8 indicates that the visibility time
does not itself cause this negative influence, but the number of clicks on boxes. These
pupils tend to open and close a lot of these, without necessarily taking the time to
read them. Consequently, information-boxes are artificially more often visible.

3.4 Conclusion

In this chapter we proposed a novel method for computing the frame of a data-
set, i.e., the vertices of the convex-hull. While standard approaches like QuickHull
are infeasible for data with more than three dimensions, we computed the frame by
leveraging the well known active-set method for non-negative least squares problems,
called NNLS. We provided a theoretical underpinning for our approach and conducted
a series of experiments to compare the computation of the frame with two LP-based
approaches to show our competitiveness.

We proposed an approximation of archetypal analysis, called Frame-AA, that
restricts the optimization to the frame. Our heuristic is that a good approximation of
the frame would reconstruct losslessly many of the data-points. Empirically, Frame-
AA returned on par residual errors with standard archetypal analysis, while being
much faster once the frame is known. This is a crucial characteristic as the optimal
number of archetypes is generally not given a priori. Although, the computation of
the frame may slow down the first evaluation, every subsequent evaluation saves time
as the frame is then already known.
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The archetypal analysis of the mBook data yielded insights inaccessible from a
simpler approach. It highlighted correlations between usage of informative contents
and the motivation of the pupils. However, the method has its limit. It could not
explain the paradoxical negative correlation between motivation and information-
boxes. Only an analysis of the sequences could reveal an abusive usage.
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Chapter 4

Markov Chains and Periodic
Behaviors

In this chapter, we investigate how users interact with contents over a week, especially
between the different categories of pages: summaries, text pages, galleries. History
lessons recurring weekly, they hence surely induce periodic behaviors. Several authors
were involved, each focusing on the period in which they specialize. The chapters thus
differ in their structure and content, i.e., galleries, information boxes, links. Besides,
the nature of the behaviors sought calls for a sequential approach. We propose thus
a Markov chain based model that captures periodic behaviors conditioned on the
chapter.

Sequence-based model for log file analysis are common in computer science and
are widely used to understand how web users navigate [135, 3]. These methods serve
to detect navigation patterns that are indicative of future events [212, 232, 81] or user
interests [10]. Patterns in sequences of page views have been studied using a variety
of techniques, including relational models [8], association rules [74, 75], and k-nearest
neighbors [34].

Previous works aiming at interpretable models have focused on modeling naviga-
tion sequences using Markov processes [54, 183, 81, 38, 260]. The underlying assump-
tion is that navigational behaviors are memoryless and transitions to a state depend
only on the precedent. Existing approaches focus mainly on the pure sequence of
page views or categories without taking into account any contextual information. We
argue that context, such as whether or not pupils are in school, is essential for draw-
ing conclusions about any specific session or user. The model presented by Haider
et al. [118] is a first attempt in this direction. They combine a mixture of Markov
chains (MMC) with a model for connection times.
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Our contribution goes further. We represent user sessions as fully observed Markov
processes that are enriched by context variables: connection timestamps, chapters,
and page category. We derive an Expectation-Maximization (EM) [80] algorithm
to cluster sessions according to the learners’ behavior when using the textbook. To
highlight the expressiveness of our approach, we compare the results to a standard
solution based on k-means [174]. While the latter yields trivial and insignificant
groups, our approach groups sessions or users into clusters that can be easily visualized
and interpreted.

The remainder is organized as follows. We present our probabilistic model in
Section 4.1 and report on empirical results in Section 4.2. Section 4.3 presents a
discussion of the results and concludes.

4.1 Time Nested Markov Chains

Let S = {si}N denote a set of N iid user-sessions and Z = {zi}N their assignments to
one of K clusters. A session is a triplet si = (t(i),x(i), c(i)) defined by its connection
time t(i) ∈ R≥0, and the sequences of the chapter and category of the visited pages,
noted, respectively, x(i) = 〈x(i)

j 〉Ti and c(i) = 〈c(i)
j 〉Ti . Each sequence is prepended

and appended by the auxiliary symbol ∞ capturing the initial and terminal events:
x0 = xTi+1 = c0 = cTi+1 = ∞. The six chapters of the book together with the
homepage, an out chapter that encodes the external pages, and ∞, form 9 possible
realizations for every visited page. There are six different categories: summary, text,
gallery, plus three auxiliary categories for the homepage, the external pages (out),
and ∞.

4.1.1 Representation

We model the realization of a session s using a mixture model with K components.
The likelihood of s in the k-th component is given by

p(s|z = k,Θ) = p(t|θtk)p(x|θxk)p(c|x, θck). (4.1)

The browsing process through chapters and categories are modeled by first-order
Markov chains:

p(x|θxk) =
T+1∏
t=1

θxk(xt−1, xt), (4.2)

p(c|x, θck) =
T+1∏
t=1

θck(xt−1, ct−1, ct). (4.3)
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The functions θx and θc are the transition probabilities of each Markov chain, (with
omitted cluster’s indicator):

θx,tr(xt−1, xt) = p(xt|xt−1, θ
x),

θc,tr(xt−1, ct−1, ct) = p(ct|ct−1, xt−1, θ
c).

(4.4)

The category model depends on the chapters as we aim to capture different behaviors
in each chapter. For example, some chapters may have their galleries visited more
frequently than others.

4.1.2 Time Model

The model for the connection times is inspired by the approach described in [118]:
a Gaussian mixture model with fixed number of components and parameters (mean
and standard deviation), such that only the mixture weights are left to be optimized.
Since we aim to extract periodic behaviors, we combine the Gaussian pdf with the
tangent function to have a periodic distribution over a period T ∈ R+. For legibility,
cluster indices are omitted.

Lemma 4.1. For T ∈ R+, (µ, σ) ∈ R2 the following function is T -periodic and
defines a distribution over

[
−T

2 ,
T
2

)
:

∀t ∈ R, pT (t|µ, σ) = 1
erfc( 1

σ
)T exp

−1 + tan2
(
π
T

(t− µ)
)

σ2

 . (4.5)

Proof. The periodicity is inherited from the tangent. The function defines a distri-
bution over [−T

2 + µ , T2 + µ), if the integral over this interval equals 1. This result
can be deduced from Formula 7.5.11 of [1] (page 302):

∫ +∞

0

e−
u2
σ2

1 + u2 = π

2 exp
( 1
σ2

)
erfc( 1

σ
), with σ > 0.

We focus on daily and weekly behaviors to have two levels of granularity. Days
and weeks are split into 48 and 42 slots of 30 minutes and 4 hours, respectively. This
partition of the week is synchronized with schools’ working hours: a morning slice
between 08:00 and 12:00, one the afternoon between 12:00 and 16:00, and another
one the evening between 16:00 and 20:00. The probability distribution of each time
component is centered in its time slot. The standard deviations are chosen such
that the probability at the extremities of the component is half the mode, i.e., σT =
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Figure 4.1: Graphical model of our nested mixture of Markov chains model; N is the
number of session and Ti is the length of session si.

tan( π
2T )/

√
log (2). Timestamps, t, are converted into the numbers of minutes since

the beginning of the on-going week. The indices of the daily (td) and weekly (tw)
components associated to a timestamp t are given, respectively, by:

td =
⌊
t

30

⌋
(mod 48) + 1 and tw =

⌊
t

240

⌋
(mod 42) + 1. (4.6)

The pdf of the j-th daily and weekly components are expressed as follows:

pdj (td) = p48
(
td|µj = j + 1/2, σ48

)
= 1

48 erfc( 1
σ48

) exp
−1 + tan2

(
π
48(t− µj)

)
σ2

48

 , (4.7)

pwj (tw) = p42
(
tw|µj = j + 1/2, σ42

)
= 1

48 erfc( 1
σ42

) exp
−1 + tan2

(
π
48(t− µj)

)
σ2

42

 , (4.8)

where σ48 ≈ 0.039 and σ42 ≈ 0.045. The daily and weekly mixture weights are denoted
φd and φw, respectively. The set of parameters of the time model is θt = {φd, φw}
Finally, the likelihood that a user initializes a session at a time t is given by:

p(t|θt) = pd(t|φd) + pw(t|φw) =
48∑
j=1

φdjp
d
j (td) +

42∑
j=1

φwj p
w
j (tw). (4.9)

4.1.3 Optimization

Our nested mixture model is summarized by the plate diagram of Figure 4.1. Assum-
ing independence of the user-sessions, the Q-function (Section 2.3.1) is given by

Q(Θ,Γ) =
N∑
i=1

K∑
k=1

γik log
(
φkp(t(i)|θtk)p(x(i)|θxk)p(c(i)|x(i), θck)

)
. (4.10)
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Recall that γik = p(zi = k|s(i),Θ) maximizes the function Q(Θ, ·). The time model
being also a mixture model itself, the maximization of p(t(i)|θtk) also requires known
assignments for its optimization. We note zdik and zwik the assignments of session i to
the daily and weekly assignments in mixture k. The time mixture responsibilities are
noted γdikj and γwikj, respectively. The Q-function for the daily time model of the k-th
mixture is:

Q(θdk,Γdk) =
N∑
i=1

48∑
j=1

γikγ
d
ikj log

(
φdkjp

d
j (t

(i)
d )
)
. (4.11)

We develop an EM-like algorithm [80, 54] to optimize the model. The main mixture
and time mixture responsibilities are updated during the expectation phase, such
that:

γ̂ik = φk p(si|Θk)∑K
k′=1 φk′ p(si|Θk′)

,

γ̂dikj =
φdkj p

d
j (t

(i)
d )∑48

j′=1 φ
d
kj′ p

d
j′(t

(i)
d )

,

γ̂wikj =
φwkj p

w
j (t(i)w )∑42

j′=1 φ
w
kj′ p

w
j′(t

(i)
w )

.

(4.12)

We give the maximization update formulas of four of the parameters. They can be
easily adapted to the other parameters.

φ̂dkj =
∑N
i=1 γik γ

d
ikj∑48

j′=1
∑N
i=1 γik γ

d
ikj′

,

θ̂xk(g, h) =
∑N
i=1 γik ηgh(x(i))∑6

h′=1
∑N
i=1 γik ηgh′(x(i))

.

(4.13)

The function ηgh(x(i)) returns the number of transitions between chapters g and h in
sequence x(i).

4.1.4 User Model

Since we study user behaviors, we also need to model the users themselves. For this
purpose, we consider the average model of the user’s sessions. The likelihood of a
user u with Nu sessions, {su1 , . . . suNu}, is given by:

p(u|Θ) = 1
Nu

Nu∑
i=1

p(sui |Θ). (4.14)

The formulas of the other parameters derive directly from the likelihood, and are
similar to Equations 4.12 and 4.13. To not clutter the presentation, we omit them.
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4.2 Experiments
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Figure 4.2: Evolution of AIC, BIC, and
AICc with the number of clusters. None
present a minimum within a reasonable
range.

To ease the discussion, we need to fix
the number of clusters, K. In Fig-
ure 4.2, we show the evolution of three
information criteria with the number of
clusters: Akaike information criterion
(AIC) [6], bayesian information criterion
(BIC) [226], and AIC corrected for small
sample size (AICc) [53]. A model selec-
tion based on these criteria fails. The
two first criteria do not present a mini-
mum. AICc may have one but for a too
large number of clusters to be easily in-
terpreted.

In the remainder, we fix the number of clusters to K = 8 as a trade-off between
expressiveness and interpretability.

4.2.1 Comparison with k-Means

The first experiment demonstrates the expressiveness of our approach. We compare
our probabilistic solution with a k-means [174] clustering. Since the latter operates
on vector spaces, user-sessions are represented as vectors with fixed dimension. Ref-
erence to the null chapter and category are appended to match the length of the
longest trajectory (maxi∈[1. .N ] Ti = 102). The two corresponding sequences are then
concatenated, augmented by two extra dimensions for td and tw. All in all, the data-
set consists of 1,485 vectors with 206 dimensions. Our mixture model is trained 30
times; the best in terms of likelihood is kept. Clusters are named with respect to the
size, i.e., the first is the largest.

We compare here the cluster distributions of the daily components (Figure 4.3).
The solution returned by k-means (Figure 4.3 left ) splits the day in four periods:
the early morning is shared between C3 and C6; C1 joins the mixture between 8:00
and 12:00; clusters C2 and C4 gather the majority of the afternoon activity, and
the evening is the domain of C5, C7, and C8. The more complex coloring between
12:00 and 16:00 indicates the influence of more variables than the connection time
during that period. Nevertheless, the simplicity of the result is clearly inappropriate
for further processing or interpretation. It is unlikely that users present completely
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k-means' daily connection distribution
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Our model's' daily connection distribution

Figure 4.3: Daily distribution of clusters for k-means (left) and our model (right).

different behaviors in the morning and afternoon. Furthermore, an analysis of the
transition matrices between chapters (θc,tr· ) reveals that k-means’ clusters captured
the same average behavior.

Figure 4.3 (right) shows the corresponding results for our probabilistic approach.
The distribution of the clusters is more interesting since balanced across the day. The
weekly distribution (Figure 4.4 top) changes dramatically when it is combined with
the daily distribution (Figure 4.4 bottom). For example, according to the weekly
distribution, C3 models a significant share of the sessions on Tuesdays early morning.
However, when combined with the daily model, this share vanishes at the benefit of
C5 and C6. Hence, we prefer to analyze the combined distribution.

The clusters’ distribution presents peaks at different moments of the week. For
example, C1 gathers a large share of the sessions on Monday and Saturday morning,
C3 on Monday and Tuesday evening, and C5 over the weekends.

4.2.2 Session-based View

In this section, we discuss the behaviors captured by our model applied to sessions.
Figure 4.5 shows for each cluster the distribution of the the main chapter, i.e., the
most visited chapter during a session. Each heat-map of Figure 4.6 represents the
transition matrix of selected clusters inside the Renaissance chapter between three
categories: summaries (S), text (T), and galleries (G). Since the other categories are
omitted, the row probabilities do not sum up to 1.

Except for C6 and C8, more than 60% of any cluster’s sessions share the same
main chapter. Five out of the eight groups have at least 26% of their sessions studying
the Renaissance. This distribution is interesting and highlights the strength of our
model. Firstly, although some clusters share the same topic, they appear at different
moments of the week (see Figure 4.4). For example, C2 represents a large share
of the sessions on Tuesdays, while Wednesday mornings are dominated by C7, but
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| Mon | Tue | Wed | Thur | Fri | Sat | Sun |

Our model's weekly connection distribution

C1 C2 C3 C4 C5 C6 C7 C8

| Mon | Tue | Wed | Thur | Fri | Sat | Sun |

Combination of our model's daily and weekly connection distributions

C1 C2 C3 C4 C5 C6 C7 C8

Figure 4.4: Weekly (top) and combined (bottom) distributions of clusters of our
session-based model.

both have Renaissance as main chapter. Secondly, each cluster represent different
browsing behaviors as shown in Figure 4.6. The five clusters with at least 25% of
sessions studying the Renaissance, returned five different behaviors. These make up
for all the possible patterns found, even those extracted for any other combinations
of clusters and chapters. The sessions of C1 use the most the galleries. The others
transition matrices present vanishing probabilities between text and galleries. Given
that this is the only way to reach a gallery, we can deduce that sessions in these

C1
19%

C2
18%

C3
15%

C4
13%

C5
12%

C6
8%

C7
7%

C8
4%

XX & XXI

XIX

Renaiss.

Mid. Age

Antics

9% 20% 48%

68% 6%

32% 91% 26% 31% 97%

88% 41% 41%

64% 91% 5%

Figure 4.5: Main chapter distribution per cluster, with cluster’s frequencies as labels.
Percentages smaller than 5% are omitted.

58



Figure 4.6: Transition matrices (θtr· ) restricted to summaries (S), text (T), and gal-
leries (G), in the Renaissance chapter. Probabilities lower than 0.05 are omitted.
Other categories being omitted, the probabilities per line do not sum up to 1.

clusters hardly opened any. The relatively high self-transition between text pages in
C4 and C6 indicates a usage of the navigation bar to change the page. Based on these
observations, we can state that our nested mixture model successfully distributed
sessions with respect to the behavior and connection times.

4.2.3 User-based View

The clusters of the user model (Section 4.1.4) encode similar users rather than similar
sessions, as in the previous section. Figure 4.7 shows the weekly distribution of the
connection time for each cluster of users. Note that the distribution is here less
balanced than in Figure 4.4. Cluster U2 represents a large majority of the connections
on Fridays and Saturdays. Sessions on Tuesday and Thursday mornings are almost
exclusively initiated by users of cluster U3. The group U8 dominates several evenings
but represents approximately 1% of the users, i.e., four users.

The four largest clusters represent 85% of the population, and present an evident
main chapter. The transition matrices between the categories in the main chapter
of the four largest clusters are displayed in Figure 4.9 We recognize the behaviors
captured by the session-based model C1, C4, and C7 (Figure 4.6) in U4, U2, and U1,

Figure 4.7: Combined weekly and daily distribution of clusters our user-based model.
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respectively. The pattern of U3 is new. These users never visit galleries and use only
the summaries to navigate between pages. Recall that the sessions of U3 also have a
singular weekly distribution: they appear on Tuesday and Wednesday morning. We
can conjecture that the behaviors of the pupils in U3 are influenced by their teacher.

Figure 4.8: Main chapter distribution per cluster for the user-based model, with
cluster’s frequencies as labels. Percentages smaller than 5% are omitted.

Figure 4.9: Transition matrices (θtr· ) restricted to summaries (S), text (T), and gal-
leries (G) in the main chapter of the four biggest clusters of the user-based model.
Probabilities lower than 0.05 are omitted.

4.3 Conclusion

We presented a context-aware mixture of Markov chains to represent user-sessions and
proposed an Expectation-Maximization algorithm for optimization. We applied our
approach to clustering user-sessions of the mBook. However, although the model rely
on a coarse representation of the data (pages), a model selection based on information
criteria fails. A solution is proposed in the next chapter. Our results are easy to
interpret and visualize. There analysis suggested a possible influence of the teacher
on the behaviors of the pupils. This line of research is further explored in Chapter 6.
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Chapter 5

Bayesian Markov Chains and
Scrolling Behaviors

Related studies reveal that time-on-page and cursor trajectories often serve as in-
dicators for student engagement [68, 222]. However, in our case, the e-textbook is
designed to be used on tablets in class and, hence, cursors or eye tracking are not
available. We aim, though, to identify alternative indicators that are precise enough
to capture characteristic traits of different behaviors.

One way to refine Markov models is to increase the order. However, the number of
parameters grows exponentially with the order of the Markov chain and the number
of states. Assuming a Dirichlet prior on the chain’s order [192] yields inefficient
computations and results that are difficult to interpret. Generally, approaches refining
the Markov assumption tend to require unreasonably large data-sets [52, 24], which
are rare in educational mining, where small data-sets are usual the norm.

Comforted by the results of our nested MMC (Chapter 4), we stick to first-order
Markov chains. Clusterings obtained using Expectation-Maximization [80] (EM) suc-
cessfully tell apart different types of users and behaviors. However, this optimization
scheme falls short on two aspects. First, the greedy optimization strategy requires
several random initializations. Second, a model selection based on information cri-
teria (e.g., [6, 226]) is always more likely to fail as we refine the granularity of the
analysis and add events.

One solution is to rely on a Bayesian interpretation [98, 112, 106]. Moreover,
the number of mixtures can be learned by modeling the assignments as a realiza-
tion of a Dirichlet process [215, 23, 238]. A remarkable example is the hierarchical
Dirichlet process (HDP) [238] that generalizes the latent Dirichlet allocation [36].
HDP combines two Dirichlet processes to model a possibly infinite number of topics,
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each defined using a variable amount of words. Several inference methods have been
developed for it [242, 141, 248, 264].

We introduce here the infinite mixtures of Markov chains (iMMC) that aims to
avoid the shortcomings of an EM-based approach. First, we embrace a Bayesian
inference to be more robust against local maxima. Secondly, to avoid fixing the num-
ber of clusters, we let the mixture weights arise from a Dirichlet process. That way,
our model is flexible enough to process users’ behavior at the event level. Unfortu-
nately, often in practice, the complete list of events is not necessarily accessible to the
practitioner (if to anyone). Hence, we nest a second Dirichlet process to govern the
prior distribution of the events. We present an analysis of the scrolling patterns from
the mBook using iMMC. The conclusions constitute novel insights that may impact
future developments and design decisions of electronic textbooks.

The chapter is organized as follows. In Section 5.1, we introduce our model and
a computable approximation. Section 5.2 contains two experiments. The first one
compares iMMC to baselines on a synthetic data-set. Then, we analyze scrolling
behaviors in the mBook and draw conclusions on the correlations with the pupils’
performance in history.

5.1 Infinite Mixture of Markov Chains

5.1.1 Description

The infinite mixtures of Markov chains (iMMC) is defined as follows. The mixtures
prior φ∗ is a realization of a symmetric DP with base measure αH0, α > 0. An assign-
ment is sampled from a categorical distribution with φ∗ as a parameter. Each cluster
has its own alphabet Mk of events. The prior distribution of the latter in cluster k,
ψ∗k, is a realization of another symmetric DP with base measure βH1, β > 0. The
transition probabilities’ distribution from an event m ∈Mk is a Dirichlet distribution
with parameter λψ∗k, where the hyper-parameter λ > 0 controls the variance of the
distribution. In summary:

φ∗ ∼ DPαH0

ψ∗k ∼ DPβH1

z ∼ Cat(φ∗)

θk(m, ·) ∼ Dir(λψ∗k)

s, z ∼ φz
T+1∏
t=1

θz(st−1, st)

(5.1)
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Since, we assume both DPs symmetric, the indices of the stochastic processes are
omitted. A plate diagram of the model is depicted in Figure 5.1. The structure is
similar to the hierarchical Dirichlet process (HDP) [238]: topics and words are re-
placed by clusters and events, respectively. The documents/sessions are modeled here
as realizations of Markov chains instead of bag-of-words.

s
(i)
ts

(i)
t−1

θk(m, ·)ψ∗
kβ,H1

λ

ziφ∗α,H0

Ti + 1

N
∞∞

Figure 5.1: Graphical representation of the infinite mixtures of Markov chain with
three hyper-parameters α, β, and λ. The two DPs correspond to the two arrows
originating from α,H0 and β,H1.

Algorithm 9 Blocked-Gibbs sampler for iMMC
Require: S = {si}N : input data, K,M,α, β, λ: hyper-parameters.

1: Initialize n = 0N ,m = 0K×M ,w = 0K×M×M
2: repeat
3: Sample φ ∼ Dir(n+ α

K
1K).

4: for k in 1 . . . K do
5: Sample ψk ∼ Dir(m+ β

K
1K).

6: for m in 1 . . .M do
7: Sample θk(m, ·) ∼ Dir(w + λψk).
8: end for
9: end for

10: Reset n = 0N ,m = 0K×M ,w = 0K×M×M
11: for i in 1 . . . N do
12: Compute and normalize li = 〈φkp(si|θk)〉K .
13: Sample zi ∼ Cat(li).
14: Increment n(zi)← +1.
15: for t in 1 . . . Ti do
16: Increment m(zi, s(i)

t )← +1.
17: Increment w(zi, s(i)

t−1, s
(i)
t )← +1.

18: end for
19: Increment w(zi, s(i)

Ti
, s

(i)
Ti+1)← +1.

20: end for
21: until convergence
22: return Averages over the last iterations of φ, ψ, θ.
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5.1.2 Inference

We make use of a computationally efficient approximation that is the k-weak limit
approximation [133]: the (symmetric) Dirichlet processes are replaced by (symmetric)
Dirichlet distributions. The model is thus equivalent to a Bayesian mixture model
with two Dirichlet distributions: one for the mixtures of order K >> 1 and one
for the events’ of order #M = M >> 1. Moreover, we assume a single alphabet
#M = M shared among all the clusters. Remember that one of the elements of M
represents the auxiliary event ∞. The approximated model is as follows:

φ ∼ Dir(α)

ψk ∼ Dir(β)

z ∼ Cat(φ)

θk(m, ·) ∼ Dir (λψk)

s|z ∼ φz
T+1∏
t=1

θz(st−1, st)

(5.2)

A maximum a posteriori estimation (MAP) of the model is learned using the col-
lapsed and blocked-Gibbs sampler detailed in Algorithm 9. The sampler is blocked
because the parameters are sampled as vectors, instead of individually. The ex-
pectancies of the events represented by each coefficient of each parameter are given
as follows, for k ∈ [1 . . K] and (u, v) ∈ [1 . . M ]2:

E[φk|Θ,Z,S] ∝ n(k) + α

E[ψk(u)|Θ,Z,S] ∝m(k, u) + β

E[θk(u, v)|Θ,Z,S] ∝ w(k, u, v) + λψk(u)
(5.3)

where we used the notations of Algorithm 9: n(k) is the number of session assigned
to cluster k; m(k, u) is the count of event u in the sessions assigned to cluster k;
w(k, u, v) is similar to the latter but counts the transitions from u to v.

5.2 Experiments

We evaluate first the clustering performance of our model in controlled scenarios to
understand its effectiveness and to shed light on extreme cases. Then, we apply iMMC
to the mBook and show that some scrolling patterns correlate with the success of the
pupils.
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5.2.1 Synthetic Data-set

In this section we compare the clustering performance of iMMC to the traditional
mixture of Markov chains (MMC). We pick the latent Dirichlet allocation (LDA) [36]
as an additional baseline to assess the importance of the sequential information con-
tained in the observations.

We generate two synthetic scenarios to generate different sets of clusters. Scenario
I is made of two clusters/behaviors with disjoint sets of nodes. Scenario II adds to
Scenario I a variation of it: same nodes but different graphs. The four behaviors are
displayed in Figure 5.2, where the first column corresponds to Scenario I.

For each scenario, we evaluate the algorithms on data-sets consisting of 50 to 1,000
sessions generated as follows. First, a cluster is selected uniformly at random. Then,
the generative process is repeated until the desired number of sequences is reached.
We use a single set of hyper-parameters (α = β = λ = 2) and set the upper-bound K
to ten times the true number of clusters. MMC and LDA optimized with the correct
number of clusters. We report on clustering performance in terms of the averaged
adjusted Rand index [131] (ARI) over 30 runs. The evolution of the ARI with size of
the data-sets is displayed on Figure 5.3.

First, LDA lags in every setting. It never reports an average ARI higher than 0.5.
Even though MMC is trained with the correct number of clusters, and iMMC has to
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Figure 5.2: Generative processes of sce-
narios I (left column) and II (all four).
Dotted arrows represent low transition
probabilities (< .5).

50 100 500 1,0000.0

0.5

1.0

AR
I

Scenario I

50 100 500 1,000
Data-set size

0.0

0.5

1.0

AR
I

Scenario II

iMMC MMC LDA

Figure 5.3: Averaged ARI and standard
errors of the clusterings returned by the
three methods on data-sets based on
both scenarios.
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adjust it to the data, the latter returns on average better ARI than MMC. In the case
of small data-sets based on Scenario I, MMC and iMMC are equivalent. However,
iMMC is more stable. In all the experiments, the standard error (shade) of iMMC
stays small, while for Scenario I, MMC shows an unsteady behavior.

5.2.2 Scrolling Patterns

In this section, we present insights on the pupils’s usage of the mBook. We show that
identified usage patterns correlate with psychometric scores.

We define and differentiate 75 atomic events that a user can trigger, ranging from
pressing a button to various scrolling performances. The latter are further divided into
9 events : direction.duration. The direction can be up, down, or fix if the movement
is of less than 10 pixels. The duration can be fast, medium or slow for event duration
of respectively less than 1 second, between 1 and 3 seconds, and more than 3 seconds.
In the following, node names are abbreviated using only the first letter. For example
down.fast is reduced to d.f.

1 4 7 10
Number of clusters

0.6

0.7

0.8

0.9

1.0

AI
C,

 A
IC

c, 
BI

C 
×1

06

AIC AICc BIC

0 2 4 6 8 10
Iterations ×103

0.00

0.25

0.50

0.75

1.00

NM
I, 

AR
I, 

Ho
m

og
.

NMI ARI Homog. Entropy

6.30

6.35

6.40

6.45

6.50

En
tro

py

Figure 5.4: Evolution of several model selection criteria. Left: BIC, AIC and AICc
for MMC. Right: Relative NMI, ARI, homogeneity and entropy for iMMC.

A model selection using information criteria for MMC fails, as shown in Figure 5.4
(left). This is not surprising as they are known to perform poorly when the order
of magnitude of the sample size is not greater than that of the number of parame-
ters [107]. The evolution of three information criteria AIC [6], AICc [53], and BIC
[226] is depicted for different numbers of clusters. Every point corresponds to the best
clustering in term of likelihood out of 30 repetitions. Theoretically, the minima of
these curves give the optimal solutions. Here, the criteria grow almost linearly with
K. The AIC curves does reach a mininum for two clusters, but this is not a relevant
solution. Thus information criteria do not allow to draw conclusion.
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By contrast, our iMMC approach successfully clusters the data using α = 2,
β = 1.5, λ = 2.4, K = 100 and 10,000 iterations. After every 1,000 iterations, an
intermediate clustering is computed as the average of the last 1,000 iterations. After
the first 1,000 iterations, 34 clusters are open. The final solution settles on 32 clusters.
The evolution of the optimization is shown in Figure 5.4 (right). The blue line (left
scale) represents the evolution of the normalized mutual information (NMI, blue), the
adjusted Rand index (ARI, orange) [131], and the homogeneity score [219] (green),
all relatively to their final value. The red line (right scale) refers to the entropy of
the clustering for the actual iteration. After 7,000 iterations, the NMI indicates that
the clustering is already 90% similar to the final one. The decrease in entropy and
increase of ARI reveal that the algorithm merges clusters. The plateau after 7,000
iterations indicates fine granular changes of cluster memberships.
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Figure 5.5: Two remarkable scrolling patterns extracted from the mBook.

The solution contains eight clusters with at least 20 sessions. We focus on their
scrolling patterns. Figure 5.5 displays two patterns realizing the smallest and highest
entropy, respectively. Note that the weights do not sum up to one, as we ignore
outgoing edges to non-scroll events in this analysis. In Pattern 1, fix.fast cannot
be reached from any other type of scroll. It either starts a scrolling sequence, or it
indicates a misusage or hesitation of the user. In both patterns, users tend to not
transit to slower scrolls. This behavior may result from ”long” scrolls corrected by fast
ones. This is a typical behavior of users who scroll while reading. In Pattern 8, the
high self-transition probabilities of down.slow and fix.fast support this interpretation.
The emission of fix.fast probably comes from a finger held on the screen after a scroll.

5.2.3 Psychometric Correlations

To correlate the psychometric scores with our clustering, we represent clusters using
the average scores of the pupils who have sessions in the cluster. The distribution is
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shown in the first row of Figure 5.6. The clusters are organized from top to bottom
according to the entropy of their pattern. Patterns 1 and 8 (see Fig. 5.5) are extracted
from clusters 1 and 8, respectively. Both patterns are often observed among pupils
with high competencies in history. Therefore, these patterns may serve as behavioral
indicators for a user’s competency. Seemingly, knowledgeable pupils prefer simpler
scrolling patterns (top of the plot). Cluster 2 contains highly knowledgeable and
motivated pupils that possess high computer skills. The pupils in cluster 6 are also
motivated but do not possess such high ICT skills.

We compute Pearson’s correlation coefficients adjusted for small sample sizes [203],
between the 81 possible transition probabilities (between scrolls) and the five scores of
the eight largest clusters. The maximum and minimum correlations for the assessed
variables are reported in Table 5.1. Except for motivation, every highly, positively
correlated transition changes the direction to a up.fast . Knowledge correlates almost
perfectly with down.medium → up.fast and down.slow → down.medium. A finer
analysis shows that only Pattern 8 contains these two edges, but their influences
cancel out. Indeed, as we can see in the first row of Figure 5.6, users in cluster 8
present a relatively lower knowledge score in comparison to pupils in clusters with
simpler scrolling pattern.

The second row of Figure 5.6 reports on the transition probabilities in each cluster
of the most strongly correlated transition with the column’s score, as reported in

Figure 5.6: Score and probability distribution of the most correlated transition for
each of the eight biggest clusters.
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Table 5.1: Most strongly correlated event transitions with each score.
Score Max Corr. Event Min Corr. Event

Competency 0.697 f.f → u.f -0.719 u.m→ u.s
Knowledge 0.962 d.m→ u.f -0.947 d.s→ d.m
Motivation 0.748 f.f → f.f -0.714 f.f → u.f
IT Access 0.751 d.s→ u.f -0.735 f.f → d.f
IT Skill 0.837 d.s→ u.f -0.743 d.m→ d.s

Table 5.1. To not clutter the presentation, we consider only the positive correlations.
The similar shape of the average knowledge score (first row second column) and of
the transition probability (second row second column) in each cluster suggest that the
latter could serve as an indicator. The same can be said for the pupils’ motivation.
Regarding competency score, a high probability of fix.fast → up.fast seemingly also
implies a high score in the assessment. However, the opposite does not hold. This
transition has a low probability in Pattern 8, but the average competency score of
the cluster is the largest.

5.3 Conclusion

We presented a Bayesian non-parametric model to reach a finer resolution of the
behaviors. The challenge that represents the larger number of parameters in com-
parison to the size of the data-set is tackled using Dirichlet processes. However,
such technique hinders the efficiency of the inference of the model. Therefore, our
model, the infinite mixtures of Markov chains (iMMC), relies on a degree k-weak
limit approximation. Controlled experiments showed significant improvements over
related approaches. Regarding the mBook, iMMC identified scrolling behaviors as
characteristics of pupils’ online navigational habits but also of their performance.
Furthermore, we showed that certain transition probabilities between scrolling events
correlates strongly with several psychometric scores. This suggests that the monitor-
ing of the scrolling behavior could be used to predict pupils’ performance.
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Chapter 6

Trajectories and Online Behaviors

We have reviewed and proposed several methods to extract patterns from log files,
mostly based on mixtures of Markov chains [41, 42, 103, 54]. Because of the Markov
condition, these approaches can be qualified as local models. Indeed, the focus is on
event or state transitions and do not consider historical and future events. Higher-
order Markov chains could possibly handle longer sequences that condition these
transitions, but the computations become rapidly intractable. In this chapter, we
choose to literally extend the navigation metaphor and build a structure to handle
sessions as is they were spatio-temporal trajectories.

Temporally structured data are ubiquitous as sensor measurements are usually at-
tached with timestamps and naturally form a sequence or trajectory. Examples arise
in a great deal of different areas including video surveillance [196], traffic monitor-
ing [148], anomaly detection [250], analyses of GPS data [263], recommendation [113],
mining usage in electronic text books [40], urban planning [262, 94] or preservation
efforts [124, 230, 37].

When dealing with sequential data, a simple approach is to discretize the universe
and pursue a grid-based approach. A movement in some space can then be processed
as an image [210, 83] or as a sequence of states [137]. The latter representation
often leads to approaches such as latent Dirichlet allocation [36], hidden Markov
models [213] or neural networks [220]. However, the discretization causes a non-
negligible loss of information and may introduce noise.

Instead, the similarity between two trajectories can be quantified directly via their
time-series. There are many different similarity measures, and many of them are based
on metric axioms [229]. These measures differ in many characteristic traits, including
whether they satisfy the triangle inequality [224], whether they are bounded [246, 123],
or their computational costs [92, 223]. Perhaps, most importantly, how the measures
deal with time [200].
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This chapter provides a theoretically grounded framework to classify and under-
stand existing similarity measures for sequential data. Based on this framework, we
use an upper-bound of the Kullback-Leibler (KL) divergence between distributions
induced by two trajectories to devise a novel similarity measure for trajectories. The
distributions generalize the Laplace distribution and lead to a formula that corre-
sponds to the normalized point-wise distance with a penalty for the difference in
duration. Empirical evidence shows that our measure performs on par with state-of-
the-art measures in several scenarios, while being theoretically grounded and efficient.
Using the data from the mBook, we show that our contribution not only distinguishes
user-sessions given the topics studied, but also quantifies the differences in the pupils’
navigation behaviors. Furthermore, these behavior patterns influence pupils perfor-
mances and depend on the teaching style.

The remainder is organized as follows. The next section reviews related work.
Section 6.2 introduces notations and the key definitions. Seven existing measures are
extensively studied according to a novel classification scheme in Section 6.4. On that
basis, we present our new measure in Section 6.5. We report on empirical results
using real trajectory data from taxis, buoys, and finally from the mBook in Section
6.6. Section 6.7 concludes the chapter.

6.1 Related Work

A distance metric satisfies very restrictive properties. Many of the so-called trajectory
distances proposed in the literature violate one or another property. Besides, the term
similarity is used often, although it is not well-defined in a mathematically sense.

Lin et al. [172] define a similarity from an information theoretic point of view with
the construction of ontologies in mind [28, 73, 168]. Santini et al. [224] consider mental
aspects behind similarities. After reviewing the work of several psychologists [229,
93], they generalize the triangle inequality to better model inconstancies of human.
There have been several attempts to establish a list of properties, in addition to the
axioms, a trajectory measure should satisfy. For example, coping with asynchronous
trajectories [199] or different sample rates is crucial as not all the instances in a data-
set might come from the same type of sensor. Wang et al. [250] compare the robustness
of several measures to noise in the temporal and spatial components. Besse et al. [32]
indirectly impose constraints on the measure and provide a list of expectations on
sequential clusters.
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In general, two groups of similarity measures for sequences can be distinguished:
the first group is based on variants of the edit-distance and the second aims to quan-
tify the difference of shapes. Edit-distances are derived from the Levenshtein dis-
tance [166] that compares strings. The most direct descendants are the edit distance
on real sequences (EDR) [62] and edit distance with real penalty (ERP)[61]. The
former uses a binary cost function, while the latter relies on the distance between
two locations. The longest common subsequences (LCSS) problem [30] gives rise to
an eponymous measure for trajectories [246], featuring also a binary cost function.
Its specificity is that it may skip some elements of the trajectory, which renders it
a close neighbor of warping distances [187]. The most prominent representatives of
the latter are dynamic time warping (DTW) [31] and the Fréchet distance [99]. Op-
timal subsequence bijection [160] is a relaxation of the DTW that excludes outliers
to preserve a small total distance.

The second large group of measures includes the Hausdorff distance [123] and its
modifications [14], the one-way distance [171] and its derivatives such as SSPD [32]
and TIDE [199]. Note that the Euclidean distance has also been utilized together
with trajectories, either normalized [165, 105, 200, 86, 40] or unnormalized [95, 100].
For continuous problems, the area spanned by two trajectories is often studied [101],
e.g., STLIP [211] computes this areas but ignore temporal constraints.

While edit-distance and their variants follow a clear definition, shape-based mea-
sures appear domain specific and lack a common formal ground. The theoretical
framework built in this chapter provides a more rigorous classification of trajectory
measures.

Often, the goal of a task at hand is to effectively summarize similar trajectories
with a clustering. Instances of a cluster are represented by their closest centroid.
However, the idea does not translate one-by-one to trajectories with varying dura-
tions or sampling rates. The time-wise average trajectory [205] constitutes a suitable
makeshift. Medoids also offer alternative solutions and proved useful to visualize in-
sights [150]. A different approach is to segment a trajectory into common fragments,
also called tracklets or pathlets, and then compare the segmentations. To find such
pathlets, Lee et al. [164] interpolate sequences by polygonal functions and compare
the line segments. Van Kreveld and Luo [243] propose to combine sub-trajectories of
various durations directly. Extracting a sub-trajectory is equivalent to shifting the
indexation (or the time component) for early termination. Buchin et al. [51] provides
an extensive study of this approach.
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6.2 Preliminaries

In the following, we rely on the notation and definitions (dissimilarity measures and
point at infinity) given in Chapter 2. Nevertheless, recall that the set of all the
possible observations is noted Ω. It can be countable (e.g., nodes of a graph) or
uncountable (e.g., real vector space).

6.2.1 Trajectories

In the following, d is a metric on Ω without infinity point, while a generic trajectory
dissimilarity is noted D. To come up with a consistent and general definition of a
trajectory, we distinguish the following cases: If Ω is countable, it is the set of the
nodes of an undirected graph of finite cardinality #(Ω), and d is the shortest path
distance within this graph. If, on the other hand, Ω is uncountable, we suppose
Ω = Rp and d boils down to the Euclidean distance. Extending (Ω, d) with a point
at infinity, denoted by Ω̄ = Ω ∪ {∞}, leads, in the Euclidean case, to the addition of
the infinite point (+∞, · · · ,+∞). In the discrete case, it corresponds to the addition
of an extra node with connected to all the others with infinite weight.

Definition 6.1 (Trajectory). A trajectory X on Ω is a function X : R≥0 → Ω. If
Ω is countable or uncountable, X realizes a step or polygonal function, respectively.
The symbol X refers to the function or its graph {(t,X(t)), t ∈ R+∞

≥0 }. The elements
of the domain are called timestamps. A trajectory is of duration TX ∈ R≥0 iff

∀t > TX , X(t) =∞ and X(TX) 6=∞.

The prefix of X of duration s ≥ 0, written as X:s, is given by

∀t ∈ R≥0, X:s(t) =
{
X(t), if 0 ≤ t ≤ s
∞ otherwise.

The suffix of X starting at s ≥ 0, denoted by Xs:, is defined as

∀t ∈ R≥0, Xs:(t) = X(t+ s).

A trajectory is connected iff it is of finite duration and

∀t ∈ [0 , TX ], X(t) 6=∞.

In this case, the interval [0 , TX ] is called the duration interval of X. The set of the
connected trajectories on Ω is denoted T (Ω).
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We can now define the time-wise average trajectory of a set of trajectories: the
position at each timestamp is the average position of that of the active trajectories.

Definition 6.2 (Average Trajectory). The active set of a set X = {X1, · · · , Xn} of
n ∈ N trajectories at a time t ∈ R≥0 is the set

AX (t) = {i ∈ [1 . . n], Xi(t) 6=∞}.

The average trajectory X of X is then given by

X (t) =


1

#AX (t)
∑
i∈AX (t) Xi(t), if AX (t) 6= ∅,

∞ otherwise.

Note that the average trajectory may be discontinuous, however, it is always
represented as a continuous curve. In practice, trajectories arise from a finite set of
measurements ordered by timestamps. These sequences play the role of the interface
between the theoretical trajectories and the real world.

Definition 6.3 (Temporal Sequence). A sequence x = 〈(ti, xi)〉N of R≥0×Ω, is called
a temporal sequence iff:

t1 = 0, xN 6=∞ and ∀(i, j) ∈ N2, i < j ⇔ ti < tj.

The set of the temporal sequences on Ω is denoted S(Ω).

We use the term of temporal sequence instead of time-series to emphasize the
distinction between indices and timestamps. There are an infinite number of functions
that interpolate chronologically the positions of a temporal sequences. However, only
one is also a connected trajectory of duration tN in the sense of Definition 6.1. The
connected property is here essential. Indeed, while trajectories are defined on R≥0,
temporal sequences are finite. Therefore, we are interested in the trajectory that is
infinite, i.e., ends, with the last event sequence.

Proposition 6.1. For any temporal sequence 〈ti, xi〉N , there exists a unique connected
trajectory of duration tN that is affine on each interval [ti , ti+1) for 1 ≤ i ≤ N and
whose graph passes chronologically through the elements of the sequence.

Proof. If two trajectories satisfy these conditions, they are equal on all timestamps
ti. Let us show now that they are equal on [0 , tN ] by showing that they match on
every interval [ti , ti+1). We differentiate countable and uncountable cases: (i) If Ω
is countable, the trajectories are step functions that are constant on the intervals
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[ti , ti+1). Since both take the same value on ti, they are in fact equal in each interval.
(ii) If Ω is uncountable, the trajectories are continuous on their duration interval,
and hence in each [ti , ti+1]. Given the proposition’s statement, the trajectories are
affine in the semi-open intervals and match in both extremes. Thus, in each interval
[ti , ti + 1], they both match the affine function interpolating (ti, xi) and (ti+1, xi+1).
Finally, being connected and of same duration, they are equal everywhere.

Note that the relation between a sequence and its interpolated trajectory is not
a one-to-one relation. If Ω = Rp, adding the average position between any two
successive points results in an unchanged interpolation. This observation gives rise
to an equivalence relation between sequences.

Definition 6.4 (Interpolation). A trajectory X interpolates a temporal sequence x
if the conditions of Proposition 6.1 are satisfied.

Two temporal sequences x and y are equivalent, noted x ∼ y, iff they are inter-
polated by the same trajectory.

The set of all the sequences interpolated by the same trajectory X is denoted [X].

Proposition 6.2. The relation ∼ is an equivalence relation and [X] is an equivalence
class.

Proof. Straightforward.

The trajectory interpolating sequences of the same class does not belong to that
class itself, but to the closure of it. That is, the trajectory can be defined as the limit
of a sequence of temporal sequences of the equivalence class.

Lemma 6.1. The graph of the trajectory X restricted to its duration interval is the
only element in the closure of [X], Cl([X]), that is not in [X].

Proof. Sketch of proof: First, we show that a trajectory made of a single segment is
the limit of a temporal sequence; the same reasoning generalizes to trajectories with
more segments. Then, we use the fact that an interval of R is the limit of a sequence
of countable sets of points. This is can be deduced from Q being dense in R [43].
The uniqueness of X is thus guaranteed by Definition 6.4.

By equipping [X] with a partial order, we can also show that each equivalence
class has a smallest sequence with respect to the number of points. The trajectory X
is a good candidate to be the greatest, if the order is extended to the closure of [X].
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Proposition 6.3. Each equivalence class [X] is equipped with a partially order, �:

〈t, x〉N � 〈τ, y〉M ⇔ {(ti, xi), i ∈ [1 . . N ]} ⊆ {(τj, yj), j ∈ [1 . . M ]}.

i. The relation � has a minimal element on [X]: The time sequence containing
only the extreme points of the segments of the graph of X and (TX , X(TX)).

ii. The graph of X is the maximal element of that relation on Cl([X])

Proof. (i) is a direct consequence of Proposition 6.1. The function X is either a step
or a polygonal function in its duration interval. Therefore, it can be fully recon-
structed by interpolating linearly and chronologically the vertices of its graph. If Ω is
countable, the segments of X on its duration interval have only one extremity, except
for the last one that might also contain (TX , X(TX)).

(ii) is a consequence of Definition 6.4 and Lemma 6.1.

6.3 Trajectory Measures

The general axioms of Definition 2.1 allow for a great deal of possible trajectory
measures. In the following, we introduce a new classification scheme of existing
measures and discuss our approach on the example of prominent similarity measures
for trajectories in Section 6.4.

6.3.1 Point and Path-measures
Point-Measures

Dubuisson and Jain [87] state a generic recipe to build distance measures for trajecto-
ries. Their approach scans the first trajectory and computes for every timestamp the
distance to the second trajectory. The same operation is repeated after swapping the
trajectories. Finally, a decision is taken to say which value to return. Their procedure
does not to describe the way the second trajectory is browsed.

Definition 6.5 (Point-Measure). A point-measure D is a measure on T (Ω) defined
by a symmetric bivariate real function Sym, two operators O1, O2, and a function
D, such that:

D(X, Y ) = Sym
(
O1 ◦ O2 ◦ D(X;Y ) , O1 ◦ O2 ◦ D(Y ;X)

)
. (6.1)

The arguments X and Y correspond to the graphs of the trajectories. The operators
O1 and O2 act, respectively, on the timestamps of the first and second argument.
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Therefore, the composed function is not necessarily symmetric, which is stressed by
the semi-colon.

Usual values for Sym are max, min, or the average function (a, b) 7→ a+b
2 . Re-

garding the operators O1 and O2, they can be for instance supt, inft,
∫
t, or again the

average function 1
T

∫
t. Although the definition targets measures between trajectory

functions, the operators can be adapted for the temporal sequences. As an example,
we explicit the decomposition of the Hausdorff distance:

Sym = max, O1 = sup
t
, O2 = inf

t
,

Hausdorff(X, Y ) = max

 supt∈[0 ,TX ] infτ∈[0 ,TY ] d
(
X(t), Y (τ)

)
,

supτ∈[0 ,TY ] inft∈[0 ,TX ] d
(
Y (τ), X(t)

)
 .

Path-Measures

The second class of measures acts on the time component. These measures transforms
time to give both trajectories the same duration and minimize a certain cost function.
The transformations are non-decreasing surjective functions from the same interval
(usually [0 , L] ⊂ R≥0) into the duration intervals of the trajectories. They are often
called warping functions and compute a sequential alignment. Geometrically, the
cartesian product of the warping functions draws a path of length L connecting (0, 0)
and (TX , TY )

Definition 6.6 (Path-Measure). A path-measure D is a measure on T (Ω) defined
by an operator O and a function cost, such that

D(X, Y ) = inf
α,β

(
Ol∈[0 ,L] ◦ cost(X ◦ α, Y ◦ β)

)
, (6.2)

where X and Y are graphs of trajectories, and α and β are two non-decreasing sur-
jective functions of [0 , L] into [0 , TX ] and [0 , TY ], respectively.

Path-measures are usually defined on the temporal sequences to have a finite
set of warping functions. Consequently, the warping functions act on the indices:
(α, β) : [0 . . L]2 → [0 . . N ] × [0 . . M ]. For this, Ω is extended with a special point
g representing a gap in time. All sequences are prepended with the special point at
the index 0, and also the warping functions are extended to α(0) = β(0) = 0.
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Using Ol = ∑L
l=1 and costs for deletions cost(g, b), insertions cost(a, g), and sub-

stitutions cost(a, b), we obtain the class of edit-distances [62], e.g.,

EDR(〈t, x〉N , 〈τ, y〉M) = inf
α,β

L∑
l=1

cost

 g + (xα(l) − g)(α(l)− α(l − 1)),

g + (yβ(l) − g)(β(l)− β(l − 1))

 ,

where cost(g, ·) = cost(·, g) = 1 and cost(u, v) = 1− δuv for u, v ∈ Ω \ {g}.

6.3.2 Conformal Measures

Definition 2.1 is not sufficient to capture the relationship that temporal sequences have
with their interpolating trajectory. In practice, we do not have access to the trajectory
function, but to a time sequence from its equivalence class. Hence, it is desirable that
a measure does not depend on the class’s representative. For example, this ensures
that points can be added to the sequence to facilitate storage or calculations.

Definition 6.7 (Well-Defined). A measure D on S(Ω) is called well-defined if it
induces a dissimilarity D∗ on S(Ω)/∼ such that:

∀([x], [y]) ∈ (S(Ω)/∼)2, D∗([x], [y]) = D(x,y)

Although, the definition seems to focus on D∗, it has several implications on D

as shown in the following proposition.

Proposition 6.4. A well-defined measure D on S(Ω) satisfies the following proper-
ties:

1. It is class invariant under ∼, i.e., for any three time sequences x, x′ and y:

x ∼ x′ ⇒ D(x,y) = D(x′,y).

2. It does not satisfy the identity of the indiscernibles on S(Ω).

3. It can be extended to T (Ω), such that

∀(X, Y ) ∈ T (Ω)2, D(X, Y ) = D∗([X], [Y ]).

Proof. 1. By symmetry, it is sufficient to prove the property only for one argument
of D. If x and x′ are two equivalent temporal sequences, [x] = [x′] and

D(x,y) = D∗([x], [y]) = D∗([x′], [y]) = D(x′,y).
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2. Let x and x′ be two sequences such that x ∼ x′ but x 6= x′, given that D∗ is a
dissimilarity on S(Ω)/∼, D∗([x], [x′]) = 0. Hence, D(x,x′) = 0, which contradicts
the identity of the indiscernibles as the two sequences are different.
3. The trajectory X is an element of Cl([X]). There exists a sequence of temporal
sequences (xi)N of [X] ⊂ S(Ω) that have X as a limit. D is invariant within a class
equivalence and for any given temporal sequence y ∈ S(Ω), D(xi,y) is constant and
equal to D∗([X], [y]), for any i ∈ N. It holds

lim
i→+∞

D(xi,y) = lim
i→+∞

D∗([X], [y]) = D∗([X], [y]).

The same reasoning can be applied to the second argument, concluding the proof.

Timestamps have been so far expressed without unit. In practice, measurements
may come from devices with different time units such as seconds or milliseconds. In
such a situation, the measure is expected to return the same value independently of
the time scale.

Definition 6.8 (Time Scale-Invariance). A measure D on S(Ω) is called time scale-
invariant, if it is invariant under a positive scaling of the timestamps, i.e., for any
ρ ∈ R+,

∀
(
〈t, x〉N , 〈τ, y〉M

)
∈ S(Ω)2, D

(
〈t, x〉N , 〈τ, y〉M

)
= D

(
〈ρt, x〉N , 〈ρτ, y〉M

)
.

The time efficiency of a measure can be crucial, especially when dealing with many
long trajectories. As we shall see (Section 6.4), many of the existing measures are
restricted in their use due to their quadratic computational cost.

Definition 6.9 (Efficient). A measure D on S(Ω) is said efficient if it can be com-
puted in linear time with respect to the length of the sequences.

The final definition in this section names the class of measures satisfying all three
definitions.

Definition 6.10 (Conformity). A conformal measure on S(Ω) is well-defined, time
scale-invariant and efficient.

6.4 Classification of Existing Measures

In this section we review existing trajectory measures with respect to the classification
scheme developed in the previous section. In the following definitions, x = 〈ti, xi〉N
and y = 〈τj, yj〉M are two temporal sequences of length N and M . They are interpo-
lated, respectively, by the connected trajectories X and Y of duration TX = tN and
TY = τM . If nothing else is stated, we suppose that TX < TY and N < M .
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Table 6.1: Summary of point-measures, with respect to the formalization of Defini-
tion 6.5. Relevant parameters are shown in brackets, differentials are omitted.

Measure Sym O1 ◦ O2 ◦ D(X;Y ) Discr.

Hausdorff max supt∈[0 ,TX ] infτ∈[0 ,TY ] d
(
X(t), Y (τ)

)
-

OneWay a, b 7→ a+b
2

1
TX

∫ TX
t=0 infτ∈[0 ,TY ] d

(
X(t), Y (τ)

)
SSPD

LCSS* min 1
TX

∫ TX
t=0 infτ∈[0 ,TY ] ϕ

(
TX
)1− 1ωT

(
|t− τ |

)
×

1ωD

(
d
(
xt, yτ

))
 discrete

LCSS

Euclid. min
∫ TX
t=0 maxτ∈[0 ,TY ] δtτd

(
X(t), Y (τ)

)
DISSIM

av.Euclid. min 1
TX

∫ TX
t=0 maxτ∈[0 ,TY ] δtτd

(
X(t), Y (τ)

)
∆

* ϕ(t) = 1 + t−min(TX ,TY )
t−max(TX ,TY ) .

6.4.1 Point-Measures

There are five main approaches that fit to the definition of a point-measure. Table 6.1
summarizes them according to Definition 6.5. Equations assume continuous trajec-
tories; the last column indicates, when necessary, the discretization that we use. We
now review each measure, provide formulas for temporal sequences, and discuss their
conformity.

The Hausdorff distance quantifies the difference between sets of points [123]. It
is commonly used in computer vision for object detection [132]. It is also used in the
analysis of video surveillance to cluster trajectories and detect anomalies [140, 195].

Definition 6.11 ([123]). The Hausdorff distance between two temporal sequences is
given by:

Hausdorff(x,y) = max
(

sup
i

(
inf
j

(
xi, yj

))
, sup

j

(
inf
i
d
(
xi, yj

)))
.

Although, the measure is a mathematical distance [123] on the power set of Ω,
it does not induce a dissimilarity on S(Ω)/∼. The example of Figure 6.1 shows
that the measure is not constant on an equivalence class (not well-defined). Since
the timestamps are not used, the measure is time scale-invariant. The computations
requires the comparison of all the possible pairs, hence a time complexity of O(NM)
(not efficient).
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The One-Way distance introduced in [171] sums the minimum distances between
points of the first trajectory and the full graph of the second one, and vice-versa. The
average of the two sums is then returned. In practice, computing the distance from a
point to a trajectory is costly. The authors proposed OWDgrid: The space is divided
into grid-cells, such that the cell containing the point is compared with the closest cell
intersecting the second trajectory. The Symmetrized Segment-Path Distance (SSPD)
introduced in [32] takes advantage of the polygonal approximation and computes
the distance from a point to the segments of the other trajectory using orthogonal
projections.

Definition 6.12 ([32]). The SSPD between two trajectories sequences is given by

SSPD(x,y) = s(x; y) + s(y; x)
2 ,

where s(x; y) is given by

s(x; y) = 1
N + 1

N∑
i=1

min
j∈[1. .M−1]

(
dps
(
xi, [yj , yj+1]

))
,

and dps by
dps
(
x, [a , b]

)
= min

u∈[0,1]

(
d
(
x, au+ (1− u)b

))
.

The example of Figure 6.1 highlights a case where the measure is not constant on
an equivalence class; hence, it is not well-defined. The timestamps are not used in the
formula, thus, the measure is time scale-invariant. With a quadratic time complexity
of O(NM), SSPD is also not an efficient measure.

The Longest Common SubSequence (LCSS) is supposed to overcome limita-
tions of the edit-distance [166, 62, 61]. The measure that we present here corresponds
to D1 in [246]. Besides, we give the original formula for temporal sequences. For the
continuous version see Table 6.1.

Definition 6.13 ([246]). Let ωT and ωD be a non-negative integer and a positive real
number, respectively. The LCSS measure between two trajectories is given by

LCSS(x,y : ωT , ωD) = 1− lωT ,ωD(〈x〉N , 〈y〉N)
min(N,M)

where ` ≡ lωT ,ωD

(
〈x〉N , 〈y〉M

)
equals

0 if N = 0 or M = 0,
1 + `

(
〈x〉N−1, 〈y〉M−1

)
if d(xN , yM )≤ωD

and |N−M |≤ ωT ,

max
(
`
(
〈x〉N , 〈y〉M−1

)
, `
(
〈x〉N−1, 〈y〉M

))
otherwise.
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Fréchet DTW Hausdorff SSPD LCSS.5,1 DISSIM ∆
(X, Y ) 1.0 2.0 1.0 1.0 0.0 2.0 1.0
(Z, Y )

√
2 ≈ 3.41

√
2 1.0 0.5 2.0 1.0

(V, Y ) 2.0 ≈ 5.41 2.0 ≈ 1.54 1.0 3.0 1.5
(W,Y ) 2.0 ≈ 6.99 2.0 ≈ 1.52 1.0 3.0 1.5

Figure 6.1: The marks indicate the timestamps. Equivalent trajectories sequences
are represented by the trajectory. To distinguish them, they are slightly translated.
The table reports the dissimilarities between some trajectories and Y for each baseline
measure. Measures invariant under ∼ have their two first and two last lines of the
table equal.

Despite a recursive definition, LCSS is not a path-measure: Some indices might
be skipped, which prevents the warping functions to be surjective. However, it can be
expressed as a point-measure (Table 6.1). The measure quantifies the ratio of points
of the smallest trajectory that have a point of the other trajectory within a spatial
and temporal window parameterized by ωD and ωT , respectively. The combination of
Sym = min and the function ϕ ensures that the returned value corresponds to a sum
over the shortest trajectory. In the desired case ϕ equals 1. It is infinite, otherwise.

Figure 6.1 gives an example where LCSS fails to be well-defined. The measure is
time scale-invariant, since the timestamps are not used. The time complexity of its
computation is O(ωT (N +M)), what is considered as efficient.

The Euclidean distance is a standard baseline [258, 246, 159, 62, 187, 199, 33].
Although the name is used abundantly, it is not always the same function behind
it. It can, for instance, be discrete (the sum of the distances between position with
the same index) or continuous (the area spanned between the two curves). We focus
on the continuous case as the former omit the time component. The function mea-
suring the area is piece-wise hyperbolic [243] which renders an exact computation
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expensive [100]. Frentzos et al. [101] introduce DISSIM as an approximation using
the trapezoid rule.

Definition 6.14 ([101]). Let 〈tl〉L be the sequence of timestamps of x and y that are
smaller or equal than min(TX , TY ), the DISSIM measure between these two trajectories
sequences is given by:

DISSIM(x,y) =
L−1∑
l=1

d
(
xl, yl

)
+ d

(
xl+1, yl+1

)
2

(
tl+1 − tl

)
,

where xl = X(tl) and yl = Y (tl).

However, the DISSIM measure between a trajectory and a prefix is null. This
contradicts, the previous implication and DISSIM turns out to be not well-defined.
It is also not time scale-invariant since

∀ρ 6= 0, DISSIM(〈ρt, x〉N , 〈ρτ, y〉M) = ρDISSIM(〈t, x〉N , 〈τ, y〉M).

However, this approximation of the Euclidean distance is efficient and can be com-
puted in linear time by browsing chronologically the sequences of timestamps 〈tl〉L.

The average Euclidean distance was redefined several times, e.g., for similar-
ity search of sequences [165], for pattern extraction [105], to cluster trajectories of
hurricanes [86], and recently to group and analyze online behavior in educational
contexts [40]. All but the latter assume a regular sampling of the position. Similarly
to DISSIM, we will approximate the continuous formula by the sum of the areas of
trapezoids, and refer to it as ∆.

Definition 6.15 ([200]). Let 〈tl〉L be the sequence of timestamps of x and y that
are smaller or equal than min(TX , TY ), the ∆ measure between these two trajectories
sequences is given by:

∆(x,y) = 1
min(TX , TY )

L−1∑
l=1

d
(
xl, yl

)
+ d

(
xl+1, yl+1

)
2

(
tl+1 − tl

)
,

where xl = X(tl) and yl = Y (tl).

The definition echoes that of DISSIM, except for the time normalization. More-
over, ∆ is also not well-defined, as it does not distinguish a trajectory from its prefixes.
On the other hand, the time normalization ensures the time scale-invariance. The
same algorithm can be used to compute simultaneously DISSIM and ∆ in linear time
(efficient).
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Table 6.2: Summary of path-measures, with respect to the formalization of Def-
inition 6.6. Parameters, if relevant, are in brackets, (xl, yl) = (xα(l), yβ(l)), and
(αl, βl) = (α(l), β(l)).

Ol ◦ cost(〈t, x〉N , 〈τ, y〉M)

Fréchet max1≤l≤L d(xl, yl)

DTW ∑L
l=1 d(xl, yl)

EDR(ωD) ∑L
l=1 min

(
1, (αl − αl−1) + (βl − βl−1) +

(
1− 1ωDd(xl, yl)

))
ERP ∑L

l=1 d
(
g + (xl − g)(αl − αl−1), g + (yl − g)(βl − βl−1)

)

6.4.2 Path-Measures

As noted in Section 6.3.1, path-measures are usually defined for temporal sequences
only. Table 6.2 gives the decomposition of four measures: Fréchet [99], DTW [213],
EDR [62], and ERP [61]. Given their similarity and their expensive computations,
we review only the former two.

The Fréchet distance is a measure between continuous functions [99]. In practice,
the discrete version is often preferred [7] and has been successfully used in trajectory
analysis [50, 180, 251]. The difference between the discrete Fréchet and the Hausdorff
distance is that the former respects the ordering of the points. The non-decreasing
constraint on the alignments prevents indices from appearing in two non-contiguous
sub-sequences.

Definition 6.16 ([92]). The discrete Fréchet measure between two temporal sequences
is given by

Fréchet(x,y) = inf
α,β

(
max
l∈[1. .L]

(
d
(
xα(l), yβ(l)

)))
,

where α and β are two non-decreasing surjective functions of [1 . . L] into [1 . . N ]
and [1 . . M ], respectively, with L ≥ max(N,M).

The example of Figure 6.1 shows that Fréchet is not well-defined: its value differs
for two equivalent trajectories. Since timestamps are ignored, the measure is time
scale-invariant. The computations of the discrete Fréchet distances are, however, not
efficient and requires O(NM) [92] operations. Agarwal et al. [2] proposed a faster
algorithm with a time complexity of O (NM log logN/ logN).
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Table 6.3: Summary of the properties satisfied by the baselines.
Well-defined Time scale-invariant Efficient Complexity

Fréchet - X - O(NM)
DTW - X - O(NM)

Hausdorff - X - O(NM)
SSPD - X - O(NM)
LCSS - X ≈ O(ωT (N +M))

DISSIM - - X O(N +M)
∆ - X X O(N +M)

Dynamic Time Warping (DTW) was first introduced [213] for speech detection.
Its successes made it a candidate for many other tasks ranging from signal process-
ing [31] to analyzing human behavior [267]. Unlike Fréchet, the measure returns the
sum of the difference instead of a maximum.

Definition 6.17. The DTW measure for two trajectories is given by

DTW(x,y) = inf
α,β

(
L∑
l=1

(
d
(
xα(l), yβ(l)

)))
,

where α and β are two non-decreasing surjective function of [1 . . L] into [1 . . N ] and
[1 . . M ], respectively, with L ≥ max(N,M).

DTW is not well-defined as subdividing a segment might increase the returned
value (Figure 6.1). The measure does not use the timestamps and is thus time scale-
invariant. Finally, with a time complexity of O(NM), DTW is not efficient according
to our definition. Approximations, such as fastDTW [223], have been developed to
bring the complexity to an almost linear asymptote. However, this gain in computa-
tion time comes at the cost of a lower precision.

In Table 6.3, we summarize the categorization by focusing on properties of a
conformal measure. No measure satisfies all the required properties. Except for the
Eculidean-based measures, timestamps are usually not used. Hence, most of the
measures are time scale-invariant. The closest to a conformal measure is ∆ that only
lacks the well-defined property.

6.5 A Conformal Point-Measure

Point-measures estimate the closeness of two trajectories. To devise a conformal
point-measure, we change the paradigm. We suppose that a trajectory is a real-
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ization of a distribution, such that comparing trajectories boils down to comparing
distributions.

6.5.1 A Probabilistic Approach

The approach is based on a generalization of the Laplace distribution.

Proposition 6.5. Given a trajectory X and a positive real number λ, there exist a
real number Z(λ) such that the following function, pX , is a distribution on R≥0×Ω:

∀(t, x) ∈ R≥0×Ω, pX
(
(t, x) : λ

)
= 1
Z(λ)TX

e−λd(X(t),x). (6.3)

To ensure that pX gives rise to a distribution, the sum over its domain of definition
must be 1. The parameter λ needs to be strictly positive, otherwise the pdf is greater
than 1 and the integral over the domain is no longer defined. Our proof relies on the
following lemma.

Lemma 6.2. Let λ be a positive real number and z be an element of Ω, then

0 ≤
∫

Ω
e−λd(z,x)∂x < +∞. (6.4)

The integral is null if, and only if, z =∞.

Proof of Lemma 6.2. According to Definition 2.3, if z =∞, exp
(
−λd(z, x)

)
= 0 and

the integral is null. Let us assume from now on that z is not the point at infinity of
Ω. If Ω is countable, it is assumed finite, and the integral can be bounded as follows:

1 ≤
∫

Ω
e−λd(z,x)∂x =

∑
x∈Ω

e−λd(z,x) ≤ #(Ω) < +∞.

The lower-bound implies that the integral is null iff z =∞. Now, if Ω = Rp and d is
the Euclidean distance, without loss of generality, we can assume that z = 0p. The
integral can be computed by using the p-spherical coordinates of x ∈ Rp:

xi = r sin(ϕ1) · · · sin(ϕi−1) cos(ϕi), ∀i ∈ [1 . . p− 1],
xp = r sin(ϕ1) · · · sin(ϕp−2) sin(ϕp−1),

where r ∈ R≥0, ∀i ∈ [1 . . p− 2], ϕi ∈ [0, π], and ϕp−1 ∈ [0, 2π):
∫
R
p
e−λd(z,x)∂x =

∫
e−λr∂(r×ϕ1×· · ·×ϕp−1) = 2πp−1

λ
< +∞,

where the domain of the last integral is the domain of the p-spherical coordinates.
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Proof of Proposition 6.5. Firstly, pX inherits the non-negativity of the exponential.
To be a distribution, it remains to prove that there exists Z(λ) that normalizes the
sum of pX : ∫∫

R≥0×Ω
pX((t, x) : λ) ∂t∂x = 1

Z(λ)TX

∫ +∞

0

∫
Ω
e−λd(X(t),x) ∂t∂x

Given that the trajectory X is supposed connected, if t > TX , X(t) = ∞ and
e−λd(X(t),x) = 0. The domain of the first integral can, hence, be reduced to [0, TX ].
On this interval, X(t) is an element of Ω. Lemma 6.2 implies that, since λ > 0, the
sum over Ω is positive and finite. Setting Z(λ) to the value of that sum renders pX
a distribution.

Remark that the relationship between a trajectory and the distribution it induces
is goes ways. Indeed, a trajectory can also be defined as the most likely realization.

Lemma 6.3. Let X be a trajectory and pX the distribution it induces, let x, t be a
random variable on R≥0×Ω:

(t, x) ∼ pX ⇒ ∀t ∈ R≥0, E(x|t) = X(t).

Thanks to Proposition 6.5, we can now compare trajectories by comparing the
distributions they induce using the Kullback-Leibler (KL) divergence.

Definition 6.18 (KL Divergence [157]). The KL divergence between two trajectories
X and Y is the KL divergence between the induced distributions. For a positive real
number λ, it is given by:

DKL

(
X||Y

)
= −

∫∫
R≥0×Ω

pX
(
(t, x) : λ

)
log

pY
(
(t, x) : λ

)
pX
(
(t, x) : λ

) ∂t∂x. (6.5)

At first sight, the KL divergence serves as a good candidate for comparing trajecto-
ries. It is non-negative and satisfies the axiom of identity of indiscernibles. However,
it is not symmetric. Worse, depending on the order of the trajectories, it can be
infinite.

Proposition 6.6. Let X and Y be two trajectories, and λ a positive real number,
DKL satisfies the following properties:

(i) If TX > TY , DKL(X||Y ) = +∞,

(ii) If TX ≤ TY , DKL(X||Y ) ≤ log TY
TX

+ λ
TX

∫ TX
0 d

(
X(t), Y (t)

)
∂t < +∞.
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Proof. The KL divergence can also be stated as the sum of an entropy and a cross-
entropy. For legibility, we omit the arguments of pX and pY , the domain (R≥0×Ω)
and the differential of the integrals. We obtain

DKL

(
X||Y

)
= −

∫∫
pX log pY +

∫∫
pX log pX = H(pX , pY )−H(pX)

Assuming that TX > TY and focus on H(pX , pY ) yields

H(pX , pY ) = λ

Z(λ)TX

∫∫
d
(
Y (t), x

)
e−λd(X(t),x) + constant.

For t ∈ (TY , TX ], Y (t) is infinite but not X(t). Hence, on this interval

d
(
Y (t), x

)
e−λd(X(t),x) = +∞,

and DKL(X||Y ) = +∞. By contrast, assuming TX ≤ TY leads to

DKL

(
X||Y

)
= −

∫∫
pX log pY

pX

= −
∫∫

pX log
1

(Z(λ)TY ) exp(−λd(Y (t), x))
1

(Z(λ)TX) exp(−λd(X(t), x))

= log TY
TX

∫∫
pX−

∫∫
pX log exp

(
−λ

(
d(Y (t), x)−d(X(t), x)

))
= log TY

TX
+ λ

∫∫ (
d(Y (t), x)− d(X(t), x)

)
pX

(pX is a distribution)

≤ log TY
TX

+ λ
∫∫ (

d
(
Y (t), X(t)

)
+ d(X(t), x)− d(X(t), x)

)
pX

(triangle inequality)

= log TY
TX

+ λ

Z(λ)TX

∫∫
d
(
Y (t), X(t)

)
e−λd(X(t),x)

The domain of the integration of t can be split as follows:

• If t > TY , then X(t) = Y (t) =∞ and d
(
Y (t), X(t)

)
e−λd(X(t),x) = 0.

• If TX < t ≤ TY , then X(t) = ∞ but Y (t) 6= ∞. However, given that the
limit of the function z 7→ z exp(−z) is 0, as z approaches infinity, we still have
d
(
Y (t), X(t)

)
e−λd(X(t),x) = 0.

• If t < TX , none of the trajectories is infinite. The value of the double integral
is deduced from Proposition 6.5:

∫∫
d
(
Y (t), X(t)

)
e
−λd

(
X(t),x

)
=
∫ TX

0
d
(
Y (t), X(t)

)∫
Ω
e−λd(X(t),x)∂x ∂t

= Z(λ)
∫ TX

0
d
(
Y (t), X(t)

)
dt < +∞.

Hence, the KL divergence is finite.
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Although the KL-divergence is not symmetric, Proposition 6.6 suggests that we
can use the upper-bound of the second statement as the basis for a new trajectory
measure.

Definition 6.19. The ∆KL measure between two trajectories, such that TY > TX and
λ ∈ [0 , 1], is given by:

∆KL(X, Y : λ) = (1− λ) log TY
TX

+ λ

TX

∫ TX

0
d
(
X(t), Y (t)

)
∂t. (6.6)

The integral is approximated using the trapezoid rule (see Definition 6.14).

Unlike in Proposition 6.6, Equation 6.6 is a convex combination of the two terms.
Such that both extreme cases are reachable : If λ is null, the shape of the trajectories
is ignored, and ∆KL only compares the durations. On the other hand, the measure
equals the average Euclidean distance (∆) for λ = 1.

Proposition 6.7. The measure ∆KL is a point-measure on T (Ω) such that Sym =
min and:

O1◦ O2◦ D(X;Y )= 1
TX

∫ TX

t=0
max

τ∈[0 ,TY ]
δtτ

(
(1− λ) log

(
TY
TX

)
+λd

(
X(t), Y (τ)

))
∂t. (6.7)

Proof. The combination of O2 = maxτ∈[0 ,TY ] and δtτ is a complicated way to impose
t = τ in the sum. That way, Equations 6.6 and 6.7 are equivalent. Proposition 6.6
states that the integral is finite only when its domain is the shortest duration interval.
With Sym = min, only the finite value is returned. The function ∆KL is hence
symmetric. In addition, the KL divergence is non-negative and null if, and only if,
the two compared distributions are equal. Thus, ∆KL is a dissimilarity on T (Ω).

Proposition 6.8. The measure ∆KL induces a conformal trajectory measure on S(Ω)
if, and only if, λ > 0.

Proof. The measure ∆KL for two trajectories sequences can be rewritten using ∆ as

∆KL(x,y : λ) = (1− λ) log max(tN , τM)
min(tN , τM) + λ∆(x,y).

If λ = 0, only the log of the ratios remains. In this case, ∆KL is symmetric and
non-negative, since the ratio is always greater than 1 and null only if the trajectories
have same duration.

For λ > 0, ∆KL acquires its efficiency from ∆. It is timescale-invariant since ∆
and the function (x, y) 7→ log max(tN ,τM )

min(tN ,τM ) share both the property. To show that ∆KL
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is well-defined, we need to show that it is invariant under ∼, and that ∆*
KL satisfies

the identity of indiscernibles. The invariance on an equivalence class is satisfied by
∆. In addition, two temporal sequences on the same class have necessarily the same
duration, hence the ratio of duration is constant and ∆KL is invariant under ∼. ∆*

KL

satisfies the identity of indiscernibles iff:

∆*
KL([x], [y]) = 0⇔ [x] = [y].

The invariance under ∼ of ∆KL gives the implication from right to left. To prove the
other direction, let us consider two temporal sequences x and y, such that

∆*
KL([x], [y]) = ∆KL(x,y) = 0.

This implies that the log of the ratios equals zero, i.e., the trajectories have same the
duration. Besides, ∆(x,y) = 0 implies that the area spanned between the two tra-
jectories interpolating each sequences is null. Therefore, the two temporal sequences
are interpolated by the same trajectory: they are equivalent and [x] = [y].

6.5.2 Implementation

The measure ∆KL can be computed with O(N + M) operations by simultaneously
browsing the two trajectories, as described in Algorithm 10

The algorithm takes as input two temporal sequences 〈ti, xi〉N and 〈τj, yj〉M . The
timestamps of both sequences are processed chronologically until the smallest final
timestamp, mT = min(tN , τM). For each timestamp, the area between the current and
the previous visited position is computed and added to D.

In the second and third cases of the if statement (lines 10 and 15), the algorithm
stops at a timestamp that is not in 〈ti, xi〉N or 〈τj, yj〉M , respectively. The missing
position is assessed using an interpolation (lines 11 and 16, respectively). This new
point is, then, used to compute the area spanned between the two trajectories since
the previous timestamp.

The algorithm relies on the auxiliary function Volume to compute the areas. The
true area between two segments is the sum of the distances between two moving
particles along the segments. The computation of this integral is expensive [100]. It
is instead approximated by the area of the trapezoids bounded by the four extremes
of the two segments:

• If X and Y are step functions :

Volume
(
(x0, y0, t0), (x1, y1, t1)

)
= d(x0, y0)|t1 − t0|.
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• If X and Y are polygonal functions :

Volume
(
(x0, y0, t0), (x1, y1, t1)

)
= 1

2

(
d(x0, y0) + d(x1, y1)

)
|t1 − t0|.

Note that the final D and D/mT correspond to DISSIM and ∆, respectively.

Algorithm 10 Computation of ∆KL

Require: 〈ti, xi〉N , 〈τj, yj〉M , λ ∈ [0, 1].
1: xT, mT = max(tN , τM),min(tN , τM)
2: D, i, j = 0, 1, 1
3: x, y, t = x1, y1, 0
4: while t < mT do
5: if ti+1 == τj+1 then
6: D += Volume

(
(x, y, t), (xi+1, yj+1, ti+1)

)
7: i += 1
8: j += 1
9: x, y, t = xi, yj, ti

10: else if ti+1 > τj+1 then
11: x′ = (xi+1 − xi) (τj+1−ti)

(ti+1−ti) + xi

12: D += Volume
(
(x, y, t), (x′, yj+1, τj+1)

)
13: j += 1
14: y, t = yj, τj

15: else
16: y′ = (yj+1 − yj) (ti+1−τj)

(τj+1−τj) + yj

17: D += Volume
(
(x, y, t), (xi+1, y′, ti+1)

)
18: i += 1
19: x, t = xi, ti
20: end if
21: end while
22: return (1− λ) log(xT/mT) + λD/mT

6.6 Empirical Evaluation

In this section, we conduct an empirical evaluation of our measure. Every experiment
follows the same setting. To avoid heuristics on the number of clusters, we cluster
using DP-means [156]. The computations are lighten by truncating the Dirichlet
processes accordingly to [134], with up-to K clusters and a concentration parameter
equal to 0. Updating the centroids is costly, hence the assignments are decided with
respect to the average dissimilarity. In each experiment, the retained clustering is
the best out of 30 in terms of inertia or entropy, depending on the application. The
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Figure 6.2: Left: Distribution of the prediction error. Right: Distribution of the
duration of the journeys.

temporal window of LCSS is fixed to ωT = 1, while ωD corresponds to the average
square-root distance between two consecutive positions in the data-set. The hyper-
parameter λ of ∆KL is learned using a grid search on [0 , 1] with a step of 0.05.

6.6.1 Prediction of Taxi Journeys

Several approaches have been proposed to predict the final destination of a taxi trip
based on partial trajectories, either by precomputing a clustering of the trajectories,
or by taking grid-based approaches. Prediction models have been developed using
mixture models [32], Bayesian inference [155], Markov chains [255, 169], trees [193, 60]
and neural networks [77, 176, 220]. In this section we propose to predict the final
destination of a taxi given a clustering of the set of trajectories.

The deterministic model we present here is similar to the one proposed in [32].
Suppose a given clustering of trajectories into K groups computed with a distance
D. For a cluster k, we denote the cluster’s average trajectory by C(k) and E(k) the
average final destination within the cluster. The destination of an ongoing trajectory
Y at time T is predicted by

Ψ(Y : b, C) =
K−1∑
k=0

exp
(
−bD(Y,C(k):T )

)
∑K−1
l=0 exp

(
−bD(Y,C(l):T )

)E(k),

where b > 0 is a parameter called the base of Ψ. Note that it is important to distin-
guish the average final destination E(k) and the final destination of C(k). Replacing
former with the latter gives greater weight to longer trajectories and worsens the
predictions.

We use data from a prediction challenge1 [194]. We focus on the 5,000 first trajec-
tories that start at ”Campanhã” train station, contain no missings position, and are

1”Taxi Service Trajectory - Prediction Challenge, ECML PKDD 2015”
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made of to 10 to 100 GPS coordinates, captured every 15 seconds, which corresponds
to 2 min 30 sec to 25 min journeys. The quality of the predictions is evaluated using
a 5-folds cross-validation. In each setting, the same measure is used for the clustering
and the predictions. The clusterings are computed on training sets and correspond
to the solution with the highest entropy. For each journey in the respective test set, a
prediction is computed every minute between the 5th and the 20th minute of travel.
The best performing base for Ψ is chosen within the set b ∈ {1, 5, 10, · · · , 100}. We
measure the error, that is, the distance between the prediction returned by Ψ and the
true final destination using the haversine distance [241]. Note that the distribution
of the errors is skewed, as shown in Figure 6.2. Thus, using the sample mean as
descriptive statistics is inappropriate as a single outlier might pull it to the right. We
resort, therefore, to the median for robustness. The results are shown in Figure 6.3.

Trips that are shorter than 10 minutes are well predicted by DISSIM, ∆, and also
∆KL. While the former two degrade for longer durations, ∆KL remains accurate until
the end. Since ∆ is a special case of ∆KL, varying λ given the duration may improve
performances of ∆KL for short trajectories. After about 10 minutes, Hausdorff outper-
forms its peers, followed by SSPD, and DTW. However, their excellent performance
comes at high computational costs.

Table 6.4 reports the average duration in seconds of prediction for a trajectory with
40 coordinates on an Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz with 252GB of
RAM. While the computations of Ψ using Hausdorff or SSPD require several seconds
per run, predictions based ∆KL are produced in about 60 milliseconds. Despite their
better performance, the computational costs of Hausdorff, SSPD, and DTW renders

Figure 6.3: Prediction error over travel time.
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Table 6.4: Computational costs in seconds.
Hausdorff Fréchet LCSS DTW SSPD DISSIM ∆ ∆KL

4.681 2.847 0.185 1.208 10.866 0.061 0.060 0.061

them inappropriate for real applications.

6.6.2 Discovering Flows

In this section, we study the extraction of flows. To appropriately address flow prob-
lems, we need to take into account that movements in one trajectory are delayed by
a certain offset. We thus compute shifted distances [51] between a trajectory X and
the suffixes of Y and vice versa and keep the minimum.

Definition 6.20. Let D be a measure between trajectories, the associated shifted
measure, DS, between two trajectories X and Y for a given minimum offset duration
τ , is given by:

DS(X, Y ) = min
s∈[τ−TY ,TX−τ ]

(
D
(
Xmax(0,s):, Ymax(0,−s):

)
. (6.8)

The argument of the minimum, argminDS(X, Y ), is called the time-shift associated
to DS(X, Y ).

We represent a set of trajectories X by a weighted directed graph such that trajec-
tories are identified with nodes and edge weights are given by the shifted distances. A
flowwithin X is a minimum directed spanning tree (MDST) of a connected component
in that graph.

Definition 6.21 (Flow). Let X = {Xi}N be a set of N trajectories, we consider the
graph G+ = (V,E) weighted by the function ω such that:

V = [0 . . n], E = {(i, j) : argminDS(Xi, Xj) ≥ 0}, ω(i, j) = DS(Xi, Xj).

A flow F within X is a minimum directed spanning tree of a connected component of
G, whose weights are the time-shifts associated to the edges.

Note that this construction is not unequivocal. For instance, the components are
not necessarily acyclic, hence the spanning trees are not unique [237]. We use [67, 91]
to extract the flows.
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Discovering Attractors

In mathematics, a dynamical system is a system that evolves with time. It can be
seen as a set of moving particles with certain constrains. Their study includes the
discovery of these constrains or the study of their trajectories. We show that the
latter can reveal the existence of attractors. Consider the system with a structure of
two gyres or vortices [207] governed by the following equations:

∀ x ∈ [0, 2]
∀ y ∈ [0, 1]
∀ t ∈ R+



dx

dt
(x, y, t) = − π

10 sin(πf(x, y, t)) cos(πy)
dy

dt
(x, y, t) = − π

10 cos(πf(x, y, t)) sin(πy)df
dt

(x, y, t)
f(x, y, t) = 1

10 sin(πt5 )(x2

2 − x) + x

We use the Runge-Kutta fourth-order method [236] with 0.5 time unit increments
between each point to generate 500 trajectories with 50 to 100 points, shown in
Figure 6.4. Offsets of the shifted distance measures are at least 5 points. We use
K = 20 and the entropy to select the clusterings. Figure 6.5 (left and center column)
shows the three largest clusters that focus on trajectories around the right gyre. The
flows extracted by ∆S

KL are displayed in the third column, the corresponding clusters
are shown in gray in the background. Dots and triangles indicate initial and final
locations, respectively.

Figure 6.4: Two gyres dynamical system.

The first observation is that ∆KL failed to distinguish the two gyres. Its second
largest cluster in Figure 6.5 (b) contains trajectories from both gyres. By contrast, its
shifted version ∆S

KL successfully separates the two parts of the system: Two groups
stay in orbit (d and f) while the other one converges toward the gyre’s center (e).
Note how crisp are the shapes formed by the clusters. The analysis of the flows in
the right column shows that the largest cluster of ∆S

KL presents two flows that emerge
from different orbits (g). Surprisingly, the flows first converge toward the center and
then jump to a ”higher” orbit. The flows in Figure 6.5 (h) plunges into the center of
the gyre, while the one in Figure 6.5 (i) seems to stay in orbit, or it converges but at
a much lower rate.
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Figure 6.5: Clusterings and flows discovered by ∆KL within the two gyres dynamical
system.

Clustering Drifters

Oceans can be modeled as a dynamical system as well. They do not have theoretical
attractors, as that would mean that water accumulates on some location. However,
they do present similar phenomena, especially gyres. To study the oceanic currents,
GPS-tracked buoys (also called drifters) are released on all oceans. In this section, we
show that a map of the oceanic currents can be learned by clustering the trajectories
of these drifters.

We use data maintained by the US National Oceanic and Atmospheric Adminis-
tration [44]. The information provided by the buoys is interpolated to 6-hour inter-
vals [121]. We use 2,168 linearly interpolated trajectories collected between 2005 and
2009. The position of the buoys are given in terms of latitude and longitudes.

We focus the analysis on the north Atlantic ocean. In particular, we want to ex-
tract the Gulf Stream (GF) and its descendant, the North Atlantic Drift (NAD) [234].
The Gulf Stream takes its source in the hot waters of the Gulf of Mexico. It then
follows the East coast of North America before flowing into the Atlantic Ocean. The
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Figure 6.6: Clusters covering the North Atlantic ocean with their flows. The orange
cluster of LCSSS has a single flow drawn in the same color.

North Atlantic Drift takes over and brings the warm water to Europe’s West coast.
It branches out toward the North as the Norwegian current, and to the South as the
Canary Current (CAN).

Given the computational cost, we only compare the distances with linear time
complexities, namely: LCSS, DISSIM, ∆, and ∆KL. We use again offsets of at least
5 points and the entropy to select the best clusterings for K = 50. In Figure 6.6, we
show only the clusters containing the currents of interests. The dots and triangles
indicate, respectively, the initial and last position of each buoy trajectory. Thick
curves represent the flows.

The simplest clustering is returned by DISSIMS and features one group with a
single flow. Interestingly, only LCSSS separated the buoys drifting in the region into
two clusters along a north-south axis. By contrast, ∆S and ∆S

KL embed several flows
in their cluster. The red one roughly corresponds to the northern cluster of LCSSS.

In this section, we have seen the representation power of the flows. However, not
all trajectory measures make the best out of it. For example, oceanic flow of DISSIMS

is correct but as informative as that of ∆S
KL.
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Figure 6.7: Teacher and cluster assignments of each sessions for K = 20 .

6.6.3 User-sessions as Trajectories

The page graph of the mBook resembles a directed tree with some extra edges. Tra-
jectories are sequences of page ids and timestamps indicating the time when the page
was loaded. Formally, Ω is made of the pages plus an extra node indicating the loss of
focus, different from the point at infinity which represents the end of a session. The
focus node is connected to all the other pages with an arbitrary large weight in both
directions to penalize the loss of focus. This node favor the grouping of unfocused
users independently of the content. The end event ∞ is added few seconds after the
last recorded event. Accordingly to Definition 2.1, the trajectories are modeled as
step-functions to implement the assumption that the user stays on the same page
between two events. The shortest path [84] suggests itself as a natural metric on the
tree although is not symmetric as the page graph is directed. Since there are very
few asymmetries, we pursue the analysis with it.

Clustering

We show that the proposed similarity measure ∆KL assigns similar user sessions to
the same cluster and the computed groups exhibit similar behavior. We thus focus
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Table 6.5: Number of clusters and homogeneity scores.
Hausdorff Fréchet LCSS DTW

K = 4 # Clusters 4 4 4 4
Homog. 0.195 0.216 0.846 0.945

K = 20 # Clusters 8 6 5 9
Homog. 0.459 0.334 0.877 0.954

SSPD DISSIM ∆ ∆KL

K = 4 # Clusters 4 4 4 4
Homog. 1.0 0.676 0.868 0.868

K = 20 # Clusters 11 8 8 8
Homog. 1.0 0.776 0.975 0.975

on sessions from different classes and aim to re-identify the classes in the clustering.
The data consists of 41 sessions initiated by 37 pupils during a single day. The
ground-truth clustering groups pupils with respect to their teacher, see Figure 6.7
(a). Each dot represents a user session. The x-axis shows connection times of the
sessions and the y-axis the cluster/teacher id. The six classes of this very day, given
by four different teachers, are easily identifiable by the timestamps of the sessions
and topic of the class: teachers 1 and 3 study Classical Antiquity, teacher 2 World
War 2, and teacher 4 devotes that day to the Reformation. Table 6.5 shows the
results for the re-identification of the four classes, where we use K = 4 (top row)
which is also the true number of classes, and K = 20, to allow for capturing diverse
behavior. The parameter of ∆KL is set to λ = 0.14 (highest entropy). The quality of
the clusterings is the homogeneity score [219] of the run with the lowest inertia. The
resulting distributions for K = 20 are displayed in Figure 6.7.

Clustering based on Hausdorff and Fréchet distances fail to recover the teachers
and have only small homogeneity scores. SSPD perfectly groups the sessions with re-
spect to the teachers. DISSIM, ∆ and ∆KL perform better when K = 20. Figure 6.7
(h) shows that ∆ and ∆KL successfully re-identify the ground-truth clustering with a
minor flaw: two sessions in cluster 5 are wrongly grouped together. The homogeneity
score indicate that the measures successfully detect topics. However, it is yet unclear
whether the groupings make sense in terms of behaviors: e.g., DISSIM has a homo-
geneity greater than 0.7 but its fifth cluster is a mix of sessions from different classes
(Figure 6.7 (g)). It is, therefore, unlikely that this cluster presents any consistency in
terms of behavior.
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Figure 6.8 shows the trajectories from classes from teacher 3 of two clusters for
each measure. Each curve corresponds to a session evolving over time (x-axis). The
end of the sessions is denoted by a square. The y-axis shows the type of the page,
where other indicates that the viewed page is not part of the lecture’s main chapter
“Classical Antiquity“. DTW shows a balanced grouping of sessions that can be warped
onto each other (c/d). The other measures identify a large cluster and a few small
ones. ∆ and ∆KL seem to differentiate the clusters according to the loss of focus event
after about 20 minutes.

To wrap up, an appropriate clustering of user sessions respects topic and behav-
ior. Clusterings based on Hausdorff and Fréchet distances fell short in both senses.
DISSIM ignored the topic and children visiting different chapters of the textbook are
grouped together (cluster 5 in Figure 6.7.g). Although LCSS, DTW, ∆ and ∆KL

return different clusterings, they all satisfy both objectives.

a. LCSS: Cluster 7 with 5 sessions

No Focus 
Home   

Summary 
Text     

Galleries 

Others   
b. LCSS: Cluster 6 with 3 sessions

c. DTW: Cluster 5 with 4 sessions

No Focus 
Home   

Summary 
Text     

Galleries 

Others   
d. DTW: Cluster 6 with 3 sessions

e. SSPD: Cluster 7 with 4 sessions

No Focus 
Home   

Summary 
Text     

Galleries 

Others   
f. SSPD: Cluster 9 with 4 sessions

0min 10min 20min 30min

g.  and KL: Cluster 7 with 6 sessions

0min 10min 20min 30min
No Focus 

Home   
Summary 

Text     
Galleries 

Others   
h.  and KL: Cluster 6 with 4 sessions

Figure 6.8: Trajectories of two clusters associated to the class of Teacher 3 for different
measure.
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Table 6.6: Summary of the analyzed classes.
#Class #Sessions #Pupils avg.ψ avg.PPM avg.EPM

Teacher A 27 276 65 3.33 ( 0.83 ) 0.97 (0.57) 0.98 (0.47)
Teacher B 11 80 22 2.7 ( 0.96 ) 1.0 (0.65) 1.01 (1.02)

Class Behavior

In this section, we study the relationship between the pupil’s psychometric scores and
the expressed behaviors, especially in terms of activity. The latter can be estimated
by the number of pages seen per minute (PPM) or the number of events per minute
(EPM). However, these statistics can only be compared relatively to the average value
of each class. Indeed, in a class with an average number of pages seen per minute of
1, a user viewing 1 page per minute is considered as regular. On the other hand, if
the average of the class is 3, the same user appears rather inactive.

We also propose an indicator based on a dissimilarity measure, here ∆KL. We
define ψ(s) as the average dissimilarity (∆KL(λ = .55)) between session s and the
other sessions occurring during the same class. A high ψ(s) means that the user
behind session s acts in a singular manner in comparison to the average behavior
of the class. A small average ψ in a group indicates that the pupils use the mBook
the same way, i.e., they move from one page to another almost synchronously. On
the other hand, a large average ψ signals that pupils have more freedom in terms of
navigation and usage of the resources.

For this analysis, we extract 359 classes between February and July 2017 super-
vised by two teachers (A and B) in two different schools. A class is defined as a cluster
of at least five sessions initialized within a 10 minutes interval, by pupils tagged with
the same teacher, and occurring between 08:00 and 16:00. Table 6.6 reports the num-
ber of classes, sessions, and pupils per teacher. The average intra-class dissimilarity
of the teachers’ classes (Ψ), as well as the average PPM and EPM are given in the
last three columns with standard deviations. Correlations between the average ψ for
each pupils and psychometric scores are reported in Table 6.7. Pearson’s correlations
with a p-value smaller than 5% are marked in bold face.

Table 6.6 reveals that the classes of teacher A presents a higher entropy, reflected
by a high average ψ, in comparison to teacher B. Remark that at the same time the
average PPM and EPM of both teachers are almost equal. This difference of average
ψ suggests that the teachers apply different teaching styles. A Mann-Whitney U
test [185, 97] between the average ψ of the two teachers’ classes returns a U-value
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Table 6.7: Pearson’s correlations and associated p-values for each combination of
pupils’ activity indicators and score.

Teacher A Teacher B
ψ PPM EPM ψ PPM EPM

Competency r 0.189 0.145 0.185 -0.245 -0.232 -0.232
p-value 0.008 0.044 0.009 0.025 0.039 0.04

Knowledge r 0.099 0.133 0.156 -0.17 0.049 -0.141
p-value 0.168 0.064 0.03 0.135 0.671 0.216

Motivation r -0.155 0.039 -0.065 0.072 0.111 -0.142
p-value 0.03 0.587 0.37 0.51 0.331 0.212

IT Access r 0.011 -0.002 -0.022 -0.071 0.188 0.081
p-value 0.877 0.979 0.761 0.534 0.097 0.481

IT Skill r 0.107 0.019 0.063 -0.379 -0.156 0.059
p-value 0.135 0.789 0.381 0.001 0.171 0.604

of 95 (96 critical) and a one-sided p-value of 0.044. In other words, the difference is
significant. Remark this that the average PPM and EPM per teacher do not suggests
this

The fact that the three indicators compared in Table 6.7 correlate with competency
could mistakenly be interpreted as they are redundant. However, we observe cases
where only ψ correlates significant: e.g., a small ψ correlates with high motivation in
group A.

Note the correlations between the three activity indicators and competency have
different signs for teacher A and B. These differences should be interpreted in the
light the class average ψ, given in Table 6.6. We can thus surely state that pupils
in teacher B’s classes more or less all do the same at the same time and pupils who
diverge from the predominant path perform worse. In contrast, the worst performing
pupils of teacher A, whose classes present in average a larger average ψ, are those
that under-use the textbook.

In addition to the classical PPM and EPM, ψ also captures the pupils’ activity that
correlates with competency in a direction depending on the teaching style. However,
this difference of pedagogy choices is only captured by the average ψ and not by the
average PPM and EPM.
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6.7 Conclusion

We proposed a theoretical framework that allows for a rigorous definition of spatio-
temporal similarity measures. It also yields a classification scheme that captures the
distinction between edit and shape-based approaches. The desired class of conformal
measures naturally arise from this discussion. Such measures induce a dissimilarity on
the quotient set, are time scale-invariant, and have linear time complexity. Review-
ing the prominent existing measures showed that none of them fulfills all conformal
conditions. Hence, we proposed the first conformal dissimilarity measure ∆KL for se-
quential data. ∆KL derives from the KL divergence between the generalized Laplace
distributions induced by the trajectories. Our measure corresponds to the normal-
ized point-wise distance with a penalty for differences in duration. This penalty term
notably distinguishes a trajectory from its prefixes. Empirical evaluations on cluster-
ings and predictions tasks using ∆KL showed that it performs always on par or better
compared to existing measures.

We showed that trajectory dissimilarities can extract pupils’ very different types
of behaviors during classes. We also showed that the average dissimilarity between
sessions during a class can thus be turned into an effective indicator of pupil perfor-
mance and teaching technique. Finally, this study attests that modeling sessions as
trajectories is a relevant method for the analysis of learning and teaching behaviors.
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Chapter 7

Deep Clustering as a Unifying
Method

This chapter is an opening toward future works. We have seen that mixture models
merge modeling and clustering into a single step. The work that we present here
targets the same simplification using neural networks. That way, modeling hypotheses
could be reduced to a choice of architecture.

Clustering is one of the oldest and most difficult problems in machine learning,
especially in high dimensions [55] and for complex data. In recent years, there has
been increased interest in designing deep learning-based clustering approaches [254,
115, 142, 139]. One dominant line of research, focusing on designing centroid-based
clustering algorithms and combining dimensionality reduction with clustering, has in
particular delivered promising results [254, 115, 268].

These approaches tend to utilize autoencoder architectures to perform dimension-
ality reduction and perform clustering in feature space. However, these two steps are
often separated [254, 256]. Moreover, the design of the proposed approaches is mainly
ad-hoc and empirically-driven, and the proposed algorithms rely heavily on good ini-
tialization by autoencoder pre-training. However, the latter has been shown to often
have a negative influence on clustering performance due to inconsistent optimization
goals [240, 256].

Here, we take a step back and provide a novel theoretical analysis where we show
that isotropic Gaussian mixture models (GMMs) can be formulated in the form of an
objective function for a neural autoencoder. We denote the resulting neural network
a clustering module (CM). The CM can easily be inserted into deeper architectures
to give rise to our proposed C-Net, which jointly learns a lower-dimension embedding
and a clustering. Empirically, we demonstrate that CM performs on par with k-means
and GMMs. While these comparisons serve more as a sanity check as CM is derived
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from GMMs, we also show that C-Net outperforms other deep clustering approaches
in most of the scenarios.

The chapter is organized as follows. Section 7.1 reviews related work. We derive
our main contribution in Section 7.2 and discuss implementation issues in Section 7.3.
Section 7.4 reports empirical results, and finally Section 7.5 concludes.

7.1 Related Work

Several approaches based on deep learning have been proposed to group data in a
supervised or semi-supervised manner [145, 177]. We address here the unsupervised
task that has recently become an active research area. In addition to specialized
clustering algorithms for image-specific tasks [257, 129, 59, 130, 56, 116], several
generalist approaches exist [256, 115, 254, 139]. We differentiate between centroid-
based approaches and those that do not rely on centroids in the remainder.

Non-centroid methods These include generative models such as generative ad-
versary networks (GAN) [109] and Variational Autoencoders (VAE) [146]. For exam-
ple, CatGAN [231] predicts a categorical distribution while maximizing robustness
against an adversarial generative model. The adversarial autoencoder [181] is close
to VAE since it uses two adversarial networks to impose a Gaussian distribution and
a categorical distribution in latent space. The Deep Embedding Network (DEN) aims
at learning an embedding that facilitates k-means clusterings [179], through locality
preserving and group sparsity constraints. Kampffmeyer et al. [142] use divergence
measures drawn from Information Theory to obtain separability and compactness of
the clusters. Recently, Invariant Information Clustering (IIC) [139] uses mutual in-
formation to train a network to embed an image and its distortions close together in
the embedding space. This model belongs to the families of agglomerative [110] and
co-clustering [82] approaches that have recently met with some success [22, 257]

Centroid-based Methods Deep Embedded Clustering (DEC) [254] is one of the
first generally applicable contributions to centroid-based deep clustering. First, an
autoencoder is pre-trained as a stacked denoising autoencoder (SDA) [245]. The
decoder part is then discarded and replaced by a fully connected layer whose weights
represent the centroids. The loss function derives from that of t-SNE [178]: the
optimization learns an embedding and centroids such that points aggregate around
their nearest centroid with as little ambiguity as possible. Guo et al. [115] improve
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the robustness of the model by keeping the autoencoder complete in both phases and
add its reconstruction loss to serve as a regularizer. The Deep Clustering Network
(DCN) [256] is based on a loss and architecture comparable to IDEC but includes
hard clustering. Consequently, the optimization scheme has three steps: update of
the network weights with stochastic gradient descent (SGD) [235]; assignments to
clusters; update of the centroids using the assignments in gradient-descent fashion.

Deep Adaptive Image Clustering [116] combines an agglomerative measure and
centroids to jointly learn an embedding and clustering. The Deep Autoencoder
Gaussian Mixture Model [268] aims at anomaly detection, however, it does represent
progress toward an end-to-end centroid-based deep clustering. The structure is simi-
lar to IDEC: a deep autoencoder and an auxiliary network that learns centroids. As
its name suggests, the loss function includes the log-likelihood of a GMM.In practice,
the model has shown to be computationally unstable since it includes the invertion
of the covariance matrix.

7.2 Towards a Theoretically-Grounded Clustering
Network

To obtain a centroid-based clustering loss function, it is reasonable to start from the
objective function of a GMM. In the following, we show that, under some rather
general assumptions, the Q-function maximized by the Expectation-Maximization
algorithm (EM) [80, 35] for a GMM is a regularized loss function for an autoencoder.
We then discuss appropriate (deep) neural architectures for that loss function.

7.2.1 From GMMs to Autoencoders

Throughout the chapter, X = {xi}N ⊂ Rd refers to an i.i.d. sample of N ∈ N points
and Z = {zi}N aggregates the corresponding assignments to 1 ≤ i ≤ K clusters.
When the context allows, the range of the indices are abbreviated using the upper-
bound, e.g., a vector x ∈ Rd is written as x = 〈xi〉1≤i≤d = 〈xi〉d. The zero vector and
the vector containing only ones in Rd are denoted as 0d and 1d, respectively. The set
of the stochastic vectors is given by

Sd = {x ∈ Rd
≥0 :

d∑
i=1

xi = 1}.

Consider a Gaussian mixture model with K components. The centroids are sum-
marized in the matrix µ = 〈µk〉K ∈ RK×d. The mixture weights form a stochastic
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vector
Φ = 〈φk := p(z = k)〉K ∈ SK

and the responsibility of cluster k on a data-point xi is γik := p(zi = k|xi). The
vector made of the cluster responsibilities on xi is the stochastic vector γi ∈ SK . The
mean responsibility of cluster k is γ̃k = 1/N ∑N

i=1 γik. These vectors form the rows of
matrix Γ = 〈γik〉N×K ∈ RN×K .

Similarly to an EM-based optimization, we maximize the Q-function associated
to the mixture instead of the intractable log-likelihood [80]. Since the Q-function is
a lower-bound of the log-likelihood, minimizing −Q also maximizes the likelihood of
the underlying GMM.

To obtain a tractable derivation, it is helpful to avoid the inversion of covari-
ance matrices and to assume an isotropic mixture. For simplicity, we focus on equal
covariance matrices of the form 1

2Id. Secondly, in order to control the distribution
of assignments across the clusters, we assume a Dirichlet prior distribution on the
mixture weights with parameter α ∈ RK

≥0, given by

p(Φ) ∝
K∏
k=1

φαk−1
k .

Both Φ and γi influence the assignment of xi to a cluster but they may present
diverging behaviors. The former governs the average distribution of the data-points
across all clusters, while the latter decides for a single data-point. In order to avoid
redundancy and related issues, without loss of generality, we can suppose that we
start our derivations after a Maximization step (M-step) of the EM, when the mixture
weights are updated by

φk = 1
N

∑
i=1

γik = γ̃k.

Under theses assumptions, after an M-step, the negative of the Q-function associated
to an isotropic Gaussian mixture model [35] with a Dirichlet prior for the mixture
weights is, up to a constant, equal to:

−Q(Γ,µ) =
N∑
i=1

K∑
k=1

γik log γ̃k + γik||xi − µk||2 +
K∑
k=1

(1− αk) log(γ̃k), (7.1)

Note that we focus on minimizing −Q to exploit relations to empirical risk minimiza-
tion and the use of loss functions. The first term simplifies as the entropy of γ̃ = 〈γ̃k〉K
which is a function of α and constant with respect to the model’s parameters,

N∑
i=1

K∑
k=1

γik log γ̃k=N
K∑
k=1
γ̃k log γ̃k=−NH(γ̃)=F (α).
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The second term of Equation 7.1 can be transformed to allow for an interpretation
as a reconstruction term. For any given i ∈ [1 . . N ], we obtain

K∑
k=1

γik||xi−µk||2 =
K∑
k=1

γik||xi||2− 2x>i
( K∑
k=1

γikµk

)
+

K∑
k=1

γik||µk||2+||x̃i||2−||x̃i||2

= ||xi||2 − 2x>i x̃i + ||x̃i||2+
K∑
k=1

γik||µk||2−
K∑
k=1

γ2
ik||µk||2

= ||xi−x̃i||2+
K∑
k=1

(γik − γ2
ik)||µk||2.

where x̃i = ∑K
k=1 γikµk. The Q-function becomes the sum of three terms, which we

discuss in the following,

−Q(Γ,µ) =
N∑
i=1
||xi−x̃i||2︸ ︷︷ ︸

=:E1

+
N∑
i=1

K∑
k=1

(γik−γ2
ik)||µk||2︸ ︷︷ ︸

=:E2

+
K∑
k=1

(1− αk) log(γ̃k)︸ ︷︷ ︸
=:E3

. (7.2)

Note that the EM algorithm is guaranteed to lead the likelihood toward a local
maximum as Q is equal to the log-likelihood after each E-step. For our proposed
optimization procedure, however, we do not perform the E-step, and therefore the
negative of Equation 7.2 remains a lower-bound of the log-likelihood [35].

E1: Reconstruction The first term E1 can be interpreted as a reconstruction loss
for mapping xi to x̃i. Indeed, the cluster responsibilities γik models the posterior
probability of zi given xi. Therefore, the vector γi can also be seen as the projection
of xi into SK by a function Enc : Rd → SK , parameterized with η. On the other
hand, x̃i is the image of γi by the linear function Dec : SK → Rd with parameter µ.
We thus write

x̃i = Dec(Enc(xi;η);µ) = Dec(γi;µ) =
K∑
k=1

γikµk. (7.3)

The term E1, therefore, suggests an autoencoder structure, where Enc and Dec cor-
respond to the encoding and decoding function, respectively.

E2: Sparsity and Regularization The second term E2 is simply the Gini impurity
index [46] applied to γi. This can be shown by

K∑
k=1

(γik − γ2
ik)||µk||2 ≤

K∑
k=1

(
γik − γ2

ik

)
||µ||2F = Gini(γi)||µ||2F .
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This measure occurs in decision tree theory to select features for branching and equiv-
alent to the entropy. The Gini index is non-negative and vanishes when γi is a one-hot
vector, thereby cancelling out (γik − γ2

ik).
The terms ||µk||2 play a role similar to an `2-regularization: they prevent the

centroids from diverging away from the data-points. However, they may also favor
the trivial situation where all the centroids are concentrated in zero.

E3: Balancing The Dirichlet prior is introduced to steer the distribution of the
cluster assignments. It may also compensate for the penchant of E2 for the trivial
clustering. Note that E3 can be re-written in terms of a Kullback-Leibler (KL) di-
vergence. In particular, for α =

(
1 + 1

K

)
1K , the negative prior is, up to a constant,

the KL divergence for a multinomial distribution with parameter γ̃ and the uniform
multinomial distribution:

DKL

( 1
K

1K

∣∣∣∣∣∣∣∣γ̃) =
K∑
k=1

(1− (1 + 1
K

)) log(γ̃k) + C.

7.2.2 Clustering Module

We define the Clustering Module (CM) as the autoencoder where Enc is the combi-
nation of an affine transformation and a softmax. Without loss of generality, we also
assume Dec affine instead of linear (Equation 7.3). The operations involved in CM
are formalized as follows:

Enc(X) = softmax(XWenc +Benc) = Γ

Dec(Γ) = ΓWdec +Bdec = X̃,

for input X ∈ RN×d ∼ X , code representation also representing the cluster respon-
sibilities Γ = 〈γik〉N×K ∈ RN×K s.t. γi ∈ SK , and reconstruction X̃ ∈ RN×d,
respectively. The weight and bias parameters for the encoder are Wenc ∈ Rd×K

and Benc ∈ RK , respectively, and analogously for the decoder Wdec ∈ RK×d and
Bdec ∈ Rd. The softmax is used as the activation function after the first layer to
enforce the stochasticity of the code. The centroids µ of the underlying GMM corre-
spond to the column-vectors of matrix Wdec + Bdec. For consistency, we repeat the
full formula of the loss function:

LCM(X ; Θ)=
N∑
i=1
||xi − x̃i||2+

N∑
i=1

K∑
k=1

(γik − γ2
ik)||µk||2+

K∑
k=1

(1− αk) log(γ̃k), (7.4)
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where Θ represents the parameters of the network. In the case of batch-based opti-
mization, γ̃ is computed over the batch, hence the N is replaced by the size of the
batch.

7.2.3 Clustering Network

x c

x̃

c̃γ

Clustering Module

Deep Autoencoder

Figure 7.1: The proposed Cluster-
ing Network (C-Net) combines a deep
autoencoder with a clustering mod-
ule (CM).

The proposed CM enables a neural im-
plementation of a GMM. The CM may
thus be seamlessly integrated as a com-
ponent in larger neural networks. It is
well known in clustering that discrimi-
native dimensionality reduction may aid
the clustering process. We therefore nest
the clustering module in a deep autoen-
coder (DAE). This enables a discrimi-
native (non-linear) embedding of input
data into a lower-dimensional space to
obtain clusters, by performing the di-
mensionality reduction and the CM opti-
mization jointly and end-to-end. At the
same time, we are leveraging the regularization properties of the DAE reconstruction
loss. We refer to this deep architecture as Clustering Network (C-Net).

The first part of the network encodes an input x into a vector c. The latter is
then fed to a CM and to the decoder of the DAE, yielding two outputs: c̃, the CM
reconstruction of the vector c, and x̃, the reconstruction of x. The architecture is
illustrated in Figure 7.1.

With this architecture, the additional regularization term ||µk|| is no longer needed,
and we hence remove it from E2. We discuss the benefit of this choice in later, re-
sulting in the following loss function:

LC-Net(X ; Θ)=
N∑
i=1
||xi−x̃i||2+||ci−c̃i||2+

N∑
i=1

K∑
k=1

(γik−γ2
ik)+

K∑
k=1

(1−αk) log(γ̃k).

(7.5)

Note, that there are parallels that can be drawn between the proposed architecture
and IDEC [115], as the latter also makes use of an autoencoder framework with an
additional clustering loss. Besides having a different loss, IDEC nests a single dense
layer to the code of the DAE instead of an autoencoder.

111



7.3 Implementation

7.3.1 Averaging Epoch

Figure 7.2: The intermediate centroids
of the last epoch are spread, whereas
their averages almost match the true
centroids.

The optimizer updates the positions of
the centroids given the current batch.
The small size of the latter causes
some dispersion of the intermediate cen-
troids. Hence, choosing the final cen-
troids only based on the last iteration is
sub-optimal.

The phenomenon is illustrated for
CM in Figure 7.2. The data consists
of N = 2,000 points in R2 drawn from
a mixture of five bi-variate Gaussians
(K = 5). After standardizing the data,
a CM is trained in mini-batches of size
20 over 100 epochs using stochastic gradient descent with a learning rate of 0.01, a
momentum of 0.95, and a concentration equal to 5K .

The dispersion of the centroids after each iteration of the last epoch (crosses) is
important. On the other hand, the average positions over the last epoch (squares)
provide a good approximation of the true centers (circles). The same phenomenon
appears for C-NET. Therefore, implementations of both networks contain one ex-
tra epoch to compute the average position of the individual centroids over the last
iterations. It is included in any subsequent computation.

7.3.2 Initialization and Pre-Training

Pre-training a deep autoencoder has advantages [26] and disadvantages [181]. In the
case of clustering, it has been shown that it can harm the results [240]. However,
several prior approaches exist, such as the two baselines DEC and IDEC, that re-
port promising results when pre-training their deep autoencoder as stacked denoising
autoencoder (SDA) and denoising autoencoder, respectively [245]. To take this dis-
cussion further, we propose a pre-training scheme for each model and evaluate their
benefits in Section 7.4.
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Clustering Module The clustering module can be pre-trained using initialization
algorithms for k-means, such as k-means++ [13] (k++). The centroids found by the
initializer are used as column-vector of the decoder’s weights, Wdec. The pseudo-
inverse of this matrix serves as the encoder’s weights, Wenc. The respective biases
vectors are initialized using Glorot normal initializer [108].

Clustering Network In the case of C-Net, we prefer a more straightforward ap-
proach that has proven faster and more stable. There are two networks to pre-train:
the deep autoencoder and the clustering module. The former is first pre-trained in
an end-to-end fashion, i.e. without stacking or denoising, using the reconstruction
loss only. The data-set is then encoded using the DAE and used to pre-train the CM.
The module is initialized using k-means++ and optimized over as many epochs as
the DAE using the genuine loss function (Equation 7.4).

7.4 Experiments

In this section, we compare the CM (as a sanity check) and the proposed C-Net
on three real-world data-sets to k-means, GMM, and four current state-of-the-art
baselines.

7.4.1 Experimental Setup

Data We focus on some representative and much used benchmark data-sets in the
deep clustering context:
MNIST contains 70,000 handwritten images of the digits 0 to 9 [162]. The images are
grayscale with the digits centered in the 28× 28 images. The data-set is normalized
before processing.
USPS consists of 9,298 gray-scale images of handwritten digits with size of 16x16
pixels. Similar to MNIST it contains 10 (slightly) unbalanced classes, digits 0 to 9.
Reuters10k, here abbreviated R10K, consists of 800,000 news stories that have been
manually categorized into a category tree [167]. The data-set was pre-processed as in
[115] to return a subset of 10,000 random samples embedded into a 2,000-dimensional
space and distributed over 4 (highly) unbalanced categories.

Baselines We select as baselines recent deep clustering models that are not tailored
to a specific domain. Since our method is centroid-based, we select DEC [254] and
its extension IDEC [115]. We also include DCN [256] as its performance appears
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competitive with the two first baselines. For completeness, we also include IIC [139]
as a recent non-centroid-based model1. The authors explicitly claim that their model
is not specialized to computer vision and that their loss can simply be plugged into
any model 2.

Optimization Following the settings used in [254, 115], the encoder of the DAE
is made of four layers d− 500− 500− 2000− 10 [127], where d represents the input
dimension. The decoder mirrors the encoder. All activation functions are relu. For all
models and data-sets, the batch-size B is fixed to 256, the pre-training and training
lasts respectively 200 and 2,000 epochs. In the case of pre-training, the DAE is
optimized in an end-to-end fashion using SGD with a momentum of 0.9 (except for
R10K where it is 0). The learning rate starts at 0.1 , and is divided by 10 every 20,000
iterations, For MNIST, the optimizations of CM and C-Net are performed using the
Adam [144] optimizer (learning rate = 0.001, β1 = 0.99, β2 = 0.999, ε = 0.1).
Following the example of DEC and IDEC, an SGD with Nesterov acceleration is
chosen for USPS and R10K, with momentum of 0.9 and 0 respectively.

DEC and IDEC rely on the same configuration for MNIST, and on an SGD without
Nesterov acceleration, a learning rate of 0.01 and a momentum of 0.9 for USPS and
R10K. These settings returned similar performance to those reported in [254, 115]
and [256]. The target distribution is updated every 140, 30, and 20 iterations for
MNIST, USPS, and R10K, respectively.

IIC is trained without auxiliary over-clustering head using only the architecture of
the encoder of C-Net to which we add a softmax-activated layer with as many units
as the number of clusters. Accordingly to the paper [139], the model is tested only
with random initialization and optimized using Adam with a learning rate of 10−4.
At each iteration, each instance is paired with five copies distorted with Gaussian
noise with a standard deviation of 0.15.

The implementation of DCN3 is configured as in the original paper. Regarding
k-means and GMMs, we use the scikit-learn implementations [209] with up to 200
iterations and k-means++ initialization.

1github.com/xu-ji/IIC
2We also experimented with DA-GMM [268] but obtained erratic and unstable behavior. We

finally refrained from including the results.
3github.com/boyangumn/DCN-New

114

github.com/xu-ji/IIC
github.com/boyangumn/DCN-New


Table 7.1: Comparison of clustering performance in terms of mean ARI (×100) with
standard deviation and of the best run out of ten.

Method MNIST USPS R10K
avg. ± sd. best avg. ± sd. best avg. ± sd. best

k-means 36.4± 1.8 39.5 53.2± 2.5 57.2 27.0± 11.6 61.1
GMM 22.4± 1.7 25.5 36.6± 3.5 39.9 27.1± 11.6 61.2

DEC+rand 18.3± 9.9 30.4 28.0± 3.7 34.0 11.9± 5.4 19.5
IDEC+rand 22.7± 4.2 29.3 32.6± 15.8 56.9 15.1± 4.0 23.6
DCN+rand 32.0± 2.1 36.5 38.0± 15.0 51.0 8.3± 3.3 14.1
DEC+pre 75.6± 2.3 80.4 60.8± 5.2 66.9 58.7± 4.0 65.5
IDEC+pre 77.3± 1.5 81.1 60.8± 4.8 67.3 55.0± 3.5 62.1
DCN+pre 78.5± 0.2 78.8 61.8± 1.7 66.8 32.6± 5.2 35.1
IIC+rand 40.5± 6.4 54.3 48.6± 5.3 56.3 17.6± 5.0 25.6

CM+rand 34.8± 4.5 40.3 49.3± 6.2 58.4 1.9± 1.2 3.6
CM+pre 40.7± 0.3 41.2 58.5± 0.7 59.9 23.2± 1.9 25.4

C-Net+rand 78.0± 8.1 92.1 56.3± 2.8 63.4 31.5± 8.9 45.5
C-Net+pre 83.5± 1.6 88.1 69.2± 2.1 72.4 51.3± 6.6 62.6

7.4.2 Results

Clustering performance in terms of mean ARI (×100) are reported on Table 7.1.
Models are tested with and without pre-training, indicated by +rand and +pre, re-
spectively. The highest, statistically significant score for each data-set is marked in
bold face.

The scores of the three centroid-based baselines are equivalent to those reported
in their respective papers. The results highlight that these models rely heavily on
the pre-training of the autoencoder. Indeed, when randomly initialized, they are all
outperformed by k-means on each data-set.

IIC returns deceiving scores, which are certainly caused by the choice of the net-
work and noise. Indeed, a ResNet-based IIC with five auxiliary networks can cluster
MNIST with an accuracy (true positives divided by sample size) of up to 99.2%. Such
a score does not translate into the ARIs indicated in Table 7.1, but they highlight
that the loss function of IIC requires cumbersome treatment of the features to give
good results.

The vanilla clustering module performs similarly to k-means or GMM depending
on the two first data-sets, as we have conjectured. For R10K, CM+rand failed and
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Figure 7.3: Centroids mapped back to
image space for IDEC and C-Net. The
first row displays the means of each
class.

Figure 7.4: t-SNE representation of
the embedding learned by C-Net on
MNIST. The misclassified data-points
are indicated in red.

CM+pre performs worse than the baselines. This can partly be contributed to the
symmetric Dirichlet prior and the fact that the dataset has the most imbalanced
cluster distribution.Overall, the model benefits from the k++ initialization.

The pre-trained C-Net out-performs all the baselines on MNIST and USPS. With-
out pre-training, it performs on par with the pre-trained baselines. C-Net+pre does
not top the comparison on the R10K dataset, but remains among the best three. The
imbalanced classes in the dataset is here again certainly a cause.

Pre-training of CM and C-Net does improve the performance but also reduces
model volatility for better or worse. Indeed, C-Net+rand achieved an ARI of 92.1%
on MNIST, which is 15 points above its average score only thanks to a high standard
deviation. On the downside, this volatility is a challenge to reproducibility.

7.4.3 Discussion

Analysis of the Results C-Net with random initialization and pre-tuned IDEC
returned two of the best ARIs for the MNIST. Figure 7.3 shows the centroids of their
best run. We use the decoder to map the centroids to the input space. We can
observe that the centroids of C-Net produce clear images for each class, which align
reasonably well with the washed-out average image of the respective classes (first
row). On the other hand, IDEC’s centroids for the 4 and 9 look both like 9’s. A
closer investigation of the errors showed that only approximately 50% of the 4’s and
9’s where clustered correctly.

To analyze the learned representations of C-Net and study the misclassifications,
we perform a t-SNE dimensionality reduction [178] of the embedded MNIST, i.e., from
10 to 2 dimensions. The result of this analysis is illustrated in Figure 7.4 for a subset of
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3,500 randomly chosen data-points. It can be observed that C-Net achieves a distinct
grouping of the individual clusters. The points that were clustered incorrectly by our
method are highlighted in red. They mostly lay on the space between the individual
clusters. The cluster for 9’s (bottom right) contains the most errors: 511 ≈ 7.1% of
the 9s were assigned to a wrong cluster and the cluster for 9 contains 507 images of
other numbers.

Analysis of the Optimization The evolution of the loss function and of the ARI
during the optimization of CM and C-Net, with and without pre-training is shown
in Figure 7.5. The benefit of pre-training the CM and C-Net appears clearly in the
plots of the last column. The respective curves in terms of loss or ARI start with
better values. The impact on the stability is better observed in the plots in terms
of ARI (bottom). Except for C-Net+rand, convergence is reached before 200 epochs,
and even earlier for CM (about 20 seems enough). Regarding C-Net+rand, the runs
converging the fastest in terms of ARI do so in about 200 epochs, which is less than the
200 + 200 epochs of the pre-training, on the other hand, it returns a worse clustering.

The two first columns focus on the two pre-training phases of C-Net: the pre-
training of the autoencoder and of the clustering module, respectively. Recall that
the CM is initialized with k-means++ before being pre-trained, hence the gap between
plots of the first and second columns. The tuning of the AE greatly reduces the loss
but has limited impact on the clustering. The inverse holds for the tuning of the

Figure 7.5: Evolution of the loss and ARI during optimization of CM and C-Net with
and without pre-training. Five runs of each model are plotted. The epochs (x-axis)
are represented in log-scale.
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CM. Note that during both phases, the loss function reaches a minimum and then
increases again. This behavior does not correlate with that of the ARI.

As a summary, CM needs less than 50 iterations to converge, be it for training or
pre-training. As other studies [254] also pointed out, pre-training the AE does yield
more consistent results but not necessarily a faster convergence, if the tuning epochs
are included. Further studies are necessary to assess the impact of a shorter tuning
of the AE, e.g., stop before convergence.

Analysis of the Convergence Figure 7.6 distributes the ten clusterings of MNIST
reported in Table 7.1 with respect to their final value of the loss and the ARI. The
dashed lines represent the best fitting regression line for each case. The corresponding
R2 scores and Pearsons’ correlations are given under each plot.

The ARI and the value of the loss function correlate negatively and significant
only for CM with random initialization. This result is a confirmation of the theoret-
ical soundness of our model. If CM is pre-trained, the correlation is not significant
anymore, but a tendency in the correct direction is present. For C-Net with and
without pre-training, the slope of the regression line is positive which goes against
the expected relationship. This suggests that the reconstruction of the DAE leads the
value of the loss and steers the model toward a local optima. This claim is further
encouraged by the fact that the best performing run of C-Net+pre returns the highest
loss. Potential approach to reduce this effect caused by the inconsistent optimization
goals is the introduction of additional regularization techniques, i.e. drop-out, or
weighting of the terms in the loss function. However, both come at the cost of extra
hyper-parameters or additional architecture choices.

Figure 7.6: Scatter plot distributing each clusterings of MNIST reported in Table 7.1
with respect to the value of the loss function (x-axis) and ARI (y-axis). The regression
lines are dashed, and R2 scores and Pearson’s coefficients are given below each plot.
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Figure 7.7: Robustness of C-Net with
respect to the concentration hyper-
parameter. The dashed curves represent
the maximal ARI.

Analysis of the Concentration To
analyze the impact of the (symmetric)
Dirichlet prior on the clustering perfor-
mance of C-Net, we let α vary from 2
to 192. We experiment on the three
previous data-sets without pre-training.
The details of the optimization are the
same as in Section 7.4.1. Figure 7.7
displays the variations of the ARI. The
shades represent the standard error over
ten runs, and the dashed curves the high-
est ARIs.

The three curves present a similar
shape. They increase abruptly and only then become more stable. For R10K, the
initial jump is smaller and earlier. We can remark, though, that the maximal ARIs
for MNIST tends closer to the average curve as the concentration increases.

Analysis of the Relaxation The loss function of the clustering module nested
in the C-Net is relaxed: the regularization term ||µk|| is discarded. To empirically
justify this modification, the same experiment is run for C-Net with the regularization
term in the loss function (with and without pre-training). The results in terms of
ARI are reported in Table 7.2.

The results confirm the negative impact of the regularization on the clustering
performance. The regularization yields lower average ARIs in every settings, except
for C-Net+rand on R10K. For MNIST and USPS, a randomly initialized C-Net re-
turns ARIs more than 50% smaller than without the regularization. For these two
data-set, the standard deviations of C-Net are larger than those reported in Table 7.1.
In case of R10K, the regularized model performs on par with the non-regularized one.

Table 7.2: Clustering performance in terms of mean ARI (×100) of a regularized
C-Net with and without pre-training.

reg. C-Net+rand reg. C-Net+pre
avg. ± sd. best avg. ± sd. best

MNIST 35.1± 2.9 39.2 62.4± 2.2 65.1
USPS 26.4± 4.4 32.5 59.9± 4.7 66.6
R10K 37.0± 4.7 45.2 30.0± 5.4 38.8
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7.5 Conclusion

We presented an end-to-end approach to address centroid-based clustering tasks with
deep learning based on a theoretically proven loss function. We first transformed
the objective function of an isotropic GMM into a loss function for an autoencoder.
Second, we proposed two networks. The Clustering Module (CM) consisted of a two-
layer autoencoder and was optimized with the transformed loss function of a GMM,
followed by an averaging epoch to obtain accurate centroids. The Clustering Network
(C-Net) extended CM to deep architectures and grounded on nesting CM within any
autoencoder (AE). The associated loss function balanced the reconstruction losses of
the AE and a relaxation of the CM loss.

Empirical evaluations on real-world data-sets confirmed that CM performs simi-
lar to k-means and GMM. By contrast, C-Net outperformed existing deep-learning
models on almost all problems. The analysis revealed that our models benefit from
pre-training, but also perform well without. This is in contrast to existing centroid-
based clustering approaches that all highly depended on pre-training.
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Chapter 8

Conclusion

In this thesis, we advanced the fields of machine learning and data-mining, with a
focus on online behaviors analysis (OBA). We presented models for different types of
representations of user sessions, with an emphasis on interpretability. Each model is
used to analyze the mBook data which yielded to the discovery of several new insights
into the relationship between pupils’ use of the medium and their performance and
motivation in History.

We have shown that the computation of the frame of a data-set boils down to
a non-negative least-squares problem that can be solved efficiently using existing
techniques. This new view of the problem has led to increased efficiency and has
made archetypal analyses in large dimensions possible. Our approximation, Frame-
AA, combined with the divide-and-conquer strategy, brings additional speed-up to the
computations with a minimal loss of precision. We went further and gave an example
for OBA. While a naive approach only links the time spent on galleries to motivation,
an archetypal analysis uncovered more correlations. Namely, high motivation comes
with more time spent on rich content, and less time spent on less informative content.
However, the relatively coarse representation of the behaviors lead to a paradoxical
correlation between high use of information boxes and low motivation. We consider,
however, this anomaly as a positive result since it argues in favor of modeling sessions
as sequences.

Consequently, we have studied the sequences of chapters and categories of the
pages visited. Our mixture of Markov chains nested with a temporal model detected
weekly and daily connection patterns and related them to navigation profiles. This
approach gave us a first indication of the teacher’s influence on student behavior.
Unfortunately, the complexity of the model was already too high for information-
based model selection. In order to investigate the events themselves, we proposed
a model combining Dirichlet processes and a mixture of Markov chains: the infinite
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mixtures of Markov chains. A key element of the model is the use of a degree k-weak
limit approximation to lighten the calculations. Our approach successfully managed
the large gap between the number of events tracked and the relatively small size of
the data-set. An analysis of the mBook data revealed that scrolling behaviors, as
well as the probability of specific transitions between scroll events, can be used as
indicators of several psychometric indicators.

The Markov condition places much emphasis on the transition between events,
which can hinder longer-term dependencies. To address this, we took a radically new
perspective on behavioral analysis. We modeled sessions as spatio-temporal trajecto-
ries within the page graph. To pursue this idea, we developed a theoretical framework
for spatio-temporal similarity measures that covers most of the existing measures and
formalizes the desirable properties. We also constructed the first similarity measure,
∆KL, which satisfies them all. A thorough empirical evaluation of our measure in
terms of clustering and prediction puts it on par or better with existing measures.
We used ∆KL to reveal that the dispersion of trajectories within a class-group is an
indicator of pupils’ activity. Our analysis revealed the moderating role of the teacher
in the correlation between online behavior and performance.

Our last results also act as an opening and show future directions for our research.
We developed a theoretically well-founded deep clustering model that can mimic k-
means while exploiting the representation capabilities offered by deep neural networks.
In this work, we relied only on fully connected layers. However, other architectures are
in the scope of further developments, such as convolutional layers, recurrent networks,
and long short-term memory cells. This would allow to do just like mixture models
but with neural networks: jointly modeling and clustering online behaviors.
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discrete fréchet distance in subquadratic time. SIAM Journal on Computing,
43(2):429–449, 2014.

[3] M. Agosti, F. Crivellari, and G. Di Nunzio. Web log analysis: a review of a
decade of studies about information acquisition, inspection and interpretation
of user interaction. Data Mining and Knowledge Discovery, pages 1–34, 2011.
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students’ teamwork data. In Proceedings of the ITS Workshop on Educational
Data Mining, 2006.

[144] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In
International Conference on Learning Representations, 2015.

[145] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling. Semi-supervised
learning with deep generative models. In Advances in Neural Information Pro-
cessing Systems, pages 3581–3589, 2014.

[146] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[147] J. S. Kinnebrew, K. M. Loretz, and G. Biswas. A contextualized, differential se-
quence mining method to derive students’ learning behavior patterns. JEDM—
Journal of Educational Data Mining, 5(1):190–219, 2013.

[148] A. Kinoshita, A. Takasu, and J. Adachi. Real-time traffic incident detection
using a probabilistic topic model. Information Systems, 54:169–188, 2015.

[149] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. science, 220(4598):671–680, 1983.

[150] K. Knauf, D. Memmert, and U. Brefeld. Spatio-temporal convolution kernels.
Machine learning, 102(2):247–273, 2016.
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