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Abstract
Network analysis methods have long been used in the social sciences. About
25 years ago, these methods gained popularity in various other domains
and many real-world phenomena have been modeled using networks. Well-
known examples include (online) social networks, economic networks, web
graphs, metabolic networks, infrastructure networks, and many more.

Technological development made it possible to store and process data
on a scale not imaginable decades ago — a development that also includes
network data. A particular characteristic of network data is that, unlike stan-
dard data, the objects of interest, called nodes, have relationships to (pos-
sibly all) other objects in the network. Collecting empirical data is often
complicated and cumbersome, hence, the observed data are typically in-
complete and might also contain other types of errors. Because of the
interdependent structure of network data, these errors have a severe impact
on network analysis methods.

This cumulative dissertation is about the impact of erroneous network
data on centrality measures, which are methods to assess the position of an
object, for example a person, with respect to all other objects in a network.
Existing studies have shown that even small errors can substantially alter
these positions. The impact of errors on centrality measures is typically
quantified using a concept called robustness.

The articles included in this dissertation contribute to a better under-
standing of the robustness of centrality measures in several aspects. It is
argued why the robustness needs to be estimated and a new method is
proposed. This method allows researchers to estimate the robustness of
a centrality measure in a specific network and can be used as a basis for
decision making. The relationship between network properties and the ro-
bustness of centrality measures is analyzed. Experimental and analytical
approaches show that centrality measures are often more robust in networks
with a larger average degree. The study of the impact of non-random errors
on the robustness suggests that centrality measures are often more robust if
missing nodes are more likely to belong to the same community compared to
missingness completely at random. For the development of imputation pro-
cedures based on machine learning techniques, a process for the evaluation
of node embedding methods is proposed.
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Introduction

People frequently say that every human knows every other human through
six edges. The paper “An Experimental Study of the Small World Problem”
by Travers and Milgram (1969) is often cited to support this claim. In
this experiment, random people living in the US (in Nebraska or Boston)
were asked to send documents to a person, located in Boston, if they know
him on a first-name basis. If they do not know him, they should send
the documents to an acquaintance who knows the target or has again an
acquaintance who might knows the target. The average length of completed
chains was 5.2, a figure often referred to. This study can be viewed from
a network perspective. Persons are nodes, edges indicate an acquaintance
(two people know each other on a first-name basis). The task was to forward
the documents in such a way that they would arrive at their destination as
quickly as possible.

Only 64 of 296 document folders reached the target person. Thus, this
study suffered from a severe case of actor non-response. Therefore, it is
questionable whether the actual average chain length in this network is
really 5.2. This problem was discussed extensively by Travers and Milgram
(1969). The authors have provided arguments that the actual length might
be above or below this figure. When this study is referenced, however, this
aspect is usually ignored.1

Similar to this well-known and frequently cited study, most network
studies struggle with inaccurate network data. This dissertation addresses
this issue and studies the influence of erroneous data on network analysis
methods. The methods investigated in this dissertation are so-called central-
ity measures which assess the position of an object, for example a person,
with respect to all other objects in the network. These measures could, for

1 This type of experiment was conducted by several researchers in other contexts to
investigate the small world problem. In online social networks, for example, a shorter
average distance between the actors can be observed (Leskovec and Horvitz, 2008; Boldi
and Vigna, 2012).

1



2 1 Introduction

example, be used to analyze why some letters in the Milgram experiment
reached the target and some did not. One might suspect that the successful
letters were sent by people who are more central in the contact network.

This chapter serves as an introduction (“accompanying paper”) to this
cumulative dissertation and is structured as follows. The concept of network
models as well as sources and impact of errors in the context of network
data are introduced in Section 1.1. Methods and concepts used in articles
that are part of this dissertation and which are necessary to discuss existing
studies are explained in Section 1.2. Definitions of the robustness as well as
the methodology and findings of existing studies are presented in Section 1.3.
The main objectives of this dissertation and the scientific contribution of
the individual articles are presented in Section 1.4 and Section 1.5 concludes
this introduction.

1.1 Network model, network data, and mea-
surement errors

Networks “occur” in various domains. Prominent examples include (online)
social networks, the Internet, trade networks, transportation networks, and
many more (Newman, 2003). In the last two decades, a myriad of research ar-
ticles, textbooks, and popular science books have been dedicated to networks
(e.g., Barabási (2002); Watts (2003); Newman (2010); Christakis and Fowler
(2010); Barabási (2016)). It is often claimed that networks are there or occur
naturally. This perspective, however, is quite simplified. Although phenom-
ena from different disciplines may be viewed from a network perspective,
networks are not “just there”. The abstraction of the phenomenon as a net-
work must be done deliberately and explicitly. A network consists of a finite
set of objects and pairwise relationships between these objects (Wasserman
and Faust, 1994; Butts, 2009). For the abstraction, it is therefore essential
to specify what the nodes are, what the relations (edges) between the nodes
are, and how these relations are measured. Often, these relationships are
modeled as a (possibly directed) binary relation. In this case, the strength
of the relationships is not reflected in the model. Thus, it is crucial to recall
that the mere feasibility of modeling a phenomenon using a network does
not imply that the network model is a suitable representation. By choosing
an inadequate representation, the conclusions may be invalid (Butts, 2009).

The research field “Network Science” is focused on the study of network
models. Network models consist of two parts, as shown in Figure 1.1, the
network concept and the network data. (Brandes et al., 2013). As briefly
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Phenomenon

Network concept

Network data

is abstracted by

is instantiated by
Network model

error-prone

Figure 1.1: Illustration of the components of a network model (adapted
from Brandes et al. (2013)).

mentioned above, the procedure for the abstraction of the phenomenon is
part of the network concept. The network concept determines, on the one
hand, which objects are represented by the nodes. As an example, in the
case of a social network, the objects could be persons. On the other hand,
the network concept also specifies which relationships are represented by
the edges. In the case of the social network, these could be similarities
between actors, social relations, interactions, or flows (Borgatti et al., 2009).
The representation step determines how specific instances of abstraction are
created. It describes how the network data are created, for example, through
a survey. This step yields a specific network, which can subsequently be
analyzed.

As an example of the application of the network model, assume that we
are interested in how information spreads within a company. To investigate
this phenomenon, employees could be modeled as nodes in a social network.
As a pairwise relationship between employees, the interaction “x and y talk
regularly about professional topics” could be chosen. To collect a specific
instance of this social network, the following approach is possible. All
employees who are present on a particular date are asked to list which other
employees they talk to regularly (defined as on average once a week) about
company-related topics. The result of this survey is a snapshot of the social
network at that point in time.

In empirical studies, the data collection takes place during the instantia-
tion of the network concept. Data collection is inherently error-prone, and
thus it is difficult to get exactly the desired data. In the above example,
these are all the statements of all employees about their communication
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behavior regarding all other employees of the company. A variety of errors
can occur in this case. For example, it is likely that employees are not
present on the day of the survey or that they cannot recall all contacts. In
a network based on this data, the corresponding nodes and edges would be
missing.

Errors in data collection are always a problem. With network data, errors
often have even stronger effects on subsequent data analyses than they do
in the case of standard data, due to the network topology. With standard
data, it is usually assumed that the individual observations are independent
of each other. This is not the case for network data. The existence of an
edge typically depends on the existence of other (possibly incident) edges.
If, for example, one edge is missing, other edges cannot be explained by this
edge (Brandes et al., 2013).

In the following, we illustrate the effect that even small errors in network
data can have on subsequent analysis. Figure 1.2a shows a hypothetical
error-free network (adapted from (Borgatti et al., 2006)), the network that
could be created from entirely error-free data. Let’s assume this is the
network mentioned in the example above, the social network of a company’s
employees. Figure 1.2b shows the network created from almost the same
data with one small difference: during data collection, the edge between
node 4 and 5 was not observed which has severe consequences. Possible
reasons could be that actors 4 and 5 have forgotten to name each other in
the survey or intentionally do not want to disclose their relationship.

The most apparent difference between those two networks is that the
error-free network is connected, whereas the erroneous network consists of
two components. It follows that analyses of these two networks yield very
different outcomes. In the error-free network, every node can reach every
other node in a finite number of steps. Information from a single node can
spread throughout the entire network. In contrast, in the observed network,
one would come to the conclusion that the actors that correspond to the
nodes in either of the two components operate in two different realms and
that information available in one group cannot reach the other group.

There is also a substantial difference between the two networks when
analyzing individual nodes. Centrality measures, described in more detail in
Section 1.2.1, map real numbers to all nodes in a network, and thus induce
a ranking on the nodes. These rankings are commonly used to compare the
positions of individual nodes in the network. There exist numerous central-
ity measures. In the following, popular measures are used as examples. The
table in Figure 1.2c lists the nodes with the highest rank, induced by five
centrality measures in the error-free and the observed, erroneous network.
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For four of the five measures, the results differ between the error-free and
the erroneous network. For betweenness, closeness, and PageRank, the most
central node is a different one. In the case of eigenvector centrality, the most
central node shares the first rank with two other nodes. Solely in the case of
degree centrality, the most central nodes do not change. This example high-
lights the drastic effects that even minor errors in data collection can have.

In the following, different types and sources of errors in the context of
network data are discussed. Errors in data collection always pose a problem
in empirical studies. Previous work on errors and networks has focused on
errors that occur during surveys but are also applicable to other types of data
collection. For example, the “Boundary Specification Problem” (Laumann
et al., 1983), i.e., the question for which entities exactly data should be
collected, the discrepancy between perceived and actual exchanges between
actors, and the problem of informant inaccuracy (Bernard et al., 1984). In
addition, temporal aspects of relationships must also be considered, since,
for example, the intensity of friendships changes over time (Marsden, 1990).
In network studies, it is also common for actors not to respond or not to
be available, and thus the relations originating from this actor cannot be
recorded (Stork and Richards, 1992).

Frequently, it is not possible to collect data for all nodes and edges of
a network. The network might be too large, the survey of all actors is
impractical, or the population of entities is not completely known. The
latter is, for example, the case with web graphs. In such cases, nodes
and edges of the network are sampled. Sampled network data may also
be interpreted as erroneous since they are incomplete. Depending on the
sampling procedure, sampling can lead to nodes or edges to be missing
randomly. However, this must not necessarily be the case (Leskovec and
Faloutsos, 2006; Hu and Lau, 2013). Network measures are almost always
influenced by sampling. In the case of random node sampling, it might be
expected that, for example, the degree distribution of the sampled network
is in the same class of distributions as the degree distribution of the entire
network. However, this is only the case for classical random graphs, but
not for other types of networks (Stumpf and Wiuf, 2005; Bliss et al., 2014;
Advani and Malde, 2018).

In the following, the structure of some selected network studies is briefly
described to illustrate which types of phenomena are modeled by networks
and why data collection errors often occur in these types of studies. Francis
et al. (2016) constructed a social network based on the genetic relatedness
of oral commensal bacteria collected from the oral microflora of the actors.
Ellis et al. (2017) constructed the social network of the southern resident
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(b) Observed, erroneous network.

Centrality
measure

Most central nodes
in the error-free

network

Most central nodes in the
observed, erroneous

network
Betweenness 5 10, 9, 7
Closeness 5 10, 9, 7
Degree 10, 9, 7 10, 9, 7
Eigenvector 10 10, 9, 7
PageRank 4 10, 9, 7

(c) Most central nodes induced by five centrality measures in the erroneous and the
error-free network.

Figure 1.2: Example for the impact of erroneous network data on centrality
measures. Although only one edge has not been observed, the most central
nodes change.
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killer whale population. Photographs of whales were analyzed, whales that
were observed closely together were considered to be part of the same group.
Fischer et al. (2018) proposed the use of cost-effective GPS devices to collect
movement data of wildlife. In their study, device malfunctions were reported
for 8.2% of the 110 sampling locations. Leecaster et al. (2016) collected
the contact duration students in a middle school in Utah using wireless
proximity sensors. The sensor’s signal could be interfered by clothes, bodies,
or objects such as tables. A signal about 20 seconds long was defined
as an interaction. Wood (2017) created a drug trafficking collaboration
network based on a Government’s Sentencing Memorandum, a summary of
testimonies, intercepted phone calls, and other evidence.

Another major area in which network data are collected is the study
of protein-protein interactions (ppi), which are conducted to, for instance,
improve the understanding and treatment of diseases. (De Las Rivas and
Fontanillo, 2010; Schwartz et al., 2009; Guimera and Sales-Pardo, 2010).
Although there are a number of procedures to obtain ppi data, the accuracy
varies strongly between those procedures (von Mering et al., 2002).

This selection of studies already shows that in network studies, it is
often hardly possible due to the design of the study or the nature of the
data to be collected, to collect or measure the corresponding data without
errors. An additional factor for studies in which the relationships are not
themselves binary is that a threshold value for dichotomizing of the edges
must be specified if the network model does not permit weighted edges.

1.2 Methods

This section explains basic concepts and methods that are necessary for the
discussion of the research questions in the next section and that are used in
the articles included in this dissertation.

A graph G(V,E) consists of a node set V and an edge set E, E ⊆ V ×V.
We denote the number of nodes in G by N and the number of edges by M.
In the following, we assume that G is undirected, unweighted, and simple,
i.e., it does not contain loops nor multiple edges. For many of the concepts
used, however, there are also versions for directed graphs. The adjacency
matrix of a graph is denoted by A, where Ai,j = 1 if there is an edge between
node vi and vj (i.e., (vi, vj) ∈ E(G)) and 0 otherwise. The neighborhood
of a node u is N(u) = {v : (u, v) ∈ E(G)}. It is the set of nodes that are
connected to u (Newman, 2003).
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1.2.1 Centrality measures

Numerous measures for analyzing networks exist. Based on their scale,
these measures can be categorized into macro-, meso-, and microscale mea-
sures (Zanin et al., 2016). Macroscale measures consider the network as
one entity, for example, the number of nodes or edges and the diameter.
Mesoscale measures include concepts that relate to groups of nodes within
the network, such as modularity or motifs. Microscale measures are concepts
that focus on individual nodes, though, they are often aggregated like, for
example, the number of connections a node has.

Centrality measures map a real number to every node in a network,
implying a ranking on the nodes, and are invariant under isomorphisms.
They solely depend on the network structure and not on, for example,
additional information about the nodes (Koschützki et al., 2005). Since the
object of centrality measures are the individual nodes, centrality measures
belong to the category of microscale measures. Centrality measures are used
in a variety of fields. To illustrate, a few examples are outlined hereafter.

Page et al. (1999) developed one of the most famous centrality measures,
the PageRank, to rank websites and order search engine results. It is also
used by Google Search. Kiss and Bichler (2008) applied centrality mea-
sures to customer networks to identify influencers for marketing campaigns.
Banerjee et al. (2013) proposed a centrality measure to identify people who
are important for the spread of information through social networks and
applied it to study the diffusion of microfinance in small villages in India.
In centrality-based targeted vaccination, centrality measures are used to
identify the most efficient targets for vaccination strategies and thus manip-
ulate the network structure (Wang et al., 2016). In the study of biological
systems, e.g., gene regulatory networks, centrality measures are also used
to improve the understanding of those systems (Koschützki and Schreiber,
2008).

In the following, the five centrality measures used in the articles included
in this dissertation are described in more detail: betweenness, closeness,
degree, eigenvector centrality, and the PageRank. By cG(u), we denote the
centrality value for a specific node u in a graph G w.r.t. a centrality measure
c. If the context permits, we do not explicitly mention the graph and u, v, w
are in V .

The degree centrality is a neighborhood-based centrality, it is defined as
the number of neighbors of a node:

degree(u) = |N(u)|. (1.1)
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The eigenvector centrality and the PageRank are both feedback mea-
sures (Koschützki et al., 2005). They are defined recursively, the centrality
value of a node depends on the centrality values of its neighbors. If G is
connected, then the eigenvector centrality of a node u defined by the unique
solution to

evc(u) = 1
λ

∑
v∈N(u)

evc(v), (1.2)

where λ is the largest eigenvalue of A (Bonacich, 1987). This measure was
first described by Landau (1895). The existence of a unique solution follows
from the Perron-Frobenius theorem (Newman, 2003).

The PageRank is defined as the unique solution to

PageRank(u) = d
∑

v∈N(u)

PageRank(v)
degree(v) + (1− d), (1.3)

with d as damping factor (usually 0.85) (Brin and Page, 1998). Originally
introduced for directed graphs, this concept is also applicable for undirected
graphs. One of the main differences between these two measures is that,
in the case of the eigenvector centrality, all neighbors of a node receive the
total centrality value of this node. In contrast, in the case of the PageRank,
neighbors of a node only receive a fraction of the node’s centrality value,
which depends on the total number of neighbors of this node.

For the calculation of the eigenvector for these two centrality measures,
eigenvector centrality and PageRank, the power iteration method is com-
monly used. A vector of length N is initialized with random values and
multiplied with the adjacency matrix. In every successive iteration, the
result is again multiplied with the adjacency matrix until the result con-
verges (Langville and Meyer, 2005).

Betweenness and closeness are both path-based centralities which de-
pend on the shortest paths between pairs of nodes in a network. Let σv,w(u)
denote the number of shortest paths between nodes v and w which contain
u, σv,w the total number of shortest paths between v and w, and dist(u, v)
the distance, the length of the shortest path, between node u and v. A com-
ponent of a graph is a maximal subgraph in which the nodes can reach each
other, i.e., the distance between those nodes is finite. A graph is connected
if it consists of one component, i.e., the pairwise distance between all nodes
in the graph is finite (Diestel, 2017).

The betweenness centrality measures on how many shortest paths a node
occurs. The idea behind it is that entities that appear more frequently on
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these paths are more central since, for example, more information passes
through them as it spreads through the network (Freeman, 1977):

betweenness(u) =
∑

v 6=u6=w

σv,w(u)
σv,w

, (1.4)

The closeness centrality measures how “close” one node is to all other
nodes in the network: the closer, the more central. The closeness is quanti-
fied using the distance (Bavelas, 1950; Freeman, 1978):

closeness(u) = 1∑
v dist(u, v) (1.5)

Note that this definition assumes that the graph is connected since the
distance between nodes in different components is not defined.

For both, the calculation of the betweenness and the closeness for all
nodes in a graph, the all-pairs shortest path problem has to be solved.
Using the Floyd-Warshall Algorithm (Floyd, 1962), this can be done in
O(N3) if there are no negative cycles in the graph. For an unweighted
graph, the runtime can be reduced to O(MN) (Brandes, 2001). Despite this
reduction in complexity, the exact calculation of these centrality measures
often takes too much time for larger networks leading to the calculation
being impracticable.

1.2.2 Random graph models
Random graph models have been used extensively since the 1950s. Among
mathematicians, the term random graph is often used synonymously for
the Erdős-Rényi (ER) random graph model discussed below (Solomonoff
and Rapoport, 1951; Erdős and Rényi, 1959; Gilbert, 1959; Bollobás, 2001;
Newman, 2003). For this model, various properties and effects have been
shown as, for example, the emergence of a giant component. In addition,
it has laid the foundation for further studies on percolation, for example,
for the resilience of networks and diffusion processes (Callaway et al., 2000;
Moore and Newman, 2000; Newman, 2002).

Many properties that occur in real-world network do, however, not occur
in ER graphs. In particular, these graphs have a completely different degree
distribution than real-world networks and there are no communities. This
model has, however, initiated the development of other, more sophisticated
random graph models and the characterization of growth processes that
yield networks that capture characteristics of real-world networks, especially
effects like a scale-free degree distribution or the small-world property.
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For example, ER graphs have a low average distance, a feature observed
in many real-world networks, but nodes in ER graphs show low local clus-
tering. To address this issue, Watts and Strogatz (1998) have proposed a
random graph model which incorporates parts of ER graphs. They start
with a regular lattice of nodes and randomly rewire some of the edges. This
model yields graphs which show both, low average distance and high local
clustering. These types of networks are called small-world networks.

Exponential random graphs models are another approach for identifying
characteristics that explain the formation of edges and thus explain the
observed network. Those characteristics can be structural or covariates
related to nodes or edges. These models yield a probability distribution over
all graphs (Holland and Leinhardt, 1981; Strauss, 1986; Robins et al., 2007).

Studies about the robustness of centrality measures commonly utilize
random graph models for multiple reasons. The number of real-world net-
works available is limited and their properties cannot be altered, hence, it is
difficult to generalize results found for these individual networks. Random
graph models allow the repeated generation of networks and their properties,
e.g. network size, density, or clustering, to be controlled. Thus, researchers
can study the relationships between those properties and the robustness of
centrality measures (Frantz et al., 2009). In addition to simulation-based
studies, some random graph models can be accessed analytically (Platig
et al., 2013). A brief description of models that are frequently used for the
study of the robustness of centrality measures — also in this dissertation — is
given below.

The Erdős-Rényi random graph model introduced by Solomonoff and
Rapoport (1951), Erdős and Rényi (1959), and Gilbert (1959) has two
parameters: the number of nodes n and the edge probability p. Since all node
pairs are connected with the same probability (p), the degree distribution
of the nodes in this model follows a binomial distribution. Note that the
existence of an edge is entirely independent of the existence of other edges.

In contrast, the Barabási-Albert model is based on the idea of prefer-
ential attachment (Simon, 1955; Price, 1976; Barabási and Albert, 1999).
Consequently, the probability that a new node will connect to an existing
node is proportional to the degree of the existing node. This model also
has two parameters. In addition to the number of nodes n, the parameter
m specifies the number of connections that a new node makes to existing
nodes. Due to this generation process, the degree distribution of the nodes
in graphs generated by this model follows a power-law distribution.

The configuration model is a method to create random graphs based on
existing degree sequences (Newman et al., 2001). In this model, there are
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no other parameters apart from the degree sequence. First, an empty graph
on n nodes is created (n is given by the degree sequence). Next, every node
u receives degree(u) stubs (here, degree(u) is the desired degree of node u).
Finally, pairs of stubs are chosen and connected with equal probability. This
procedure might results in graphs with multiple edges and loops.

1.3 Inaccurate network data and centrality
measures

As illustrated the example in Section 1.1, centrality measures can be strongly
influenced by erroneous network data. This dissertation contributes to the
understanding of the robustness of centrality measures.

Although the two topics sound similar, studies on the robustness of
networks have a different focus than studies about the robustness of central-
ity measures. The subject of studies on the robustness of networks is the
question how the functionality of a network as a whole is influenced by, for ex-
ample, the removal of nodes (see Albert et al. (2000); Callaway et al. (2000);
Holme et al. (2002); Klau and Weiskircher (2005); Cohen et al. (2000)). If
the term robustness is used in this work without further specification, then
the term always refers to the robustness of centrality measures.

Existing studies on the robustness of centrality measures are analyzed in
order to be able to outline the main focus of this dissertation. Primarily, the
emphasis is on how the robustness is quantified. Findings of existing studies
are summarized, and gaps in research are identified. To discuss the robust-
ness, we first have to introduce two terms. The error-free network is the net-
work which we are actually interested in, it is the network constructed from
correct, error-free network data and is typically not available. The observed
network is the network that is constructed from the data actually collected.

There exist different approaches to measure the robustness, described
below are the commonly used ones. There are approaches in which only
a portion of the nodes are considered and approaches in which all nodes
are considered. The first type includes top-k and overlap metrics. In the
case of top-k measurements, the frequency with which the most central
node or nodes in the error-free network occur among the k most central
nodes in the observed network is considered (Borgatti et al., 2006; Frantz
et al., 2009; Tsugawa and Ohsaki, 2015; Erman and Todorovski, 2015; Frantz
and Carley, 2017). For overlap measurements, it is calculated how many
of the most central nodes in the error-free network also occur among the
most central nodes in the observed network. The fraction of nodes to be
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considered (e.g., 10% of the most central nodes) is a parameter that has to
be specified (Borgatti et al., 2006; Frantz et al., 2009; Tsugawa and Ohsaki,
2015; Ufimtsev et al., 2016).

The most common way to quantify the robustness is to consider the
centrality values of all nodes using a correlation measure. The correlation
between the values for the nodes in the error-free and observed networks is
calculated, considering only the values for nodes contained in both networks.
Depending on the study, the Pearson correlation (Bolland, 1988; Costenbader
and Valente, 2003; Borgatti et al., 2006; Smith and Moody, 2013; Silk et al.,
2015; Smith et al., 2017) or a rank correlation (Kim and Jeong, 2007; Wang
et al., 2012; Erman and Todorovski, 2015; Niu et al., 2015; Schulz, 2016;
Holzmann et al., 2019) is used. In contrast to correlations measures, an
additional parameter has to be chosen in case of the top-k and overlap
metrics, which influences the results (Ufimtsev et al., 2016).

Most studies on the robustness of centrality measures are simulation-
based. This approach has changed little since Bolland (1988) and consists,
roughly spoken, of the following steps: A network is considered to be error-
free and different types of errors are applied to that network. This process
yields a simulated observed network. Centrality measures are calculated for
both networks and the robustness is calculated using one of the approaches
outlined above. The underlying network is either based on empirical network
data or is generated using a random graph model. The errors are often
simulated in such a way that the error affects all nodes or edges with
equal probability.

The robustness of a centrality measures depends on many influencing
factors, in particular, the type and extent of the error, the centrality measure
under consideration, the network topology, and the way the robustness is
measured. Deriving universal statements about the robustness of centrality
measures is, therefore, problematic — apart from the observations that
the measures are less robust, the larger the error is, and that the degree
centrality is usually more robust than other measures. Often, the results
of different studies are inconclusive. For example, the question of whether
centrality measures are more robust in larger networks. While Borgatti et al.
(2006) and Niu et al. (2015) do not observe an association between network
size and robustness, the observations by Costenbader and Valente (2003);
Wang et al. (2012); Smith et al. (2017) are ambiguous in that regard. In
contrast, Silk et al. (2015) and Lee and Pfeffer (2015) find that centrality
measures in larger network might be more robust.

Results in simulation studies depend strongly on the specific character-
istics of the data. In addition, empirical studies are often limited in terms
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of the number of networks studied, as the number of available networks
is limited.

There are studies that pursue an analytical approach to the robust-
ness (Ghoshal and Barabási, 2011; Platig et al., 2013; Tsugawa and Ohsaki,
2015; Holzmann et al., 2019). However, this also poses major challenges
and is often only made possible by many assumptions. In most cases, the
results are therefore limited to certain classes of networks, types of errors,
and centrality measures.

The concept of robustness presents a separate challenge for practical
application. The calculation of robustness requires that the error-free net-
work is known. However, this is not the case — if this were the case, the
robustness would not have to be calculated. There are studies proposing
methods to compensate for the effects of measurement errors. For exam-
ple, Butts (2003) developed Bayesian models that incorporate false positive
edges and false negative edges yielding a probability distribution over the
edges. Huisman (2009) studied imputation procedures and their practicality
in the context of network-level measures. Kim and Leskovec (2011) intro-
duced an expectation-maximization algorithm to recover missing nodes and
edges. However, these studies did not investigate whether these methods
also improve the results for centrality measures or whether they can be used
to estimate their robustness.

1.4 Contribution

The overview of the previous section indicates a need for further research
on the topic of robustness of centrality measures. Hence, the main focus of
this dissertation is to understand

(1) the impact of (primarily) non-random errors on the robustness of
centrality measures,

(2) how network properties are related to the robustness of centrality
measures, and

(3) how the robustness can be calculated without knowledge of the error-
free network.

These issues are addressed by the four interrelated articles that are part of
this dissertation.
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The impact of partially missing communities on the reliability of
centrality measures

In Martin (2018), Chapter 2, we address (1). The paper investigates the
reliability of centrality measures when missing nodes are likely to belong to
the same community. We study the behavior of five commonly used central-
ity measures in uniform and scale-free networks in various error scenarios.
We find that centrality measures are generally more reliable when missing
nodes are likely to belong to the same community than in cases in which
nodes are missing uniformly at random. In scale-free networks, the between-
ness centrality becomes, however, less reliable when missing nodes are more
likely to belong to the same community. Moreover, centrality measures in
scale-free networks are more reliable in networks with stronger community
structure. In contrast, we do not observe this effect for uniform networks.
Our observations suggest that the impact of missing nodes on the reliability
of centrality measures might not be as severe as the literature suggests.

The role of network size for the robustness of centrality measures

In Martin and Niemeyer (in press), Chapter 4, we address (2). Previous
studies have observed that the robustness mainly depends on the network
structure, the centrality measure, and the type of error. Previous findings
regarding the influence of network size on robustness are, however, incon-
clusive.

Based on twenty-four empirical networks, we investigate the relationship
between global network measures, especially network size and average degree,
and the robustness of the degree, eigenvector centrality, and PageRank. We
demonstrate that, in the vast majority of cases, networks with a higher
average degree are more robust.

For random graphs, we observe that the robustness of Erdős-Rényi net-
works decreases with an increasing average degree, whereas with Barabási-
Albert networks, the opposite effect occurs: with an increasing average
degree, the robustness also increases.

As a first step into an analytical discussion, we prove that for Erdős-Rényi
networks of different size but with the same average degree, the robustness
of the degree centrality remains stable.

Influence of measurement errors on networks: Estimating the ro-
bustness of centrality measures

In Martin and Niemeyer (2019), Chapter 3, we address (3). Previous studies
have dealt either with the general effects of measurement errors on centrality
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measures or with the treatment of erroneous network data. As discussed
above, the robustness concept relies on knowing both the error-free and the
observed network, and thus it is not possible to calculate the robustness
when only the observed network is available — which is usually the case. In
this paper, we propose a method for estimating the impact of measurement
errors on the reliability of a centrality measure, given the measured network
and assumptions about the type and intensity of the measurement error.
This method allows researchers to estimate the robustness of a centrality
measure in a specific network and can, therefore, be used as a basis for
decision making.

In our experiments, we apply this method to random graphs and real-
world networks. We observe that our estimation is, in the vast majority
of cases, a good approximation for the robustness of centrality measures.
Beyond this, we propose a heuristic to decide whether the estimation proce-
dure should be used. We analyze, for specific networks, why the eigenvector
centrality is less robust than, for example, the PageRank. Finally, we give rec-
ommendations on how our findings can be applied to future network studies.

A process for the evaluation of node embedding methods in the
context of node classification

In Martin and Riebeling (2020), Chapter 5, we also address (3). In Martin
and Niemeyer (2019), we argue that imputation techniques should be im-
proved, especially with regard to using centrality measures on the imputed
network. Since there have been considerable advances in the field of machine
learning in recent years, it is logical that these methods are used for impu-
tation methods in the future. In order to be able to use network data with
common machine learning methods, an embedding for the network data has
to be found first. In order to evaluate which embedding method is suitable,
we develop a framework to compare node embedding methods with each
other. This paper is, therefore, the preliminary work for the development
of imputation procedures on the basis of machine learning techniques.

Node embedding methods find latent lower-dimensional representations
which are used as features in machine learning models. In the last few years,
these methods have become extremely popular as a replacement for manual
feature engineering.

Since authors use various approaches for the evaluation of node em-
bedding methods, existing studies can rarely be efficiently and accurately
compared. We address this issue by developing a process for a fair and ob-
jective evaluation of node embedding procedures w.r.t. node classification.
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This process supports researchers and practitioners to compare new and
existing methods in a reproducible way.

We apply this process to four popular node embedding methods and make
valuable observations. With an appropriate combination of hyperparameters,
good performance can be achieved even with embeddings of lower dimensions,
which is positive for the run times of the downstream machine learning task
and the embedding algorithm. Multiple hyperparameter combinations yield
similar performance. Thus, no extensive, time-consuming search is required
to achieve reasonable performance in most cases.

1.5 Conclusions
The articles that are part of this dissertation contribute to a better under-
standing of the robustness of centrality measures. The role of the individual
articles was highlighted in the previous section. The two journal-length
articles constitute the main contribution. Martin and Niemeyer (2019),
Chapter 3, introduces a new method for the estimation of the robustness
and has been published in Network Science. Martin and Niemeyer (in press),
Chapter 4, provides new results on the relationship between robustness and
the average degree and is currently under review in Network Science. Pre-
liminary results of this study have been published at a conference (Martin
and Niemeyer, 2020).

Based on the findings of this dissertation, there are several possibilities
for further research. For example, it would be interesting to investigate how
non-random errors occur in network data and how they can be explained, for
example, by covariates of nodes or edges. In the same setting, more detailed
results on the effects of non-random errors and the joint occurrence of several
types of errors would be valuable. Furthermore, more sophisticated random
graph models could be used to further investigate the relationship between
network properties and the robustness in simulation studies and analytically.



18 1 Introduction

1.6 References
A. Advani and B. Malde. Credibly Identifying Social Effects: Accounting
for Network Formation and Measurement Error. Journal of Economic
Surveys, 32(4):1016–1044, 2018.

R. Albert, H. Jeong, and A.-L. Barabási. Error and attack tolerance of
complex networks. Nature, 406(July):378–382, 2000.

A. Banerjee, A. G. Chandrasekhar, E. Duflo, and M. O. Jackson. The
diffusion of microfinance. Science, 341(6144), 2013.

A. Barabási. Linked: The New Science of Networks. Perseus Pub., 2002.

A.-L. Barabási. Network Science. Cambridge University Press, 2016.

A.-L. Barabási and R. Albert. Emergence of Scaling in Random Networks.
Science, 286(October):509–512, 1999.

A. Bavelas. Communication patterns in Task-Oriented groups. The Journal
of the Acoustical Society of America, 22(6):725–730, 1950.

H. R. Bernard, P. Killworth, D. Kronenfeld, and L. Sailer. The Problem of
Informant Accuracy - The Validity of Retrospective Data. Annual Review
of Anthropology, 13:495–517, 1984.

C. A. Bliss, C. M. Danforth, and P. S. Dodds. Estimation of global network
statistics from incomplete data. PLoS ONE, 9(10):1–18, 2014.

P. Boldi and S. Vigna. Four degrees of separation, really. Proceedings of
the 2012 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining, ASONAM 2012, pages 1222–1227, 2012.

J. M. Bolland. Sorting out centrality: An analysis of the performance of
four centrality models in real and simulated networks. Social Networks,
10(3):233–253, 1988.

B. Bollobás. Random Graphs. 2001.

P. Bonacich. Power and Centrality: A Family of Measures. American
Journal of Sociology, 92(5):1170–1182, 1987.

S. P. Borgatti, K. M. Carley, and D. Krackhardt. On the robustness of
centrality measures under conditions of imperfect data. Social Networks,
28(2):124–136, 2006.



1.6 References 19

S. P. Borgatti, A. Mehra, D. J. Brass, and G. Labianca. Network analysis
in the social sciences. Science, 323(5916):892–895, 2009.

U. Brandes. A faster algorithm for betweenness centrality*. The Journal of
Mathematical Sociology, 25(2):163–177, 2001.

U. Brandes, G. Robins, A. McCranie, and S. Wasserman. What is network
science? Network Science, 1(01):1–15, 2013.

S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web
Search Engine. In Seventh International World-Wide Web Conference
(WWW 1998), 1998.

C. T. Butts. Network inference, error, and informant (in)accuracy: A
Bayesian approach. Social Networks, 25(2):103–140, 2003.

C. T. Butts. Revisiting the foundations of network analysis. Science, 325
(5939):414–416, 2009.

D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Network
robustness and fragility: Percolation on random graphs. Physical Review
Letters, 85(25):5468–5471, 2000.

N. Christakis and J. Fowler. Connected: The Amazing Power of Social
Networks and How They Shape Our Lives. HarperCollins Publishers,
2010.

R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin. Resilience of the internet
to random breakdowns. Phys. Rev. Lett., 85(21):4626–4628, Nov. 2000.

E. Costenbader and T. W. Valente. The stability of centrality measures
when networks are sampled. Social Networks, 25(4):283–307, 2003.

J. De Las Rivas and C. Fontanillo. Protein-protein interactions essentials:
Key concepts to building and analyzing interactome networks. PLoS
computational biology, 6(6):e1000807, June 2010.

R. Diestel. Graph Theory. Springer Graduate Texts in Mathematics.
Springer-Verlag, Reinhard Diestel, 5 edition, 2017.

S. Ellis, D. W. Franks, S. Nattrass, M. A. Cant, M. N. Weiss, D. Giles, K. C.
Balcomb, and D. P. Croft. Mortality risk and social network position
in resident killer whales: Sex differences and the importance of resource
abundance. Proceedings of the Royal Society B: Biological Sciences, 284
(1865):20171313, Oct. 2017.



20 1 Introduction

P. Erdős and A. Rényi. On random graphs. Publicationes Mathematicae, 6:
290–297, 1959.

N. Erman and L. Todorovski. The effects of measurement error in case of
scientific network analysis. Scientometrics, 104(2):453–473, 2015.

M. Fischer, K. Parkins, K. Maizels, D. R. Sutherland, B. M. Allan, G. Coul-
son, and J. Di Stefano. Biotelemetry marches on: A cost-effective GPS
device for monitoring terrestrial wildlife. PLOS ONE, 13(7):e0199617,
July 2018.

R. W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, June
1962.

S. S. Francis, M. M. Plucinski, A. D. Wallace, and L. W. Riley. Genotyping
Oral Commensal Bacteria to Predict Social Contact and Structure. Plos
One, 11(9):e0160201, 2016.

T. L. Frantz and K. M. Carley. Reporting a network’s most-central actor
with a confidence level. Computational and Mathematical Organization
Theory, 23(2):301–312, June 2017.

T. L. Frantz, M. Cataldo, and K. M. Carley. Robustness of centrality
measures under uncertainty: Examining the role of network topology.
Computational and Mathematical Organization Theory, 15(4):303–328,
2009.

L. C. Freeman. A Set of Measures of Centrality Based on Betweenness.
Sociometry, 40(1):35, 1977.

L. C. Freeman. Centrality in social networks conceptual clarification. Social
Networks, 1(3):215–239, 1978.

G. Ghoshal and A.-L. Barabási. Ranking stability and super-stable nodes
in complex networks. Nature communications, 2:394, 2011.

E. N. Gilbert. Random graphs. The Annals of Mathematical Statistics, 30
(4):1141–1144, 1959.

R. Guimera and M. Sales-Pardo. Missing and spurious interactions and the
reconstruction of complex networks. Proceedings of the National Academy
of Sciences, 104(51):20167–20172, Apr. 2010.



1.6 References 21

P. W. Holland and S. Leinhardt. An exponential family of probability
distributions for directed graphs. Journal of the american Statistical
association, 76(373):33–50, 1981.

P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han. Attack Vulnerability of
Complex Networks. Phys. Rev. E, 65(5 Pt 2):56109, 2002.

H. Holzmann, A. Anand, and M. Khosla. Delusive PageRank in Incomplete
Graphs. In L. M. Aiello, C. Cherifi, H. Cherifi, R. Lambiotte, P. Lió,
and L. M. Rocha, editors, Complex Networks and Their Applications VII,
pages 104–117, Cham, 2019. Springer International Publishing.

P. Hu and W. Lau. A survey and taxonomy of graph sampling. arXiv.org,
pages 1–34, 2013.

M. Huisman. Imputation of missing network data: Some simple procedures.
Journal of Social Structure, 10(1):1–29, 2009.

M. Kim and J. Leskovec. The Network Completion Problem: Inferring
Missing Nodes and Edges in Networks. SIAM International Conference
on Data Mining, pages 47–58, 2011.

P. J. Kim and H. Jeong. Reliability of rank order in sampled networks.
European Physical Journal B, 55(1):109–114, 2007.

C. Kiss and M. Bichler. Identification of influencers — Measuring influence
in customer networks. Decision Support Systems, 46(1):233–253, 2008.

G. W. Klau and R. Weiskircher. Robustness and Resilience. In U. Brandes
and T. Erlebach, editors, Network Analysis: Methodological Foundations,
pages 417–437. Springer Berlin Heidelberg, 2005.

D. Koschützki and F. Schreiber. Centrality analysis methods for biologi-
cal networks and their application to gene regulatory networks. Gene
Regulation and Systems Biology, 2:193–201, 2008.

D. Koschützki, K. Lehmann, and L. Peeters. Centrality Indices. In U. Bran-
des and T. Erlebach, editors, Network Analysis: Methodological Founda-
tions, pages 16–61. Springer Berlin Heidelberg, 2005.

E. Landau. Zur relativen Wertbemessung der Turnierresultate. Deutsches
Wochenschach, 11:192–202, 1895.

A. N. Langville and C. D. Meyer. A survey of eigenvector methods for web
information retrieval. SIAM review, 47(1):135–161, 2005.



22 1 Introduction

E. O. Laumann, P. V. Marsden, and D. Prensky. The Boundary Specification
Problem in Network Analysis. In R. Burt and M. Minor, editors, Applied
Network Analysis, pages 18–34. Sage Publications, 1983.

J.-S. Lee and J. Pfeffer. Robustness of Network Centrality Metrics in the
Context of Digital Communication Data. Proceedings of the 48th Hawaii
International Conference on System Sciences, 2015.

M. Leecaster, D. J. A. Toth, W. B. P. Pettey, J. J. Rainey, H. Gao, A. Uz-
icanin, and M. Samore. Estimates of social contact in a middle school
based on self-report and wireless sensor data. PLOS ONE, 11(4), 2016.

J. Leskovec and C. Faloutsos. Sampling from large graphs. Proceedings of
the 12th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 631–636, 2006.

J. Leskovec and E. Horvitz. Planetary-scale views on a large instant-
messaging network. In Proceedings of the 17th International Conference
on World Wide Web, WWW ’08, pages 915–924, New York, NY, USA,
2008. ACM.

P. V. Marsden. Network data and measurement. Annual Review of Sociology,
16(1):435–463, 1990.

C. Martin. The Impact of Partially Missing Communities on the Reliability
of Centrality Measures. In C. Cherifi, H. Cherifi, M. Karsai, and M. Mu-
solesi, editors, Complex Networks & Their Applications VI, pages 41–52.
Springer International Publishing, 2018.

C. Martin and P. Niemeyer. Influence of measurement errors on networks:
Estimating the robustness of centrality measures. Network Science, 7(2):
180–195, 2019.

C. Martin and P. Niemeyer. The role of network size for the robustness
of centrality measures. In H. Cherifi, S. Gaito, J. F. Mendes, E. Moro,
and L. M. Rocha, editors, Complex Networks and Their Applications VIII,
pages 40–51, Cham, 2020. Springer International Publishing.

C. Martin and P. Niemeyer. On the impact of network size and average
degree on the robustness of centrality measures. Network Science, in press.

C. Martin and M. Riebeling. A Process for the Evaluation of Node Em-
bedding Methods in the Context of Node Classification. ArXiv E-Prints,
arXiv:2005.14683, 2020.



1.6 References 23

C. Moore and M. E. Newman. Epidemics and percolation in small-world
networks. Physical Review E, 61(5):5678, 2000.

M. Newman. The Structure and Function of Complex Networks. SIAM
Review, 45(2):167–256, 2003.

M. E. Newman. Spread of epidemic disease on networks. Physical review E,
66(1):016128, 2002.

M. E. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with
arbitrary degree distributions and their applications. Physical review. E,
Statistical, nonlinear, and soft matter physics, 64, 2001.

M. E. J. Newman. Networks: An Introduction. OUP Oxford, 2010.

Q. Niu, A. Zeng, Y. Fan, and Z. Di. Robustness of centrality measures
against network manipulation. Physica A: Statistical Mechanics and its
Applications, 438:124–131, 2015.

L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation
Ranking: Bringing Order to the Web. Technical Report 1999-66, Stanford
InfoLab / Stanford InfoLab, Nov. 1999.

J. Platig, E. Ott, and M. Girvan. Robustness of network measures to link
errors. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics,
88(6), 2013.

D. d. S. Price. A general theory of bibliometric and other cumulative
advantage processes. Journal of the American society for Information
science, 27(5):292–306, 1976.

G. Robins, P. Pattison, Y. Kalish, and D. Lusher. An introduction to expo-
nential random graph (p*) models for social networks. Social Networks,
29(2):173–191, 2007.

J. Schulz. Using Monte Carlo simulations to assess the impact of author name
disambiguation quality on different bibliometric analyses. Scientometrics,
107(3):1283–1298, 2016.

A. S. Schwartz, J. Yu, K. R. Gardenour, R. L. Finley, Jr, and T. Ideker.
Cost-effective strategies for completing the interactome. Nature methods,
6(1):55–61, Jan. 2009.



24 1 Introduction

M. J. Silk, A. L. Jackson, D. P. Croft, K. Colhoun, and S. Bearhop. The
consequences of unidentifiable individuals for the analysis of an animal
social network. Animal Behaviour, 104:1–11, 2015.

H. A. Simon. On a class of skew distribution functions. Biometrika, 42(3/4):
425–440, 1955.

J. A. Smith and J. Moody. Structural Effects of Network Sampling Coverage
I: Nodes Missing at Random. Social Networks, 35(4), 2013.

J. A. Smith, J. Moody, and J. H. Morgan. Network sampling coverage II:
The effect of non-random missing data on network measurement. Social
Networks, 48:78–99, 2017.

R. Solomonoff and A. Rapoport. Connectivity of random nets. The bulletin
of mathematical biophysics, 13(2):107–117, June 1951.

D. Stork and W. D. Richards. Nonrespondents in Communication Network
Studies: Problems and Possibilities. Group & Organization Management,
17(2):193–209, 1992.

D. Strauss. On a general class of models for interaction. SIAM review, 28
(4):513–527, 1986.

M. P. Stumpf and C. Wiuf. Sampling properties of random graphs: The
degree distribution. Physical Review E, 72(3):036118, 2005.

J. Travers and S. Milgram. An Experimental Study of the Small World
Problem. Sociometry, 32(4):425–443, 1969.

S. Tsugawa and H. Ohsaki. Analysis of the Robustness of Degree Cen-
trality against Random Errors in Graphs. In Studies in Computational
Intelligence, volume 597, pages 25–36. 2015.

V. Ufimtsev, S. Sarkar, A. Mukherjee, and S. Bhowmick. Understanding
Stability of Noisy Networks through Centrality Measures and Local Con-
nections. CoRR, 2016.

C. von Mering, R. Krause, B. Snel, M. Cornell, S. G. Oliver, S. Fields,
and P. Bork. Comparative assessment of large-scale data sets of pro-
tein–protein interactions. Nature, 417(6887):399–403, May 2002.

D. J. Wang, X. Shi, D. A. McFarland, and J. Leskovec. Measurement error
in network data: A re-classification. Social Networks, 34(4):396–409, 2012.



1.6 References 25

Z. Wang, C. T. Bauch, S. Bhattacharyya, A. d’Onofrio, P. Manfredi, M. Perc,
N. Perra, M. Salathé, and D. Zhao. Statistical physics of vaccination.
Physics Reports, 664:1–113, 2016.

S. Wasserman and K. Faust. Social Network Analysis: Methods and Appli-
cations. Cambridge University Press, 1994.

D. Watts. Six Degrees: The Science of a Connected Age. Science (W.W.
Norton). Norton, 2003.

D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ net-
works. Nature, 393(6684):440–2, 1998.

G. Wood. The structure and vulnerability of a drug trafficking collaboration
network. Social Networks, 48:1–9, 2017.

M. Zanin, D. Papo, P. A. Sousa, E. Menasalvas, A. Nicchi, E. Kubik, and
S. Boccaletti. Combining complex networks and data mining: Why and
how. Physics Reports, 635:1–44, 2016.





The impact of partially missing
communities on the reliability of
centrality measures

Christoph Martin

This paper has been published as

Martin, C. (2018). The Impact of Partially Missing Communities on the
Reliability of Centrality Measures. In C. Cherifi, H. Cherifi, M. Karsai, &

M. Musolesi (Eds.), Complex Networks & Their Applications VI (pp.
41–52). Springer International Publishing.

https://doi.org/10.1007/978-3-319-72150-7_4.

27

https://doi.org/10.1007/978-3-319-72150-7_4


The layout has been revised.



29

Abstract
Network data is usually not error-free, and the absence of some nodes is
a very common type of measurement error. Studies have shown that the
reliability of centrality measures is severely affected by missing nodes. This
paper investigates the reliability of centrality measures when missing nodes
are likely to belong to the same community. We study the behavior of five
commonly used centrality measures in uniform and scale-free networks in
various error scenarios. We find that centrality measures are generally more
reliable when missing nodes are likely to belong to the same community than
in cases in which nodes are missing uniformly at random. In scale-free
networks, the betweenness centrality becomes, however, less reliable when
missing nodes are more likely to belong to the same community. Moreover,
centrality measures in scale-free networks are more reliable in networks with
stronger community structure. In contrast, we do not observe this effect
for uniform networks. Our observations suggest that the impact of missing
nodes on the reliability of centrality measures might not be as severe as the
literature suggests.

2.1 Introduction
Centrality measures are commonly used in network analysis. Network data is,
however, rarely error-free. Some parts of a network are often not recorded
correctly. For example, nodes could be missing due to the non-response
effect or the boundary specification problem (Kossinets, 2006). Some users
in social networking services may have restrictive privacy settings and thus
their profiles are not accessible or the number of API requests might be
limited (Rezvanian and Meybodi, 2015). In addition, this type of error does
commonly occur when bio-logging is used to collect interaction data (Silk,
2017).

Studies have found that the reliability of centrality measures is often
severely compromised by missing nodes (Smith et al., 2017; Smith and
Moody, 2013; Boldi et al., 2013; Wang et al., 2012; Frantz et al., 2009; Kim
and Jeong, 2007; Borgatti et al., 2006; Kossinets, 2006; Costenbader and
Valente, 2003; Bolland, 1988). These studies agree that higher levels of error
lead to lower reliability. The exact extent of the impact of missing nodes on
the reliability does, however, depend on a variety of factors. Analyzing Erdős-
Rényi networks, Borgatti et al. (2006) observed that centrality measures
behaved similarly. Considering different types of empirical networks and
random graphs, studies found that the reliability of centrality measures
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strongly depends on the type of network. For example, Smith et al. (2017)
found that centrality measures are more reliable in larger, more centralized
networks. Closeness centrality was been reported to be more reliable than
betweenness and degree centrality (Kim and Jeong, 2007). Moreover, Boldi
et al. (2013) observed that social networks are more robust to missing nodes
than web graphs. Despite their important findings, previous studies have
mostly focused on the case where nodes are missing uniformly at random.
A notable exception is Smith et al. (2017). In this study, the authors
investigated the effect of missing nodes in cases in which the probability
that a node is missing depends on their centrality. They found that the
reliability is worse when more central nodes are missing.

Since nodes in a network are interconnected, it seems obvious that the
behavior of nodes in a community will, at least to some extent, determine
whether other nodes from that community can be observed or not (Smith
et al., 2017). For example, some groups within a network may have concerns
about the collection of their data and therefore collectively refuse to partici-
pate in a survey or adopt strict policies regarding the use of their data in
social networking services. In animal research, subgroups of a population
may be able to avoid being trapped and tagged and are therefore missing in
the resulting network. Despite the multitude of possible scenarios in which
this type of measurement error may occur, it has not been considered in
previous research.

In this study, we investigate how reliable centrality measures are when
missing nodes are likely to belong to the same community, i.e., the prob-
ability that a node is missing depends on which other nodes are missing.1
In particular, we examine whether this type of measurement error has a
stronger or smaller impact on the reliability than the purely random ab-
sence of nodes. We use two random graph models to answer this question
for uniform and scale-free networks. These models enable us to analyze the
influence of the community structure on the reliability.

Our results suggest that centrality measures are more reliable when
missing nodes are likely to belong to the same community than in cases
in which nodes are missing uniformly at random. In scale-free networks,
however, the betweenness centrality becomes less reliable when missing nodes
are more likely to belong to the same community. Moreover, in scale-free
networks, centrality measures are more reliable in networks with stronger
community structure. In contrast, we do not observe this effect for uniform

1 Despite the similar wording, this work does not address the reliability or robustness
of networks. For an extensive overview about the robustness of networks see Havlin and
Cohen (2010) and Barabási (2016).
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networks. In addition to presenting these findings, we introduce a novel
approach which we will refer to as “community bias”. This approach allows
us to simulate different levels of measurement error and enables us to study
their impact on the reliability of centrality measures.

2.2 Methods & experimental setup

We denote an undirected, unweighted graph by G and the vertex set of a
graph G by V (G). In all graphs that we consider in this study, every node
belongs to some community. We denote the nodes that belong to community
j in graph G by Vj(G). We use the terms graph and network interchange-
ably. A centrality measure c is a real-valued function that assigns central-
ity values to all nodes in a graph and is invariant to structure-preserving
mappings, i.e., centrality values depend solely on the structure of a graph.
External information (e.g., node or edge attributes) have no influence on
the centrality values (Koschützki et al., 2005). Similarly to Martin and
Niemeyer (2017), we denote the centrality value for node u ∈ V (G) by cG(u)
and the centrality values for all nodes in G (u1, u2, . . . , un) by the vector
c(G) := (c(u1), . . . , c(un)).

The following centrality measures are used in this study: closeness cen-
trality (Freeman, 1978), betweenness centrality (Freeman, 1977), degree
centrality, eigenvector centrality (Bonacich, 1987), and the PageRank (Brin
and Page, 1998).

There are multiple definitions of communities in networks and, depending
on the context, some are more appropriate than others. In this study, a
community is a subgraph where each of its vertices is more strongly attached
to vertices in that subgraph than to vertices in any other subgraph (Hu et al.,
2008; Fortunato and Hric, 2016). Hence, the fraction of edges that a node
has to other nodes which are not part of its community (compared to the
total number of edges that are connected to this node) is an indicator
of the strength of the community structure (“community strength”) in a
network. The lower this ratio, the stronger the community structure. We
can quantify the strength of the community structure by calculating the
modularity of a graph with respect to a mapping which maps the nodes to
communities (Newman and Girvan, 2004).

Some community definitions allow communities to overlap. We focus
on non-overlapping communities. For a more detailed discussion of the
definition of communities in networks see Wasserman and Faust (1994),
Boccaletti et al. (2006), and Fortunato (2010).
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2.2.1 Data
To investigate the effect of community structure on the reliability of cen-
trality measures, we use two random graph models. There are two main
reasons to use synthetic graphs. When using random graphs models, we
know the ground-truth mapping from nodes to communities, i.e., we know
which nodes belong to the same community. In contrast, for real-world
networks we might not know if there are communities at all (Fortunato and
Barthélemy, 2007). Moreover, the random graph models enable us to vary
the strength of the community structure (as described above) and thus gives
us the opportunity to study the effect of the community strength on the
reliability of centrality measures explicitly.

In the clustered random graph (CRG) model, n nodes are partitioned
into k sets. Nodes in the same set belong to the same community. With
probability pintra, edges are created between nodes in the same community.
Edges between nodes that are not in the same community are created with
probability pinter. This model was originally introduced by (Girvan and
Newman, 2002) to benchmark community detection algorithms. Since the
number of edges from a node to other nodes in the same community and
the number of edges from a node to nodes in other communities both follow
a binomial distribution (with different parameters though), this model is
conceptually close to Erdős-Rényi graphs (Erdős and Rényi, 1959; Garbers
et al., 1990).

We use two configurations of the CRG model, one with weaker com-
munity structure (CRGweak) and one with stronger community structure
(CRGstrong). In both configurations, we set n = 1000 and k = 25. For
the CRGweak configuration, we set pintra to 0.1 and pinter to 0.01. For the
CRGstrong configuration, we set pintra to 0.2 and pinter to 0.005.

The second model is the Lancichinetti-Fortunato-Radicchi (LFR) model
as described in Lancichinetti et al. (2008) and Staudt et al. (2017). Accord-
ing to this model, the distribution of the node degrees and distribution of the
community sizes both follow a power-law distribution. The degree distribu-
tion and the community size distribution in empirical networks can often be
described by a power-law distribution (Leskovec et al., 2008; Clauset et al.,
2009). Hence, graphs generated by this models share various characteristics
with real-world networks.

For the degree distribution, we use an average degree of 10, a maximum
degree of 50, and an exponent of −2. For the community size distribution,
we use minimum community size of 5, maximum community size of 100,
and an exponent of −2. The mixing parameter µ determines the fraction
of neighbors of each node that do not belong to the node’s own community.
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Table 2.1: Statistics for graphs generated by the random graph configu-
rations that are used in this paper. Numbers are mean values based on
100 realizations. Standard deviations are listed in parentheses. “Clustering”
denotes the average clustering coefficient and “Communities” denotes the
number of communities.

CRGstrong CRGweak LFRstrong LFRweak

Nodes 1000 1000 1000 1000
Edges 6380 (86) 6798 (78) 5028 (129) 5022 (126)
Diameter 5.0 (0.1) 4.9 (0.3) 6.0 (0.0) 5.0 (0.2)
Communities 25 (0.0) 25 (0.0) 69 (7.9) 68 (8.6)
Clustering 0.08 (0.003) 0.02 (0.001) 0.18 (0.017) 0.03 (0.002)
Modularity 0.581 (0.006) 0.253 (0.006) 0.534 (0.007) 0.149 (0.007)

Again, we use two configurations of the LFR model. One with µ = 0.8 and
thus a weaker community structure (LFRweak) and one with µ = 0.4 and
thus a stronger community structure (LFRstrong). In addition, we use a third
variation of this model for the second part of our experiments. Here we use
the same parameters as described above, but vary the mixing parameter µ
from 0.15 to 0.95 in steps of 0.05. We denote these 17 configurations by
LFRvarying(µ).

In both of these random graph models, the centrality measures are usually
correlated. However, this is not problematic since centrality measures in
real-world networks are also often correlated with each other (Valente et al.,
2008). Various properties of graphs that are generated by the random graph
configurations used in this paper are listed in Table 2.1.

2.2.2 Quantifying measurement errors and reliability
Modeling measurement errors As discussed in the introduction, in a
variety of scenarios, it is reasonable to assume that missing nodes are not
independent of each other. In fact, missing nodes might belong to the same
community and thus the absence of nodes is “biased” towards communities.
Here we describe a novel approach to model this type of measurement error.

To simulate that dα · |V (G)|e nodes are missing from a graph G, we
create a copy of G that we denote by G′ and proceed as follows:

1. First, we choose a community from which one node will be removed.
We denote this community by j. We can enumerate the communities
since the random graph models provide us the mapping from the nodes
to the communities.
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Let P (j) be the probability that community j will be selected. Then

P (j) ∝ [1 +missing(j)]λ (2.1)

if there are still nodes in the graph that belong to community j. Here,
missing(j) denotes the number of nodes that belong to community
j and have already been removed from the graph G′ and λ is a non-
negative real number which determines the strength of the “community
bias”. If all nodes of community j have already been removed from
the graph, P (j) = 0.

2. Next, we randomly choose a node from Vj(G) that has not yet been
removed from G′ and remove it from G′

3. We repeat this process until dα · |V (G)|e nodes have been removed
from G′.

This procedure has two parameters. The intensity of the simulated
measurement error is controlled by α, the fraction of nodes that are removed
from the graph. The extent of the bias of missing nodes to belong to the
same community (“community bias”) is controlled by λ. If λ = 0, then
there is no community bias and all nodes have the same probability to
be removed from the graph (independently of already missing nodes) if all
communities are of the same size. Otherwise P (j) has to be reweighted w.r.t.
the community sizes. For λ > 0, nodes are more likely to be removed from
communities where nodes have already been removed. For large values of λ,
the community that gets chosen in the first iteration usually gets chosen
again and again until all nodes from that community are removed from the
graph. In this case, entire communities are essentially removed successively.

Quantifying the reliability Network data is usually affected by measure-
ment errors, as discussed in the introduction (e.g., some actors are missing).
Hence, we seek to reveal the reliability of centrality values that are calculated
based on the erroneous network data. To quantify this reliability of centrality
measures, we use the Kendall tau-b rank correlation coefficient τ (Kendall,
1945). Rank correlations are commonly used to evaluate the ramifications of
network modifications on centrality measures because researchers are often
interested in the ranking of nodes derived from centrality measures rather
than in the actual centrality values (Kim and Jeong, 2007; Wang et al., 2012;
Lee and Pfeffer, 2015).

Let G be the “error-free” graph, G′ an erroneous version of G which is
affected by some type of measurement error, and c a centrality measure.
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We define the reliability of the centrality measure c with respect to G, G′,
and the type of measurement error as τ(c(G), c(G′)) (Martin and Niemeyer,
2017). Similar to existing studies, we only consider entries in c(G) and c(G′)
which correspond to nodes that do exist in G and G′ (Kim and Jeong, 2007;
Wang et al., 2012). Moreover, we only consider nodes that are in the largest
connected component of the particular graph. (We observed, however, that
almost all graphs in our experiments were connected.) For reasons of brevity,
we only write τ for the reliability of a centrality measure c when G, G′, and
c are apparent from the context.

2.2.3 Experimental setup
For all random graph configurations that are described in Section 2.2.1, we
study the impact of erroneous data collection on the reliability of centrality
measures as follows:

1. Generate a graph according to the random graph configuration (e.g.,
LFRweak) and denote it by G.

2. Apply the remove node procedure (Section 2.2.2) with parameters α
and λ to G and denote the resulting modified graph by G′.

3. Finally, calculate the reliability of the centrality measures τ(c(G), c(G′))
as described above (Section 2.2.2).

For our experiments, we use the following parameters: As centrality mea-
sures c we use betweenness, closeness, degree, eigenvector centrality, and
PageRank. As the fraction of nodes that are removed from the graph, we
use values of α ranging from 0.025 to 0.5 in steps of 0.025. To control the
extent of the community bias (the likelihood that missing nodes belong
to the same community), we use values of λ ranging from 0 to 3 in steps
of 0.5. For all combinations of these parameter values, we perform the
experiment 100 times.

The NetworkKit library (Staudt et al. (2016), v4.3) is used for graph
generation and calculation of centrality measures. The NetworkX library
(Hagberg et al. (2008), v1.11) is used for various graph modifications.

2.2.4 Statistical analysis
In addition to a visual inspection, we use two linear models to investigate
the relationship between the reliability of centrality measures and the error
level, the community bias, and the strength of communities.
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To analyze the results for the configurations CRGweak, CRGstrong, LFRweak,
and LFRstrong, we use the following model:

τ = β0 + βi,j1 ·
√
α + βi,j2 ·

√
α · λ+ ε (2.2)

With i and j as indices for the centrality measure and graph configuration,
respectively. This allows us to have different coefficients for each centrality
measure and graph configuration. The error term is denoted by ε.

To analyze the results of the experiments regarding the LFRvarying(µ)
models (with µ ranging from 0.15 to 0.95 in steps of 0.05), we use the
following model:

τ = β0 + βi,j1 ·
√
α + βi,j2 ·

√
α · µ+ βi,j3 ·

√
α · λ+ βi,j4 ·

√
α · µ · λ+ ε (2.3)

With i and j as indices for the centrality measure and graph configuration,
respectively. The error term is denoted by ε.

We use the square root function to take into account observations from
previous studies which have revealed a non-linear relationship between miss-
ing nodes and reliability (Smith and Moody, 2013; Smith et al., 2017).
Moreover, our experiments have shown that these models provide a better
fit to the data than models which do not use this transformation.

2.3 Results
As outlined in the introduction, network data is often affected by measure-
ment errors and in many cases, it is reasonable to assume that there is
some dependency between the nodes that are missing. The goal of this
study is to investigate how reliable centrality measures are when network
data is incomplete and the missing nodes are likely to belong to the same
community.

In general, our results suggest that centrality measures are more reliable
when missing nodes are biased to belong to the same community. Moreover,
for scale-free networks (LFR model) we observe that centrality measures are
more reliable in networks with stronger community structure. However, we
also observe that, in scale-free networks, the betweenness centrality becomes
less reliable with increasing bias.

Figure 2.1 illustrates the results for the graphs generated by the CRG
models. For better visibility, the plot only contains results for λ ∈ {0, 2}
and α ∈ {0.1, 0.3, 0.5}. The bottom and top of the boxes indicate the first
and third quartiles, respectively. The thick line within the box indicates the
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Figure 2.1: The figure shows results for the CRG models. For better vis-
ibility, the plot only contains results for λ ∈ {0, 2} and α ∈ {0.1, 0.3, 0.5}.
The bottom and top of the boxes indicate the first and third quartiles,
respectively. The thick line within the box indicates the median.
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Table 2.2: Results for the model in Equation (2.2). Standard errors are
listed in parentheses. All coefficients are highly significant (p-value < 0.001).
Intercept: 1.034 (1.9E-04), adjusted R2: 0.938.

CRGstrong CRGweak√
α

√
α · λ

√
α

√
α · λ

Betweenness -0.783 0.039 -0.766 0.034
(9.6E-04) (5.0E-04) (9.6E-04) (5.0E-04)

Closeness -0.813 0.046 -0.782 0.032
(9.6E-04) (5.0E-04) (9.6E-04) (5.0E-04)

Degree -0.698 0.099 -0.663 0.039
(9.6E-04) (5.0E-04) (9.6E-04) (5.0E-04)

Eigenvector -0.868 0.110 -0.786 0.040
(9.6E-04) (5.0E-04) (9.6E-04) (5.0E-04)

PagerRank -0.777 0.094 -0.755 0.039
(9.6E-04) (5.0E-04) (9.6E-04) (5.0E-04)

LFRstrong LFRweak√
α

√
α · λ

√
α

√
α · λ

Betweenness -0.567 0.002 -0.580 0.005
(9.6E-04) (5.0E-04) (9.6E-04) (5.0E-04)

Closeness -0.340 -0.031 -0.494 -0.008
(9.6E-04) (5.0E-04) (9.6E-04) (5.0E-04)

Degree -0.372 0.031 -0.413 0.004
(9.6E-04) (5.0E-04) (9.6E-04) (5.0E-04)

Eigenvector -0.362 -0.016 -0.490 -0.010
(9.6E-04) (5.0E-04) (9.6E-04) (5.0E-04)

PagerRank -0.491 0.038 -0.535 0.006
(9.6E-04) (5.0E-04) (9.6E-04) (5.0E-04)

median. As can be seen, even small levels of error result in a considerable
drop (ranging from 0.1 to 0.2) of the reliability. Moreover, all centrality
measures are generally more reliable when the missing nodes belong to the
same community (λ = 2) compared to uniform node missingness (λ = 0).
This effect is more noticeable in cases with stronger community structure
(CRGstrong). We also notice that the variance of the reliability increases with
increasing error level. It is particularly high for the eigenvector centrality
and lowest for the degree centrality.

For a more detailed analysis of the relationship between the bias of
missing nodes (controlled by λ) and the reliability, we use the model shown
in Equation (2.2) from Section 2.2.4. (We also performed our analyses
using more robust methods (i.e., weighted linear regression and quantile
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Table 2.3: Results for the model in Equation (2.3). Standard errors are
listed in parentheses. All coefficients are highly significant (p-value < 0.001).
Intercept: 1.037 (1.0E-04), adjusted R2: 0.873.

√
α

√
α · λ

√
α · µ

√
α · µ · λ

Betweenness -0.606 -0.008 0.028 0.021
(6.4E-04) (3.4E-04) (1.0E-03) (5.7E-04)

Closeness -0.239 -0.046 -0.311 0.045
(6.4E-04) (3.4E-04) (1.0E-03) (5.7E-04)

Degree -0.356 0.062 -0.067 -0.071
(6.4E-04) (3.4E-04) (1.0E-03) (5.7E-04)

Eigenvector -0.298 -0.020 -0.230 0.014
(6.4E-04) (3.4E-04) (1.0E-03) (5.7E-04)

PagerRank -0.444 0.065 -0.117 -0.070
(6.4E-04) (3.4E-04) (1.0E-03) (5.7E-04)

regression) and these results are consistent with the results reported in
this section.) The coefficient and standard error estimates for this model
are listed in Table 2.2. These results confirm our previous observation
for the CRG configurations: higher community bias is related to higher
reliability (interaction term

√
α · λ). For the LFRstrong configurations, this

effect only occurs for the degree centrality and the PageRank. For the
closeness centrality, we observe the opposite effect. For the betweenness and
eigenvector centrality, the coefficients are small and the effect is negligible.
The coefficients of the interaction term regarding the LFRweak model are
significant but small, the effect is hardly noticeable. Comparing the CRG
and the LFR model, the effect of λ on the reliability is usually stronger in
graphs generated by one of the CRG models.

To analyze the impact of the community strength (controlled by µ) on the
reliability of centrality measures, we use the model shown in Equation (2.3).
The coefficient and standard error estimates for this model are listed in
Table 2.3. The coefficients for

√
α and

√
α · µ are in good agreement with

the results of the first model (Equation (2.2)).
All centrality measures except the betweenness centrality become more

reliable with increasing strength of the community structure (indicated by√
α ·µ). The contrary is true for the betweenness centrality. The results also

show (indicated by
√
α ·µ ·λ) that, in case of betweenness, degree centrality

and PageRank, a bias of missing nodes towards community amplifies the
previously mentioned effect. The contrary is true for the closeness centrality,
though the effect is small. In case of the eigenvector centrality, the effect is
negligible.
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2.4 Discussion

Networks are complex, and it is hard to collect network data without missing
any nodes or edges. Previous studies have shown that missing nodes can
severely affect the reliability of centrality measures. Most studies focus,
however, on cases in which nodes are missing uniformly at random. Yet in
a variety of scenarios, it is reasonable to assume that missing nodes may
belong to the same community.

In this study, we investigated the reliability of centrality measures when
network data is incomplete and the missing nodes are likely to belong to
the same community. In addition, we introduced a novel approach, called
“community bias”, which allows researchers to simulate different levels of
measurement error.

In our experiments on uniform and scale-free networks, we observed
that centrality measures are more reliable when missing nodes are likely
to belong to the same community compared to those cases in which nodes
are missing uniformly at random. In scale-free networks, the betweenness
centrality, however, becomes less reliable with increasing bias. Moreover, in
these networks, centrality measures are also more reliable in networks with
stronger community structure. In contrast, we did not observe this effect
for uniform networks.

To the knowledge of the author, this is the first study which examines
the effect that missing nodes have if their absence depends on the underlying
community structure. A direct comparison to other studies is therefore diffi-
cult. In contrast to the present study, Niu et al. (2015) found that the biased
manipulation of networks has more severe consequences than a uniformly
random manipulation. It is important to note here that the manipulations
in Niu et al. (2015) were applied to the edges; nodes were, however, not con-
sidered. Our study shows that an increasing bias is associated with higher
reliability, which is a novel finding. If there are legitimate reasons to assume
that nodes that have not been observed during the data collection are more
likely to belong to the same community, the impact of missing nodes on the
reliability of centrality measures might not be as severe as previous studies
have suggested.

These findings are encouraging. Although graphs generated by the LFR
model share many properties with real-world networks, it would be inter-
esting to see results based on empirical data as well as results for larger
networks. We are going to investigate these cases in our future studies.
Furthermore, future work may investigate other types of interdependencies
between missing nodes, for example, based on node attributes.
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Abstract
Most network studies rely on a measured network that differs from the under-
lying network which is obfuscated by measurement errors. It is well known
that such errors can have a severe impact on the reliability of network met-
rics, especially on centrality measures: a more central node in the observed
network might be less central in the underlying network.

Previous studies have dealt either with the general effects of measurement
errors on centrality measures or with the treatment of erroneous network data.
In this paper, we propose a method for estimating the impact of measurement
errors on the reliability of a centrality measure, given the measured network
and assumptions about the type and intensity of the measurement error. This
method allows researchers to estimate the robustness of a centrality measure
in a specific network and can, therefore, be used as a basis for decision
making.

In our experiments, we apply this method to random graphs and real-
world networks. We observe that our estimation is, in the vast majority
of cases, a good approximation for the robustness of centrality measures.
Beyond this, we propose a heuristic to decide whether the estimation proce-
dure should be used. We analyze, for certain networks, why the eigenvector
centrality is less robust than, amongst others, the PageRank. Finally, we
give recommendations on how our findings can be applied to future network
studies.

3.1 Introduction
Measurement errors in network data are a central problem in the field
of network analysis, as virtually all empirical network data are affected
by some kind of measurement error. Previous research has shown that
these errors often have a major impact on the results of network measures,
especially on centrality measures (Costenbader and Valente, 2003; Smith and
Moody, 2013). For example, a more central node in the measured (erroneous)
network might be less central in the hidden (unobserved, error-free) network.

Currently, most applied network studies only report that measurement
errors might have affected the data collection (e.g., due to the absence
of actors on the day of the survey (Wang et al., 2016), due to the study
design, or due to the quality of some external data source (Fischer et al.,
2018)). Most of the time, however, the impact of these measurement errors
on centrality measures are not quantified. This might be due to the fact
that there is currently no established way to estimate the impact of these
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of measurement errors on centrality measures. In this paper, we present a
method to approximate this impact, given a measured network and some
hypotheses about the underlying error mechanism.

Current research can be divided into two main categories: impact studies
and treatment studies.

In impact studies, researchers have investigated the impact that different
types of measurement errors have on the reliability of centrality measures in
the case of random graphs (Borgatti et al., 2006; Frantz et al., 2009; Wang
et al., 2012) and real-world networks (Costenbader and Valente, 2003; Kim
and Jeong, 2007; Wang et al., 2012; Smith and Moody, 2013; Platig et al.,
2013; Silk et al., 2015; Niu et al., 2015; Lee and Pfeffer, 2015), cf. Smith
et al. (2017) for an extensive survey.

These studies provide guidelines for researchers on how to design future
studies (e.g., what kind of measurement error might be especially harmful
in a given scenario) and suggestions on which centrality measure might be
more reliable in a given scenario (Smith and Moody, 2013). Unfortunately,
it is difficult to identify general patterns for the reliability of centrality
measures based on network metrics. As common sense suggests, centrality
measures become less reliable with an increasing level of error, but the
particular relationship between error level and reliability is highly dependent
on the type of measurement error, the centrality measure, and the network
structure (Wang et al., 2012).

There are also studies which address how to treat erroneous network
data, in order to reconstruct the unknown true network. Such treatments
can, for example, be used to reconstruct partially observed networks or
to estimate the network statistics of the underlying network (Butts, 2003;
Huisman, 2009; Handcock and Gile, 2010; Kim and Leskovec, 2011; Frantz
and Carley, 2017; Wang et al., 2016; Newman, 2018; Krause et al., 2018;
Žnidaršič et al., 2018).

Our contribution connects these two areas. We propose a method for
estimating the impact of measurement errors on the reliability of a centrality
measure, given the measured network and assumptions about the type and
intensity of the measurement error. This method allows researchers to
measure the robustness of a centrality measure in a specific network and
can, therefore, be used as a basis for decision making — for example, to
decide whether the centrality values are reliable enough for the purposes of
the study or whether one of the aforementioned treatment procedures should
be applied. One of the strengths of this method is that the estimates are
easy to calculate. Simply explained, we apply the assumed error mechanism
(e.g., random removal of 10% of the edges) several times, independently, to
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the measured network and suggest the mean impact of this procedure as
the estimate for the measurement error between the unknown true network
and the measured network.

We test this method in various simulation scenarios based on random
graphs and real-world networks as well. We find that the estimation works
in many cases, especially at lower error levels (e.g., 10% missing edges or
vertices). At higher error levels (e.g. 30% missing edges or vertices) the
estimation still works for degree centrality and PageRank. For sparse or
small networks the situation is more challenging, especially in the case of
eigenvector centrality.

The rest of this paper is organized as follows: we formalize the concepts
of robustness and error mechanisms in Section 3.2. The estimation method
is presented in Section 3.3, and the experiments are described and discussed
in Section 3.4. A summary and concluding recommendations can be found
in Section 3.5.

3.2 Basic concepts
Let G be an undirected, unweighted, finite graph with vertex set V (G)
and edge set E(G). A centrality measure c is a real-valued function that
assigns centrality values to all nodes in a graph and is invariant to structure-
preserving mappings, i.e., centrality values depend solely on the structure
of a graph. External information (e.g., node or edge attributes) has no
influence on the centrality values (Koschützki et al., 2005). We denote the
centrality value for node u ∈ V (G) by cG(u) and the centrality values for
all nodes in G (u1, u2, . . . , un) by the vector c(G) := (c(u1), . . . , c(un)).

The following centrality measures are used in this study: closeness cen-
trality, betweenness centrality (Freeman, 1978), degree centrality, eigenvec-
tor centrality (Bonacich, 1987), and the PageRank (damping factor 0.85)
(Brin and Page, 1998). All centrality measures are calculated using the
igraph library (version 0.7.1, Csardi and Nepusz (2006)).

Let G and G′ be two graphs and c a centrality measure. A pair of nodes
u, v ∈ V (G) ∩ V (G′) and u 6= v is called concordant w.r.t. c if both nodes
have distinct centrality values and the order of u and v is the same in c(G)
and c(G′), i.e., either cG(u) < cG(v) and cG′(u) < cG′(v) or cG(u) > cG(v)
and cG′(u) > cG′(v). A pair of nodes is called discordant if both nodes have
distinct centrality values and the order of u and v in c(G) differs from the
order of u and v in c(G′), i.e., either cG(u) < cG(v) and cG′(u) > cG′(v)
or cG(u) > cG(v) and cG′(u) < cG′(v). Ties are neither concordant nor
discordant.
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A random graph consists of a finite set of graphs Ω equipped with a
function P that assigns a probability to every graph in this set (Bollobás
and Riordan, 2002).

Network data can be influenced by a variety of different measurement
errors. Wang et al. (2012) categorized measurement errors into six groups:
false negative nodes and edges, false positive nodes and edges, and false
aggregation and disaggregation. For example, when 10% of the edges are
missing in the measured network data, the graph constructed from this
observed data suffers from false negative edges.
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Figure 3.1: In this example, ϕ is defined as the error mechanism “50% of all
edges are missing uniformly at random”. Hence, ϕ(H) is a random graph
with possible outcomes Ω = {G1, G2, . . . , G6} and P (Gi) = 1

6 .

To describe measurement errors, we introduce the notion of an error
mechanism. An error mechanism ϕ is a procedure that describes measure-
ment errors that may occur during the data collection (e.g., 50% of the
edges are missing, at random). For a given graph G, the error mechanism
ϕ(G) is defined as a random graph. The outcomes of ϕ(G) are the graphs
that result from G by applying the given error-procedure, and each of these
graphs is equipped with the probability of occurrence. To illustrate this
concept, consider the graphs shown in Figure 3.1. The initial graph is de-
noted by H (drawn in the upper-left corner). We assume that we know the
error mechanism that compromises the data collection. For this example,
we assume that the error mechanism ϕ is edges missing uniformly at random
with an error level of 50%. All graphs in the set of possible outcomes for
this random graph Ω = {G1, G2, . . . , G6} are also shown in Figure 3.1. In
this example, the probability function is P (Gi) = 1

6 , all graphs in Ω occur
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with the same probability. However, this concept is not limited to a uniform
distribution.

In general, error mechanisms can rely on node or edge attributes. In this
study, we focus on four common error mechanisms that do not depend on
external attributes:

1. Nodes missing uniformly at random (rm nodes): A fraction of nodes
(and all edges connected to these nodes) is missing in the measured
network. All nodes have the same probability to be missing in the
measured network.

2. Edges missing uniformly at random (rm edges unif.): A fraction of
edges is missing in the measured network. All edges have the same
probability to be missing in the measured network.

3. Edges missing proportionally (rm edges prop.): A fraction of edges
is missing in the measured network. The probability that an edge is
missing in the measured network is proportional to the sum of the
degree values of the endpoints.

4. Spurious edges (add edges): The measured network contains too many
edges. Every non-existing edge has the same probability to be erro-
neously observed.

Let G and G′ denote graphs on the same vertex set and c a centrality
measure. To measure the robustness of c w.r.t. these two graphs, we
use Kendall’s tau (“tau-b”) rank correlation coefficient (Kendall, 1945).
Correlations are commonly used to measure the robustness of centrality
measures. Like existing studies, we also used rank correlations to minimize
the influence of outliers (Kim and Jeong, 2007; Lee and Pfeffer, 2015; Wang
et al., 2012).

We calculate the robustness ρ for a centrality measure c with respect to
G and G′ as follows:

ρc(G,G′) = nc − nd√
(nc + nd + nt) ∗ (nc + nd + nt′)

(3.1)

With nc as the number of concordant pairs and nd as the number of discor-
dant pairs w.r.t. the order given by c(G) and c(G′). Ties only in c(G) are
denoted by nt, ties only in c(G′) by nt′ .1 It follows straightforwardly that
the values of ρc(G,G′) are in the interval [−1, 1].

1 It may occur that V (G′) 6= V (G). In these cases, we only consider entries in c(G)
and c(G′) that correspond to nodes that are in both graphs (G and G′). This is a common
approach for the comparison of graphs on different vertex sets (Wang et al., 2012).
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Let us apply this concept to a graph illustrated in Figure 3.1. Assume
that we have measured the graph labeled as G6 and that we are interested
in the robustness of the degree centrality. Then, the degree centrality values
are deg(H) = (1, 2, 3, 1, 1) and deg(G6) = (1, 2, 1, 0, 0). Based on the degree
values, we can calculate the robustness of the degree centrality with respect
to G6 and H: ρdeg(G6, H) = 0.53.

If there are no ties in c(G) and c(G′), then ρc(G,G′) = nc−nd
nc+nd

which
is Goodman and Kruskal’s rank correlation coefficient γ (Goodman and
Kruskal, 1954). In this special case, ρc(G,G′)+1

2 is the probability that two
nodes with distinct centrality values, randomly chosen from the common
vertex set of G and G′, have the same order in c(G) and c(G′), that is, they
are concordant.

3.3 How to estimate the robustness of cen-
trality measures

In network studies, the measured network data often contain sampling
errors (Leecaster et al., 2016; Schulz, 2016; Wang et al., 2016). But in general,
the authors of such studies have no tools to describe the impact of sampling
errors on the network measures (e.g., centrality measures) they apply. In
general, the assumptions made about sampling errors are mentioned in the
limitations, but they are not considered as part of the network model.

The robustness concept as introduced in Section 3.2 helps researchers to
describe this impact: given the measured networkM , the (unknown) hidden
network H, and a centrality measure c, the robustness ρc(H,M) measures
the impact of the sampling error on the centrality values of the nodes in
the measured network. Thus, the robustness can be used to measure the
reliability of a centrality measure with respect to sampling errors. We call
ρc(H,M) the “true robustness”.

As the hidden network H is not known, the true robustness cannot be
computed explicitly. In this section, we propose a method for the estimation
of the true robustness based on the measured network M . Moreover, we
provide an example for the application and demonstrate how the estimation
results can be evaluated.

Our estimation approach is based on the observation that, given a graph
G, a centrality measure, and some error procedure, in many experiments the
robustness is nearly proportional to the error intensity. That is, removing
20% of the edges, randomly, has about twice as much impact on the centrality
measure as removing 10% of the edges (Borgatti et al., 2006; Frantz et al.,
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2009; Wang et al., 2012). Now let G′ denote the graph resulting from G
by removing 10% of the edges, and let G′′ denote the graph resulting from
G′ by removing 10% of the remaining edges. One possible explanation
for the observed linearity could be that the robustness with respect to
G and G’ is close to the robustness with respect to G’ and G”, which is
ρc(G,G′) ∼ ρc(G′, G′′).

If we apply this idea to our definition of the true robustness and take
into account our notion of error mechanism (as random graphs), we yield
the following estimation:

ρ̂c(M,H) := E(ρc(M,ϕ(M))). (3.2)

Since ϕ(M) is a random graph, ρc(M,ϕ(M)) is a random variable; hence we
use the expected value of this expression as the estimate for the robustness.
In practice, this value is computed by sampling.

3.4 Experiments
In this section, the efficiency of the estimation method is analyzed under
different conditions using two types of simulation experiments. First, ex-
periments based on random graphs are conducted, followed by experiments
based on real-world networks. To control for the true robustness, in all
experiments we start with a given hidden network H and construct the mea-
sured network M by applying the error mechanism to the hidden network.
As part of these experiments, we calculate the following values for each run:

True robustness: For every single experiment we compute the true ro-
bustness ρc(M,H).

Estimated robustness: For every single experiment we compute ρ̂c(M,H),
as introduced in Section 3.3.

Mean and standard deviation of true robustness: For every series of
experiments (i.e., fixed centrality measure, fixed error mechanism, fixed
random type or initial real-work network), we report the mean value
and the standard deviation of all corresponding true robustness values.
Note that large values indicate that the true robustness very much
depends on the specific choice of removed/added vertices/edges. In
such cases, estimating the true robustness given just the measured
network and the error mechanism is hardly possible. In this sense,
a large standard deviation of true robustness is a good indicator for
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ill-conditioned estimation problems. Note that these values cannot be
computed without knowing the hidden network.

Mean standard deviation of estimation: By definition, the estimated
robustness is an expected value. Here we compute the mean of all cor-
responding standard deviations. Note that this value by construction
is very closely related to the standard deviation of true robustness,
but it can be computed without knowing the hidden network.

Mean estimation error: For every series of experiments (i.e., fixed cen-
trality measure, fixed error mechanism, fixed random type, or initial
real-work network), we compute the mean absolute difference between
true robustness and estimated robustness.

Implicit error: As a kind of benchmark for the estimation error, we com-
pute the robustness error that would occur if we ignored the impact
of the measurement error on the centrality measure. In this case we
would consider the correlation between the centralities of hidden and
measured network to be 1. That is, for every series of experiments we
define the implicit error as (1− mean true robustness).

3.4.1 Experiments based on random graphs
As a first step to validate whether the proposed methods yield useful results,
we apply the four error mechanisms (node missing uniformly, edges missing
uniformly, edges missing proportional, and spurious edges) to Erdős-Rényi
graphs (ER graph) (Erdős and Rényi, 1959) and Barabási-Albert graphs
(BA graph) (Barabási and Albert, 1999) and estimate the corresponding
robustness. For every error mechanism, we consider two cases: a moderate
scenario of 10% error level and a more intense scenario with 30% error
level. For all combinations of centrality measures and error mechanisms, we
perform the experiment described below 1,000 times.

1. We generate a random graph and denote it by H. This graph repre-
sents the (error-free) hidden network. We use two types of random
graphs:

(a) an ER graph with 100 nodes and edge probability 0.2 and 2

(b) a BA graph with 100 nodes (parameter m = 11, undirected).
2 Our experiments have shown that the choice of p has little influence on the main

results associated with this section. Hence we will only consider the case of p = 0.2.
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2. We choose a graph from ϕ(H) and denote it by M . This graph rep-
resents the measured network that is affected by measurement errors.
For evaluation purposes, the true robustness ρc(H,M) is calculated
and denoted by ρ.

3. Based on the measured network M , we estimate the true robustness
ρ̂c(M,H).

The results for the random graphs are shown in Figure 3.2 and Figure 3.3.
Every panel shows the results for the five centrality measures under the in-
fluence of one of the four error mechanisms with either 10% or 30% intensity.

The blue bar indicates the mean estimation error of the 1,000 simulation
runs. The red bar indicates the implicit error as defined at the beginning of
this section. Note again that the implicit error is closely related to the mean
true robustness since it is defined as (1 − implicit error). That is, a long red
bar indicates a weak correlation between the centrality vector in measured
and hidden networks and vice versa. The length of the bars indicates the
mean values and the error bars the corresponding standard deviations.

Now let us first focus on the impact of different error mechanisms on
the true robustness (1− red bar). For example, the true robustness of the
betweenness in an ER graph under the influence of 10% spurious edges (1st
panel in Figure 3.2) is 0.78 with a standard deviation (sd) of 0.03.

For ER graphs (Figure 3.2), within the two error levels, there are only
small differences regarding the influence of the error mechanisms on the
centrality measures. The degree is the most robust measure in this setting.

With an error level of 30%, the robustness is always lower than in the
respective cases with 10%. The standard deviation is also higher. In contrast
to the cases with 10%, at 30% the absence of edges depending on the edge
degree leads to lower robustness when compared the other error mechanisms.
These findings are conclusive with Borgatti et al. (2006) and Frantz et al.
(2009). The homogeneity of the results regarding the different centrality
measures is not surprising given the high correlation between the centrality
measures in the case of ER random graphs (Valente et al., 2008).

For BA graphs, we make similar observations. Higher error levels lead
to lower robustness. In contrast to ER graphs, however, degree centrality is
not always the most robust here. We notice that the standard deviation is
not as homogeneous as in the ER experiments (e.g., eigenvector centrality).

Regarding estimation errors, the pattern is the same for both graph
types. The estimation error is always small compared to the implicit error.
With fixed intensity the difference between the error types and the centrality
measures is small. The estimates at 10% error level have a smaller error
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Figure 3.2: The figure shows the results for ER graphs. The blue bar indi-
cates the mean absolute error of the estimation (|ρ− ρ̂|) for 1,000 simulation
runs. We call this error the estimation error. The red bar indicates the error
that is caused by the flawed data collection. This error would be accepted if
the influence of the measurement error were to be ignored when analyzing
the network (1− ρ). We call this value the implicit error. The length of the
bars indicates the mean values and the error bars the standard deviations.
In the case of ER graphs the behavior is homogeneous: the true robust-
ness depends primarily on the error intensity. The estimation errors are
consistently low.
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Figure 3.3: The figure presents the results for BA graphs. The centrality
measures have varying reactions to the different error mechanisms. The
eigenvector centrality variation is noticeably high when nodes are removed.
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than at 30%. The standard deviation is homogeneous. The estimates are
most accurate for spurious edges, worst for missing nodes and missing edges
proportional to the edge degree.

For BA graphs (Figure 3.3) the results are more heterogeneous. Although
the true robustness is at about the same level as for ER graphs, the estima-
tion errors vary strongly depending on the choice of centrality measure and
error mechanism. If nodes are missing, the estimates are usually poorest
and the variance highest.

3.4.2 Experiments based on real-world networks

Table 3.1: Statistics of real-world networks. If the original network is not
connected, we consider only the largest connected component.

Network Nodes Edges Clustering Density Diameter Source
Dolphin 62 159 0.3029 0.0841 8 Lusseau et al. (2003)

Jazz 198 2,742 0.6334 0.1406 6 Gleiser and Danon (2003)

Protein 1,458 1,948 0.1403 0.0018 19 Jeong et al. (2001)

Hamsterster 1,788 12,476 0.1655 0.0078 14 Kunegis (2013)

Next, we apply our methods from Section 3.3 to real-world networks to
investigate the suitability of these methods for practical application. We
choose four networks from different domains and thus different structural
properties to get an impression of how these methods perform on real data
(see Table 3.1 for descriptive statistics). As before we use our proposed meth-
ods to estimate the robustness of five centrality measures under the influence
of four error mechanisms and two error intensities. For every combination of
network, centrality measure, and error mechanism, the experimental setup
is as follows:

1. Due to the very nature of the hidden networks, we cannot access them.
Hence, for the sake of our experiments, we treat the real-world network
as the error-free hidden network H. (This is a common approach used
in existing studies about the robustness of centrality measures (Wang
et al., 2012)).

2. To simulate erroneous data collection, we choose a graph from ϕ(H)
and denote it byM . This graph represents the measured network that
is affected by measurement errors. For evaluation purposes, the true
robustness ρc(H,M) is calculated and denoted by ρ.
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3. Based on the measured network M , we estimate the true robustness
ρ̂c(M,H).

For every combination, we perform this experiment 1,000 times.
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Figure 3.4: The figure displays the results for the betweenness centrality
in real-world networks. The true robustness depends on the network, type,
and intensity of the error. The estimates are good in most cases, but the
error type spurious edges leads to increased estimation errors.

The results for real-world networks are shown in Figures 3.4–3.8. In
summary, the results are promising. The estimation error is always below,
in most cases far below, the implicit error. With a lower error level (10%),
the error of estimation is often very low (mean estimate error values below
0.03).

The robustness of the centrality values is usually strongly dependent on
the respective network structure and the type of error, where a higher error
level always reduces the robustness. Regardless of the error type, degree
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Figure 3.5: The figure shows the results for the closeness centrality in
real-world networks. The true robustness depends on the network, type, and
intensity of the error. The estimates are good in most cases, especially for
low error intensities. For higher intensities the errors are higher, especially
in case of the Dolphin and Protein networks.
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Figure 3.6: The figure illustrates the results for the degree centrality in
real-world networks. As expected, the robustness in this case is the highest
and the estimation error the smallest.
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Figure 3.7: The figure shows the results for the eigenvector centrality in
real-world networks. The results can be divided into two groups. In the
Jazz and Hamsterster networks the robustness is high and the estimation
error low. In the Protein and Dolphin networks both values are considerably
worse, and the fluctuation of both values is higher. This effect is discussed
in detail in Section 3.4.
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Figure 3.8: The figure presents the results for the PageRank in real-world
networks. The true robustness depends on the network, type, and intensity
of the error. Although robustness is reduced by increasing the error level,
estimation errors are relatively low for both intensities.
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centrality and PageRank are most robust, while eigenvector centrality is
most sensitive to measurement errors.

Degree centrality (Figure 3.6) is robust in the case of all studied networks,
most values are in regions below 0.1. However, in the Protein and Dolphin
networks, the values are considerably lower (visible in the figure by the
higher implicit error) than in the other two networks, in all error types
and intensities. The estimation errors are also low (mean values at 0.1
error level mostly below 0.02). The results for PageRank (Figure 3.8) are
similar, it is usually robust but somewhat more sensitive than the degree
centrality. The difference between the implicit error and the estimation error
is equally large. Also, for betweenness (Figure 3.4) and closeness (Figure 3.5),
the implicit error is greater than the estimation error, but the difference
between them is smaller compared to degree and PageRank. In addition, the
standard deviation is higher for both the estimation error and the robustness,
especially for the error types and missing nodes and additional edges. The
latter has a particularly strong influence on the betweenness. This might be
due to the fact that by adding edges (randomly), many new abbreviations
are created between the nodes and thus the high diameters (especially in
the Hamsterster and Protein networks) are reduced.

The overall impression of the results is most heterogeneous for the eigen-
vector centrality (Figure 3.7). The difference between the Jazz and Ham-
sterster networks, on one, and the Protein and Dolphin networks, on the
other hand, is most noticeable in this case. While implicit error for the
first mentioned networks is comparable to the other centrality measures
(except the error mechanism missing nodes), for the other two networks the
robustness is low and the standard deviation high (very high for the Protein
network). This effect is particularly strong when nodes are missing or edges
are missing proportionally to the edge degree. The estimation error varies
particularly strongly, especially in cases where the robustness has a high
standard deviation.

In our experiments with real-world networks, we have observed that in
some cases concerning eigenvector centrality very high implicit errors as
well as estimation errors occur. Therefore we want to take a more detailed
look at one of these cases. For this purpose we have again performed an
experiment (Dolphin network, 30% nodes missing randomly, eigenvector
centrality). We track the robustness and the percentage of the total eigen-
vector centrality that is associated with the removed nodes. The results of
this experiment are shown in Figure 3.9. These results demonstrate that
the eigenvector centrality of the removed nodes has a strong influence on
the robustness. Especially if the removed nodes have a large share of the
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Figure 3.9: The results for the additional experiment regarding the Dolphin
network (robustness of eigenvector centrality when 30% of the nodes are
removed randomly) are shown in the figure. These results demonstrate that
the eigenvector centrality of the removed nodes has a strong influence on
the robustness. Especially if the removed nodes have a large share of the
total eigenvector centrality (> 30%), the order of the nodes (based on the
eigenvector centrality) has little to do with the order of the nodes in the
original network.
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Figure 3.10: The results for the additional experiment regarding the Protein
network (robustness of eigenvector centrality when 30% of the nodes are
removed randomly) are presented in the figure. We observe that the lower
the size of the largest connected component in the modified network, the
lower the robustness (recall, the number of nodes removed is constant in
this experiment).
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total eigenvector centrality (> 30%), the order of the nodes (based on the
eigenvector centrality) has little to do with the order of the nodes in the
original network.

There are two main reasons for this observation. First, the eigenvector
values in the Dolphin network are unequally distributed among the nodes.
Of the 62 nodes, 12 (approx. 19%) hold more than 50% of the eigenvector
centrality (we call these nodes “high evc nodes”).

Furthermore, removing a node with high eigenvector centrality has a
high impact on all adjacent nodes in contrast, for example, to the degree
centrality and PageRank, where the removal of a hub has a small effect on
all adjacent nodes.3

The Dolphin network also exhibits another effect. With 62 nodes this
network is relatively small. The number of “high evc nodes” removed by the
error mechanism is binomial distributed (n = 12, p = 0.3). Due to the low
number of trials in this distribution, the number of possible values of the
random variable has a relatively broad range. For example, the events that
only one “high evc node” is removed and six “high evc nodes” are removed
have approximately the same probability of about 7%. However, the effects
of these two events on the robustness differ drastically. In this case, the
robustness of the centrality measure depends primarily on the outcome of
the random experiment.

In the Protein network, the eigenvector centrality is also unevenly dis-
tributed. Here 41 of 1,458 nodes (2.8%) hold 50% of the eigenvector central-
ity. Furthermore, this network is relatively sparse (1,948 edges). Therefore,
we will carry out the aforementioned experiment again with this network.
This time we track the size of the largest connected component of the modi-
fied network in addition to the robustness of the eigenvector centrality. The
results are shown in Figure 3.10. From this, we can see that the lower the
size of the largest connected component, the lower the robustness (recall,
the number of nodes removed is constant in this experiment).

3.4.3 Discussion of standard deviations
As discussed at the beginning of this section, the problem of guessing the
true robustness based on some measured network and knowledge about the
underlying error mechanism is ill-conditioned if the true robustness depends

3Removing a high evc node reduces the unnormalized evc-value of all neighbors by the
high evc-value of the removed node. In the case of the degree centrality, the centrality
of all neighbors is reduced by 1. Similarly, in the case of PageRank, the unnormalized
centrality of each neighbor is reduced by the PageRank of the hub divided by its (high)
degree.
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Table 3.2: The mean sd of estimation (e) and the sd of true robustness (t)
for the experiments with real-world networks are listed in the table. The
values have been multiplied by 100 for better readability.

Betw Clos Deg Evc Page
t e t e t e t e t e

Network Error Level
Dolphin add edges 10% 4.61 3.66 5.24 3.71 1.10 1.18 5.21 3.62 1.65 1.61

30% 4.45 3.90 4.79 3.76 2.47 2.69 6.32 4.21 2.65 2.89
rm edges prop. 10% 5.41 4.73 4.15 4.32 1.16 1.18 4.71 10.24 1.24 1.60

30% 5.64 6.66 4.91 7.17 2.63 3.31 24.25 24.94 2.73 3.47
rm edges unif. 10% 4.77 4.76 3.95 4.27 1.11 1.14 3.66 5.47 1.61 1.71

30% 5.84 6.18 5.20 6.43 2.66 2.73 16.59 16.37 2.92 3.07
rm nodes 10% 6.28 7.23 6.88 7.81 2.07 2.15 20.94 21.56 2.21 2.51

30% 8.71 10.39 9.93 14.07 4.14 5.42 35.64 30.70 4.17 5.70
Hamst add edges 10% 0.69 0.57 0.33 0.28 0.22 0.22 0.28 0.27 0.32 0.29

30% 0.67 0.55 0.40 0.37 0.37 0.38 0.34 0.33 0.45 0.42
rm edges prop. 10% 0.44 0.43 0.42 0.38 0.11 0.11 0.33 0.34 0.17 0.18

30% 0.44 0.62 0.53 0.47 0.20 0.23 0.58 0.58 0.24 0.29
rm edges unif. 10% 0.67 0.64 0.36 0.36 0.14 0.14 0.30 0.31 0.31 0.33

30% 0.75 0.69 0.46 0.47 0.25 0.28 0.41 0.46 0.42 0.50
rm nodes 10% 1.15 1.18 2.42 2.47 0.52 0.54 1.88 1.94 0.66 0.69

30% 1.49 1.78 3.30 3.77 0.89 1.10 2.65 3.30 0.89 1.17
Jazz add edges 10% 1.90 1.43 1.36 0.94 0.35 0.38 0.52 0.50 0.55 0.47

30% 1.87 1.48 1.23 0.82 0.63 0.74 0.87 0.86 0.77 0.79
rm edges prop. 10% 1.36 1.10 1.07 1.02 0.31 0.36 0.50 0.54 0.36 0.43

30% 1.41 1.85 1.22 1.30 0.65 1.04 1.04 2.56 0.73 1.15
rm edges unif. 10% 1.69 1.73 0.97 0.97 0.35 0.35 0.42 0.44 0.49 0.56

30% 2.18 2.31 1.13 1.14 0.69 0.79 0.85 0.99 0.89 1.11
rm nodes 10% 2.80 2.88 4.18 4.25 0.90 0.95 2.47 2.76 0.70 0.81

30% 3.62 4.32 4.99 5.77 1.85 2.31 5.51 8.02 1.57 2.26
Protein add edges 10% 0.72 0.66 0.98 0.82 0.40 0.37 1.77 1.48 0.63 0.53

30% 0.85 0.79 1.13 0.86 0.67 0.68 1.70 1.05 0.79 0.69
rm edges prop. 10% 1.00 0.85 2.23 1.67 0.33 0.32 5.85 5.74 0.49 0.52

30% 0.96 1.10 2.13 1.94 0.57 0.57 3.99 10.87 0.80 0.69
rm edges unif. 10% 0.88 0.90 1.54 1.49 0.42 0.39 3.23 3.53 0.66 0.63

30% 1.00 1.09 1.76 1.45 0.80 0.64 3.57 10.24 0.88 0.87
rm nodes 10% 1.72 1.78 6.33 6.19 1.31 1.33 9.28 9.42 1.81 1.80

30% 2.12 2.60 7.35 6.65 1.70 2.01 10.39 11.70 1.86 1.93
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Table 3.3: The mean sd of estimation (e) and the sd of true robustness (t)
for the experiments with random graphs are listed in the table. The values
have been multiplied by 100 for better readability.

Network Barabási Erdős-Rényi
10% 30% 10% 30%

t e t e t e t e
Centrality Error
Betweenness add edges 3.23 2.17 4.07 2.92 2.48 1.96 3.76 3.23

rm edges prop. 1.87 1.63 3.01 2.76 2.84 2.05 5.00 4.02
rm edges unif. 2.22 1.99 3.49 3.13 2.75 1.95 4.37 3.41
rm nodes 2.56 2.59 4.04 4.86 2.79 2.36 5.47 5.56

Closeness add edges 3.10 2.27 4.07 3.03 2.31 1.79 3.72 3.10
rm edges prop. 2.88 2.45 4.46 3.59 2.80 2.29 5.16 4.44
rm edges unif. 3.01 2.40 4.68 3.40 2.68 2.14 4.47 3.68
rm nodes 4.42 4.57 6.42 8.60 2.65 2.47 5.30 5.70

Degree add edges 3.14 2.28 4.08 3.01 2.15 1.75 3.63 3.12
rm edges prop. 2.76 1.84 3.67 2.75 2.43 1.91 4.92 4.19
rm edges unif. 2.90 1.99 4.09 2.92 2.31 1.76 4.26 3.40
rm nodes 4.20 4.04 5.34 5.88 2.27 1.96 4.94 5.18

Eigenvector add edges 2.65 1.85 3.72 2.80 2.59 1.91 3.97 3.21
rm edges prop. 3.14 2.18 4.14 3.33 2.83 2.24 5.19 4.77
rm edges unif. 3.16 2.08 4.27 3.12 2.75 2.05 4.61 3.88
rm nodes 8.20 7.66 9.14 9.29 3.36 3.08 5.71 6.55

Pagerank add edges 3.55 2.33 4.24 2.99 2.31 1.76 3.67 3.03
rm edges prop. 2.95 1.89 3.74 2.61 2.67 1.91 4.77 3.90
rm edges unif. 3.18 2.09 4.15 2.86 2.53 1.79 4.24 3.25
rm nodes 4.15 4.15 4.73 5.50 2.47 2.03 4.98 5.10
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very much on the specific choice of added/removed vertices/edges — that is,
the standard deviation of true robustness is large. As illustrated in Table 3.2
and Table 3.3 large values (sd true robustness > 0.15) are observed only for
the combinations of eigenvector centrality and Dolphin networks. The same
tables indicate that the mean sd of the estimated robustness is a very good
indicator for a large sd of true robustness. In fact, the sd of the estimated
robustness has large values (sd estimated robustness > 0.15) for exactly the
same combinations. While the sd of true robustness is not accessible without
knowledge of the hidden network (and hence cannot serve as a heuristic to
decide whether to apply our method), the sd of the estimated robustness
can be computed, given the measured network and the error mechanism.
Therefore, we recommend using the suggested estimation for true robustness
only if the sd of estimated robustness is small.

3.5 Summary and recommendations
Errors in network data are a ubiquitous problem in network analysis. Even
though the reliability of centrality measures has been studied extensively
in the literature, there is no method available that allows researchers to
estimate the reliability of centrality measures in the case of imperfect mea-
sured data.

In the first part of this study, we proposed such a method for estimating
the impact of measurement errors on the reliability of a centrality measure,
given the measured network and assumptions about the type and intensity
of the measurement error. To check the applicability of this method we have
conducted a series of simulation experiments based on random graphs and
real-world networks as well.

Regarding the robustness of random graphs and real-world networks, the
results are conclusive with existing studies (Borgatti et al., 2006; Frantz et al.,
2009). Moreover, we have observed that the (measurable) standard deviation
of the estimated robustness is a good indicator for the (not measurable)
standard deviation of the true robustness. Our results provide compelling
evidence that our proposed estimation method is a suitable technique for
the estimation of the robustness of centrality measures.

Based on these findings, we would like to offer the following recommen-
dations for network studies, where centrality measures are analyzed and
hypotheses about underlying measurement errors are available:
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• Researchers should compute the estimated robustness and the cor-
responding standard deviation for all relevant centrality measures
(Python code4 can be downloaded and easily extended for specific
centrality measures and error mechanisms).

• For those centrality measures where the computed standard deviation
is large (> 0.15), the concept of true robustness is not appropriate
as it is expected to depend very much on the specific added/removed
edges/vertices. In all other cases, we recommend to report the esti-
mated robustness in order to contribute to a better assessability of the
conclusions of the study, which are based on centrality measures.

• If there are different centrality measures to choose from that are equally
suitable for the study, the estimated robustness can be used as a further
selection criterion.

• The estimated robustness can also be used as a basis for deciding
whether to apply treatment procedures, such as imputation (Huisman,
2009; Wang et al., 2016; Krause et al., 2018).

Future studies should analyze the stability of the presented estimation
approach with respect to the assumptions on the underlying error mechanism.
If 20% missing edges (randomly) are assumed, while actually 15% of the
vertices are missing proportional to vertex degree, what impact does this
imprecise error-assumption have on the estimated true robustness? To
extend the approach to directed networks, suitable error mechanisms have to
be analyzed. While the current study focuses on robustness with respect to
certain node level metrics, it might be interesting to see corresponding results
for other metrics, such as the estimation of the most central node (Frantz
and Carley, 2017).
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Abstract
Measurement errors are omnipresent in network data. Most studies observe
an erroneous network instead of the desired error-free network. Thus, sub-
sequent analyses are based on erroneous data. It is well known that such
errors can have a severe impact on the reliability of network metrics, espe-
cially on centrality measures: a central node in the observed network might
be less central in the underlying, error-free network. The robustness is a com-
mon concept to measure these effects and is often defined as the correlation
between the centrality values in the observed and the underlying network.

Studies have shown that the robustness primarily depends on the central-
ity measure, the type of error (e.g., missing edges or missing nodes), and the
network topology (e.g., tree-like, core-periphery). Previous findings regarding
the influence of network size on the robustness are, however, inconclusive.

In this paper, we present empirical evidence and analytical arguments
indicating that there exist arbitrary large robust networks as well as arbitrary
large non-robust networks, and that the average degree is more suitable to
explain the robustness than the network size. We demonstrate that, in the
vast majority of cases, networks with a higher average degree are more robust.

For the case of the degree centrality and Erdős-Rényi (ER) graphs, we
present explicit formulas for the computation of the robustness, mainly based
on the joint distribution of node degrees and degree-changes which allow us
to analyze the robustness for ER graphs with a constant average degree or
increasing average degree.

4.1 Introduction
Networks are used to model various real-world phenomenons. Typical use
cases are (online) social networks, web graphs, protein-protein interaction
networks, infrastructure networks, and many more (Newman, 2003). Net-
works are, however, sensitive to errors in the data underlying the network.
The reasons for such errors are manifold. When collecting data for a social
network, for example, actors may be missing on the day of the survey or the
number for the nomination of possible friends may be limited by the survey
questionnaire (Wang et al., 2016). The collection of protein-protein inter-
action data is, depending on the method used, inevitably associated with
uncertainty, which is consequently also part of the network constructed from
this data (De Las Rivas and Fontanillo, 2010). When creating co-authorship
or citation networks, authors or papers can be included multiple times or
not at all, for example, due to incorrect spelling (Erman and Todorovski,
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2015; Schulz, 2016). All these errors affect the outcome of network analysis
methods and thus, the conclusions that depend on these methods (Marsden,
1990; Kossinets, 2006).

In the field of network analysis, centrality measures are commonly used
to analyze the position of nodes in a network. These measures map a real
number to every node in the network which can be used to rank the nodes.
It is well known that errors in the network data can have a severe impact
on the reliability of centrality measures. For example, the best-ranked actor
might actually not be the best in the erroneous network. We measure this
impact using the concept of robustness of centrality measures, which is the
correlation between the centrality values in the error-free and the erroneous
network.1 Previous studies have used the Pearson correlation to measure
the robustness (Bolland, 1988; Costenbader and Valente, 2003; Borgatti
et al., 2006). Like most recent studies, we use a rank correlation (Kim and
Jeong, 2007; Wang et al., 2012; Holzmann et al., 2019; Martin and Niemeyer,
2019). The effects of errors on the robustness of centrality measures depend
on several variables, e.g., the type of centrality measure, the type and
extent of the error, the network topology (e.g., tree-like, core-periphery),
and how we measure the robustness (Frantz et al., 2009; Smith and Moody,
2013). Few studies have addressed the issue of robustness of centrality
measures from an analytical perspective. Ghoshal and Barabási (2011)
investigated the existence of super-stable nodes w.r.t. degree and PageRank.
Platig et al. (2013) investigated the joint occurrence of missing and false
links. Tsugawa and Ohsaki (2015) adapted this approach to measuring the
robustness focusing on most central nodes.

In this article we investigate the robustness of empirical networks that
vary in size and structure. Existing studies are inconclusive about the
relationship between network size and robustness. No relationship between
size and robustness is noticeable in the empirical part of Niu et al. (2015).
In Costenbader and Valente (2003) and Borgatti et al. (2006), the authors
observed that larger network size could be related to both, higher and lower
robustness, depending on the network structure. In Wang et al. (2012), the
smaller network is usually more robust than the larger one. In contrast,
Smith and Moody (2013) noticed that larger networks are frequently more

1 Although the two topics sound similar, studies on the robustness of networks have a
different focus than studies about the robustness of centrality measures. The subject of
studies on the robustness of networks is the question, how the functionality of a network
as a whole is influenced by, for example, the removal of nodes (see Albert et al. Albert
et al. (2000) or Callaway et al. Callaway et al. (2000)). If the term robustness is used in
this work without further specification, then the term always refers to the robustness of
centrality measures.
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robust. For a comprehensive review of the existing work on the robustness
of centrality measures, we refer to Smith et al. (2017). To the best of
our knowledge, however, there exist no studies that explicitly analyze the
relationship between average degree and robustness and previous studies
have mostly been concerned about smaller networks (approx. less than
1000 nodes). This raises the question whether the concept of robustness
of centrality measures is at all relevant in the context of larger networks.
In contrast to existing studies, we specifically investigate the relationship
between the size as well as the average degree and the robustness of centrality
measures. In addition, we provide analytical results for this relationship
based on the interpretation of the robustness as a probability.

To examine these contrary observations regarding the network size and
the robustness in greater detail, we proceed as follows: First, we investigate
the robustness of the degree, the eigenvector centrality and the PageRank
in 24 empirical networks coming from diverse domains (Section 4.3). We
hardly observe any association between network size and robustness, but a
high correlation between average degree and robustness. This observation
holds for all considered centrality measures and error types that involve
removing nodes or edges. We further investigate the effect of network size
on the robustness using the Erdős-Rényi (ER) and the Barabási-Albert
(BA) random graph model (Section 4.4). For both models, we observe that
robustness is independent of network size if the average degree remains
constant. If the average degree increases, then centrality measures in BA
graphs become more robust, in contrast to ER graphs. We also make these
observations in our experiments with the configuration model where random
graphs are generated based on the degree distributions of the empirical
networks.

In Section 4.5, we introduce an analytical approach for the robustness.
We derive explicit expressions for the robustness of the degree centrality
in ER graphs. We use these expressions to prove that for ER networks of
different size but with the same average degree, the robustness of the degree
centrality remains stable. As a consequence, there exist robust and non-
robust networks of varying sizes, at least w.r.t. the degree centrality. We
also provide arguments, based on the variance of the degree and the variance
of the degree change, as to why the robustness increases or decreases with
increasing average degree, depending on the type of network.
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4.2 Methods

A graph G(V,E) consists of a node set V and an edge set E, E ⊆
(
V (G)

2

)
.

We denote the number of nodes in G by N and the number of edges by M .
All graphs considered in this paper are undirected, unweighted, and simple,
i.e., they do not contain loops nor multiple edges. The adjacency matrix
of a graph is denoted by A, where Ai,j = 1 if there is an edge between
node vi and vj (i.e., {vi, vj} ∈ E(G)) and 0 otherwise. The neighborhood
of a node u is N(u) = {v : {u, v} ∈ E(G)}. It is the set of nodes that are
connected to u. The degree is the number of connections that a node has,
degree(u) = |N(u)|. The degree of an edge is the sum of the degree values
of the end nodes, degree({u, v}) = degree(u) + degree(v). We denote the
degree sequence of a graph G by ds(G).

4.2.1 Centrality measures

Centrality measures map a real number to every node in the graph and
thus imply a ranking on the nodes. These measures solely depend on the
structure of the graph and not on, for example, additional information about
the nodes (Koschützki et al., 2005). By cG(u) we denote the centrality value
for a specific node u in a graph G w.r.t. a centrality measure c. If the context
permits, we do not explicitly mention the graph. The vector of centrality
values for all nodes in G is defined as c(G) = (cG(v1), . . . , cG(vN)).

The most straightforward centrality measure is the degree centrality
which was already discussed above, degree(u) = |N(u)|. The eigenvector
centrality and the PageRank are both feedback measures. They are defined
recursively, the centrality value of a node depends on the centrality values
of its neighbors. If G is connected, then the eigenvector centrality of a
node u defined by the unique solution to evc(u) = 1

λ

∑
v∈N(u) evc(v), where

λ is the largest eigenvalue of A (Bonacich, 1987). The unique solution to
PageRank(u) = d

∑
v∈N(u)

PageRank(v)
degree(v) + (1 − d) defines the PageRank; with

d as damping factor (in our case 0.85) (Brin and Page, 1998). Originally
introduced for directed graphs, this concept is also applicable for undirected
graphs. One of the main differences between these two measures is that, in
case of the eigenvector centrality, all neighbors of a node receive the total
centrality value of this node. In contrast, in case of the PageRank, neighbors
of a node only receive a faction of the nodes centrality value, which depends
on the total amount of neighbors of this node.
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4.2.2 Error mechanisms
When collecting data, external factors and the selection of the sampling
method can lead to inaccurate network data. We use four procedures to
model the impact of errors on information about nodes and edges. We call
these procedures error mechanisms. They model an error that affects the
nodes or edges of a graph. Their inputs are a graph G and a parameter α
which controls the intensity of the error. The procedure returns one graph
from the set of all possible erroneous versions of the graph G. In this study,
we use the following error mechanisms:

add edges (e+): αN edges are added to the graph. If αN is not an
integer, then we use the smallest integer that is greater than or equal
to αN (dαNe). The new edges are chosen uniformly at random from
the

(
N
2

)
−M possible edges.

remove edges unif. (e-): dαNe edges are removed from the graph. The
edges are chosen uniformly at random from E(G).

remove edges degree (e-(p)) also removes dαNe edges. The edges are,
however, chosen with probability proportional to the edge degree (i.e.,
P ({u, v}) = degree({u,v})∑

e∈E(G) degree(e)).

remove nodes (n-): dαNe nodes are removed from the graph. The nodes
are chosen uniformly at random from V (G).

For a more detailed discussion of error mechanisms as random graphs,
see Martin and Niemeyer (2019).

4.2.3 Robustness of centrality measures
To quantify the impact of errors in data collection on centrality measures,
we use the concept of robustness, which measures how the ranking of nodes,
induced by the centrality measure, changes. For two graphs, G and H,
a centrality measure c, and a correlation corr, we denote the robustness
by rcorr,c(G,H), where H is the erroneous graph (a “modified” version of
G, i.e., H is on the same node set as G or on a subset of that node set). If
G and H are not on the same node set then, similar to Wang et al. (2012),
we only consider nodes that exist in both graphs. Since the robustness is
defined as a correlation, the values for the robustness of a centrality measure
are in [−1, 1].

In the same way as Kim and Jeong (2007) and Holzmann et al. (2019),
we use Kendall’s τ (“tau-b”) rank correlation coefficient (Kendall, 1945) to
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measure the robustness of centrality measures. In this case, the robustness
is defined as follows:

rτ,c(G,H) = nc − nd√
(nc + nd + nt)(nc + nd + nt′)

(4.1)

The number of concordant pairs and discordant pairs w.r.t. c(G) and c(H)
are nc and nd, respectively. A pair of nodes u, v is concordant if (cG(v) −
cG(u)) · (cH(v) − cH(u)) > 0 and discordant if (cG(v) − cG(u)) · (cH(v) −
cH(u)) < 0. Ties in c(G) (i.e., cG(v)− cG(u) = 0) are denote by nt and ties
in c(H) (i.e., cH(v)− cH(u) = 0) are denoted by nt′ .

Goodman and Kruskal’s rank correlation coefficient γ (Goodman and
Kruskal, 1954) is closely related to Kendall’s τ and the robustness using
this measure is defined as follows:

rγ,c(G,H), = nc − nd
nc + nd

. (4.2)

If all pairs are either concordant or discordant w.r.t. the centrality c (i.e.,
there are no ties), then both measures are equal. Since (rγ,c(G,H) + 1)/2
can be interpreted as the probability that two randomly chosen nodes have
the same order in cG and cH w.r.t. c, this measure is more accessible for an
analytical perspective and we use it in Section 4.5. For the empirical part,
we use Kendall’s τ to provide comparability to existing studies.

4.2.4 Random graph models
In this paper, we use the Erdős-Rényi model, the, Barabási-Albert model,
and the configuration model.

The Erdős-Rényi random graph model, introduced by Erdős and Rényi
(1959), has two parameters: the number of nodes n and the edge probability
p. Since all node pairs are connected with the same probability (p), the
degree distribution of the nodes in this model follows a binomial distribution.

In contrast, the Barabási-Albert model is based on the idea of preferen-
tial attachment. Consequently, the probability that a new node will connect
to an existing node is proportional to the degree of the existing node. This
model also has two parameters. In addition to the number of nodes n, the
parameter m specifies the number of connections that a new node makes to
existing nodes. Due to this generation process, the degree distribution of
the nodes in graphs generated by this model follows a power-law distribu-
tion (Barabási and Albert, 1999).

The configuration model is a method to create random graphs based on
existing degree sequences (Newman et al., 2001). In this model there are
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no other parameters apart from the degree sequence. First, an empty graph
on n nodes is created (n is given by the degree sequence). Next, every node
u receives degree(u) stubs (here, degree(u) is the desired degree of node u).
Finally, pairs of stubs are chosen and connected with equal probability. This
procedure might results in graphs with multiple edges and loops. For our
study, however, we ignore those (i.e., we work with the simple versions of
these graphs).2

4.3 Experiments with empirical networks
In this section, we investigate, for empirical networks, the relationship be-
tween the robustness of centrality measures on the one side and the corre-
sponding network size and average degree on the other. We consider the
following centrality measures: degree, eigenvector centrality and PageRank.
Both, the eigenvector centrality and the PageRank are feedback measures
and fast to calculate (Koschützki et al., 2005). However, they have rarely
been considered simultaneously in previous studies. Since PageRank can be
very stable in scale-free networks (Ghoshal and Barabási, 2011), a compari-
son with the eigenvector centrality is therefore interesting, we will see that
both measures behave differently with regard to their robustness. For the
calculation of the betweenness and the closeness for all nodes in a graph,
the all-pairs shortest path problem has to be solved. The running time for
that is at least quadratic (Brandes, 2001). Since the centrality values in the
simulation part of this study (described in the following section) have to be
recalculated numerous times, these measures are not considered.

4.3.1 Experimental setup and data
For our empirical study, we use all the undirected and unweighted networks
available through the Koblenz Network Collection (Kunegis, 2013) at the
beginning of 2019. Hence the networks used in this study can be seen as a
random sample of networks that stem from different domains and therefore
differ from each other in structure and size. The 24 real-world networks and
descriptive statistics for them are listed in Table 4.1. As part of the data
pre-processing, we have removed any existing loops. If a network consists of
several components, we only consider the largest connected component and
hence all networks are connected.

2We use NetworkX (version 2.2, Hagberg et al. (2008)) to generate random graphs
and calculate centrality measures.
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Table 4.1: Descriptive statistics about the largest connected components of
the networks used in the study. The average degree is abbreviated as 〈d〉.

Name Nodes Edges 〈d〉 Density Transitivity Source
zachary 34 78 4.6 1.4e-01 2.6e-01 Zachary (1977)

dolphins 62 159 5.1 8.4e-02 3.1e-01 Lusseau et al. (2003)

pdzbase 161 209 2.6 1.6e-02 2.9e-03 Beuming et al. (2005)

jazz 198 2,742 27.7 1.4e-01 5.2e-01 Gleiser and Danon (2003)

vidal 2,783 6,007 4.3 1.6e-03 3.5e-02 Rual et al. (2005)

facebook 4,039 88,234 43.7 1.1e-02 5.2e-01 Leskovec and Mcauley (2012)

CA-GrQc 4,158 13,422 6.5 1.6e-03 6.3e-01 Leskovec et al. (2007)

powergrid 4,941 6,594 2.7 5.4e-04 1.0e-01 Watts and Strogatz (1998)

reactome 5,973 145,778 48.8 8.2e-03 6.1e-01 Joshi-Tope et al. (2005)

CA-HepTh 8,638 24,806 5.7 6.6e-04 2.8e-01 Leskovec et al. (2007)

pgp 10,680 24,316 4.6 4.3e-04 3.8e-01 Boguñá et al. (2004)

CA-HepPh 11,204 117,619 21.0 1.9e-03 6.6e-01 Leskovec et al. (2007)

CA-AstroPh 17,903 196,972 22.0 1.2e-03 3.2e-01 Leskovec et al. (2007)

CA-CondMat 21,363 91,286 8.5 4.0e-04 2.6e-01 Leskovec et al. (2007)

deezer-RO 41,773 125,826 6.0 1.4e-04 7.5e-02 Rozemberczki et al. (2019)

deezer-HU 47,538 222,887 9.4 2.0e-04 9.3e-02 Rozemberczki et al. (2019)

deezer-HR 54,573 498,202 18.3 3.3e-04 1.1e-01 Rozemberczki et al. (2019)

brightkite 56,739 212,945 7.5 1.3e-04 1.1e-01 Cho et al. (2011)

livemocha 104,103 2,193,083 42.1 4.0e-04 1.4e-02 Zafarani and Liu (2009)

petster-cat 148,826 5,447,464 73.2 4.9e-04 1.1e-02 Dünker and Kunegis (2015)

douban 154,908 327,162 4.2 2.7e-05 1.0e-02 Zafarani and Liu (2009)

gowalla 196,591 950,327 9.7 4.9e-05 2.3e-02 Cho et al. (2011)

dblp 317,080 1,049,866 6.6 2.1e-05 3.1e-01 Yang and Leskovec (2012)

petster-dog 426,485 8,543,321 40.1 9.4e-05 1.4e-02 Dünker and Kunegis (2015)
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To analyze the effects of different errors on the robustness of centrality
measures in the empirical networks, we use a simulation-based experimental
procedure. An iteration of the experiment is performed as follows: Starting
from a network G (one of the 24 networks listed in Table 4.1) we apply the
error mechanism with the intensity α. The resulting modified network is
called H. Finally, we calculate the robustness of the centrality measure c:
rτ,c(G,H) (as defined in Section 4.2.3). We repeat this procedure 100 times
and compute the mean and the standard deviation of the robustness for
each network for all combinations of centrality measure (degree, eigenvector
centrality, PageRank), error mechanism (add edges, remove edges uniform,
remove edges proportional to the edge degree, and remove nodes), and error
level (α ∈ {0.1, 0.2, . . . , 0.5}).

4.3.2 Observations for empirical networks
We start with the results aggregated across all networks. Similar to previ-
ous studies in this area (as discussed in Section 4.1), we observe that the
robustness declines with an increasing level of error. Therefore we will sub-
sequently focus on an error level of α = 0.2 since the results for the other
error levels yield the same conclusions and the impact of the error level is
not our main objective.

When looking at the average across all networks (Table 4.2), degree
centrality is always the most robust. For the removal error mechanisms the
PageRank is more robust than the eigenvector centrality. In the case of ad-
ditional edges, the opposite effect can be observed. Regarding the standard
deviation, the ranking is constant across all error types, degree centrality
varies least, followed by PageRank. The robustness of the eigenvector cen-
trality fluctuates the most, sometimes the standard deviation is two to three
times as large as for the first mentioned measures. With regard to the
effect of the type of measurement error on robustness, degree centrality and
PageRank behave similarly. The absence of edges proportional to the edge
degree has the weakest effect, spurious edges the strongest. For eigenvector
centrality, on the other hand, the first error type has the strongest influence
on the robustness.

As we look at the relationship between robustness and global network
measures, we notice that there are both: large networks that are very
sensitive to errors (e.g., douban) and small networks that are very robust
(e.g., Jazz). The mean values of the robustness for every network are listed
in Table 4.3.

In the following, we discuss the relationship between global network
measures and robustness in more detail. Table 4.4 lists the rank correlation
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Table 4.2: Mean and standard deviation of the robustness of centrality
measures in empirical networks, aggregated over all networks in Table 4.1.

Error mechanism e+ e- e-(p) n-
mean sd mean sd mean sd mean sd

Centrality
Degree 0.85 0.06 0.89 0.05 0.91 0.05 0.90 0.05
Eigenvector 0.75 0.18 0.81 0.11 0.73 0.15 0.79 0.15
PageRank 0.73 0.07 0.82 0.07 0.86 0.07 0.83 0.07

Table 4.3: Mean values of the robustness of centrality measures in empiri-
cal networks.

Centrality Degree Eigenvector PageRank
Error mechanism e+ e- e-(p) n- e+ e- e-(p) n- e+ e- e-(p) n-
Network
CA-AstroPh 0.89 0.94 0.97 0.94 0.83 0.92 0.89 0.90 0.77 0.88 0.94 0.89
CA-CondMat 0.86 0.90 0.93 0.90 0.79 0.86 0.81 0.82 0.74 0.81 0.88 0.83
CA-GrQc 0.84 0.88 0.94 0.89 0.60 0.77 0.62 0.71 0.73 0.79 0.88 0.81
CA-HepPh 0.82 0.93 0.98 0.93 0.63 0.87 0.92 0.85 0.70 0.86 0.96 0.86
CA-HepTh 0.85 0.88 0.92 0.88 0.63 0.76 0.71 0.70 0.76 0.80 0.86 0.81
brightkite 0.80 0.89 0.95 0.89 0.84 0.80 0.71 0.79 0.68 0.81 0.91 0.80
dblp 0.84 0.88 0.93 0.88 0.71 0.79 0.54 0.74 0.71 0.78 0.84 0.80
deezer_HR 0.91 0.93 0.95 0.93 0.84 0.92 0.89 0.90 0.83 0.88 0.92 0.88
deezer_HU 0.89 0.90 0.91 0.90 0.81 0.85 0.80 0.83 0.80 0.82 0.85 0.83
deezer_RO 0.87 0.88 0.90 0.88 0.77 0.81 0.65 0.79 0.76 0.78 0.84 0.78
dolphins 0.86 0.85 0.85 0.86 0.69 0.79 0.74 0.68 0.79 0.79 0.79 0.80
douban 0.66 0.78 0.82 0.78 0.93 0.71 0.71 0.71 0.50 0.67 0.76 0.71
facebook 0.93 0.96 0.97 0.96 0.47 0.91 0.85 0.88 0.73 0.90 0.92 0.91
gowalla 0.82 0.91 0.94 0.91 0.86 0.81 0.58 0.81 0.68 0.82 0.91 0.83
jazz 0.92 0.93 0.92 0.94 0.91 0.92 0.91 0.91 0.87 0.89 0.90 0.92
livemocha 0.88 0.95 0.96 0.95 0.95 0.90 0.86 0.90 0.78 0.91 0.92 0.92
pdzbase 0.81 0.82 0.84 0.83 0.76 0.61 0.54 0.60 0.68 0.70 0.73 0.71
petster_cat 0.88 0.94 0.85 0.96 0.98 0.87 0.60 0.95 0.75 0.91 0.80 0.91
petster_dog 0.87 0.94 0.90 0.94 0.97 0.92 0.64 0.92 0.71 0.90 0.90 0.91
pgp 0.80 0.87 0.94 0.87 0.67 0.73 0.69 0.69 0.69 0.77 0.88 0.78
powergrid 0.80 0.79 0.80 0.79 0.13 0.59 0.58 0.50 0.70 0.68 0.70 0.69
reactome 0.89 0.96 0.97 0.96 0.59 0.93 0.91 0.91 0.72 0.90 0.94 0.91
vidal 0.83 0.87 0.90 0.87 0.87 0.76 0.63 0.75 0.72 0.78 0.84 0.78
zachary 0.80 0.83 0.85 0.85 0.76 0.67 0.64 0.67 0.72 0.76 0.79 0.80
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between the average robustness and the respective values for the global
network measures. For all removal error types, the robustness tends to be
higher with increasing average degree. We observe almost perfect correlation
for cases where edges or nodes are missing uniformly at random and still
high correlation values when edges are missing proportional. For the degree
centrality, the correlation is also high for the case of spurious edges. For
PageRank and eigenvector centrality, this is, however, not the case. While
for the transitivity a moderate correlation with the robustness can still be
observed, the number of nodes as well as the density are, in most cases, basi-
cally uncorrelated with the robustness. This observation may comes rather
unexpected since growing networks often show “densification”, which means
the average degree grows with the number of nodes (Leskovec et al., 2007).

Figure 4.1 shows the behavior of robustness for three groups in each
panel in exemplary fashion. The robustness of the eigenvector centrality
in case of missing edges (uniformly) is depicted in the first panel. There
is a recognizable association, but in this case the variance is higher than
in most other cases. The same effect can be observed with the eigenvector
centrality also in connection with missing nodes. The middle panel shows
the observation for PageRank and add edges. This behavior is typical for
all centrality measures under the influence of additional edges, there is no
obvious pattern. The lower panel shows the combination PageRank and
missing edges uniform. In this case, the relationship between average degree
and robustness is most prominent. Robustness is higher when the average
degree is also higher. The variance of robustness is also low. This behavior
occurs for PageRank and Degree for all cases of missing edges (uniform and
proportional) and missing nodes.

Table 4.4: Empirical networks: rank correlation between global measures
and the average robustness.

Centrality Degree Eigenvector PageRank
Error mechanism e+ e- e-(p) n- e+ e- e-(p) n- e+ e- e-(p) n-

Avg. degree 0.77 0.97 0.63 0.98 0.27 0.92 0.52 0.93 0.43 0.96 0.72 0.95
Density 0.18 0.01 0.01 0.03 -0.38 0.02 0.30 -0.11 0.26 0.07 0.00 0.15
Network size 0.02 0.31 0.16 0.29 0.52 0.26 -0.14 0.43 -0.18 0.26 0.22 0.18
Transitivity 0.26 0.23 0.58 0.23 -0.63 0.27 0.50 0.04 0.22 0.16 0.49 0.23
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Figure 4.1: Illustrative examples for the three different behaviors of the
robustness in empirical networks. The networks are sorted their average
degree (ascending). The median robustness is indicated in each box, whiskers
are 1.5 times the interquartile range.

4.4 Experiments with random graphs
In Section 4.3, we examined the robustness of 24 empirical networks from
different domains. We observed that there exist small and robust as well as
large and sensitive networks regarding the reliability of centrality measures.
In addition, we have analyzed the relationship between the robustness of
centrality measures in these networks with different global network measures.
We observed that there is little association between network size and robust-
ness. We found, however, that in many cases the higher the average degree
of the network, the higher the robustness. To study this effect in more detail,
we conduct further experiments in this section. We use different random
graph models to control the average degree and to measure the effects of its
change on robustness. For this purpose we choose two different perspectives.
In Section 4.4.1, we keep the average degree constant and increase the size
of the network. In Section 4.4.2, we control the average degree while keeping
the network size constant.

4.4.1 Experiments with constant average degree
In this section, we use the ER model and the BA model to investigate
the behavior of the robustness when the average degree is fixed while
the network size increases. The experimental setup is similar to that of
Section 4.3.1. Instead of using empirical networks, however, we gener-
ate ER and BA graphs with an average degree of 10 and a network size
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n ∈ (100, 500, 1000, 1500, . . . , 10000), which we call G. Then we apply the
error mechanism with the intensity α to G which results in the erroneous net-
work H and calculate the robustness of the centrality measure c: rτ,c(G,H).
We repeat this procedure 100 times for the two random graph models and
the varying values for the network size for all combinations of centrality
measure (degree, eigenvector centrality, PageRank), error mechanism (add
edges, remove edges uniform, remove edges proportional to the edge degree,
and remove nodes), and error level (α ∈ {0.1, 0.2, . . . , 0.5}).
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Figure 4.2: Results for the robustness of centrality measures in BA graphs.
Here, the network size increases while the average degree remains constant,
the error level is 0.2. For the network size values up to 5000 are shown for
better readability; for larger values, hardly any changes occur.

The results for the ER graphs are very homogeneous, for all centrality
measures and error mechanisms we observe the same behavior: robustness
does not change with increasing network size. However, the variance de-
creases with increasing network size. We limit the discussion to an error
level of α = 0.2 since the results for the other error levels are conclusive with
these results. Figure 4.3 is symptomatic for all other cases. It shows the
robustness (ordinate) of the eigenvector centrality when nodes are missing,
the network size is shown on the abscissa. It is noticeable here that the
variance decreases sharply with the first increases in network size. Above a
size of approx. 2000, the change is hardly visible.

For the BA graphs we observe, with two exceptions, the same behavior
as for the ER graphs. Figure 4.2 shows the three different characteristics
(all results in this figure are for the eigenvector centrality). The middle
panel in Figure 4.2 represents the robustness behavior in BA graphs in
almost all cases. The robustness is independent of the network size, only
the variance decreases with increasing size, whereas the variance is relatively
small already. The outer panels show the two exceptional cases. The
absence of edges proportional to the degree of edge (left panel) reduces the
robustness of the eigenvector centrality with increasing network size. If
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nodes are missing (right panel), the robustness is, as in most other cases,
independent of the network size, but the variance is much larger and declines
hardly with increasing size.
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Figure 4.3: The behavior of the robustness in ER graphs with increasing
network size (abscissa) for fixed average degree is shown in the figure above.
The error level is 0.2.

4.4.2 Experiments with increasing average degree
In this part, we analyze the impact of changes to the average degree on the
robustness of centrality measures. We conduct two types of experiments,
based on ER and BA graphs, and based on the configuration model. The
procedure for the first experiments is similar to the experimental setup
described in Section 4.4.1. The difference between these experiments is the
generation of the random graphs. For the experiments in this section we fix
the network size at n = 1000 and select the parameters p and m in such a
way that we obtain networks with an average degree between 4 and 100.

With the second type of experiments we examine the effects of changes
in the average degree on the robustness of centrality measures in a more
realistic setting. We use the degree sequences of the empirical networks
from Section 4.3. We “scale” the degree sequences and generate more dense
versions of the underlying networks using the configuration model. We use
these generated networks as input graph G to analyze the robustness of



4.4 Experiments with random graphs 93

centrality measures in these types of networks, the remaining procedure is
analogous to the experiments already described in this section.

For the results concerning the ER graphs, the pattern consists of two
parts, independent of the type of error. The robustness of the eigenvector
centrality and the PageRank is, except for the smallest initial increases,
constant and thus independent of the increase of the average degree. With
degree centrality, on the other hand, robustness decreases with increasing
average degree. The decreases occur especially during the initial increases
of the average degree (approx. the range between 4 and 25), here the
robustness decreases by 0.1. These observations can also be found in the
rank correlation between average degree and the robustness (Table 4.5).
While degree centrality here always shows strongly negative correlation, in
most other cases no or weakly negative correlation can be observed.

Table 4.5: The rank correlations between the average degree and the robust-
ness are listed for the cases of BA and ER graphs under the influence of
different error mechanisms with an error level of 0.2.

BA graphs ER graphs
Error mechanism e+ e- e-(p) n- e+ e- e-(p) n-
Centrality
Degree 0.91 0.92 0.90 0.87 -0.66 -0.64 -0.64 -0.51
Eigenvector 0.82 0.93 0.95 0.69 -0.07 0.02 0.04 0.15
PageRank 0.93 0.94 0.93 0.91 -0.33 -0.25 -0.41 -0.02

The results for the BA graphs show a consistent pattern. In all cases,
regardless of centrality measure and error type, a higher average degree
is accompanied by a higher robustness. There is a very high, positive
rank correlation between the average degree and the associated robustness
(see Table 4.5). The increases in robustness associated with the increase
in the average degree are particularly strong for initial increases, further
increases still have a positive effect on robustness, but the effect of this
effect diminishes. The only exception to this is eigenvector centrality, which
resembles a linear relationship. The variance is slightly higher for the error
type missing nodes than for the other error types. In the case of eigenvector
centrality the variance is much higher in this case.

In the previous section, we have observed that for BA graphs, a higher
average degree is associated with higher robustness. Although BA graphs
have a skewed degree distribution, a property that many empirical networks
also have, these networks are nevertheless otherwise rather artificial. There-
fore, we now make the previous experiment a little more realistic. For this
purpose, we use the degree sequences of empirical networks and manipu-
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late them to increase the average degree and generate networks in order to
analyze the robustness of centrality measures in these networks.

The experiment’s basic design is similar to that of the experiments in
the previous section. The difference lies in the way the networks are created.
We take the degree sequences of the empirical networks (Table 4.1) and
create several “scaled” versions of them and generate networks based on
these degree sequences using the configuration model. To scale a degree
sequence of a network G we take a factor s and multiply each entry ds(G)i of
the degree sequence ds(G) by this factor. If ds(G)i · s is not natural number,
we take the integer part of it and add 1 with the probability of the fractional
part. For example, if the original degree is 9 and s = 1.25, then the scaled
degree is 11+Bern(0.25) where Bern is the Bernoulli distribution. We scale
the degree with factors between 1 and 5 (s ∈ (1.0, 1.25, 1.5, . . . , 5) and repeat
the whole procedure 100 times for every combination. We also calculate the
robustness of the underlying networks (the networks from which we obtain
the degree sequences).

underlying
Network
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Figure 4.4: Configuration model results for one network (CA-HepTh). The
scaling factor is listed on the abscissa. Additionally, the first entry is the
robustness of the underlying network.

First, we compare the robustness of centrality measures in “unscaled”
random graphs (i.e., s = 1) with the robustness of the corresponding empir-
ical network. In the case of the degree centrality, the robustness values of
both networks are, in the vast majority of cases and regardless of the type
of error, similar. This is, however, not the case the eigenvector centrality
and the PageRank. For these measures, the robustness of the random graph
and the underlying network are only similar in about 50% of the cases. We
observe no clear pattern which could explain this behavior.
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Table 4.6: Configuration model: rank correlations between the scaling factor
of the degree sequence and the average robustness of centrality measures
w.r.t. random graphs with these degree sequences.

Centrality Degree Eigenvector PageRank
Error e+ e- e-(p) n- e+ e- e-(p) n- e+ e- e-(p) n-
Network
zachary 0.60 0.75 0.46 0.81 0.81 0.90 0.96 0.76 0.84 0.87 0.84 0.91
dolphins 0.88 0.79 0.82 0.94 0.96 0.97 0.96 0.96 0.96 0.91 0.90 0.94
jazz 0.66 0.38 0.26 0.96 0.72 0.66 0.50 0.96 0.82 0.78 0.56 0.96
pdzbase 0.63 0.34 -0.31 0.32 0.62 0.96 0.96 0.75 0.66 0.63 0.41 0.65
vidal 0.85 0.79 0.18 0.76 1.00 1.00 1.00 0.97 0.91 0.87 0.78 0.84
facebook 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
powergrid 0.81 0.82 0.85 0.82 1.00 1.00 1.00 1.00 0.78 0.85 0.85 0.85
CA-GrQc 0.87 0.87 0.84 0.85 1.00 1.00 1.00 1.00 0.99 0.97 0.97 0.97
reactome 0.96 0.91 0.91 0.91 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00
CA-HepTh 0.87 0.87 0.84 0.87 1.00 1.00 1.00 1.00 0.99 0.97 0.96 0.97
pgp 0.84 0.69 -0.15 0.74 1.00 1.00 1.00 0.97 0.91 0.82 0.56 0.82
CA-HepPh 0.94 0.88 0.82 0.88 1.00 1.00 1.00 0.99 1.00 1.00 0.99 1.00
CA-AstroPh 0.97 0.93 0.93 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CA-CondMat 0.91 0.91 0.90 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
deezer_RO 0.88 0.90 0.91 0.91 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99
deezer_HU 0.93 0.93 0.93 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
deezer_HR 0.97 0.96 0.96 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
brightkite 0.85 0.72 -0.25 0.72 1.00 1.00 1.00 0.96 1.00 0.87 0.84 0.88
livemocha 0.97 0.93 0.91 0.91 1.00 1.00 1.00 1.00 1.00 0.99 0.96 0.99
petster_cat 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00
douban 0.34 -0.57 -0.69 -0.57 -0.51 0.87 0.62 0.82 0.57 -0.10 -0.69 -0.12
gowalla 0.90 0.82 0.34 0.84 1.00 1.00 0.99 0.81 1.00 0.96 0.90 0.94
dblp 0.87 0.87 0.85 0.87 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
petster_dog 0.97 0.96 0.93 0.96 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00
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The characteristic behavior regarding the influence of the scaling factor
s on the robustness of centrality measures in the random graphs is shown in
Figure 4.4. The robustness increases with increasing scaling factor (i.e., for
networks with higher average degree). The initial increases of the scaling
factor have a larger influence on the robustness than the subsequent increases.
The rank correlations between the scaling factor of the degree sequence and
the robustness of centrality measures w.r.t. random graphs with these degree
sequences for all networks, error mechanisms, and centralities are listed in
Table 4.6. For most cases, we observe very high correlations. Multiple
realizations of the same experiment yield similar results (i.e., the variance is
low). This observation strongly suggests that the robustness is a property of
the degree sequence. Notable exceptions are the results for smaller networks
(zachary, dolphins, jazz, and pdzbase). In these cases, the correlations are
lower and the variances are higher compared to the other networks. We
suspect that this instability is related to the size of these networks, they all
contain less than 200 nodes.

Among the remaining (larger) networks, it is noticeable that the corre-
lations for the douban network are considerably lower. This might be due
to the structure of the douban network: is has a low average degree (4.2)
and approx. 2/3 of the nodes have a degree of one. Hence, there is little
structure implied by this its degree sequence.

4.5 Analysis and discussion of the degree
centrality

In our experiments in Sections 4.3 and 4.4, we observed that, in many
cases, not the network size but the average degree is correlated with the
robustness of centrality measures. An increasing average degree often leads
to a higher robustness, which was observed in the experiments with the
empirical networks and also in the experiments with graphs generated by
the BA and configuration model. However, the opposite effect was also
observed. In the case of ER graphs, the robustness of degree centrality
decreases with an increasing average degree. In this section, we take a more
detailed look at the two scenarios involving ER and BA graphs.

In the following, we focus on the degree centrality, as it is the most
accessible for an analytical perspective (Platig et al., 2013; Tsugawa and
Ohsaki, 2015; Murai and Yoshida, 2019). First (Section 4.5.1), we derive an
expression for the robustness based on the interpretation of the robustness
as a probability. Then we argue that this interpretation is closely related
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to the robustness measured with Kendall’s tau, but more accessible for an
analytical perspective. The exact expression for the robustness depends on
the type of error. In Section 4.5.2, we derive these expressions for the case
of ER graphs and use them in Section 4.5.3 to show that, for ER graphs and
sufficiently large network size, the robustness is independent of the network
size, as long as the average degree is constant. In Section 4.5.4, we analyze
the behavior of the robustness of the degree centrality when the average
degree is increasing in ER and BA graphs in more detail.

4.5.1 Analytical approach for the robustness
To analyze the degree centrality in more detail, we use the following terms:
G is the unmodified Graph, H is the erroneous graph (a “modified” version
of G, i.e., H is on the same node set as G or on a subset of that node set).

We used Kendall’s τ to measure the robustness in our experiments to
provide comparability to existing studies. Goodman and Kruskal’s rank
correlation coefficient γ (Goodman and Kruskal, 1954), as explained in
Section 4.2.3, allows us to develop an analytical approach. Therefore we will
use it in the remainder of this section. Note that both measures differ in
their definitions only when there are ties. We can rewrite the robustness of
the degree centrality with respect to G and H (as stated in Equation (4.2))
in terms of the probability of concordant (Pc) and discordant (Pd) pairs:

rγ,degree(G,H) = nc − nd
nc + nd

= 2nc − (nc + nd)
nc + nd

= 2 nc
nc + nd

− 1 = 2
nc
n

nc
n

+ nd
n

− 1

= 2 Pc
Pc + Pd

− 1.

(4.3)

Now we will derive how these probabilities and thus also the robustness can
be calculated.

The error level is denoted by α; from the context, it becomes apparent
whether this refers, for example, to the level of deleted nodes or edges.
Additionally, consider two nodes v1, v2 drawn randomly from V (H). Now
let Di denote the random variable for the degree of node vi in G and
Xi denote the random variable for the degree change of node vi (i.e., the
difference of the degree of node vi in G and in H), D1, X1 and D2, X2 are
independent and identically distributed (i.i.d). On this basis let P (D1 =
d1, X1 = x1, D2 = d2, X2 = x2) be the joint probability that specific values
for d1, x1, d2, x2 occur together. We abbreviate this by P (d1, x1, d2, x2).
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Summing P (d1, x1, d2, x2) over the quadruples that correspond to concor-
dant (discordant) pairs of nodes, we can calculate the probability for (v1, v2)
to be concordant (discordant). For example, for the case of missing edges,
the probability for (v1, v2) to be concordant is

Pc =
∑

d1<d2;d1−x1<d2−x2
d1>d2;d1−x1>d2−x2

P (d1, x1, d2, x2), (4.4)

and the probability for (v1, v2) to be discordant is

Pd =
∑

d1<d2;d1−x1>d2−x2
d1>d2;d1−x1<d2−x2

P (d1, x1, d2, x2). (4.5)

The robustness as defined in Equation (4.3) is thus a function of the proba-
bilities defined in Equations (4.4) and (4.5).

4.5.2 Expressions for the robustness and error types

In the previous section, we showed how the robustness can be expressed
in terms of the probability of pairs to be concordant or discordant. These
probabilities depend on the type of error and the degree distribution of the
graph. In this section, we derive explicit expressions for P (d1, x1, d2, x2) for
the case of missing edges, missing nodes, and additional edges in ER graphs
with n nodes and edge probability p.

Since D1, D2 and X1, X2 are i.i.d., we can express P (d1, x1, d2, x2) =
P (d1, x1) · P (d2, x2). To derive the actual expression for P (di, xi), we use
the fact that P (di, xi) = P (xi|di) ·P (di), where P (di) is the probability that
node vi has a degree of di. For ER graphs this is the binomial distribution
Di ∼ Bin(n, p). Independently of the specific error mechanism, P (xi|di)
describes the effects of that error on node vi. Hence, to create explicit
expressions to that allow us to calculate the actual robustness, we solely
need to define P (xi|di) for the corresponding the type of graph and error.
In the following, we will provide these for the case of missing edges, missing
nodes, and additional edges in ER graphs.

Missing edges For the case of missing edges, P (xi|di) is the probability
that xi edges are removed from a node with degree di. This is binomial
distributed with P (Xi = xi|Di = di) ∼ Bin(di, α). The fraction of missing
edges is denoted by α. The restrictions for the quadruples which are used
for the calculation of robustness are the same as in Equation (4.4) and (4.5).
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• The marginal distribution is as follows:

P (Di = di, Xi = xi) =: P (di, xi) =(
di
xi

)
αxi(1− α)di−xi

(
n

di

)
pdi(1− p)n−di , for i ∈ {1, 2}. (4.6)

• As we assume that the edges are deleted independently of each other,
P (d1, x1, d2, x2) = P (d1, x1) · P (d2, x2), and thus calculate the robust-
ness of the degree centrality rγ,degree(G,H) with

Pc =
∑

d1<d2;d1−x1<d2−x2
d1>d2;d1−x1>d2−x2

P (d1, x1) · P (d2, x2)

and
Pd =

∑
d1<d2;d1−x1>d2−x2
d1>d2;d1−x1<d2−x2

P (d1, x1) · P (d2, x2).

Missing nodes In the case of missing nodes, the restrictions for the
quadruples, which are used for the calculation of robustness and the degree
distribution, are the same as above. The error level α is the fraction of
nodes that are missing in H. For the conditional distribution of the degree
decrease P (xi|di) we note that: nα nodes are deleted, n(1−α) nodes are not
deleted, di is the degree of node vi — the number of neighbors “drawn” from
the set of n nodes (Actually n− 1, but for large n, the difference becomes
negligible.).

• With this, we can specify the distribution of P (xi|di) as a HGeom(nα,
n(1− α), di):

P (xi|di) =
(
nα

xi

)(n(1−α)
di−xi

)
(
n
di

) , for i ∈ {1, 2}. (4.7)

• Hence, with n′ = nα:

P (di, xi) = P (xi|di)P (di) =
(
n′

xi

)(n−n′
di−xi

)
(
n
di

) (
n

di

)
pdi(1− p)n−di , (4.8)

for i ∈ {1, 2}.

• Similar to the case of missing edges, we can use the fact that
P (d1, x1, d2, x2) = P (d1, x1) · P (d2, x2), and thus calculate the robust-
ness of the degree centrality rγ,degree(G,H) with

Pc =
∑

d1<d2;d1−x1<d2−x2
d1>d2;d1−x1>d2−x2

P (d1, x1) · P (d2, x2)
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and
Pd =

∑
d1<d2;d1−x1>d2−x2
d1>d2;d1−x1<d2−x2

P (d1, x1) · P (d2, x2).

Additional edges While, in the case of additional edges, the degree
distribution is still the same as above, xi now refers to the degree increase
of node vi and α is the fraction of edges added to the graph.

• The conditional distribution for the degree increase is Bin(n−di, α p
1−p)

and hence,

P (di, xi) =
(
n

di

)
pi(1− p)(n−di)

(
n− di
xi

)
(α p

1− p)xi

(1− α p

1− p)(n−di−xi), for i ∈ {1, 2}.
(4.9)

• Again, we can use the fact that P (d1, x1, d2, x2) = P (d1, x1) ·P (d2, x2),
and thus calculate the robustness of the degree centrality rγ,degree(G,H).
It is important to note, however, that the conditions for the summa-
tions change in the case of additional edges:

Pc =
∑

d1<d2;d1+x1<d2+x2
d1>d2;d1+x1>d2+x2

P (d1, x1) · P (d2, x2), (4.10)

and
Pd =

∑
d1<d2;d1+x1>d2+x2
d1>d2;d1+x1<d2+x2

P (d1, x1) · P (d2, x2). (4.11)

4.5.3 The case of constant average degree
In the following, we use the expressions developed in the previous section
to study the impact of increasing network size (while the average degree is
constant) on the degree centrality in more detail. For the case of missing
edges and additional edges, we prove that the robustness of the degree
centrality is independent of the network size.

Missing edges For the case of missing edges, we derived the expression
for P (di, xi) in Equation (4.6). The degree distribution can be approximated
by an exponential distribution with λ = np, hence P (di) = e−λλdi

di! . If we
replace the corresponding term in Equation (4.6), then:

P (di, xi) =
(
di
xi

)
αxi(1− α)di−xi e

−λλdi

di!
, for i ∈ {1, 2}. (4.12)
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In Equation (4.12), the probability and hence robustness, Equation (4.3),
does not directly depend on n, as long as λ = np is constant (which implies
that the average degree stays constant), the robustness does no change if the
network size increases. This shows that the robustness of degree centrality
in ER graphs for this case does not directly depend on the network size. For
arbitrary network size, there exist robust and non-robust networks. This also
explains the observations from the experiments conducted in Section 4.4.1.

Additional edges For the case of additional edges, we derived the ex-
pression for P (di, xi) in Equation (4.9). With q = α p

1−p , we can rewrite
Equation (4.9) as:

P (di, xi) = Bin(n, p; di) ·Bin(n, q;xi) · correction term, for i ∈ {1, 2},
(4.13)

where the correction term is
(n− di)(n− di − 1) · · · (n− di − xi + 1)

n(n− 1) · · · (n− xi + 1) (1− q)−di (4.14)

and converges to 1.
Finally, we can apply the Poisson approximation (λ = np) to Equa-

tion (4.13), so the probability no longer depends on the network size:

P (di, xi) ≈ Pois(λ; di) · Pois(αλ;xi), for i ∈ {1, 2}. (4.15)
This result shows that, also for the case of additional edges, the robustness
of degree centrality in ER graphs does not depend on the network size for
large networks.

4.5.4 The case of increasing average degree
In the following, we take a closer look at the observations of Section 4.4.2,
the behavior of the robustness of degree centrality with increasing average
degree. In Section 4.4.2, we observed that the robustness of the degree
centrality in ER graphs decreases with increasing average degree. For BA
graphs, in contrast, the robustness increased with increasing average degree.
To further explore this observation, recall that a pair of nodes is discordant,
if the degree change induced by the error is larger than the degree difference
between those nodes in the error-free graph. We therefore suspect that the
ratio of the variance of degree values to the variance of degree changes could
explain the robustness.

In order to investigate this, we have repeated the experiments regarding
the degree centrality from Section 4.4.2 and recorded the changes of the



102 4 Network size, average degree, and the robustness

degree values. Figure 4.5 shows the robustness of degree centrality dependent
on the parameter that controls the average degree of the ER and BA graphs
(red curve). In addition, the ratio between variance of degree and variance of
degree change (blue curve) is also shown. For both types of random graphs
and all four error mechanisms, these results show a consistent pattern. If
this ratio is increasing, the robustness also rises, if it falls, the robustness
also falls.

Next, we consider three cases, missing nodes, missing edges, and ad-
ditional edges, for which we argue why the ratio of the variances for the
case of ER graphs behaves like this. Recall, D ∼ Bin(n, p) is the degree
distribution for the ER graph, and X is the random variable for the degree
change.

Missing edges For the case of missing edges, α is the probability for edge
deletion and X ∼ Bin(n, pα). Let f(p) = V ar(D)/V ar(X) be the ratio of
variance of the degree to variance of the degree change, then:

f(p) = np(1− p)
npα(1− pα) , hence (4.16)

f ′(p) = α− 1
α
· 1

(1− pα)2 . (4.17)

Since the first part in Equation (4.17) is < 0 and its second part is > 0, the
quotient of V ar(D)/V ar(X) is (strictly) monotonically decreasing.

Additional edges For the case of additional edges, the total number of
edges added is αp

(
n
2

)
, the total number of edges that could be added to

the graph is
(
n
2

)
(1 − p). Hence, the probability for a nonexistent edge to

be added is αp(n2)
(n2)(1−p)

= α p
1−p . Therefore, X, the degree change of a node, is

distributed as follows: X ∼ Bin(n−D,α p
1−p). Now, let D′ ∼ Bin(n, 1− p),

then X ∼ Bin(D′, α p
1−p) and thus X ∼ Bin(n, pα). Which is the same

distribution as for the case of missing edges. Consequently, the same results
as derived above for the case of missing edges also holds for the case of
additional edges.
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Figure 4.5: Robustness of the degree centrality (red curve, axis labels on
the left side) and ratio between the variance of the degree and the variance
of the degree change (blue curve, axis labels on the right side).
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Missing nodes For the case of missing nodes, the degree change X is
distributed as follows: X ∼ Bin(αn, p). The ratio of variance of the degree
to the variance of the degree change for this case is as follows:

V ar(D)
V ar(X) = np(1− p)

αnp(1− p) = 1
α
, (4.18)

which is a constant function with respect to p, in contrast to Equation (4.16).
Equations (4.17) and (4.18) demonstrate the difference between the edge

error mechanisms (missing and additional edges) and the case of missing
nodes: in the latter the quotient V ar(D)/V ar(X) is a constant which ex-
plains the behavior of the degree centrality if nodes are missing in ER graphs
which we observe in our experiments, see bottom right panel in Figure 4.5.
In this case, the robustness does not change with increasing p (and thus in-
creasing average degree). For the case of missing edges and additional edges,
it is plausible that the robustness is related to the quotient V ar(D)/V ar(X).
If the variance of the degree change increases more strongly than the vari-
ance of the degree, the probability that concordant pairs become discordant
pairs also increases. This illustrates the behavior shown in the first and
third panel on the right-hand side of Figure 4.5.

4.6 Conclusions and final remarks
Network data is often erroneous, which compromises the reliability of cen-
trality measures and the conclusions of subsequent analyses. We investi-
gated the robustness behavior of the degree, eigenvector centrality, and the
PageRank in empirical networks of different size and structure, as well as
in random graphs, under the influence of missing and additional edges and
missing nodes. We were primarily interested in the relationship between the
robustness of these centrality measures and the network size respectively the
average degree. We observed that a higher average degree was frequently
associated with higher robustness for cases where nodes or edges are missing.
Additionally, the degree was always the most robust measure and the vari-
ance of the eigenvector centrality was, in most cases, substantially higher
than the variance of the degree centrality or the PageRank. Moreover, we
observed that there exist small networks that are robust and larger networks
that are not robust w.r.t. centrality measures. These results also demon-
strate that the study of the robustness of centrality measures in the context
of larger networks is highly relevant.

For further insight, we conducted experiments on random graphs. In
the first type of experiment that we performed on ER and BA graphs, the
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average degree was constant, but the network size was increasing. The
increasing network size did, however, not affect the robustness. In the
second type of experiment, the network size was fixed, but the average
degree increased. In the case of ER graphs, the robustness was either not
affected by the change of the average degree (eigenvector centrality and
PageRank), or even decreased (degree centrality). In the case of BA graphs,
the robustness increased — for all centrality measures and errors that we
considered. This was also the case for random graphs generated by the
configuration model which generates more realistic networks since we used
the degree distributions of the empirical networks of the first part of our
study. These results suggest that centrality measures are more robust the
higher the average degree in the network, as long as the networks have a
skewed degree distribution.

In the third part of our study, we introduced an analytical approach for
the robustness in terms of a rank correlation. Focusing on Goodman and
Kruskal’s rank correlation, we derived explicit expressions for the robustness
of the degree centrality in ER graphs for the case of missing nodes, missing
edges, and additional edges. We showed that the robustness for these type
of networks is independent of their size, as long as the average degree is
constant. For arbitrary network size, there exist robust and non-robust
networks w.r.t. all centrality measures used in this study. Moreover, we
argued that the quotient of the variance of the degree and the variance of
the degree change may explains the robustness behavior at least to some
extent. In addition, we studied the behavior of this quotient analytically for
ER graphs.

These findings contribute to a better understanding of the robustness of
centrality measures. Researchers should, therefore, pay particular attention
to error-free data collection if it is known that the particular network is
sparse. When centrality measures are used on this type of network, the
results may be interpreted with caution.

This study also provides a basis for further research. The findings may
be incorporated into procedures for the treatment of erroneous network data.
Further investigations about sophisticated error mechanisms (e.g., extend-
ing the missing edges proportional error mechanism or mixtures of error
mechanisms (Platig et al., 2013)) would be interesting. Another direction
would be the use of random graph models in which other properties apart
from the average degree can be controlled separately. Moreover, further
investigation of the relationship between the robustness and the quotient of
variances would be interesting.
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Abstract
Node embedding methods find latent lower-dimensional representations which
are used as features in machine learning models. In the last few years,
these methods have become extremely popular as a replacement for manual
feature engineering.

Since authors use various approaches for the evaluation of node em-
bedding methods, existing studies can rarely be efficiently and accurately
compared. We address this issue by developing a process for a fair and objec-
tive evaluation of node embedding procedures w.r.t. node classification. This
process supports researchers and practitioners to compare new and existing
methods in a reproducible way.

We apply this process to four popular node embedding methods and make
valuable observations. With an appropriate combination of hyperparameters,
good performance can be achieved even with embeddings of lower dimensions,
which is positive for the run times of the downstream machine learning task
and the embedding algorithm. Multiple hyperparameter combinations yield
similar performance. Thus, no extensive, time-consuming search is required
to achieve reasonable performance in most cases.

5.1 Introduction
Networks are used to model phenomenons in various domains such as social
relations, molecular graphs, biological structures, or recommender systems.
Networks represent the relations (edges) between different entities (nodes).
Social networks contain information about individuals or communities and
the dynamics among them. This information can, for example, be used
for segmentation or recommendation tasks. Networks capture not only
social relationships, but also citations, biological information, or knowledge
relations (Newman, 2003). Developing and experimenting with methods that
leverage the information captured by these networks are important endeavors
in business and research communities (Yang et al., 2015; Zhang et al., 2018).

In various fields, network data is to be used as input for machine learning
models. This poses the challenge that network data must first be trans-
formed in order to serve as features. Traditionally, handcrafted features
have been created to represent the nodes. This type of feature engineering,
however, has considerable weaknesses. It is very time-consuming on the
one hand and, on the other hand, the handcrafted features can often not
be reused (Hamilton et al., 2017). Node embeddings map the nodes of
a graph to a lower-dimensional vector which can subsequently be used as
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input for other machine learning techniques. However, due to the particular
data structure of a network, the quality of network embeddings depends on
preserving the structural properties of a graph while incorporating node at-
tributes. This can be difficult as the structural similarity of nodes can either
be portrayed as nodes close to each other or as nodes with similar roles in the
network, node embeddings have to respect local and global node similarities
together (Cai et al., 2018; Zhang et al., 2018; Goyal and Ferrara, 2018b).

Node embedding methods have enormous potential, thus this area con-
tinues to be a highly active field of research. In recent years, several sur-
veys have been published, which summarize the progress made in this area
and address the comparison and categorization of node embedding meth-
ods (Hamilton et al., 2017; Goyal and Ferrara, 2018b; Zhang et al., 2018; Cai
et al., 2018). Due to the popularity of embedding methods, a unified way
to compare them has become increasingly important. Methods proposed
by existing studies can rarely be compared to each other since authors use
different approaches to evaluate node embeddings.

We address this issue by developing a process (Section 5.3) for a fair and
objective evaluation of node embedding procedures w.r.t. node classification.
Building on and extending existing work (Goyal and Ferrara, 2018b; Zhang
et al., 2018; Khosla et al., 2019; Goyal et al., 2019), we explicitly address
the choice of the hyperparameters in the process presented here, under
consideration of the downstream machine learning task, in this case node
classification. This process supports researchers to compare new and existing
methods in a reproducible way. Furthermore, end users can use this process
to find the optimal method for the particular use case.

In the case study in Section 5.4, we apply the process to four popular
node embedding methods and make valuable observations, especially for
practitioners. The default hyperparameters for node embedding procedures
are generally not a good choice. With an appropriate combination of hy-
perparameters, good performance can be achieved even with embeddings
of lower dimensions, which is positive for the run times of the downstream
machine learning task. Multiple hyperparameter combinations yield similar
performance; hence usually there is no extensive, time-consuming search
required to achieve reasonable performance.

5.2 Node embeddings
Let G be a graph on N nodes with vertex set V (G) = {v1, v2, . . . , vN}. Node
embeddings are d-dimensional representations of the nodes in G; usually,
these are lower-dimensional (i.e., d� N). These embeddings are commonly
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used as input for machine learning algorithms. Node embedding methods
have the objective to find such a mapping f : V (G) → Rd, where nodes
which are “similar” to each other in the graph also “similar” to each other
in the vector space. The definition of similarity differs between methods. In
the literature, the terms graph embedding or network relational learning are
also used for this purpose (Perozzi et al., 2014; Zhang et al., 2018; Hamilton
et al., 2017).

In our case study (Section 5.4), we use the following four frequently
cited and widely used node embedding methods: node2vec (Grover and
Leskovec, 2016), GraRep (Cao et al., 2015), Deep Network Graph Repre-
sentation (DNGR) (Cao et al., 2016), and Large-scale Information Network
Embedding (LINE) (Tang et al., 2015). We use the implementations pro-
vided by (Goyal and Ferrara, 2018a; Natural Language Processing Lab at
Tsinghua University, 2019).

5.3 A process for the comparison of node em-
bedding methods

In this section, we develop the evaluation process for node embedding meth-
ods. This process enables researchers and practitioners to perform a fair
and objective evaluation of node embedding procedures. We present this
process for two main reasons. The first is to compare new and existing
methods in a reproducible way. Furthermore, it helps end users to find the
optimal method for the particular use case. We start by arguing why the
procedure for selecting hyperparameters cannot easily be transferred from
previous machine learning methods to node embedding learning. Then we
propose an approach and integrate it with the process.

The evaluation of algorithms and methods is an essential part of machine
learning and network analysis research (Caruana and Niculescu-Mizil, 2006;
Daelemans and Hoste, 2002). Particularly, algorithm selection is a widely
discussed topic and an essential part of the application of machine learning
algorithms in practice. This is due to the fact that there is not one single
method optimal for all problem settings (Kou et al., 2012; Wolpert and
Macready, 1997).

Essential components of evaluation experiments in machine learning are
the data set, feature selection, feature representation, and hyperparameter
settings (Daelemans and Hoste, 2002). The components of an evaluation
process for node embeddings are slightly different. The data set and the
hyperparameter settings can be transferred to node embeddings as essential
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components of the evaluation (Zhang et al., 2018). However, the feature
selection process and the data representation have to be altered. Node
embedding methods naturally take a network and the contained information
as feature input, essentially making the step of feature selection unnecessary.
The necessary representation of the network might differ between algorithms,
hence the data representation is implied by choice of the embedding method.

Node embedding methods constitute an unsupervised problem setting
traditionally; semi-supervised methods also exist (e.g., Kipf and Welling
(2017), Shchur et al. (2018)), but these are not addressed in this paper.
An application task is, therefore, necessary to evaluate the quality of node
embeddings and is thus an essential component of the process. In summary,
the core components of the process are the network data, the application
task, the evaluation metric, and the hyperparameter configuration.

Network data The choice of the network data depends on the setting
in which the process is applied and the node embedding methods consid-
ered. Practitioners who are looking for the best method for their particular
application should use data that is close to the production data. For the
comparative evaluation of new and existing embedding methods, in the in-
terests of reproducibility, we recommend using publicly available networks
of different size and structure. These may be, for example, the data sets
used in the case study in Section 5.4.

Application task and evaluation metric The most popular application
task is node classification, which is often applied when presenting a new
embedding method. Classification aims at finding class labels for each node.
The vector representation serves as feature input for a classifier (Cai et al.,
2018; Goyal and Ferrara, 2018b). Training a classifier requires training
data, which means that labels have to be available at least for a part of
the network. Common evaluation metrics in this context include F1-score,
precision, recall, or accuracy. We propose to use the F1-score since it takes
precision and recall into account, F1-score = 2·precision·recall

precision+recall . In the case of
multi-class and multi-label classification problems, we use the macro and
micro variant of the F1-score. Here the classes, respectively, the individual
observations, are weighted equally (Powers, 2011).

For the classification task, we propose to use two popular and often
used algorithms in machine learning: a logistic regression model (one-vs-
rest classification for the multi-label model) and a random forest model.
The regression model because of the frequent usage in the evaluation of
embedding methods. The random forest is a widely used model in practical
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Figure 5.1: Setup for the hyperparameter selection The embedding
algorithm is applied to the whole network resulting in a vector representation
marked by gray squares on the left side which is subsequently divided into
three splits: training set (yellow), validation set (turquoise) and test set
(blue). The training set is used to train the classifier, the validation set
is used in that last part of the hyperparameter selection to validate the
performance of the combined model. The test set is not used during the
hyperparameter selection. After repeating this process several times, the
best hyperparameter combination is selected for the final model, which is
evaluated on the test set (final step on the right separated by the bold line).

machine learning applications. Nevertheless, it is usually not applied in node
embedding research. Therefore we suggest to use it in this context because
it is very flexible and leads to good results on different data sets (Fernández-
Delgado et al., 2014).

Hyperparameter configuration The selection of the best hyperparame-
ters is a debated topic in research. The impact of different tuning parameters
on each other and how they affect the performance is only poorly under-
stood (Li et al., 2016). In practice, a widely used method to find a set
of hyperparameters is random search, where the search space of hyperpa-
rameters is randomly explored and evaluated. Bergstra and Bengio (2012)
showed that this type of search leads to equally good or even superior models,
compared to grid search, while only a fraction of the time is needed.
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In addition to the way the hyperparameter selection is performed, the
data utilized for tuning is an important topic. Usually, in machine learning
data is split into a test, training, and validation set, in which the test set
is only used once for the final validation. The training of the algorithm is
performed on the training set with a subsequent evaluation of the perfor-
mance using the validation set (James et al., 2013). For network embedding
procedures, this is not possible. Splitting the network data into different
sub-graphs would significantly alter the results of the embedding methods
as they rely on representing the whole graph mirroring the structural con-
text information of a node and its position in the whole network. Only
using part of the network for an embedding would lead to a completely
different representation with important context information missing. The
proposed solution for the described challenges is a combined tuning of hy-
perparameters of the embedding and the subsequent application algorithm.
The application task serves as the basis for the performance evaluation
governing the hyperparameter selection. As shown in Figure 5.1, the rep-
resentation for the whole graph is learned, whereas only part of this data
is used in the application task (for example, classification) to evaluate the
hyperparameter selection. For both algorithms — the embedding algorithm
and the classification algorithm — hyperparameters are selected randomly.
This process is repeated several times. Finally, the best model combination
using the best hyperparameters for both algorithms is picked and evaluated
on the test set.

5.4 Case study for the comparison process

In this section, we use the process to compare four frequently cited and widely
used node embedding methods: node2vec, GraRep, LINE, and DNGR.
Especially, we are interested in the impact of the number of dimensions
and the amount of training data used on the performance in the domain of
node classification.

We use data sets with varying characteristics (i.e., directed and undi-
rected as well as binary, multi-class, and multi-label classification) to get an
understanding of how embedding procedures behave under different condi-
tions. Table 5.1 lists basic statistics about these networks. For training and
model selection, we use 50% for the training set and 25% for the validation
set and test set. For the second part of the experiment, where we analyze
the impact of varying amounts of training data, we use 10%, 20%, . . . , 100%
of the training data. All of these values refer to the node embedding vectors.
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Table 5.1: Summary of networks used in the case study.

Network Nodes Edges Directionality # Labels Source
Moreno Blogs 1,224 19,025 directed 2 (binary) Adamic and Glance (2005)

CiteSeer 3,312 4,660 directed 6 (multi-class) Getoor (2005)

Facebook 4,039 88,234 undirected 4 (multi-class) Leskovec and Mcauley (2012)

BlogCatalog 10,312 333,983 undirected 39 (multi-label) Tang and Liu (2009)

Overall results The performance of the embedding methods w.r.t. the
different classifiers and measures are listed in Table 5.2. The scores for
the logistic regression scenarios reveal that most of the tested algorithms
perform similar across the networks. The highest score for the BlogCatalog
network is 0.35, which was reached by node2vec. LINE and GraRep reach
equal scores of 0.34 on that network. For Facebook, the scores are even
closer together, the values vary between 0.45 and 0.52. The same trend can
be found in the results of the Moreno network. For the Moreno network, the
score of LINE, GraRep, DNGR, and node2vec are the same with 0.95. The
best scores for CiteSeer range from 0.53 to 0.57. Only the deep learning-
based method yield worse results, DNGR does not work well with a score
of 0.25. Overall, the results indicate that very similar scores can be reached
across different methods. The observed performance of node2vec, LINE, and
GraRep on the BlogCatalog data set are in line with the results reported in
the literature. For GraRep and node2vec, evaluation experiments were also
conducted using a one-vs-rest logistic regression (Cao et al., 2015; Grover
and Leskovec, 2016). Moreover, in Cao et al. (2015), LINE was included
as a baseline. For all three networks, the performance was around 0.4; the
slightly lower performance observed in this paper might be explained by
the use of only 50% of the networks for training, due to the data split in
training, validation and test set explained above.

Analysis of the number of dimensions The dimensionality of the
embedding is the only hyperparameter shared by all node embedding meth-
ods. The performance of embedding algorithms should, intuitively, increase
with an increasing number of dimension until reaching a plateau where no
substantial improvement of performance happens with increasing dimension-
ality. Grover and Leskovec (2016) observed this behavior for the node2vec
algorithm. Experimenting with the number of dimensions resulted in a
saturation of performance improvement at a dimension of around 100. Sim-
ilar results are reported by Wang et al. (2016). They noticed a decline
in performance after saturation at about 100. For some algorithms like
GraRep, little influence of the dimensionality on performance was observed.
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Table 5.2: Results for the experiments in the case study.

Network Blog. CiteSeer Facebook Moreno
Score Classifier Embedding
Macro F1 Random forest DNGR 0.020 0.180 0.434 0.941

GraRep 0.111 0.555 0.489 0.944
LINE 0.020 0.240 0.458 0.954
node2vec 0.032 0.505 0.456 0.951

Log. regression DNGR 0.068 0.153 0.485 0.954
GraRep 0.181 0.514 0.505 0.951
LINE 0.195 0.469 0.427 0.948
node2vec 0.212 0.493 0.412 0.954

Micro F1 Random forest DNGR 0.052 0.266 0.450 0.941
GraRep 0.244 0.607 0.505 0.944
LINE 0.054 0.273 0.507 0.954
node2vec 0.088 0.563 0.514 0.951

Log. regression DNGR 0.182 0.248 0.507 0.954
GraRep 0.342 0.574 0.525 0.951
LINE 0.339 0.536 0.450 0.948
node2vec 0.354 0.534 0.496 0.954

Most frequent label 0.090 0.212 0.336 0.520

The reported relation between dimension and performance is almost steady,
with a slight decrease after 64 dimensions (Cao et al., 2015). In Figure 5.2,
the performance depending on the dimension for the case of the Facebook
network is shown. These results indicate that higher dimensions do not nec-
essarily lead to better performance. This behavior also occurs for the other
networks. However, analyzing the performance with different dimensions
lead to high variances. The reason might lie in the high amount of different
hyperparameter combinations since the performance is not only dependent
on the dimension but on the combination of parameters picked. Nonetheless,
the findings suggest that in combination with the right hyperparameters,
small dimensions are sufficient to reach scores that are comparable to the
performance with higher dimensions. The results highlight the influence of
all hyperparameters on each other. Therefore, the optimal performance of
an embedding method depends on all hyperparameters, the network, and
the application task. Moreover, the results suggest that equally well results
can be reached with many different hyperparameter combinations, indicat-
ing that a reasonable performance can be reached without an extensive
hyperparameter search. This may also explain the difference between our
results to the above. We consider the performance of the final application
task (node classification) when finding embeddings.
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Figure 5.2: Impact of the dimensionality on the performance for the Face-
book network.
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Hyperparameter for node2vec A more detailed analysis of the hy-
perparameter for node2vec is listed in Table 5.3. The results lead to the
conclusion that the best hyperparameter combination depends on the net-
work and the application task. In the case of the BlogCatalog data set,
there are also apparent differences between the two classification algorithms:
The hyperparameter search leads the algorithm towards different learning
strategies. The values for the sampling parameters p and q are 2 and 0.25 in
the random forest case and 2 and 1 for the logistic regression. Thus for the
Blog Catalog network, the random forest benefits from a depth-first sam-
pling strategy preferring nodes further away from the source node, whereas
the sampling strategy for the logistic regression is not biased towards one
sampling strategy. The parameter p is 2 for both classification cases. Hence,
the likelihood of revisiting a node is low.

Table 5.3: Results for the hyperparameter analysis of node2vec.

Random forest Logistic regression
Blog. Face. Cite. Moreno Blog. Face. Cite. Moreno

Micro F1-score 0.04 0.47 0.27 0.95 0.22 0.5 0.35 0.95
Dimension 74 943 103 733 197 848 245 600
Return parameter: p 2 0.5 0.25 1 2 2 0.75 2
In-out parameter: q 0.25 0.5 0.5 4 1 0.5 0.25 0.5
Number of walks: l 25 42 40 20 33 5 48 39
Walk length: k 70 56 11 45 46 28 11 24

In the paper introducing node2vec, experiments were also conducted on
the BlogCatalog network. The authors described an increase in performance
with small values for p and q. The results of the presented experiments
suggest higher values for p and smaller values for q. Differences in the
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findings for the return parameter p are probably due to the variants in the
remaining hyperparameters. Grover and Leskovec (2016) used default values
for all remaining hyperparameters and only experimented with the values
for p and q. The findings of the random search suggest a strong effect of
the interaction between the parameters. Even though a lower p is optimal
in the case of default parameters, a higher p — leading to node sequences
containing samples further away from the source — leads to better results,
when combined with more and longer walks. These observations highlight
the importance of tuning the hyperparameters of node embeddings based
on the application task instead of simply using the default parameters.
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Figure 5.3: Results for the impact of an increasing amount of training data
on the classification performance.

Impact of % training data on the performance Figure 5.3 shows the
impact of increasing the amount of training data on the performance, the
overall impact is small. The behavior of the curves, however, shows that
with small ratios, an increase in the amount of training data has a high
impact on the performance. At some point, an increase in the data only leads
to a small improvement. As an example, for both classification methods,
the performance for the Moreno network reaches a peak in performance
increase at around 20% of the training data. After that point, the impact
on performance is relatively low. Similarly, the score for the embedding
methods on the BlogCatalog network are increasing until a ratio of 0.2 to
0.3, the performance score of node2vec in the logistic regression scenario
is 0.26 with 10% of the data. However, with 30% of the data, the score
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is already 0.33. There is only little improvement thereafter as the best
score is 0.35. This is consistent with previous studies that showed that the
performance of node2vec shows large improvements until 30% after that, the
increase in performance is small (Goyal and Ferrara, 2018b). For CiteSeer
differences between the random forest and the logistic regression scenario
can be observed. In the case of the random forest combined with GraRep
and node2vec there is a substantial increase in performance. The starting
value of node2vec, for example, is 0.34, whereas the best performance is
0.56. However, in the logistic regression scenario, the difference is only 0.05,
which is consistent with a similar experiment conducted by Zhang et al.
(2018), who compared the results using 5% and 50% of the whole network
data and found an increase of 0.08 points for CiteSeer. The reason for these
differences in the two application scenarios is not apparent. However, it
might be because the random forest needs more labeled observations to
separate them efficiently. The CiteSeer network has many labels with only
a few observations. Therefore, a small amount of data might lead to an
underrepresentation of training data for some labels.

5.5 Conclusions

Recently, node embeddings became popular as an alternative to handcrafted
feature engineering (Hamilton et al., 2017). In this paper, we proposed a
process for the comparison of node embedding methods w.r.t. node classifi-
cation. This process enables researchers and practitioners to perform a fair
and objective evaluation of node embedding procedures and helps end users
to find the optimal method for the particular use case.

Moreover, in a case study, we applied this process to four popular node
embedding methods. These experiments showed that the introduced pro-
cess provides a foundation for a standardized evaluation of node embedding
methods. Additionally, we made valuable observations, especially for practi-
tioners: The default parameters for node embedding procedures are generally
not a good choice. We analyzed this in detail for node2vec. Analyzing the
impact of the dimensionality of the embeddings, we noticed that the appro-
priate combination of hyperparameters yields good performance with a lower
number of dimensions, which is positive for the run times of the downstream
machine learning task and the embedding algorithm. We also observed that
multiple hyperparameter combinations yield similar performance. Hence
there no extensive, time-consuming search required to achieve reasonable
performance.
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Although the proposed process provides a robust foundation for the
comparison of node embedding methods, there are some aspects which
should be addressed by future research. For example, the application task
link prediction. It would be particularly interesting to understand how
the procedure has to be adjusted differently for missing and future link
prediction. A comprehensive comparison of semi-supervised methods would
also be of interest.
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