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Abstract

This cumulative thesis extends the econometric literature on testing for cointegration in
nonstationary panel data with cross-sectional dependence. Its self-contained chapters
consist of two publications and two publication manuscripts which present three new
panel tests for the cointegrating rank and an empirical study of the exchange rate
pass-through to import prices in Europe.
The first chapter introduces a new cointegrating rank test for panel data where the
dependence is assumed to be driven by unobserved common factors. The common factors
are first estimated and subtracted from the observations. Then an existing likelihood-
ratio panel cointegration test is applied to the defactored data. The distribution of the
test statistic, computed from defactored data, is shown to be asymptotically equivalent
to that of a test statistic computed from cross-sectionally independent data.
The second chapter proposes a new panel cointegrating rank test based on a multiple
testing procedure, which is robust to positive dependence between the individual units’
test statistics. The assumption of a certain type of positive dependence is shown by
simulations not to be violated in panels with dependence structures commonly assumed
in practice. The new test is applied to find empirical support of the monetary exchange
rate model in a panel of eight OECD countries.
The third chapter puts forward a new panel cointegration test allowing for both cross-
sectional dependence and structural breaks. It employs known individual likelihood-ratio
test statistics accounting for breaks in the deterministic trend and combines their p-
values by a novel modification of the Inverse Normal method. The average correlation
between the probits is inferred from the average cross-sectional correlation between the
residuals of the individual VAR models in first differences.
The fourth chapter studies the exchange rate pass-through to import prices in a panel
of nineteen European countries through the prism of panel cointegration. Empirical
evidence supporting a theoretical long-run equilibrium relationship between the model’s
variables is found by the newly proposed panel cointegration tests. Two different panel
regression models, which take both cointegration and cross-sectional dependence into
account, provide most recent estimates of the exchange rate pass-through elasticities.
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1
Introduction and overview

1.1 Introduction

In a seminal paper “Spurious regressions in econometrics” Granger and Newbold (1974)
demonstrated how regressions between wholly unrelated nonstationary variables give
rise to statistically significant estimates. They called this phenomenon a “spurious”
regression, and as a remedy to the problem recommended to estimate such models after
taking first differences of the variables – at least “until a really satisfactory procedure
is available”. Although the authors acknowledged that it might not be a universally
applicable solution, estimating econometric models in first differences rather than
in levels enjoys popularity among practitioners even today. One problem with this
modelling approach, although not immediately recognized, is that it mainly focuses on
dynamics in the short run and hence potential links between the variables in the long
run may get lost.
Continuing work on this subject by investigating nonstationary processes and how
they interact in the long run, Granger published “Some properties of time series data
and their use in econometric model specification” in 1981. In it the author coined the
term “co-integration” to describe the co-movements of two or more nonstationary, or
integrated, stochastic processes, which do not drift too far apart in the long run, but
remain tied closely together.
Not before long another very influential article came along: “Co-integration and error-
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correction: representation, estimation and testing” by Engle and Granger (1987). They
showed how cointegrated processes can be modelled in an error-correction framework
and proposed new methods for estimation and hypothesis testing, essentially providing
the necessary “satisfactory procedure” sought after more than a decade earlier. With
the availability of this new statistical toolbox cointegrated regression models quickly
became the primary workhorse for testing and estimation of long-run relationships
between economic variables. In recognition of the importance of this work Robert Engle
and Sir Clive Granger were awarded with the Nobel prize for economics in 2003.
The nonstationary behaviour of a time series is usually described by its order of
integration. Integrated variables of order d (denoted as I(d)) are such that they become
covariance-stationary after taking repeated differences d times. By the definition given
by Engle and Granger (1987), integrated variables of order d are said to be cointegrated
if there exists one or more nontrivial linear combination(s) of them which has a lower
order of integration. Over time, many economic variables have been found to exhibit
behaviour consistent with the properties of I(1), also termed “unit-root”1, processes.
Therefore in practice, unless noted otherwise, cointegration most commonly refers to
I(1) variables sharing common unit-root stochastic trend(s), thus having a stationary
(or I(0)) long-run relationship.
Testing for the integration and cointegration order of economic variables established
itself as an essential pre-modelling step in the late 1980s, aided by the surge of newly
proposed tests for detecting unit roots and cointegration. Cointegration tests may be
viewed as multivariate extentions of unit root tests, and two main types thereof can be
distinguished: residual-based and system tests. Residual-based cointegration tests, on
the one hand, look at regression models of integrated variables and examine whether
the regression error series contains unit roots. They are therefore suitable to detect the
presence of a single cointegrating relationship provided the regression model is correctly
specified. System tests, on the other hand, may be used to detect not only the presence,
but also the number of the equilibrium relationships among several variables, which is
known as the cointegrating rank. They are also more flexible as they do not depend on
the choice of a variable for the normalization of the cointegrating relationship. One very
prominent system test still widely employed today is the likelihood-based cointegrating
rank test of Johansen (1988). It became the base for many further developments and
extensions, some of which are pursuit in this thesis.
In the early 1990s it was recognized that the power of popular univariate unit root tests
could be rather low, especially for short time series; this critique naturally applies also
to cointegration tests. However, as extending the data in the time dimension (T ) is not
always possible or desirable because of issues with data availability or quality, a way of
1The term “unit root” describes one of the roots of the characteristic equation of an I(1) process,
which lies on the unit circle, while the rest lie within.
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improving power had to be found elsewhere. This led to the emergence of panel unit
root and cointegration tests, where the amount of data is increased in the cross-sectional
dimension (N). Such extention is deemed meaningful on the belief that time series
from different units, e.g. countries, industries, or firms, exhibit similar dynamics over
time. The combined information set is therefore supposed to be more revealing for the
stochastic properties of their driving forces. An extensive review of the early panel
cointegration tests can be found in Örsal (2009).
A common trait characterizing the so-called first generation of tests is the assumption of
independence between the cross-sectional units. This assumption significantly simplifies
the derivation of the asymptotic distributions of the proposed panel test statistics, in
most cases by invoking the Central Limit Theorem for a panel statistic computed as the
standardized average of the individual statistics. It was nevertheless quickly recognized
that albeit convenient, the assumption of independence is almost never fulfilled in
practice. The consequences of unattended cross-sectional dependence could be quite
detrimental for both estimation and hypothesis testing. For example, the least squares
estimator may become biased, inconsistent or inefficient. The presence of dependence
also invalidates the limiting distributions of panel unit root and cointegration test
statistics assuming independence, so that the probability of a Type I error, a.k.a. the
size of a test, may become much larger than the nominal significance level.
Cross-sectional dependence arises naturally in macroeconomic panel data as a result
of common shocks, spatial spillover effects and general interdependence due to the
increasingly tighter economic and financial links between countries. Various approaches
to tackle the issues it brings about in the existing panel unit root and cointegration
tests began to emerge in the early 2000s. These range from estimating the variance-
covariance matrix of the stacked panel model residuals directly by generalized least
squares as in Seemingly Unrelated Regression Equations (SURE), through eliminating
the dependence by constructing suitable instrumental variables, to bootstrapping for
approximating the limiting distribution of panel test statistics. More coherent treatment
of this subject can be found in the excellent review by Breitung and Pesaran (2008). Two
approaches that have become particularly popular in the development of such second-
generation panel unit root and cointegration tests that are robust to cross-sectional
dependence merit a separate mention. The first one assumes that the dependence stems
from unobserved common factors which affect the different units with heterogeneous
loadings. The common factors may then be either estimated from the data, so that
decomposition of the observed variables into unobserved common and idiosyncratic
components takes place, or they may be approximated by functions of the observables,
e.g. by cross-sectional averages. The second approach, in contrast, does not assume a
particular dependence structure in the data generating processes (DGP) of the time
series, but rather seeks to combine the significance levels of the dependent individual
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statistics into a panel statistic. Such meta-analytic tests are naturally more flexible
as they permit much more heterogeneity in the DGP. Both of the aforementioned
approaches have been advanced in this thesis to propose new panel cointegration tests.
Recently, a third generation of panel unit root and cointegration tests has been on the
rise: such that allow for both cross-sectional dependence and structural breaks in the
data generating process. Issues posed by structural breaks have become particularly
relevant in the years following the Global Financial Crisis, as it has caused a break
in many, if not all, economic and financial time series. Unattended structural breaks,
however, may generally cause a stationary series seem nonstationary and hence distort
the results of unit root and cointegration tests, similarly to what unattended cross-
sectional dependence does to first-generation panel tests. Hence new tools capable of
handling them both simultaneously have been called for.

1.2 Overview

This thesis, which consists of two publications and two publication manuscripts, extends
the literature on panel cointegration testing on both theoretical and empirical level.
First, it develops two new second-generation tests and one third-generation test for
the cointegrating rank in panel data. Second, it contributes to empirical economics by
applying these new tests to investigate the presence of long-run equilibrium in different
economic systems whose existence is predicted by theory.
A common trait shared by the proposed panel cointegration tests is that they are
all based on existing likelihood-based tests for the cointegrating rank which carry
out detrending of the observed data prior to the computation of the test statistics.
The indvidual-unit test underlying both new second-generation panel tests is the one
developed by Saikkonen and Lütkepohl (2000) (henceforth SL test). They demonstrate
that estimating the deterministic linear trend by generalized least squares (GLS) and
subtracting it from the observations leads to improved power properties of the test in
comparison with Johansen’s (1988) test allowing for a linear time trend. The same
GLS-detrending procedure is followed also by Trenkler, Saikkonen and Lütkepohl (2007),
whose test allowing for structural breaks serves as the basis for the newly proposed
third-generation panel cointegration test. What differs between the newly developed
tests is a) the way the cross-sectional dependence is handled; and b) the construction
of the panel test statistic. In the first panel test, presented in Chapter 2, the assumed
source of cross-sectional dependence is eliminated asymptotically from the observed
data. Therefore, the panel test statistic, computed as the standardized average of the
individual-unit test statistics, has a standard normal limiting distribution by the Central
Limit Theorem for independent and identically distributed observations. The other
type of second-generation test, presented in Chapter 3, and the third-generation test,
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presented in Chapter 4, look rather into incorporating the cross-sectional dependence
into the computation of the panel test statistic. Hence they both resort to p-value
combination methods which are robust to cross-sectional dependence.
In terms of empirical contributions the thesis presents results of testing for cointegration
by the newly proposed tests using recent data in three different areas. First, a long-run
relationship between the nominal exchange rate and monetary fundamentals, postulated
by the monetary exchange rate model, is revealed by means of the test proposed in
Chapter 3. Second, the theoretical equilibrium between house prices and personal
income is examined in Chapter 4 by the third-generation panel test in view of the
structural break caused by the Global Financial Crisis. Finally, an empirical model for
the exchange rate pass-through, which looks at the long-run linkage between import
prices and exchange rate movements, is investigated in Chapter 5. The existence of a
cointegrating relationship is established by the tests proposed in this thesis. It serves
as the basis for the estimation of two different cointegrated panel regression models
whose results are then compared. A brief summary of each chapter, highlighting both
the theoretical and the empirical contributions, is presented next.
Chapter 2 presents the publication of Arsova and Örsal (2018), which develops a
new panel cointegrating rank test allowing for a linear time trend and cross-sectional
dependence. It combines individual SL test statistics as the panel SL test by Örsal and
Droge (2014) and may be viewed as an extention of the latter test to dependent panels.
The dependence is assumed to be driven by unobserved common factors, which are
extracted from the data by the method of principal components. Thus the observed
time series are essentially decomposed into unobserved common and idiosyncratic
components, allowing their integrating and cointegrating properties to be determined
separately. Testing for cointegrating rank zero is then performed by applying the panel
SL test to the defactored data. Testing for higher cointegrating ranks, on the other hand,
is carried out by applying the panel SL test to estimates of the hypothesized stochastic
trends. Three theorems lead to the proof that, under certain conditions, the asymptotic
distribution of the panel test statistic, derived from defactored data, is the same as
that of the statistic computed from the cross-sectionally independent idiosyncratic
components. In other words, any bias arising from estimating the unobserved common
factors and their loadings, is shown to be asymptotically negligible as the dimensions of
the panel T and N grow indefinitely. A Monte Carlo simulation study demonstrates that
the proposed testing procedure has good finite sample properties, which are preferable
than those of an alternative test, developed earlier for an equivalent setting. The
framework of Arsova and Örsal (2018) is extended further by Örsal and Arsova (2017)
to propose new panel rank tests. The latter are based on methods for combination of
p-values and are shown to exhibit even better finite sample properties in some situations.
Chapter 3 presents the forthcoming publication of Arsova and Örsal (2019), which takes
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a different approach to dealing with the cross-sectional dependence in the proposed
testing procedure for the panel cointegrating rank. Two new panel tests, which differ
in the underlying individual likelihood-based cointegration statistics, emerge from
this procedure. The first test combines the individual likelihood-based cointegration
statistics of Johansen (1988) (henceforth J), while the second one is again based on the SL
statistics. These panel tests too assume that the dependence may stem from unobserved
common factors, but they rather focus on the cointegrating rank of the observed
variables directly, without carrying out decomposition into unobserved components. In
order to allow for both cross-sectional dependence and as much heterogeneity in the
different units as possible, a p-value combination method – the intersection test of Simes
(1986) – is employed for the computation of the panel test statistic. Initially developed
for multiple testing, the intersection test presents an improvement of Bonferroni’s
procedure, and in earlier literature it has been shown to observe the nominal significance
level when the individual test statistics are characterized by a certain type of positive
dependence. In practice it is difficult to verify whether this particular type of positive
dependence, namely multivariate totally positive of order 2 (MTP2), arises between the
individual J or SL cointegrating rank statistics in the panel. We therefore propose to
empirically measure whether such dependence is likely to appear in dependent panel
data driven by unobserved common factors by resorting to simulation methods. For
this aim a multivariate version of Kendall’s tau is adapted as a measure for MTP2, and
in a simulation study this measure is computed by means of the empirical copula of
the individual statistics. The results confirm that the MTP2 assumption, necessary for
Simes’ procedure, is not violated in panel data with this commonly assumed dependence
structure. The finite-sample properties of the Simes-J and Simes-SL panel cointegrating
rank tests, examined in the Monte Carlo study, prove to be satisfactory with the power
increasing significantly as the cross-sectional dimension grows. The newly proposed
tests are then applied to investigate the validity of the monetary exchange rate model for
a panel of eight OECD countries. The presence of a cointegrating relation, as predicted
by economic theory, is established.
Chapter 4 presents a publication manuscript, co-authored with Adj. Prof. Deniz Örsal,
which proposes a panel test for the cointegrating rank allowing for both cross-sectional
dependence and structural breaks. The underlying individual rank statistics are those
of Trenkler et al. (2007) (henceforth TSL), whose test allows for up to two breaks with
known locations in the intercept and slope of the deterministic linear trend in the DGP.
The p-values of the TSL test statistics are combined by means of a novel modification
of the Inverse Normal method, which aims at making it robust to cross-sectional
dependence. The panel test statistic of the Inverse Normal method is computed as
the standardized average of the probits of the individual p-values, which in the case of
independent one-sided statistics has a standard normal distribution. Assuming that
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the cross-sectional dependence can adequately be captured by the average correlation
between the probits, a modification for dependent statistics has been put forward by
Hartung (1999). It, however, relies on an estimator of the correlation between the
probits, which is based on the single (N × 1) vector of observations on the probits that
is available in practice and is thus not very precise, and on somewhat arbitrary variance
inflation factor in the computation of the panel test statistic. Our contribution lies in
proposing a novel, more reliable estimator of the correlation between the probits, which
is inferred from a quantity easily measurable in practice. This quantity is the average
absolute cross-sectional correlation between the innovations to the individual DGPs in
the panel, which is consistently estimated from the residuals of the individual vector
autoregressive (VAR) models. The functional relationship between the correlation
between the innovations to the individual DGPs and the correlation between the probits
is approximated by a response surface regression on observations generated in a large-
scale simulation study. The finite-sample properties of the new correlation-augmented
inverse normal (CAIN) test are shown to be preferable to those of the Hartung’s (1999)
modification. The CAIN-TSL test is also compared to another panel cointegration test
allowing for structural breaks and is shown to be superior. As an empirical illustration
it is applied to investigate whether a long-run equilibrium between house prices and
personal income exists in the US housing market using most recent data. Despite
modelling the outset of the Global Financial Crisis as a structural break in the trend
of the DGP, we fail to establish cointegration on the panel level. This leads us to
the conclusion that house prices have deviated from their theoretical driving force –
personal income – in the period prior to the Global Financial Crisis. Equilibrium,
however, seems to be restored in the years after the crisis as indicated by the results
of the Simes-SL test, which establishes cointegration at the panel level for the period
2008-2018.
Finally, Chapter 5 presents a publication manuscript which takes a cointegration
approach to estimating the exchange rate pass-through into import prices in a panel
of nineteen European countries. Despite the fact that a long-run equilibrium between
import prices, nominal exchange rate and other macroeconomic determinants of import
prices is predicted by economic theory, in recent empirical studies the presence of
cointegration has either been overlooked, or it could not be established. Therefore,
the first contribution of this study is to investigate the existence of cointegration by
means of the newly proposed tests. A single cointegrating relationship between the
observed import prices, nominal exchange rate, domestic demand and a proxy for
producers’ costs is found by the Simes-SL test. To gain insight into the driving forces
of this relationship, decomposition of each observed series into unobserved common and
idiosyncratic components is carried out. Both types of components turn out to be non-
stationary and cointegrated, whereas the cointegration among the observed variables is
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found to be driven mainly by two global stochastic trends. The second contribution
of this study is to present recent estimates of the short- and long-run pass-through
elasticities, taking cointegration into account. For this aim two different cointegrated
panel regression models, both of them allowing for cross-sectional dependence, are
estimated. Despite the differences in the estimation techniques, the results of the
two models are qualitatively and quantitatively similar and indicate incomplete low
pass-through at the panel level both in the short- and in the long-run.
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2
Likelihood-based panel cointegration test in

the presence of a linear time trend and
cross-sectional dependence

Antonia Arsova, Deniz Dilan Karaman Örsal

This article proposes a new likelihood-based panel cointegration rank test which extends
the test of Örsal and Droge (2014, Computational Statistics and Data Analysis 76:
377–390) (henceforth panel SL test) to dependent panels. The dependence is modelled
by unobserved common factors which affect the variables in each cross-section through
heterogeneous loadings. The data are defactored following the panel analysis of nonsta-
tionarity in idiosyncratic and common components (PANIC) approach of Bai and Ng
(2004, Econometrica 72(4): 1127–1177) and the cointegrating rank of the defactored
data is then tested by the panel SL test. A Monte Carlo study demonstrates that the
proposed testing procedure has reasonable size and power properties in finite samples.

Keywords: Common factors; cross-sectional dependence; likelihood-ratio; panel cointe-
gration rank test; time trend.
JEL classification: C12, C15, C33

Earlier versions of this paper were presented at the 13th IWH-CIREQ Macroeconometric Workshop in
Halle and at the Conference on Cross-Sectional Dependence in Panel Data Models in Cambridge. The
authors thank workshop and conference participants and four anonymous referees for many helpful
comments and suggestions. Financial support by the German Research Foundation (DFG) through
the project KA-3145/1-1 is also gratefully acknowledged.

11



This chapter is derived in full from an article published in Econometric Reviews
2018, vol. 37, No. 10, pp. 1033–1050, copyright Taylor & Francis, available online:
http://www.tandfonline.com/10.1080/07474938.2016.1183070.
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3
Intersection tests for the cointegrating rank

in dependent panel data

Antonia Arsova, Deniz Dilan Karaman Örsal

This paper takes a multiple testing perspective on the problem of determining the
cointegrating rank in macroeconomic panel data with cross-sectional dependence. The
testing procedure for a common rank among the panel units is based on Simes’ (1986,
Biometrika 73(3): 751–754) intersection test and requires only the p-values of suitable
individual test statistics. A Monte Carlo study demonstrates that these simple tests are
robust to cross-sectional dependence and have reasonable size and power properties. A
multivariate version of Kendall’s tau is used to test an important assumption underlying
Simes’ procedure for dependent statistics. The proposed method is illustrated by an
empirical application.

Keywords: Common factors; cross-sectional dependence; likelihood-ratio; multiple
testing; panel cointegration rank test.
JEL classification: C12, C15, C33
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4
A panel cointegrating rank test

with structural breaks
and cross-sectional dependence

Antonia Arsova, Deniz Dilan Karaman Örsal

This paper proposes a new panel cointegrating rank test which allows for a linear time
trend with breaks and cross-sectional dependence. The new correlation-augmented
inverse normal (CAIN) test is based on a novel modification of the inverse normal
method and combines the p-values of individual likelihood-ratio trace statistics. A
Monte Carlo study demonstrates its robustness to cross-sectional dependence and
its superior size and power properties compared to other meta-analytic tests used in
practice. The test is applied to investigate the long-run relationship between regional
house prices and personal income in the United States in view of the structural break
introduced by the Global Financial Crisis.

Keywords: Panel cointegrating rank test, structural breaks, cross-sectional dependence,
common factors, likelihood-ratio, time trend
JEL classification: C12, C15, C33
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4.1 Introduction

Panel unit root and cointegration tests have been developed since the early 2000s
with the aim to increase the power of single-unit tests. The so-called “first generation”
tests rely on the assumption of independence between the panel units. In macroeconomic
panel data, however, cross-sectional dependence arises naturally due to common shocks
or spillover effects. If not accounted for, it may bias the outcome of the tests by inflating
the type-I error rate above the nominal significance level. Another issue often observed
in longer time series is that of structural breaks; it may also invalidate the test results
if left unattended.

Focusing on cointegrating rank testing, we address both issues simultaneously by
extending the cointegrating rank test of Trenkler et al. (2007) (henceforth the TSL
test) to panel data with cross-sectional dependence. Under the assumptions of the
test structural breaks are allowed in the deterministic parts of the data generating
process (DGP), i.e. level and trend slope, but not in the cointegrating vector. This
is in line with its interpretation as a long-run equilibrium relationship between the
variables in the system. Furthermore, this framework allows for structural breaks both
under the null and the alternative hypothesis, as the breaks do not affect the stochastic
properties of the DGP. Our preference for the TSL test over another likelihood-based
alternative, the cointegrating rank test of Johansen et al. (2000) (henceforth JMN test),
is motivated by its superior finite-sample properties demonstrated by Trenkler et al.
(2007) and our own simulations.

Panel cointegration testing in the presence of structural breaks and cross-sectional
dependence has only recently gained attention from researchers, leading to the develop-
ment of the so called “third-generation tests”. Westerlund and Edgerton (2008), for
example, propose a simple panel test for no cointegration allowing for a level shift and a
break in the cointegrating relation, but not for a break in the deterministic trend. They
assume that the cross-sectional dependence is driven by stationary unobserved common
factors, which might be seen as restrictive in practice. Banerjee and Carrion-i Silvestre
(2015) relax these restrictions in their no-cointegration test and propose test with level
shifts, level shifts and break in the cointegrating relation, or level and trend shifts.
However, in the latter case they allow only for homogeneous number of breaks and
break dates across the panel units. They point out that “the difficulty [in allowing for
heterogeneous break dates] essentially lies in the dependence of the critical values of the
tests on the location of the break dates when trend breaks are present”. While the same
holds true for the TSL test, our approach to combining information from individual
cross-sections into a panel test accommodates heterogeneous number of breaks and
break dates across units.

We extend the TSL test to the panel setting resorting to a new p-value combination
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method which allows the p-values to be correlated. p-value combination approaches
offer much more flexibility than traditional pooling of individual test statistics, as they
allow the specification of the deterministic terms, the lag order, the number and the
location of the breaks, and even the time span of the data to vary over cross-sections.

Recent research on panel unit root and cointegration testing has benefited sig-
nificantly from the “reinvention” of already existing methods for combining possibly
dependent p-values. One example is a modification of the Bonferroni procedure proposed
by Simes (1986) and employed by Hanck (2013) in his panel unit root test. In a Monte
Carlo study he demonstrates its robustness to cross-sectional dependence induced by
common factors. This avenue is further explored in the direction of cointegrating rank
testing in dependent panels by Arsova and Örsal (2019), who also show empirically
that a sufficient condition for the validity of Simes’ procedure is not violated in a
common-factor-driven panel framework.1

In the present work we adopt a new, augmented version of yet another p-value
combination method initially proposed by Stouffer et al. (1949) — the inverse normal
test. The novelty of our approach lies in that we explicitly model the degree of cross-
sectional correlation between the probits of the individual statistics and use it as a
variance-inflation factor in the panel test statistic. In this regard the proposed test is
similar to the modified inverse normal method of Hartung (1999), which also uses an
estimate of the cross-sectional correlation of the probits, however in combination with a
somewhat arbitrary correction factor κ.2 Our estimator for the unobserved correlation
of the probits is modelled as a function of a quantity easily measurable in practice,
namely the average absolute cross-sectional correlation of the residuals of the individual
VAR models. In a Monte Carlo study we demonstrate that our correlation-augmented
inverse normal (CAIN) method for combining p-values of individual TSL tests has
good size and power properties in finite samples. Its performance is preferable to that
of Hartung’s method over the whole range of possible values for the cross-sectional
correlation. The test can be used to determine the cointegrating rank of the observed
time series even when the cross-sectional dependence is driven by unobserved common
factors, without decomposing the data into idiosyncratic and common components and
testing these separately.

The remainder of the paper is organized as follows. The next section briefly reviews
the test of Trenkler et al. (2007), while its extension to panel data by a modification
of the inverse normal method is given in Section 3. Section 4 presents the response
surface approach to modelling the cross-sectional correlation between the probits of
1Sarkar (1998) shows that for the Simes’ procedure to hold for p-values of dependent statistics, their
multivariate distribution has to be multivariate totally positive (MTP2). We refer to the latter article
for a definition of this property.

2Hartung’s approach has been used to account for cross-sectional dependence in panel unit root tests
by Demetrescu et al. (2006) and Costantini and Lupi (2013).
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the individual test statistics. Section 5 discusses the results of a Monte Carlo study
comparing the CAIN-TSL test with other meta-analytic approaches and with the test of
Westerlund (2006). Section 6 illustrates the use of the CAIN-TSL test by investigating
the equilibrium relationship between real house prices and real personal income in
the USA, and the last section concludes. Supplementary material is provided in the
Appendix.

4.2 The TSL test for the cointegrating rank

Our aim is to develop a panel test for the cointegrating rank which allows for
structural breaks in the deterministic parts of the DGP. A natural first step is to take
an existing single-unit test and to extend it to the panel setting. Two well-known
alternatives are the likelihood-based test of Johansen et al. (2000) and its GLS-detrended
counterpart proposed by Trenkler et al. (2007). Both tests allow for up to two breaks
in the level and/or trend slope, whereas the break dates are assumed to be known.3

Trenkler et al. (2007) find that the JMN test with a single trend break displays
excessive size distortions in systems of larger dimensions while their test is correctly
sized. Our own Monte Carlo simulations confirm these findings also when two breaks
in the trend slope are present; the results are briefly summarized in Table 4.1.

Table 4.1: Empirical size at 5% nominal level
of the JMN and TSL tests with two structural
breaks, H0 : r = 0

Test T = 50 T = 100 T = 200 T = 500

JMN0.25,0.5 0.545 0.209 0.116 0.070
JMN0.25,0.75 0.531 0.206 0.111 0.075
TSL0.25,0.5 0.047 0.046 0.042 0.044
TSL0.25,0.75 0.052 0.051 0.043 0.045

Subscripts denote break locations at relative sample
lengths.
Simulations based on a 3-variate VAR(2) process as in
Wagner and Hlouskova (2010) with 5000 replications.

The JMN test is severely oversized for small T , with the size distortions persisting
even for T = 500. The TSL test, in contrast, has approximately correct size at the 5%
level for all values of T . Its preferable finite-sample properties are therefore our main
motivation for extending the TSL test to the panel setting. Next we briefly describe its
assumptions and the computation of the test statistic.

Let the observed data Yit = (Y1,it, . . . , Ym,it)′ for cross-sectional unit i (i = 1, . . . , N)
be generated by a stochastic VAR(si) process Xit added to a deterministic process. The

3Theoretically more than two breaks could be specified, however response surface regressions approx-
imating the limiting distributions of the test statistics are available for a maximum of two breaks
for both tests. Including more than two breaks may also be seen as problematic in time series of a
limited time span.
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latter consists of a constant, linear time trend and structural breaks in both the level
and the trend slope at known individual-specific time(s) τi:

Yit = µ0i + µ1it+ δ0idit + δ1ibit +Xit, t = 1, . . . , Ti. (4.1)

Here µji and δji (j = 0, 1) are unknown (m× 1) parameter vectors, while dit and bit are
dummy variables defined by dit = bit = 0 for t < τi, and dit = 1 and bit = t− τi + 1 for
t ≥ τi. We note that both the break dates and the number of breaks are assumed to
be known. The number of breaks (one or two) is allowed to vary across units. The
break dates are assumed to occur at individual-specific fixed fractions of the sample
size: τi = [Tiηi] with 0 < ηi < ηi < ηi, where ηi and ηi are specified real numbers and [·]
denotes the integer part of the argument. In other words, the breaks are assumed not to
occur in the very beginning or in the very end of the sample, while ηi and ηi are allowed
to be arbitrarily close to 0 and 1, respectively. The stochastic processes Xit are assumed
to be at most I(1) and cointegrated with cointegrating rank ri, 0 ≤ ri ≤ m− 1:

Xit = A1iXi,t−1 + . . .+ AsiiXi,t−si + εit, t = 1, . . . , Ti. (4.2)

It is assumed that the (m × 1) vector εit is distributed as i.i.d.(0,Ωi), where Ωi is a
positive definite matrix for each i. Further it is assumed that εit have finite moments of
order (4 + ν) for some ν > 0, ∀i.

Denoting the pairwise cross-sectional correlations of the elements of εit by ρil,jk :=
corr(εit,l, εjt,k) for i, j = 1, . . . , N and l, k = 1, . . . ,m, we make the following assump-
tions.

Assumption 1 The average absolute pairwise cross-sectional correlation between
the innovations to the same variable converges to some fixed value ρε > 0 for all t as
N →∞:

lim
N→∞

1
mN(N − 1)

N∑
i 6=j

m∑
l=1
|ρil,jl| = ρε . (4.3)

Assumption 2 The average absolute pairwise cross-sectional correlation between
the innovations to different variables converges to zero for all t as N →∞:

lim
N→∞

1
mN(N − 1)

N∑
i 6=j

m∑
l 6=k
|ρil,jk| = 0. (4.4)

We note that Assumption 1 is not strictly necessary, but rather eases the interpre-
tation of the estimated average absolute correlation coefficient ρ̂ε. Albeit seemingly
restrictive, Assumption 2 is rather a technical one, necessary for the computation of a
suitable estimator of ρε. It is motivated by the fact that strong correlations are less
likely to occur between the innovations to different variables across units compared to
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those between the same variables. Furthermore, our Monte Carlo simulations demon-
strate that the proposed panel test is robust to a certain degree of deviation from this
assumption, hence it should not hinder the applicability of the test in practice. Both
assumptions hold when, for example, a spatial type of dependence is assumed, or when
the dependence is driven by variable-specific common factors. As such we describe
unobserved shocks which affect the same variable over the cross-sections, but do not or
only marginally affect other variables.

The computation of the individual TSL test statistics proceeds by estimating the
deterministic terms by reduced rank regression taking into account the structural breaks,
and then computing a likelihood-ratio (LR) trace statistic from the trend-adjusted
observations. For details on the procedure we refer to Trenkler et al. (2007).

4.3 The correlation-augmented inverse normal test

Let pi denote the p-values of the individual TSL statistics for units i = 1, . . . , N . Let
ti denote the corresponding probits, i.e. ti = Φ−1(pi), where Φ(·) denotes the cumulative
distribution function of the standard normal distribution. Assuming independence of
the individual test statistics (and hence of their p-values and the corresponding probits
ti), the inverse normal test has a standard N(0, 1) limiting distribution:

t =
∑N
i=1 Φ−1(pi)√

N
=
∑N
i=1 ti√
N
⇒ N(0, 1). (4.5)

The inverse normal method was first introduced to the panel unit root testing
literature by Choi (2001), who demonstrates by simulations that under cross-sectional
independence it outperforms other p-value combination alternatives, in particular
Fisher’s inverse Chi-square method employed for panel unit root testing by Maddala
and Wu (1999). As a further advantage of the inverse normal test Choi (2001) points
out its applicability to panels with both finite and infinite cross-sectional dimension N .

Assuming multivariate normal distribution of the probits, Hartung (1999) proposes
a modification of the weighted inverse normal method to accommodate dependence
between the original test statistics. The real-valued weights of the individual probits
are denoted by λi and are such that ∑N

i=1 λi 6= 0. In practice it is often assumed that
λi = 1, ∀i. The dependence is captured by a single correlation coefficient ρt, which
can be interpreted as a “mean correlation approximating the case of possibly different
correlations between the transformed statistics” (Hartung, 1999). The variance of the
denominator in (4.5) is then augmented with an estimator of the correlation between
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the individual probits ρ̂*
t :

t
(
ρ̂*

t , κ
)

=
∑N
i=1 λiti√√√√∑N

i=1 λ
2
i +

[(∑N
i=1 λi

)2
−∑N

i=1 λ
2
i

] [
ρ̂*

t +κ ·
√

2
(N + 1)(1− ρ̂*

t )
] . (4.6)

The estimator ρ̂*
t is computed as

ρ̂*
t = max{− 1

N − 1 , ρ̂t}, where (4.7)

ρ̂t = 1− 1
N − 1

N∑
i=1

(
ti −

1
N

N∑
i=1

ti

)2

. (4.8)

The correction term κ
√

2
(N+1)(1− ρ̂

*
t ), which simply scales the standard deviation of

ρ̂t by a factor κ, aims to avoid a systematic underestimation of the denominator in
eq. (4.6). For the κ parameter Hartung suggests two alternative values: κ1 = 0.2 and
κ2 = 0.1 ·

(
1 + 1

N−1 − ρ̂
*
t

)
, where κ2 is suitable mainly for smaller ρ̂*

t . However, he
provides no guidance as to where the threshold between “small” and “large” ρ̂*

t should
be.

Demetrescu et al. (2006) are the first to employ Hartung’s modified inverse normal
method to develop a panel unit root test allowing for cross-sectional dependence by
generalizing Hartung’s approach in two directions. First, they prove that the correlation
between the individual test statistics needs not be constant for the limiting N(0, 1)
distribution to hold. Second, they show that a necessary and sufficient condition for
the limiting normality of the panel test statistic is the multivariate distribution of the
individual test statistics to have a Gaussian copula. This theoretical result is, however,
difficult to verify in practice; hence the authors proceed to demonstrate by simulation
the applicability of Hartung’s method to dependent individual ADF unit root tests.
Employing the version of the test with κ1 = 0.2 and unit weights λi = 1,∀i, they find
that for medium and strong cross-sectional correlation it generally observes the nominal
significance level at 5% and 10%. For weak correlation the test is rather undersized
and therefore not recommended for use with more than 5 cross-sectional units.

Following the approach of Demetrescu et al. (2006), Costantini and Lupi (2013) use
Hartung’s modification with the value κ1 = 0.2 in their simple panel-CADF test for
unit roots. In order to mitigate the size distortions for weak cross-sectional dependence,
they propose a type of “switching algorithm” between the regular and the modified
inverse normal test ((4.5) and (4.6), respectively) based on the outcome of the CD test
for cross-sectional correlation of Pesaran (2015). When the CD test rejects the null of
weak correlation, (4.6) is used, otherwise Choi’s test (4.5) is utilized. We argue that
such strategy is sub-optimal because of two reasons. Firstly, the implicit null hypothesis
and the finite-sample properties of the CD test depend on the relative expansion rates
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of T and N . It tends to over-reject if T is large relative to N and the exponent of
cross-sectional dependence α ∈ (1/4, 1/2], a situation which in our view might well occur
in macroeconometric panels.4 Hence Hartung’s modification might get preferred over
Choi’s test too often, leading to a loss of power. Secondly, the CD statistic accounts
for the average correlation coefficient so that in its calculation large correlations of
the opposite sign will cancel out. We argue that even negative correlations between
the innovations to the DGPs lead to positive correlation between the individual test
statistics. As our Monte Carlo study demonstrates, a better way to quantify the degree
of cross-sectional dependence is to look at the mean absolute residual correlation.

We therefore propose a new, improved version of the modified inverse normal test for
combination of correlated individual TSL test statistics for cointegration with structural
breaks. This new test, which we name CAIN-TSL test, is based on Hartung’s (1999)
test statistic (4.6) with unit weights, λi = 1,∀i. It differs from it in that it employs
a novel empirical estimate ρ̃t of the average correlation between the probits ρt. In
order to accommodate a certain degree of heterogeneity in the correlation coefficients
ρti,j := corr(ti, tj), we make the same assumptions as Demetrescu et al. (2006).

Assumption 3

lim
N→∞

1
N(N − 1)

∑∑
i 6=j

ρti,j = ρt, ρt ∈ (0, 1), and (4.9)

lim
N→∞

1
N(N − 1)

∑∑
i 6=j

(ρti,j − ρt)2 = 0. (4.10)

Assumption 4 The individual TSL test statistics have a Gaussian copula.
Assumption 3 allows the correlation matrix of the probits to gradually approach a

constant correlation matrix as N →∞, which is a natural consequence of the assumed
convergence of the pairwise innovation correlations in Assumption 1. Assumption 4,
as shown by Demetrescu et al. (2006), is a necessary and sufficient condition for the
limiting distribution of the inverse normal test to be standard normal. Whether this
assumption is met in practice for individual unit root or cointegration statistics, is
not known; we leave such investigation for future research. However, as our Monte
Carlo study demonstrates, in the presence of cross-sectional dependence the proposed
CAIN test performs much better than the standard inverse normal method without
correlation augmentation, despite the possibility that Assumption 4 might not hold.
Hence in practice one would still be better off by correcting for existing cross-sectional
dependence rather than ignoring it.

The CAIN panel test statistic for the composite null hypothesis H0 : ri = r, ∀i =
4We refer to Pesaran (2015) for a definition of the exponent of cross-sectional dependence.

22



1, . . . , N against the alternative H1 : ri > r for at least one i is given by

t(ρ̃) =
∑N
i=1 ti√

N + (N2 −N) · ρ̃t
. (4.11)

Conjecture 1 Provided that Assumptions 1–4 hold, the limiting distribution of the test
statistic t(ρ̃) under the null hypothesis is approximate standard normal.

The proposed estimator ρ̃t is based on an empirical estimate of the link between
the cross-sectional correlation of the innovations to the individual VAR processes and
the correlation between the probits of the individual TSL statistics. Since there is
no analytic expression for it, no proof of the conjecture can be provided in the strict
mathematical sense. As noted by Hartung (1999), the statistic converges to the N(0, 1)
distribution when the estimator of the correlation between the probits is consistent.
Therefore, in the end of Section 4 we outline the arguments by which ρ̃t is expected to
be consistent.

4.4 Response surface regressions for the correlation
of the individual probits

Common shocks to the innovations of the DGPs for the individual units, or generally
cross-sectional correlation of the innovations leads to dependence between the individual
TSL test statistics. This dependence transfers also to the p-values and their probits,
and therefore has to be taken into account in the construction of the inverse normal
test statistic in order to achieve a correctly sized test.

We argue that ρt can be inferred from its origin ρε, which, in turn, can be consistently
estimated in practice as N and T grow. It is, however, difficult to derive analytically
how correlation between the innovations translates into correlation between the LR
statistics, as the latter are complex non-linear functions of the observed data. We
therefore resort to simulation methods to estimate this link. In our large-scale simulation
study we estimate the average correlation of the probits ¯̃ρt for different values of the
absolute cross-sectional correlation between the innovations ρε, controlling for the system
dimension m, the hypothesized cointegrating rank r, and the time and cross-sectional
dimensions T and N , respectively. We then estimate the relationship ¯̃ρt = g(ρε,m, r)
by response surface regression. As in practice ρε is unobserved, we replace it by a
consistent estimate ρ̂ε to compute ρ̃t = g(ρ̂ε,m, r) to use in the test statistic (4.11).

Simulations design We estimate the relationship between ρε and ρt in a large-
scale simulation study. The data are generated according to (4.1) with the stochastic
processes Xit following an m-variate VAR(1) Toda processes (see e.g. Toda, 1995) for
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m = 2, 3, 4, 5:

Xit =
 Id 0(d×r)

0(r×d) Ψr

Xi,t−1 + εit, (4.12)

where Id denotes the identity matrix of dimension d = m− r, 0(d×r) is a zero matrix
of the corresponding dimension and r is the cointegrating rank of the process. Ψr

is a diagonal matrix of dimension (r × r) with diagonal elements ψi ∼ i.i.d. U(0, 1),
i = 1, . . . , r which govern the dynamics of the stationary elements of the process for
r > 0; the uniform (0, 1) distribution of ψi provides for generality. As the individual LR
trace statistics of the TSL test are invariant to the values of the deterministic terms
µ0i, µ1i, δ0i and δ1i for given VAR order si and break date(s) τi (Trenkler et al., 2007,
p. 340), we have set µji = δji = 0, j = 0, 1.

For the estimation of the individual LR trace statistics for each i = 1, . . . , N the
number of breaks is randomly chosen between 1 and 2 with 50% chance each, and the
break locations are chosen at relative sample length(s) λi ∼ i.i.d. U(0.15, 0.85). In the
case of two breaks the minimal distance between them is set to 0.2T . These values are
in line with what is usually assumed in the literature on cointegration with structural
breaks – the breaks are not allowed to be too close to the beginning or to the end of
the sample, neither are they allowed to be too close to each other.

The innovations εit are drawn from a multivariate normal distribution with variance-
covariance matrix Σ, where Σ = R⊗Ω is generated as in Wagner and Hlouskova (2010)
with

R =



1 ρε · · · ρε

ρε 1 · · · . . .
... . . . . . . ρε

ρε · · · ρε 1


(N×N)

, (4.13)

and Ω(m×m) being a random correlation matrix generated independently for each
replication as described in Costantini and Lupi (2013, p. 283).

For each value of m, testing H0 : ri = r0 for r0 = 0, . . . ,m − 1 is considered in a
separate experiment.

We let ρε vary over a grid of 24 equally spaced values in the range [0.04, 0.96], in order
to be able to adequately fit an interpolating curve to the estimated average values ¯̃ρt of
ρt over ρ̂ε. Each simulation experiment is repeated 100000 times for three combinations
of the panel dimensions T and N : (T,N) ∈ {(500, 5), (500, 10), (1000, 5)}.

Estimation of the average correlation of the probits ¯̃ρt from simulated data
For each combination (T,N) an average ¯̃ρt is computed by means of Fisher’s Z-
transformation from the (N × N) correlation matrix of the probits based on the
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(100000×N) matrix of independent observations on (t1, . . . , tN).
For given ρε and T , the estimated ¯̃ρt is practically invariant to the number of

cross-sections. This fact is not surprising, as it is rational to expect that the correlation
between the individual probits would depend on the degree of dependence between
the processes of any two cross-sections, but not on the number of units. Preliminary
simulations corroborate this conjecture – see the right panel of Figure 4.3 in the
Appendix. For robustness, the estimated ¯̃ρt’s for all three combinations of (T,N)
are subsequently modelled in the response surface regressions for ¯̃ρt = g(ρε,m, r). In
practice, by the Law of Large Numbers, increasing N would lead to more precise
estimation of ρ̂ε and subsequently also of ρ̃t. Because of the large number of replications
in the current simulation exercise, considering a wider range of values for N is not
necessary and we concentrate only on values which are typical for macroeconometric
studies.

With regard to the choice of values for the parameter T , we motivate it by the
fact that the estimated ¯̃ρt converges to ρt from below as T → ∞ (see the left panel
of Figure 4.3), with the differences between T = 500 and T = 1000 being virtually
negligible for all practical purposes. Indeed, for small T the estimated ρ̃t might be lower
than its asymptotic large-T value and could thus potentially get overestimated. We
argue, however, that the use of the large-T ρ̃t even for small T ’s in the panel setting
would have beneficial rather than detrimental effects. It is well known that individual
likelihood-based cointegration tests tend to be oversized for H0 : r = 0 when T is small,
and these size distortions can get magnified in the panel setting as the cross-sectional
dimension increases (see, e.g., Demetrescu and Hanck, 2012 and Arsova and Örsal,
2018). Using the asymptotic ρ̃t might help mitigate this issue, as slight overestimation
of the cross-sectional correlation of the probits might inflate the variance of the panel
statistic thus offsetting the inherent size distortions of the individual tests.

Response surface regressions We now turn our attention to modelling the rela-
tionship ¯̃ρt = g(ρε,m, r). To obtain the response surface g, we regress ¯̃ρt on polynomials
of the system dimension m, the cointegrating rank under the null hypothesis r, and the
mean absolute correlation between the innovations ρε. No constant is included in the
regression and all regressors are multiples of ρε, so that all estimates ¯̃ρt of ρt are equal
to 0 when ρε = 0.

The goodness of fit measure of the estimated regression is R2 = 0.9993, which
renders the approximation very good for practical purposes. All estimated coefficients,
which are significant at the 5%-level, are listed in Table 4.2. They can be used to
compute the estimate ρ̃t of the unknown correlation of the probits given m, r and the
estimated ρ̂ε for any system dimension m ≤ 5. The CAIN-TSL test statistic is then
computed as in (4.11) with ρ̃t in the place of the unknown ρt.
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Table 4.2: Coefficients of the response surface ρ̃t = g(ρε,m, r) for the correlation
between the probits of the individual TSL statistics

Term Estimated coefficient Std. Err. t-value P > |t| 95% Confidence interval

ρε2 0.6319575 0.0357830 17.66 0 (0.561742, 0.702173)
0.0309826 20.4 0 (0.571162, 0.692753)√

m · ρε2 −0.5193669 0.0251431 −20.66 0 (−0.568704,−0.470030)
0.0211871 −24.51 0 (−0.560941,−0.477792)√

m · ρε4 0.2721753 0.0032355 84.12 0 (0.265826, 0.278524)
0.0033330 81.66 0 (0.265635, 0.278716)

r
m
· ρε2 0.1821374 0.0307753 5.92 0 (0.121749, 0.242526)

0.0260690 6.99 0 (0.130983, 0.233292)
r
m
· ρε4 −0.0856903 0.0322216 −2.66 0.008 (−0.148917,−0.022463)

0.0293583 −2.92 0.004 (−0.143299,−0.028082)
(r · ρε)2 0.0041125 0.0008434 4.88 0 (0.002458, 0.005768)

0.0007581 5.43 0 (0.002625, 0.005600)
r · ρε2 0.0766267 0.0076098 10.07 0 (0.061694, 0.091559)

0.0070263 10.91 0 (0.062839, 0.090414)
r · ρε4 −0.1008678 0.0057871 −17.43 0 (−0.112224,−0.089512)

0.0060007 −16.81 0 (−0.112643,−0.089093)√
m− r · ρε2 0.1874919 0.0348379 5.38 0 (0.119131, 0.255853)

0.0276625 6.78 0 (0.133211, 0.241773)
1

m−r · ρε
2 0.1410229 0.0168932 8.35 0 (0.107874, 0.174172)

0.0150575 9.37 0 (0.111476, 0.170570)
1

m−r · ρε
4 −0.2029126 0.0126466 −16.04 0 (−0.227728,−0.178097)

0.0120002 −16.91 0 (−0.226460,−0.179365)
(m− r)2 · ρε2 0.0052557 0.0009492 5.54 0 (0.003393, 0.007118)

0.0008073 6.51 0 (0.003672, 0.006840)
(m− r)4 · ρε4 −0.0000327 0.0000167 −1.96 0.050 (−0.000065, 0.000000)

0.0000179 −1.83 0.068 (−0.000068, 0.000002)

The second row for each term presents robust standard errors and the statistics computed therewith.

Estimation of the average absolute cross-sectional correlation between the
process innovations The cornerstone of our proposed solution ρ̃t = g(ρε,m, r) is a
consistent estimator ρ̂ε of the average absolute cross-sectional correlation of the process
innovations. In this regard we follow Pesaran (2015) and estimate ρ̂ε from the residuals
of the individual VAR(si) models under the null hypothesis H0 : r = 0. Our estimation
methodology, however, differs from his one in two aspects. First, as we are dealing with
a panel of multivariate systems, the average cross-sectional correlation coefficient needs
to be redefined for this richer data structure. We assume that strong cross-correlations
are more likely to appear between the shocks to the same variables than between those
to different variables. Hence averaging has to be performed only across the pairwise
correlations between the same-variable residuals in order to avoid underestimation of
ρε and subsequently of ρt. Such underestimation would lead to an oversized panel
test. That is, for ρ̂il,jl denoting the estimated sample correlation between the residuals
for variable l in units i and j, ρ̂ε is to be estimated from the average of |ρ̂il,jl| over
l = 1, . . . ,m and i 6= j where i, j = 1, . . . , N . Second, we take the absolute value of
the estimated correlations ρ̂il,jl. In simple averaging positive and negative correlations
will cancel out, thus leading to underestimation of the true degree of cross-sectional
correlation.
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Therefore, the estimated absolute residual correlations |ρ̂il,jl| are averaged over l
and i 6= j, resulting in ρ̂ε:

ρ̂ε = 2
mN(N − 1)

N∑
i=1

N∑
j=i+1

m∑
l=1
|ρ̂il,jl|. (4.14)

Estimating ρ̂ε only under H0 : ri = 0,∀i in the beginning of the sequential testing
procedure for r = 0, . . . ,m − 1 requires further justification. Ideally, the correlation
between the probits would be inferred from the correlation between the residuals under
each null hypothesis and then used in the correlation-augmented inverse normal panel
test. In order to keep the procedure feasible for practical work, however, we decide to
do this inference only once by determining ρ̂ε only under the null of no cointegration,
similarly to the lag orders si of the VAR processes. We note that the estimation
error in ρ̂ε is negligible under the true H0 : ri = 0,∀i,m, while ρ̂ε gets only slightly
underestimated for higher true cointegrating ranks (see Table 4.6 in the Appendix).
The resulting slight underestimation of ρt, however, would be negligible in practice
for moderate ρε; for higher ρε it could even be beneficial, given that the TSL test is
severely undersized when testing for higher ranks under the null.

Consistency of the proposed estimator For the approximate N(0, 1) limiting
distribution of the CAIN-TSL test statistic to hold, the estimator ρ̃t must be consistent.
As discussed, we propose to estimate ρ̃t as a continuous function g of the dimension of
the system m, the hypothesized cointegrating rank r and the mean absolute correlation
ρε between the innovations of the individual DGPs. The function g results from an
ordinary least squares (OLS) regression of mean values ¯̃ρt, estimated from simulated
data, onto r, m and ρε. The simulations design reflects the assumptions made and
allows for as much heterogeneity in the data-generating processes over the different
cross-sections as possible. The estimated values of ρt are then averaged by means of
Fisher’s Z-transformation to mitigate any potential bias. Therefore, by the properties
of the OLS estimator, ρ̃t = g(r,m, ρε) is unbiased and consistent for ρt. In practice,
however, ρε is unobserved, and has to be estimated from the data. Provided that the
residuals from the individual VAR models are homoscedastic and serially uncorrelated,
ρ̂ε can be consistently inferred from them as in (4.14); consistency follows by the Law
of Large Numbers as N →∞ treating m as fixed. Therefore consistency of ρ̃t follows
from the consistency of the estimator ρ̂ε and the Continuous Mapping Theorem for the
mapping g.

An illustration based on simulation evidence is provided in Figure 4.1. It is clear
that increasing the cross-sectional dimension of the panel leads to more concentrated
distributions of both ρ̂ε and ρ̃t.
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Figure 4.1: Empirical distributions of ρ̂ε and ρ̃t under H0 : ri = 0, ∀i, 3-variate VAR(2) process
with a multifactor-error structure and a diagonal factor loading matrix γi ∼ i.i.d.U(−1, 3),
T = 100, 5000 replications
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Step-by-step outline of the testing procedure
In order to illustrate the simplicity of the proposed testing approach, we summarize it
with the following five steps.

1. Compute the TSL statistic and its corresponding p-value as outlined in Trenkler
et al. (2007) under H0 : r = 0 for each unit. As a by-product, save the residuals
from the estimated individual VAR models.

2. Estimate the (Nm×Nm) sample correlation matrix of the residuals. If the time
span of the series varies over the cross-sections, estimation of the correlation
matrix would be based on the balanced panel restricted by the shortest time
series.
Compute ρ̂ε as in (4.14).

3. Estimate ρ̃t = g(ρ̂ε,m, r) using the response surface coefficients in Table 4.2.

4. Compute the panel test statistic by combining the probits of the individual
p-values as in (4.11).

5. The CAIN-TSL test can be applied for testing H0 : ri = r, ∀i at each step
r = 0, . . . ,m− 1 of the sequential rank testing procedure. If the composite null
hypothesis H0 : ri = 0, ∀i is rejected, repeat steps 1 and 4, without re-estimating
ρ̂ε. As ρ̃t depends on the cointegrating rank r, it needs to be re-estimated.
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4.5 Monte Carlo study

4.5.1 Simulation study design

The finite sample properties of the CAIN-TSL are first examined by simulations
in an empirically relevant case using a three-variate VAR(2) DGP as in the study of
Wagner and Hlouskova (2010). The test is next compared to the panel cointegration
test of Westerlund (2006), which as well allows for structural breaks in the deterministic
terms.

The general form of the DGP of Wagner and Hlouskova (2010) is:

Yit = µ0i + µ1it+ δ0idit + δ1ibit +Xit, (4.15)

Xit =


ai11 0 0
0 ai12 0
0 0 ai13

Xi,t−1 +


ai21 0 0
0 ai22 0
0 0 ai23

Xi,t−2 + uit, (4.16)

uit = γ′ift + εit, (4.17)

εit ∼ i.i.d.N(0,Ωi). (4.18)

The cointegrating properties of the process are determined by the roots qi1j, qi2j of
the autoregressive polynomial, which are linked to the coefficients of the autoregressive
matrices by ai1j = 1

qi1j
+ 1

qi2j
and ai2j = − 1

qi1jq
i
2j
, j = 1, 2, 3.

Following Wagner and Hlouskova (2010), for a system with cointegrating rank zero
we set qi1j = 1 and qi2j ∼ U(1.8, 3), j = 1, 2, 3. Power is investigated in a setting when
all roots are sufficiently away from unity (case A) and also in a near-unit root setting
(case B). For cointegrating rank one in case A we let qi11 ∼ U(1.3, 1.7) or, in case B,
qi11 ∼ U(1, 1.3), while qi21 ∼ U(1.5, 2.5), qi1j = 1 and qi2j ∼ U(1.8, 3) for j = 2, 3 in both
cases. Finally, for cointegrating rank two we again let qi11 ∼ U(1.3, 1.7) for case A or
qi11 ∼ U(1, 1.3) for case B. The remaining roots for both cases are qi12, q

i
2j ∼ U(1.5, 2.5)

for j = 1, 2, while qi13 = 1 and qi23 ∼ U(1.8, 3). All roots are drawn separately for each
unit.

We let a 3-dimensional vector of variable-specific common factors ft ∼ i.i.d.N(0, I3)
drive the cross-sectional dependence through heterogeneous loadings. The factor
loadings γi are simulated as diagonal (k × m) matrices with (a) i.i.d. U (−0.4, 0.4),
(b) i.i.d. U (0, 1) or (c) i.i.d. U (−1, 3) entries, drawn separately for each unit. The
robustness of the CAIN-TSL test against violations of Assumption 2 is investigated by
letting γi be an unrestricted matrix with i.i.d. U (0, 1) or i.i.d. U (−1, 3) elements. This
corresponds to all factors affecting all variables simultaneously.

The TSL test statistic is invariant to the actual values of the deterministic terms as
long as the number and the location of the breaks are correctly specified in its estimation.
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Therefore, throughout we set µji = δji = 0, j = 0, 1 as in Trenkler et al. (2007). We
again allow for a random number of breaks (1 or 2, with 50% chance each) and the break
locations are chosen at relative fraction(s) of the sample size λi ∼ i.i.d. U(0.15, 0.85). In
the case of two breaks the minimal distance between them is set to 0.2T . The processes
Xit are initialised with 0 and the first 50 observations are discarded to mitigate the
effect of initial values. The individual-specific random correlation matrices Ωi of the
idiosyncratic errors εit are simulated, as before, as described in Costantini and Lupi
(2013).

We consider all combinations of T ∈ {100, 200} and N ∈ {5, 15, 25}. The lag order
is assumed to be known and is set to its true value. The simulations are carried out in
GAUSS and the number of replications is 5000. Nominal significance level α = 0.05
applies in all cases.

The performance of the CAIN test is compared to that of other p-value combination
methods commonly applied in the literature. Using the p-values from the individual
TSL test statistics as building blocks, we combine them into different panel statistics
by employing (a) the standard inverse normal test without correction for the cross-
sectional dependence; (b) both variants of Hartung’s modified inverse normal test with
κ1 and κ2, respectively, and (c) the multiple testing procedure of Simes (1986). For the
latter test the individual p-values of the test statistics are ordered in ascending way as
p(1) ≤ . . . ≤ p(N), and the joint null hypothesis H0 : ri = r,∀i, is rejected at significance
level α if p(i) ≤ iα

N
for any i = 1, . . . , N.

4.5.2 Simulation results

The size and power results under H0 : ri = 0,∀i when the true rank is zero and one,
respectively, are presented in Table 4.3. In the following discussion average values of
the parameters, computed over all replications, are denoted by a long bar.

With diagonal factor loading matrix γi ∼ i.i.d.U(−0.4, 0.4), the cross-sectional
dependence is very weak: ρ̂ε = 0.089 and ρ̂ε = 0.068 for T = 100 and T = 200,
respectively, while the mean estimated correlation between the probits for the CAIN-
TSL test is ρ̃t = 0.001. In this case all variants of the inverse normal test, including
CAIN-TSL, become undersized as N grows. This results from the individual TSL tests
being slightly undersized; the size distortions get magnified in the panel setting as N
increases. Hartung’s test with κ1 has the most severe size distortion, inline with the
findings of Demetrescu et al. (2006) that it is not suitable for more than N = 5 units
when the cross-sectional correlation is low. The inverse normal and the CAIN-TSL
tests perform best in this case both in terms of size and power.

Diagonal factor loading matrix with U(0, 1) entries generates moderate cross-sectional
correlation between the innovations: ρ̂ε = 0.18, while the estimated average correlations
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Table 4.3: Monte Carlo study results, not near-unit root processes (case A) and near-unit root processes (case B).
Empirical size and power under H0 : ri = 0, ∀i = 1, . . . , N .

True cointegrating rank 0: Size True cointegrating rank 1, case A: Power True cointegrating rank 1, case B: Power

T=100 T=200 T=100 T=200 T=100 T=200
N = 5 N = 15 N = 25 N = 5 N = 15 N = 25 N = 5 N = 15 N = 25 N = 5 N = 15 N = 25 N = 5 N = 15 N = 25 N = 5 N = 15 N = 25

Test Diagonal factor loading matrix γi ∼ i.i.d.U(−0.4, 0.4) Diagonal factor loading matrix γi ∼ i.i.d.U(−0.4, 0.4) Diagonal factor loading matrix γi ∼ i.i.d.U(−0.4, 0.4)

Inverse normal 0.05 0.04 0.03 0.04 0.04 0.03 0.56 0.92 0.99 0.99 1.00 1.00 0.16 0.27 0.36 0.58 0.92 0.99
Hartung κ1 0.04 0.02 0.01 0.04 0.01 0.01 0.43 0.68 0.79 0.96 1.00 1.00 0.13 0.15 0.17 0.51 0.80 0.93
Hartung κ2 0.05 0.04 0.03 0.05 0.03 0.02 0.46 0.73 0.82 0.97 1.00 1.00 0.16 0.23 0.28 0.54 0.85 0.95
Simes 0.06 0.06 0.07 0.05 0.05 0.06 0.36 0.50 0.57 0.94 1.00 1.00 0.14 0.17 0.19 0.48 0.68 0.78
CAIN-TSL 0.05 0.04 0.03 0.04 0.04 0.03 0.56 0.92 0.99 0.99 1.00 1.00 0.16 0.27 0.35 0.58 0.92 0.99

Diagonal factor loading matrix γi ∼ i.i.d.U(0, 1) Diagonal factor loading matrix γi ∼ i.i.d.U(0, 1) Diagonal factor loading matrix γi ∼ i.i.d.U(0, 1)

Inverse normal 0.05 0.05 0.05 0.04 0.05 0.05 0.49 0.84 0.95 0.98 1.00 1.00 0.13 0.23 0.30 0.49 0.84 0.95
Hartung κ1 0.04 0.02 0.01 0.04 0.02 0.01 0.35 0.56 0.66 0.93 1.00 1.00 0.10 0.12 0.12 0.42 0.65 0.79
Hartung κ2 0.05 0.04 0.03 0.05 0.04 0.04 0.38 0.62 0.71 0.93 1.00 1.00 0.13 0.18 0.20 0.44 0.71 0.84
Simes 0.05 0.06 0.06 0.05 0.05 0.06 0.29 0.39 0.45 0.89 0.99 1.00 0.11 0.13 0.14 0.37 0.51 0.60
CAIN-TSL 0.04 0.04 0.04 0.04 0.04 0.04 0.48 0.83 0.93 0.98 1.00 1.00 0.13 0.21 0.26 0.49 0.82 0.94

Diagonal factor loading matrix γi ∼ i.i.d.U(−1, 3) Diagonal factor loading matrix γi ∼ i.i.d.U(−1, 3) Diagonal factor loading matrix γi ∼ i.i.d.U(−1, 3)

Inverse normal 0.06 0.08 0.11 0.06 0.09 0.12 0.42 0.71 0.82 0.95 1.00 1.00 0.13 0.22 0.29 0.42 0.69 0.82
Hartung κ1 0.04 0.03 0.04 0.05 0.04 0.04 0.28 0.42 0.47 0.85 0.97 0.99 0.10 0.11 0.12 0.32 0.47 0.57
Hartung κ2 0.06 0.06 0.06 0.06 0.06 0.07 0.31 0.47 0.53 0.86 0.97 0.99 0.12 0.16 0.17 0.35 0.54 0.64
Simes 0.06 0.06 0.06 0.05 0.05 0.06 0.24 0.31 0.33 0.79 0.93 0.96 0.10 0.11 0.11 0.28 0.37 0.42
CAIN-TSL 0.04 0.05 0.05 0.05 0.05 0.06 0.38 0.61 0.70 0.94 1.00 1.00 0.12 0.15 0.17 0.38 0.59 0.70

Unrestricted factor loading matrix γi ∼ i.i.d.U(0, 1) Unrestricted factor loading matrix γi ∼ i.i.d.U(0, 1) Unrestricted factor loading matrix γi ∼ i.i.d.U(0, 1)

Inverse normal 0.05 0.05 0.06 0.05 0.06 0.07 0.66 0.95 0.99 1.00 1.00 1.00 0.20 0.37 0.49 0.70 0.96 0.99
Hartung κ1 0.04 0.02 0.02 0.04 0.02 0.02 0.52 0.77 0.87 0.98 1.00 1.00 0.17 0.23 0.27 0.62 0.90 0.97
Hartung κ2 0.05 0.04 0.04 0.05 0.05 0.04 0.55 0.80 0.89 0.99 1.00 1.00 0.20 0.31 0.37 0.65 0.93 0.98
Simes 0.06 0.06 0.06 0.06 0.05 0.06 0.45 0.60 0.68 0.97 1.00 1.00 0.17 0.22 0.26 0.58 0.81 0.89
CAIN-TSL 0.04 0.03 0.03 0.04 0.04 0.04 0.63 0.92 0.98 1.00 1.00 1.00 0.18 0.29 0.35 0.67 0.93 0.99

Unrestricted factor loading matrix γi ∼ i.i.d.U(−1, 3) Unrestricted factor loading matrix γi ∼ i.i.d.U(−1, 3) Unrestricted factor loading matrix γi ∼ i.i.d.U(−1, 3)

Inverse normal 0.07 0.12 0.15 0.08 0.14 0.18 0.68 0.94 0.98 0.99 1.00 1.00 0.26 0.44 0.54 0.73 0.95 0.98
Hartung κ1 0.04 0.05 0.05 0.05 0.05 0.06 0.54 0.79 0.87 0.98 1.00 1.00 0.21 0.29 0.33 0.68 0.91 0.96
Hartung κ2 0.06 0.07 0.08 0.06 0.07 0.08 0.57 0.82 0.89 0.98 1.00 1.00 0.23 0.36 0.41 0.70 0.93 0.98
Simes 0.05 0.05 0.06 0.05 0.05 0.05 0.49 0.67 0.73 0.97 1.00 1.00 0.20 0.28 0.32 0.65 0.87 0.93
CAIN-TSL 0.06 0.07 0.08 0.07 0.09 0.10 0.64 0.89 0.94 0.99 1.00 1.00 0.22 0.32 0.37 0.69 0.91 0.96

Notes: Rejection frequencies at 5% significance level, 5000 replications. Power is not size-adjusted, as size-adjustment would not be available in practice. Some results with size-adjusted power are available
in Table 4.11 in the Appendix.
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between the probits are already around ρ̃t = 0.007 and ρ̃t = 0.005 for T = 100 and
T = 200, respectively. The inverse normal test has size close to the nominal one, along
with the CAIN-TSL test, while both Hartung’s tests again become undersized as N
grows. Considering power, the inverse normal test performs best because the nominator
of the panel test statistic is inflated by the unattended cross-sectional dependence. The
CAIN-TSL test has slightly lower power compared to it for T = 100 in case B, but in
case A and for T = 200 in case B it performs equally well.

Relatively strong cross-sectional correlation between the innovations is introduced
by a diagonal factor loading matrix with U(−1, 3) entries: ρ̂ε = 0.413, with estimated
average correlation between the probits ρ̃t varying between 0.020 and 0.046. In this case
the inverse normal test and Hartung’s test with κ2 become oversized for large N , while
the size of Hartung’s test with κ1 and that of CAIN-TSL fluctuate around the desired 5%
level. In terms of power, both in cases A and B the CAIN-TSL outperforms Hartung’s
tests and the test of Simes’, being second only compared to the oversized standard
inverse normal. The explanation for this power gain of CAIN-TSL in comparison
to Hartung’s tests is simple: it is due to the ρ̃t estimator being much more precise
than the ρ̂*

t one (see Figure 4.2). Therefore the variance of the test statistic does not
get overestimated, which would lead to lower power. We note that due to the high
correlation between the cross-sections, the power increase over N for all tests is less
significant compared to the case of low cross-sectional correlation. This can be explained
by the fact that the different cross-sections exhibit similar dynamics and in a sense
carry very much the same information. Hence the marginal value (in terms of power)
added by each individual unit is lower compared to when the cross-sectional dependence
is weaker so that the information set gets richer as N grows.

Figure 4.2: Empirical distributions of Hartung’s estimator ρ̂*
t and the CAIN estimator ρ̃t for

the correlation between the probits under H0 : ri = 0,∀i, 3-variate VAR(2) process with a
multifactor-error structure and a diagonal factor loading matrix
γi ∼ i.i.d.U(−1, 3), T = 100, 5000 replications
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Lastly, with unrestricted factor loadings we investigate the performance of the tests
when all variables are assumed to be correlated to the same extent, on average, over
the cross-sections. When γi ∼ U(0, 1), ρ̂ε = 0.36 and the inverse normal test becomes
oversized for high N , while both Hartung’s κ1 and the CAIN-TSL tests tend to become
undersized. The CAIN-TSL test performs best in terms of power without becoming
oversized for both cases A and B. When γi ∼ U(−1, 3), ρ̂ε = 0.44 the CAIN-TSL test
tends to become oversized as N grows with size reaching 10% for T = 200 and N = 25 at
the 5% level, while Hartung’s κ1 test observes the nominal size. As these experimental
settings violate Assumption 2 for the CAIN-TSL test, we conclude that it is robust to
such violations when the estimated mean absolute cross-sectional correlation between
the innovations ρ̂ε is low to moderate (≤ 0.35), or when the number of cross-sections
is small. For higher estimated ρ̂ε or when N > 10 we’d rather recommend to use
Hartung’s modification with κ1 = 0.2.

Size and power under H0 : ri = 1,∀i for cases A and B are presented in Tables
4.7 and 4.9 in the Appendix, respectively. The undersized individual TSL test leads
to all five panel tests being severely undersized. Their power nevertheless increases
with N for T sufficiently large. For case A the inverse normal test exhibits the highest
power, closely followed by the CAIN-TSL test. The same holds for case B when the
cross-sectional correlation is low to moderate. For larger correlation the CAIN-TSL test
has already slightly lower power than Hartung’s tests. This is so because it precisely
corrects for the high cross-sectional correlation between the probits, which turns out to
be unnecessary given the severely undersized results of the individual TSL tests. In
these cases the inverse normal test is again the most powerful test (without becoming
oversized under the true null H0 : ri = 1,∀i). In terms of size-adjusted power (see Table
4.11 in the Appendix) the CAIN test is exactly as powerful as the standard inverse
normal.

These results can be summarized as follows. When there is only low mean absolute
cross-sectional correlation ρ̂ε, in terms of size the CAIN-TSL performs comparably to
the standard inverse normal and Hartung’s κ2 test, being as powerful as the inverse
normal and more powerful than both Hartung’s tests. This conclusion holds regardless
of the null hypothesis under consideration. When the cross-sectional correlation is
high, the CAIN-TSL test offers best size-power trade-off under the null hypothesis
of no cointegration. This is particularly important in view of the sequential rank
testing procedure, which begins with H0 : ri = 0,∀i. Also, even when Assumption
2 is violated, the CAIN-TSL test may be used to test for no cointegration when the
estimated ρ̂ε is low to average, or when the number of cross-sections is not too large.
Otherwise Hartung’s test with κ1 is recommended, as it controls the size better. When
testing for higher cointegrating ranks under high cross-sectional correlation, then it
might be preferable to employ the inverse normal test without any correction for the
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cross-sectional dependence, or Hartung’s κ2 test. They would yield high power without
running the risk of an inflated Type I error probability, due to the lower than nominal
size of the individual TSL test under such null hypotheses. Simes’ simple intersection
test, although almost correctly sized in all settings, is, in general, least powerful.

4.5.3 Comparison with Westerlund’s (2006) test

To help position the CAIN-TSL test in the growing literature on panel cointegration,
we evaluate its finite-sample properties in comparison with other similar tests. Our
work is closest to that of Banerjee and Carrion-i Silvestre (2015), who propose a panel
no-cointegration test accommodating level shifts, trend breaks and even breaks in the
cointegrating relation. However, in the case of level and trend breaks their number and
locations are restricted to be homogeneous over cross-sections, which may not always
be the case in practice. Furthermore, their approach relies on first decomposing the
observed time series into common and idiosyncratic components and determining their
stochastic properties separately. It is, therefore, difficult to draw conclusions based on
their test whether the observed variables actually exhibit cointegration or not, which
is of primary interest in practice. Hence we rather compare the CAIN-TSL test with
another test, which focuses on the cointegration properties of the observed variables.

Westerlund (2006) proposes an LM test for the null hypothesis of cointegration
in panel data allowing for structural breaks in the deterministic terms of the data
generating process. The heterogeneous number of breaks and the break dates are not
necessarily known, but may be estimated from the data. The panel test statistic is
computed as the normalized sum of the individual LM test statistics, where the first
two moments of the statistic depend only on the number of breaks in each cross-section,
but not on their locations or other nuisance parameters. Assuming independence of
the cross-sectional units, Westerlund (2006) shows that the limiting distribution of the
statistic is standard normal. For the general case of cross-sectionally dependent panels
he proposes a bootstrapping algorithm. Nevertheless, he examines the performance of
the test without bootstrap correction for a DGP featuring an unobserved common factor
in the innovations, and he notes that it is “remarkably robust to moderate degrees of
cross-sectional correlation”. Hence it is this simpler version of the test which we employ
next.

The comparison is based on the following DGP for Yit, where the stochastic com-
ponent Xit = (X1t, X2t)′ follows the cointegrated VAR(2) process employed by Dolado
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and Lütkepohl (1996):

Yit = d̃it +Xit, (4.19)

∆Xit =
 −β β

0 0

Xi,t−1 +
 0.5 0.3

0 0.5

∆Xi,t−1 + uit, (4.20)

uit = γift + eit. (4.21)

The innovations uit are augmented by a (2× 1)-vector of unobserved common factors
ft such that ft ∼ N(0, I2). The factor loading matrix γi is diagonal with uniformly
distributed entries ∼ U(−1, 3), while the idiosyncratic errors are generated as eit ∼
N(0, I2). The linear trend term d̃it = (dit, 0)′ affects only the first variable in the system,
where dit features one or two breaks with 50% chance each at individual-specific break
fractions ηij ∈ (0.15T, 0.85T ). In particular, dit = δij · (1, t)′, where the intercept and
trend parameters are δi1 ∼ N(1, I2) in the first sub-sample with t < [ηi1T ], δi2 ∼ N(2, I2)
in the second sub-sample with t < [ηi2T ], and δi3 ∼ N(0, I2) in the third. To simulate
cointegrated process with rank one, we set β = 1, while for no cointegration (rank is
zero) β = 0. To put both tests on equal grounds, the lag order, the breaks number and
the locations of the breaks are assumed to be known.

Table 4.4 summarizes the results. It is evident that although the CAIN-TSL test
is undersized, its power increases significantly as N grows. Its size adjusted power is
slightly lower than that of Westerlund’s (2006) when N is as small as 5. However,
Westerlund’s (2006) test is severely oversized, despite the fact that the average absolute
correlation ¯̂

ερ between the innovations for i 6= j is only 0.3. Hence in practice the
CAIN-TSL test offers a clear advantage in terms of better control of the Type-I error
while maintaining good power properties.

Table 4.4: Comparison between the CAIN-TSL and Westerlund’s (2006)
test under factor-driven cross-sectional dependence

Size Power Size-adjusted power

T\N 5 15 25 5 15 25 5 15 25
CAIN-TSL

100 0.007 0.000 0.000 0.636 0.867 0.938 0.764 0.967 0.994
200 0.020 0.007 0.009 0.813 0.979 0.998 0.858 0.990 0.999

Westerlund’s (2006) test

100 0.491 0.974 0.999 0.997 1.000 1.000 0.937 1.000 1.000
200 0.393 0.935 0.993 1.000 1.000 1.000 1.000 1.000 1.000

Note: Rejection frequencies at the 5% nominal level based on 5000 replications. Power
for Westerlund’s (2006) test and size for the CAIN-TSL test are computed when the
true rank and the hypothesized rank is zero. Size for Westerlund’s (2006) test and power
for the CAIN-TSL test are computed when the true cointegrating rank is zero, while
the hypothesized rank is one.
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4.6 Testing for cointegration between US regional
house prices and personal income

We illustrate the use of the CAIN-TSL test by applying it to investigate a presumed
cointegrating relationship between regional house prices and personal income in the
United States. The evidence on the existence of a long-run relationship between house
prices and macroeconomic fundamentals in the US housing market is rather mixed. On
the one hand, using 23 years of quarterly data until 2002 on 95 metropolitan areas,
Gallin (2006) fails to find support for a stable link between house prices and income.
On the other hand, analyzing yearly data from 1975 to 2003 for 49 states, Holly et al.
(2010) do establish a long-run equilibrium between real house prices and real per capita
income with coefficients (−1, 1), “as predicted by the theory”.

We aim to shed some light on this issue by employing the CAIN-TSL test and
the newest available data at quarterly frequency, spanning from 1983Q3 to 2018Q1.
Such a long window with 141 time observations predisposes single-unit unit root and
cointegration tests to have good finite-sample properties. The longer time series, however,
come at a price. The global financial crisis of 2007-2008 has caused a structural break
in many economic and financial time series, with personal income and house prices
being no exception. Therefore, when trying to establish a cointegrating relationship
between these two variables, this structural break has to be taken into account in order
to avoid spurious inference.

In formulating the econometric model we follow Holly et al. (2010) and look at a log-
linear relationship between real house prices, pit, and the macroeconomic fundamentals
real per capita disposable income, yit, and real cost of borrowing net of house prices
appreciation/depreciation, cit. We model it in a VAR(pi) framework as Yit = (pit, yit, cit)′

for each state i = 1, . . . , N , allowing for a level shift and trend break in the deterministic
terms:

Yit = µi0 + µi1t+ δi0dit + δi1bit +Xit, t = 1, . . . , T, (4.22)

Xit = A1iXi,t−1 + . . .+ Api,iXi,t−pi + uit. (4.23)

The structural break is assumed to take place at a known date, and namely in the
third quarter of 2007, which marks the beginning of the US mortgage and credit crisis.
Therefore, τ = ηT = 99 with η = 0.7. Hence the dummy variables dit and bit take
values dit = bit = 0 for t < τ and dit = 1 and bit = t− τ + 1 for t ≥ τ . To account for
potential lag effects, however, we check for robustness of this choice by shifting the
break date by one or two quarters ahead.

The variables pit, yit and cit are computed as in Holly et al. (2010). We use state-level
data for all 50 states and the District of Columbia (N=51). Information on the data
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sources is listed in Table 4.12 in the Appendix. Although available, data for eight years
prior to 1983 has not been included into the analysis in order to avoid issues arising
from heteroscedasticity due to the Great Moderation. The time span of the remaining
data is nevertheless sufficiently large.

Each variable is first tested for a unit roots by a univariate ADF test. Perron (1989)
has shown that not accounting for an existing structural break reduces the test’s ability
to reject a false null hypothesis of a unit root, so any non-rejections would require
further investigation. Rejections, however, would point to stationarity. To reflect their
trending behaviour we allow for an intercept and a linear time trend in the models for
the income and house prices variables, while for net cost of borrowing only an intercept
is included. The results are presented in the first panel of Table 4.13 in the Appendix.
For yit and pit we observe rejections of the unit root null at 5% significance level for
only two and four states, respectively. In contrast, cit is largely classified as stationary
with rejections at the 5% level for 37 states and the largest p-value not exceeding 0.14.
These results are in line with those of Holly et al. (2010). We therefore next focus only
on the house prices and personal income variables.

To investigate whether the income and house price variables are nonstationary also
when a structural break is allowed for in the level and the slope of the DGP, we apply
the test of Popp (2008). His innovational-outlier (IO) type test is suitable for the
application at hand as it allows the break to gradually take effect and permits a break
to occur under both the null and the alternative hypotheses. Furthermore, the limiting
distribution of the test statistic with an endogenous selection of the break date is the
same as in the case of a known break, as is the case here. We again choose to employ a
single-unit unit root test, as deciding upon the stochastic properties of the variables
on a unit-by-unit basis and not at the panel level allows us to exclude stationary time
series from the subsequent cointegration analysis. Tables 4.14 and 4.15 in the Appendix
summarize the results. Allowing for a structural break around the time of the beginning
of the financial crisis does indeed result in rejection of the unit root null at 5% in some
cases.

Excluding these few states where either variable is deemed stationary, we proceed
to testing for cointegration with the CAIN-TSL test. The lag order of each individual
VAR process has been selected by the modified AIC (MAIC) criterion of Qu and Perron
(2007), whose computation has been augmented by dummy variables to account for the
structural break. Table 4.5 presents the results. We note that for a break located in
2007Q3 not a single rejection of the no-cointegration null is observed. If the break is
set to one quarter later, a single rejection at the 5% significance level emerges, and
namely for North Carolina. For a break in 2008Q1 the null of zero cointegrating rank is
rejected at 5% only for North Dakota. Turning to the CAIN-TSL test, we first note
that the estimated average absolute correlation between the innovations to the same
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variables in the panel, ρ̂ε, is about 0.42. It is comparable to the magnitude of the
correlations of the variables in first differences between regions reported by Holly et al.
(2010) and points to the existence of significant cross-sectional dependence, as expected.
This value of ρ̂ε leads to an estimated correlation between the probits ρ̃t of about 0.05.
The estimate of the average absolute pairwise correlation between the innovations to
the different variables is 0.039 and below, pointing that Assumption 2 is not violated.
The highly positive CAIN-TSL statistics, far from the rejection region in the left tail
of the standard normal distribution, only further corroborate the lack of cointegration
between real house prices and real per capita disposable income in the selected period.

These findings are in stark contrast with those of Holly et al. (2010), who do establish
that cointegration exists at the panel level. An important difference to their study
is our extended sample. Holly et al. (2010) use data until 2003 and do not cover the
subsequent housing bubble in the early 2000s, which affected more than twenty US
states and began to collapse in the mid-2000s, leading to the subprime mortgage crisis5.
Our results suggest that the house price dynamics have diverged from the evolution of
the real per capita disposable income for most, if not all US states in this period.

One question, however, poses further interest. Is there evidence in the data for
another, newer departure of the house prices from the income fundamental in the period
following the burst of the housing bubble? To answer it, we apply the intersection-type
panel cointegration test by Arsova and Örsal (2019) to the data sample from 2008Q1
to 2018Q1 (T = 41). The pit and yit variables are found to be I(1) for most states
by the ADF test (see the right panel of Table 4.13 in the Appendix). The real net
cost of borrowing cit is, as in the full sample, mostly I(0); the results are not reported
to save space. No major economic event has led to a structural break in this period,
hence we employ the single-unit cointegration test of Saikkonen and Lutkepohl (2000)
without breaks for each state with nonstationary house prices and income variables.
The individual p-values are then combined in a panel test by the Simes’ procedure. The
results are presented in Table 4.16 in the Appendix. Allowing for a trend in the variables
but not in the error-correction (EC) term leads to a rejection of the no-cointegration
null hypothesis in 13 states at the 5% level. Two of these values are smaller than the
corresponding critical values of Simes, leading to a rejection at the 5% level of the
composite null hypothesis of no-cointegration for all states. Hence we find evidence that
the US real house prices have not (yet) departed from the equilibrium relationship with
real disposable income in the period following the burst of the last house prices bubble.
5Hu and Oxley (2018) find evidence that following the dot-com crisis many regional house price bubbles
have formed on a state level within different time frames instead of a single synchronous divergence
from the intrinsic value of the house prices.
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Table 4.5: Results of the CAIN-TSL test with structural breaks for US house prices
dataset

Break in 2007Q3 Break in 2007Q4 Break in 2008Q1
p̂i LRtrace

TSL p−value p̂i LRtrace
TSL p−value p̂i LRtrace

TSL p−value

Alabama 5 5.81 0.930 4 5.61 0.940 − − −
Arizona 7 8.57 0.719 4 7.75 0.794 4 8.11 0.761
Arkansas − − − − − − − − −
California 7 13.02 0.301 7 13.54 0.262 7 15.47 0.151
Colorado 7 9.40 0.637 7 8.50 0.725 7 8.04 0.767
Connecticut 3 8.94 0.682 2 6.74 0.874 2 6.31 0.902
Delaware 5 6.19 0.910 5 6.55 0.887 − − −
District of Columbia − − − − − − − − −
Florida − − − − − − − − −
Georgia 5 3.93 0.989 8 15.36 0.157 7 17.60 0.077∗

Idaho − − − 8 11.67 0.412 − − −
Illinois − − − − − − − − −
Indiana 8 5.40 0.949 8 6.65 0.880 7 9.34 0.640
Iowa 8 9.73 0.603 8 8.26 0.747 7 7.40 0.822
Kansas 6 6.45 0.894 6 7.56 0.811 6 11.16 0.458
Kentucky 8 9.57 0.619 8 10.39 0.535 − − −
Louisiana 8 4.26 0.983 8 4.71 0.973 8 6.51 0.889
Maine − − − − − − − − −
Maryland 5 8.21 0.753 4 7.59 0.808 4 7.97 0.773
Massachusetts 4 10.06 0.569 5 9.00 0.675 4 9.17 0.657
Michigan 8 5.36 0.951 8 6.25 0.906 7 6.38 0.897
Minnesota 8 5.17 0.958 8 6.91 0.862 7 8.60 0.714
Mississippi 8 8.01 0.772 8 11.12 0.464 8 12.27 0.358
Missouri 7 6.45 0.894 7 7.64 0.804 7 11.17 0.457
Montana 6 7.39 0.825 6 8.26 0.747 7 3.97 0.988
Nebraska 7 9.68 0.608 8 11.88 0.393 7 12.74 0.320
Nevada − − − − − − − − −
New Hampshire 6 9.75 0.600 5 11.73 0.406 4 8.78 0.696
New Jersey 2 6.15 0.912 4 5.17 0.958 6 5.90 0.925
New Mexico 5 8.06 0.767 5 11.66 0.413 4 15.65 0.143
New York 5 6.16 0.912 4 5.28 0.954 4 5.04 0.962
North Carolina 8 9.04 0.672 8 20.55 0.027∗∗ − − −
North Dakota 7 9.92 0.583 5 15.59 0.147 7 19.29 0.043∗∗

Ohio 8 6.43 0.895 7 8.89 0.687 7 11.04 0.470
Oklahoma 5 7.29 0.833 6 3.96 0.988 5 7.49 0.816
Oregon − − − − − − − − −
Pennsylvania 5 14.23 0.219 6 18.49 0.057∗ 5 16.76 0.101
Rhode Island 5 10.05 0.570 4 11.16 0.460 4 10.47 0.526
South Carolina 6 8.55 0.721 8 2.99 0.997 − − −
South Dakota 8 13.40 0.273 8 14.47 0.203 8 13.75 0.246
Tennessee 5 5.10 0.961 4 4.52 0.978 8 9.15 0.659
Texas 7 6.86 0.866 7 7.27 0.834 6 9.95 0.578
Utah − − − − − − − − −
Vermont 5 9.83 0.593 4 9.29 0.647 4 9.63 0.611
Virginia 8 8.35 0.740 8 11.30 0.446 8 11.91 0.389
Washington 8 13.52 0.265 8 12.35 0.353 − − −
West Virginia − − − − − − − − −
Wisconsin 8 7.70 0.799 8 8.41 0.733 7 8.63 0.711
Wyoming 7 7.63 0.806 6 6.53 0.888 6 11.83 0.396
Alaska 8 15.65 0.145 8 12.63 0.330 8 15.82 0.136
Hawaii 8 6.75 0.874 8 7.93 0.777 6 8.91 0.684

CAIN-TSL

t(ρ̃) 2.603 1.818 0.723
ρ̂ε 0.426 0.421 0.416
ρ̂ε
o 0.039 0.038 0.038

ρ̃t 0.055 0.054 0.052

Notes: LRtrace
TSL denotes the LR trace statistic of Trenkler et al. (2007). The lag order p̂i is selected by the

MAIC criterion of Qu and Perron (2007), augmented to account for the structural break. ρ̂ε denotes the
average absolute pairwise cross-sectional correlation between the innovations to the same variables in the
panel. ρ̂ε

o denotes the average absolute pairwise cross-sectional correlation between the innovations to the
different variables in the panel. ρ̃t denotes the estimated correlation between the individual probits.
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4.7 Conclusion

In this paper we propose a new meta-analytic approach (CAIN) to test for the
cointegrating rank in panels where structural breaks and cross-sectional dependence
are allowed for. It is an extension of the likelihood-based rank test of Trenkler et al.
(2007) (TSL), and requires only the p-values of the individual LR trace statistics of
the TSL test. The CAIN-TSL test is based on a modification of the popular inverse
normal method for p-values combination, employing a novel estimator for the unknown
correlation between the probits. We propose a way to estimate this correlation as a
function of the system dimension, the cointegrating rank under the null hypothesis and
the average absolute cross-sectional correlation between the residuals of the individual
VAR models in first differences. The latter is easily estimable in practice and provides
an easy-to-interpret measure of the degree of cross-sectional dependence. In a Monte
Carlo study we demonstrate the superior properties of the CAIN-TSL test in comparison
with other meta-analytic approaches recently proposed in the panel unit-root literature.
An application of the test to investigate a presumed long-run equilibrium relationship
between house prices and personal income in a panel of 51 US states provides an
illustration of its usefulness in practice.
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4.A Appendix

Figure 4.3: Cross-sectional correlation of the probits against cross-sectional correlation of the
innovations, bi-variate system with true cointegrating rank zero, testing for H0 : ri = 0, ∀i

0

0.1

0.2

0.3

0.4

0.5

0 0.16 0.36 0.56 0.76 0.96
Cross − sectional correlation of the innovations ρε

C
ro

ss
−

se
ct

io
na

l c
or

re
la

tio
n 

of
 th

e 
pr

ob
its

 ρ
t

N = 10

T=50
T=100
T=200
T=500
T=1000

0

0.1

0.2

0.3

0.4

0.5

0 0.16 0.36 0.56 0.76 0.96
Cross − sectional correlation of the innovations ρε

T = 500

N=2
N=5
N=10
N=50
N=100

Table 4.6: True and estimated ρε under H0 :
r = 0

Estimated ρ̂ε
True ρε True rank 0 True rank 1 True rank 2

0.2 0.200 0.196 0.192
0.4 0.400 0.392 0.384
0.6 0.600 0.589 0.577
0.8 0.800 0.786 0.771

Notes: Results from large-scale simulation study with
m = 3, T = 500 and N = 5.
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Table 4.7: Monte Carlo study results, case A: not near-unit root
processes. Empirical size under H0 : ri = 1, ∀i, i = 1, . . . , N .

T=100 T=200
N = 5 N = 15 N = 25 N = 5 N = 15 N = 25

Test Diagonal factor loading matrix γi ∼ i.i.d.U(−0.4, 0.4)

Inverse normal 0.001 0.000 0.000 0.003 0.000 0.000
Hartung κ1 0.001 0.000 0.000 0.005 0.000 0.000
Hartung κ2 0.002 0.000 0.000 0.007 0.001 0.000
Simes 0.010 0.006 0.009 0.016 0.017 0.016
CAIN-TSL 0.001 0.000 0.000 0.003 0.000 0.000

Diagonal factor loading matrix γi ∼ i.i.d.U(0, 1)

Inverse normal 0.002 0.000 0.000 0.006 0.001 0.000
Hartung κ1 0.004 0.000 0.000 0.006 0.001 0.000
Hartung κ2 0.005 0.001 0.000 0.008 0.001 0.000
Simes 0.009 0.007 0.004 0.020 0.019 0.024
CAIN-TSL 0.002 0.000 0.000 0.005 0.001 0.000

Diagonal factor loading matrix γi ∼ i.i.d.U(−1, 3)

Inverse normal 0.004 0.003 0.002 0.015 0.017 0.017
Hartung κ1 0.003 0.001 0.001 0.014 0.007 0.005
Hartung κ2 0.004 0.002 0.001 0.018 0.012 0.011
Simes 0.008 0.007 0.005 0.024 0.018 0.019
CAIN-TSL 0.002 0.001 0.000 0.010 0.008 0.005

Unrestricted factor loading matrix γi ∼ i.i.d.U(0, 1)

Inverse normal 0.003 0.002 0.002 0.009 0.007 0.006
Hartung κ1 0.003 0.001 0.001 0.008 0.004 0.003
Hartung κ2 0.005 0.002 0.002 0.011 0.007 0.005
Simes 0.011 0.010 0.007 0.019 0.014 0.018
CAIN-TSL 0.002 0.001 0.000 0.006 0.002 0.002

Unrestricted factor loading matrix γi ∼ i.i.d.U(−1, 3)

Inverse normal 0.003 0.002 0.002 0.009 0.007 0.006
Hartung κ1 0.003 0.001 0.001 0.008 0.004 0.003
Hartung κ2 0.005 0.002 0.002 0.011 0.007 0.005
Simes 0.011 0.010 0.007 0.019 0.014 0.018
CAIN-TSL 0.002 0.001 0.000 0.006 0.002 0.002

Notes: Rejection frequencies at 5% significance level, 5000 replications.
Power is not size-adjusted, as size-adjustment would not be available in prac-
tice. Some results with size-adjusted power are available in Table 4.11 in the
Appendix.
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Table 4.8: Monte Carlo study results, case A: not near-unit root
processes. Empirical power under H0 : ri = 1, ∀i, i = 1, . . . , N .

T=100 T=200
N = 5 N = 15 N = 25 N = 5 N = 15 N = 25

Test Diagonal factor loading matrix γi ∼ i.i.d.U(−0.4, 0.4)

Inverse normal 0.41 0.78 0.92 0.99 1.00 1.00
Hartung κ1 0.28 0.46 0.56 0.97 1.00 1.00
Hartung κ2 0.32 0.54 0.63 0.98 1.00 1.00
Simes 0.23 0.27 0.27 0.95 1.00 1.00
CAIN-TSL 0.41 0.77 0.91 0.99 1.00 1.00

Diagonal factor loading matrix γi ∼ i.i.d.U(0, 1)

Inverse normal 0.40 0.75 0.88 0.99 1.00 1.00
Hartung κ1 0.26 0.42 0.51 0.97 1.00 1.00
Hartung κ2 0.28 0.49 0.58 0.97 1.00 1.00
Simes 0.20 0.24 0.25 0.95 1.00 1.00
CAIN-TSL 0.39 0.72 0.85 0.99 1.00 1.00

Diagonal factor loading matrix γi ∼ i.i.d.U(−1, 3)

Inverse normal 0.40 0.67 0.79 0.99 1.00 1.00
Hartung κ1 0.24 0.34 0.41 0.95 1.00 1.00
Hartung κ2 0.27 0.40 0.47 0.96 1.00 1.00
Simes 0.18 0.21 0.21 0.92 0.99 1.00
CAIN-TSL 0.34 0.55 0.63 0.98 1.00 1.00

Unrestricted factor loading matrix γi ∼ i.i.d.U(0, 1)

Inverse normal 0.43 0.78 0.90 0.99 1.00 1.00
Hartung κ1 0.30 0.49 0.60 0.98 1.00 1.00
Hartung κ2 0.33 0.56 0.67 0.98 1.00 1.00
Simes 0.24 0.29 0.31 0.96 1.00 1.00
CAIN-TSL 0.40 0.69 0.81 0.99 1.00 1.00

Unrestricted factor loading matrix γi ∼ i.i.d.U(−1, 3)

Inverse normal 0.45 0.73 0.82 0.99 1.00 1.00
Hartung κ1 0.30 0.46 0.53 0.97 1.00 1.00
Hartung κ2 0.33 0.52 0.58 0.97 1.00 1.00
Simes 0.24 0.29 0.32 0.94 0.99 1.00
CAIN-TSL 0.39 0.60 0.68 0.99 1.00 1.00

Notes: Rejection frequencies at 5% significance level, 5000 replications. Power
is not size-adjusted, as size-adjustment would not be available in practice. Some
results with size-adjusted power are available in Table 4.11 in the Appendix.
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Table 4.9: Monte Carlo study results, case B: near-unit root
processes. Empirical size under H0 : ri = 1, ∀i, i = 1, . . . , N .

T=100 T=200
N = 5 N = 15 N = 25 N = 5 N = 15 N = 25

Test Diagonal factor loading matrix γi ∼ i.i.d.U(−0.4, 0.4)

Inverse normal 0.000 0.000 0.000 0.001 0.000 0.000
Hartung κ1 0.000 0.000 0.000 0.002 0.000 0.000
Hartung κ2 0.000 0.000 0.000 0.003 0.000 0.000
Simes 0.005 0.003 0.002 0.008 0.005 0.006
CAIN-TSL 0.000 0.000 0.000 0.001 0.000 0.000

Diagonal factor loading matrix γi ∼ i.i.d.U(0, 1)

Inverse normal 0.000 0.000 0.000 0.002 0.000 0.000
Hartung κ1 0.001 0.000 0.000 0.001 0.000 0.000
Hartung κ2 0.001 0.000 0.000 0.002 0.000 0.000
Simes 0.004 0.002 0.001 0.008 0.005 0.006
CAIN-TSL 0.000 0.000 0.000 0.002 0.000 0.000

Diagonal factor loading matrix γi ∼ i.i.d.U(−1, 3)

Inverse normal 0.000 0.000 0.000 0.003 0.001 0.000
Hartung κ1 0.000 0.000 0.000 0.002 0.000 0.000
Hartung κ2 0.001 0.000 0.000 0.003 0.001 0.001
Simes 0.003 0.002 0.001 0.008 0.004 0.005
CAIN-TSL 0.000 0.000 0.000 0.001 0.000 0.000

Unrestricted factor loading matrix γi ∼ i.i.d.U(0, 1)

Inverse normal 0.000 0.000 0.000 0.002 0.000 0.000
Hartung κ1 0.000 0.000 0.000 0.001 0.000 0.000
Hartung κ2 0.001 0.000 0.000 0.002 0.000 0.000
Simes 0.004 0.003 0.002 0.008 0.006 0.006
CAIN-TSL 0.000 0.000 0.000 0.001 0.000 0.000

Unrestricted factor loading matrix γi ∼ i.i.d.U(−1, 3)

Inverse normal 0.000 0.000 0.000 0.002 0.001 0.001
Hartung κ1 0.000 0.000 0.000 0.003 0.001 0.001
Hartung κ2 0.001 0.000 0.000 0.004 0.001 0.001
Simes 0.005 0.003 0.004 0.009 0.005 0.006
CAIN-TSL 0.000 0.000 0.000 0.001 0.000 0.000

Notes: Rejection frequencies at 5% significance level, 5000 replications.
Power is not size-adjusted, as size-adjustment would not be available in prac-
tice. Some results with size-adjusted power are available in Table 4.11 in the
Appendix.
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Table 4.10: Monte Carlo study results, case B: near-unit root
processes. Empirical power under H0 : ri = 1, ∀i, i = 1, . . . , N .

T=100 T=200
N = 5 N = 15 N = 25 N = 5 N = 15 N = 25

Test Diagonal factor loading matrix γi ∼ i.i.d.U(−0.4, 0.4)

Inverse normal 0.02 0.01 0.01 0.37 0.66 0.83
Hartung κ1 0.03 0.01 0.00 0.34 0.55 0.70
Hartung κ2 0.03 0.02 0.01 0.38 0.65 0.81
Simes 0.04 0.03 0.04 0.33 0.46 0.53
CAIN-TSL 0.02 0.01 0.01 0.37 0.66 0.83

Diagonal factor loading matrix γi ∼ i.i.d.U(0, 1)

Inverse normal 0.03 0.02 0.01 0.38 0.67 0.82
Hartung κ1 0.02 0.01 0.00 0.32 0.53 0.66
Hartung κ2 0.03 0.02 0.01 0.36 0.63 0.76
Simes 0.04 0.03 0.03 0.30 0.41 0.47
CAIN-TSL 0.03 0.01 0.01 0.37 0.64 0.79

Diagonal factor loading matrix γi ∼ i.i.d.U(−1, 3)

Inverse normal 0.04 0.05 0.05 0.39 0.64 0.76
Hartung κ1 0.02 0.02 0.02 0.31 0.47 0.58
Hartung κ2 0.03 0.03 0.04 0.34 0.55 0.65
Simes 0.03 0.03 0.03 0.27 0.35 0.40
CAIN-TSL 0.03 0.02 0.02 0.34 0.52 0.61

Unrestricted factor loading matrix γi ∼ i.i.d.U(0, 1)

Inverse normal 0.03 0.02 0.02 0.39 0.66 0.80
Hartung κ1 0.03 0.01 0.01 0.37 0.57 0.71
Hartung κ2 0.04 0.02 0.01 0.41 0.67 0.81
Simes 0.05 0.05 0.04 0.37 0.52 0.62
CAIN-TSL 0.02 0.01 0.01 0.35 0.57 0.68

Unrestricted factor loading matrix γi ∼ i.i.d.U(−1, 3)

Inverse normal 0.05 0.04 0.06 0.41 0.64 0.75
Hartung κ1 0.04 0.02 0.02 0.38 0.56 0.67
Hartung κ2 0.05 0.04 0.04 0.42 0.64 0.76
Simes 0.05 0.05 0.05 0.39 0.54 0.61
CAIN-TSL 0.04 0.02 0.02 0.37 0.51 0.60

Notes: Rejection frequencies at 5% significance level, 5000 replications.
Power is not size-adjusted, as size-adjustment would not be available in prac-
tice. Some results with size-adjusted power are available in Table 4.11 in the
Appendix.
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Table 4.11: Size-adjusted power for true rank one under H0 : ri =
0, ∀i

T = 100 T = 200
N = 5 N = 15 N = 25 N = 5 N = 15 N = 25

Diagonal factor loadings γi ∼ i.i.d.U(−1, 3)

Inverse normal 0.40 0.62 0.70 0.95 1.00 1.00
Hartung κ1 0.30 0.49 0.54 0.85 0.98 0.99
Hartung κ2 0.29 0.43 0.47 0.82 0.96 0.98
CAIN-TSL 0.40 0.62 0.70 0.94 1.00 1.00

Unrestricted factor loadings γi ∼ i.i.d.U(−1, 3)

Inverse normal 0.62 0.84 0.90 0.97 1.00 1.00
Hartung κ1 0.57 0.81 0.86 0.97 1.00 1.00
Hartung κ2 0.54 0.77 0.80 0.97 1.00 1.00
CAIN-TSL 0.62 0.85 0.90 0.99 1.00 1.00

Unrestricted factor loadings γi ∼ i.i.d.U(−1, 3), near-unit root processes

Inverse normal 0.20 0.25 0.28 0.67 0.85 0.91
Hartung κ1 0.22 0.31 0.32 0.67 0.90 0.95
Hartung κ2 0.21 0.31 0.32 0.66 0.90 0.95
CAIN-TSL 0.20 0.25 0.28 0.66 0.85 0.91

Rejection frequencies at 5% nominal level, 5000 replications.
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Table 4.12: US house prices dataset: data description

Variable Description ID Source

Pit,g CPICA for California; CPIFL for Florida; CPIGA for Georgia; CPITX for Texas; CPIMI for Michigan;
CPIIL for Illinois, Indiana and Wisconsin; CPIMA for Massatchusetts and New Hampshire; CPIPA for
Delaware and Maryland; CPINY for New York, New Jersey and Pennsylvania; CPIWest for Alaska, Ari-
zona, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oklahoma, Oregon, Utah, Washington
and Wyoming; CPIUS for all remaining states.

CPIUS Consumer Price Index: Total All Items for the United States; Index 2010=100, Seasonally Adjusted CPALTT01USQ661S OECD
CPICA Consumer Price Index for All Urban Consumers: All items in San Francisco-Oakland-Hayward, CA

(CBSA); Index 1982-1984=100; Not Seasonally Adjusted
CUURA422SA0 U.S. Bureau of Labor Statistics

CPIFL Consumer Price Index for All Urban Consumers: All items in Miami-Fort Lauderdale-West Palm Beach,
FL (CBSA); Index 1982-1984=100; Not Seasonally Adjusted

CUURA320SA0 U.S. Bureau of Labor Statistics

CPIGA Consumer Price Index for All Urban Consumers: All items in Atlanta-Sandy Springs-Roswell, GA
(CBSA); Index 1982-1984=100; Not Seasonally Adjusted

CUURA319SA0 U.S. Bureau of Labor Statistics

CPITX Consumer Price Index for All Urban Consumers: All items in Houston-The Woodlands-Sugar Land, TX
(CBSA); Index 1982-1984=100; Not Seasonally Adjusted

CUURA318SA0 U.S. Bureau of Labor Statistics

CPIMI Consumer Price Index for All Urban Consumers: All items in Detroit-Warren-Dearborn, MI (CBSA);
Index 1982-1984=100; Not Seasonally Adjusted

CUURA208SA0 U.S. Bureau of Labor Statistics

CPIIL Consumer Price Index for All Urban Consumers: All items in Chicago-Naperville-Elgin, IL-IN-WI
(CBSA); Index 1982-1984=100; Not Seasonally Adjusted

CUURA207SA0 U.S. Bureau of Labor Statistics

CPIMA Consumer Price Index for All Urban Consumers: All items in Boston-Cambridge-Newton, MA-NH
(CBSA); Index 1982-1984=100; Not Seasonally Adjusted

CUURA103SA0 U.S. Bureau of Labor Statistics

CPIPA Consumer Price Index for All Urban Consumers: All items in Philadelphia-Camden-Wilmington, PA-
NJ-DE-MD (CBSA); Index 1982-1984=100; Not Seasonally Adjusted

CUURA102SA0 U.S. Bureau of Labor Statistics

CPINY Consumer Price Index for All Urban Consumers: All items in New York-Newark-Jersey City, NY-NJ-PA
(CBSA); Index 1982-1984=100; Not Seasonally Adjusted

CUURA101SA0 U.S. Bureau of Labor Statistics

CPIWest Consumer Price Index for All Urban Consumers: All items in West; Index 1982-1984=100; Not SA CUUR0400SA0 U.S. Bureau of Labor Statistics
Pit,h All-Transactions House Price Index; Index 1980:Q1=100; Not Seasonally Adjusted **STHPI U.S. Federal Housing Finance Agency
PDit Approximated by the difference PIncit - Git
PIncit United States, BEA, Personal Income by Major Component (SQ4), Personal Income, USD Macrobond
Git United States, BEA, Personal Income by Major Component (SQ4), Employee and Self-Employed Con-

tributions for Government Social Insurance, USD
Macrobond

POPit Population in number of persons by state; United States, BEA, Personal Income Summary: Personal
Income, Population, per Capita Personal Income (CA1), Population, States; Population (Midperiod) is
used from 2017Q1 to 2018Q1; linear interpolation to yield quarterly data, carried out by Macrobond

Macrobond

RBt Long-Term Government Bond Yields: 10-year: Main (Including Benchmark) for the United States IRLTLT01USQ156N OECD
pit Natural logarithm of the US State real house price index, pit = ln(Pit,h/Pit,g)
yit Natural logarithm of the US State real per capita disposable income, yit = ln(PDit/(POPit × Pit,g))
rit US State real long-term interest rate, rit = RBt/100− ln(Pit,g/PI,t−1,g)
cit US State real cost of borrowing net of real house price appreciation/depreciation, cit = rit −∆pit

Notes: OECD stands for OECD, Main Economic Indicators - complete database. Where available, ID denotes the variable ID in FRED (Federal Reserve Economic Data). ** stands
for the two-letter abbreviation of the corresponding state. Not seasonally adjusted CPI series have been seasonally adjusted by the Census X12 method. All indices have been rebased
to 1980Q1=100. Quarterly CPI indices have been derived from monthly and bi-monthly series by taking average values of the three months in a quarter.
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Table 4.13: ADF unit root test results for US house prices dataset

Sample 1983Q1 – 2018Q1 (T=141) Sample 2008Q1 – 2018Q1 (T=41)
yit pit cit yit pit

p̂i t-stat p−value p̂i t-stat p−value p̂i t-stat p−value p̂i t-stat p−value p̂i t-stat p−value

Alabama 3 −2.690 0.243 8 −1.232 0.899 3 −4.676 0.0002∗∗∗ 1 −2.860 0.186 3 −0.746 0.962
Arizona 4 −1.702 0.746 7 −1.494 0.827 3 −3.112 0.028∗∗ 4 −2.910 0.170 3 −1.341 0.863
Arkansas 4 −4.106 0.008∗∗∗ 4 −1.031 0.936 3 −3.276 0.018∗∗ 4 −2.744 0.225 4 −3.764 0.029∗∗

California 4 −2.121 0.530 4 −0.823 0.960 4 −2.571 0.101 6 −2.994 0.146 5 −5.748 0.0001∗∗∗

Colorado 4 −1.267 0.892 7 −1.742 0.727 8 −3.134 0.026∗∗ 4 −1.947 0.612 4 −1.280 0.879
Connecticut 1 −1.666 0.761 4 −1.694 0.749 3 −3.379 0.013∗∗ 1 −2.900 0.173 3 −2.190 0.482
Delaware 5 −1.489 0.829 8 −1.203 0.906 3 −3.552 0.008∗∗∗ 3 −2.394 0.377 1 −0.884 0.948
District of Columbia 3 −1.935 0.631 5 −0.764 0.966 4 −4.662 0.0002∗∗∗ 6 −1.941 0.615 1 −3.731 0.031∗∗

Florida 4 −2.092 0.545 5 −0.831 0.960 3 −2.936 0.044∗∗ 5 −2.725 0.232 3 −4.132 0.012∗∗

Georgia 3 −2.516 0.320 7 −0.884 0.954 3 −3.528 0.009∗∗∗ 3 −2.370 0.389 4 −1.002 0.933
Idaho 4 −1.626 0.778 7 −1.635 0.774 4 −3.970 0.002∗∗∗ 4 −2.733 0.230 3 −1.280 0.879
Illinois 3 −2.865 0.177 8 −0.928 0.949 3 −2.931 0.044∗∗ 4 −2.830 0.195 3 −1.680 0.742
Indiana 1 −3.414 0.054∗ 7 −1.026 0.936 4 −2.712 0.074∗ 6 −2.613 0.277 3 −1.007 0.932
Iowa 5 −2.887 0.170 7 −1.482 0.831 4 −2.645 0.087∗ 5 −1.846 0.664 3 −1.290 0.876
Kansas 4 −2.146 0.515 5 −1.625 0.778 4 −2.851 0.054∗ 5 −1.709 0.729 3 −0.829 0.954
Kentucky 3 −2.277 0.443 8 −0.993 0.941 4 −2.817 0.059∗ 5 −2.771 0.216 3 −0.669 0.969
Louisiana 4 −1.729 0.733 5 −3.667 0.028∗∗ 7 −2.895 0.048∗∗ 3 −2.753 0.222 1 −1.421 0.840
Maine 3 −2.168 0.503 6 −1.844 0.678 3 −4.106 0.001∗∗∗ 3 −2.239 0.457 3 −1.281 0.879
Maryland 3 −1.764 0.717 6 −0.701 0.971 3 −2.894 0.049∗∗ 3 −1.478 0.821 3 −2.799 0.206
Massachusetts 4 −2.588 0.287 7 −2.374 0.391 3 −3.033 0.034∗∗ 3 −2.729 0.231 3 −2.228 0.462
Michigan 4 −3.301 0.070∗ 8 −0.939 0.948 3 −3.670 0.006∗∗∗ 5 −2.928 0.165 4 −2.562 0.299
Minnesota 5 −2.468 0.344 8 −0.883 0.954 8 −3.457 0.011∗∗ 4 −2.741 0.226 4 −1.871 0.651
Mississippi 2 −1.398 0.858 6 −1.605 0.787 5 −3.804 0.004∗∗∗ 6 −4.305 0.008∗∗∗ 3 −1.055 0.924
Missouri 6 −2.597 0.282 8 −0.960 0.945 3 −2.505 0.117 4 −3.335 0.075∗ 3 −0.923 0.943
Montana 1 −2.918 0.160 8 −1.474 0.834 7 −6.917 0.000∗∗∗ 1 −1.658 0.752 3 −1.450 0.830

Notes: Intercept and trend included for pit and yit, only intercept included for cit. p̂i denotes the lag order chosen by AIC with a maximum of 8 lags for the 1983Q1–2018Q1
sample and with a maximum of 6 lags for the 2008Q1–2018Q1 sample, respectively. We are grateful to Christoph Hanck for providing us with the GAUSS code for the
computation of the p−values.
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ADF unit root test results for US house prices dataset (continued)

Sample 1983Q1 – 2018Q1 (T=141) Sample 2008Q1 – 2018Q1 (T=41)
yit pit cit yit pit

p̂i t-stat p−value p̂i t-stat p−value p̂i t-stat p−value p̂i t-stat p−value p̂i t-stat p−value

Nebraska 1 −3.222 0.084∗ 8 −1.474 0.834 6 −2.404 0.142 1 −1.783 0.695 3 −1.038 0.927
Nevada 5 −1.289 0.887 6 −0.811 0.961 3 −3.750 0.004∗∗∗ 1 −3.097 0.121 4 −3.998 0.017∗∗

New Hampshire 5 −2.190 0.491 7 −1.370 0.866 3 −3.073 0.031∗∗ 6 −3.047 0.133 3 −1.833 0.670
New Jersey 3 −2.137 0.521 5 −1.574 0.798 3 −3.039 0.034∗∗ 1 −3.011 0.142 3 −2.257 0.447
New Mexico 4 −1.588 0.793 6 −1.971 0.612 3 −3.511 0.009∗∗∗ 4 −2.378 0.385 3 −1.410 0.843
New York 2 −3.249 0.079∗ 6 −2.151 0.513 3 −3.651 0.006∗∗∗ 1 −4.028 0.015∗ 3 −1.539 0.799
North Carolina 1 −2.815 0.194 8 −1.158 0.914 3 −2.766 0.066∗ 1 −2.450 0.350 3 −0.396 0.984
North Dakota 5 −2.244 0.461 7 −2.098 0.542 6 −8.977 0.000∗∗∗ 1 −0.404 0.984 5 −1.291 0.876
Ohio 3 −3.419 0.053∗ 8 −0.894 0.953 3 −3.159 0.025∗∗ 6 −2.749 0.223 4 −1.153 0.907
Oklahoma 5 −1.810 0.695 4 −4.464 0.002∗∗∗ 3 −2.804 0.060∗ 4 −1.011 0.931 1 −1.421 0.840
Oregon 3 −2.131 0.524 5 −1.182 0.910 5 −3.722 0.005∗∗∗ 4 −2.281 0.434 6 −2.119 0.520
Pennsylvania 2 −3.295 0.071∗ 6 −1.304 0.883 3 −2.577 0.100 5 −3.005 0.143 3 −1.312 0.871
Rhode Island 4 −2.213 0.478 5 −1.569 0.801 5 −3.659 0.006∗∗∗ 1 −3.066 0.128 3 −1.511 0.809
South Carolina 1 −3.021 0.130 7 −1.206 0.905 3 −3.649 0.006∗∗∗ 4 −2.533 0.312 3 −0.482 0.981
South Dakota 1 −2.186 0.494 8 −3.389 0.057∗ 7 −11.940 0.000∗∗∗ 6 −2.542 0.308 3 −0.927 0.943
Tennessee 1 −2.698 0.239 8 −1.188 0.909 4 −4.151 0.001∗∗∗ 6 −2.630 0.270 3 −0.595 0.974
Texas 4 −1.498 0.826 4 −1.161 0.914 3 −2.479 0.123 1 −1.776 0.698 4 −0.920 0.944
Utah 4 −1.885 0.657 5 −1.650 0.768 5 −3.351 0.015∗∗ 4 −2.614 0.276 4 −1.909 0.632
Vermont 3 −2.081 0.552 6 −0.859 0.957 3 −4.142 0.001∗∗∗ 6 −2.992 0.147 5 −1.487 0.818
Virginia 4 −1.841 0.680 5 −0.610 0.977 3 −2.921 0.046∗∗ 4 −2.686 0.247 3 −2.406 0.371
Washington 2 −3.069 0.118 4 −0.935 0.948 4 −2.521 0.113 4 −2.673 0.253 4 −1.472 0.823
West Virginia 1 −2.947 0.151 7 −3.306 0.070∗ 4 −7.782 0.000∗∗∗ 3 −3.348 0.073∗ 1 −1.815 0.679
Wisconsin 3 −3.177 0.093∗ 8 −0.603 0.977 4 −2.434 0.134 6 −3.293 0.082∗ 3 −0.745 0.963
Wyoming 3 −2.147 0.515 6 −4.539 0.002∗∗∗ 5 −5.230 0.000∗∗∗ 3 −1.684 0.740 1 −1.410 0.843
Alaska 1 −3.667 0.028∗∗ 8 −2.392 0.382 7 −7.267 0.000∗∗∗ 4 −1.690 0.738 1 −2.175 0.490
Hawaii 4 −2.317 0.422 7 −3.705 0.025∗∗ 3 −2.705 0.076∗ 3 −1.845 0.664 1 −1.838 0.668

Notes: Intercept and trend included for pit and yit, only intercept included for cit. p̂i denotes the lag order chosen by AIC with a maximum of 8 lags for the 1983Q1–
2018Q1 sample and with a maximum of 6 lags for the 2008Q1–2018Q1 sample, respectively. We are grateful to Christoph Hanck for providing us with the GAUSS code
for the computation of the p−values.
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Table 4.14: Results of Popp’s (2008) unit root test with struc-
tural breaks for US Real per capita disposable income yit
Break in: 2007Q3 2007Q4 2008Q1

p̂i t-stat p̂i t-stat p̂i t-stat

Alabama 0 −4.11∗ 7 −3.43 2 −4.65∗∗

Arizona 3 −3.22 3 −3.21 3 −4.01∗

Arkansas 3 −6.38 3 −5.96∗∗ 3 −7.18∗∗

California 3 −3.19 3 −3.19 3 −3.58
Colorado 3 −4.06∗ 3 −3.66 3 −3.78
Connecticut 4 −3.43 4 −3.34 4 −3.17
Delaware 8 −2.59 8 −2.27 8 −2.20
District of Columbia 3 −4.65∗∗ 3 −4.57∗∗ 3 −4.90∗∗

Florida 2 −4.33∗∗ 3 −4.39∗∗ 3 −4.80∗∗

Georgia 2 −3.21 2 −2.39 2 −2.43
Idaho 8 −4.30∗∗ 8 −4.18∗ 8 −4.85∗∗

Illinois 2 −4.31∗∗ 2 −4.12∗ 2 −4.78∗∗

Indiana 0 −2.60 2 −2.86 2 −3.25
Iowa 4 −2.80 4 −2.83 4 −2.86
Kansas 3 −3.25 3 −3.23 0 −1.84
Kentucky 2 −3.22 2 −3.23 3 −4.28∗∗

Louisiana 7 −2.79 7 −3.16 3 −3.95∗

Maine 2 −2.32 2 −2.29 2 −2.40
Maryland 2 −2.01 2 −2.12 2 −2.16
Massachusetts 3 −2.96 3 −3.03 3 −3.08
Michigan 8 −2.31 8 −1.99 3 −3.02
Minnesota 4 −2.67 4 −2.90 4 −3.14
Mississippi 1 −3.34 1 −3.29 1 −3.96∗

Missouri 3 −3.72 3 −3.71 3 −4.19∗

Montana 0 −2.26 0 −2.39 0 −2.30
Nebraska 0 −3.38 0 −3.39 0 −3.44
Nevada 4 −5.63∗∗ 4 −4.71∗∗ 4 −4.30∗∗

New Hampshire 2 −2.15 2 −2.16 3 −2.55
New Jersey 2 −2.63 2 −2.85 2 −2.95
New Mexico 7 −2.16 7 −2.27 7 −2.36
New York 0 −3.26 0 −3.37 0 −3.38
North Carolina 0 −3.17 8 −3.37 2 −4.42∗∗

North Dakota 4 −2.01 4 −1.56 4 −1.31
Ohio 2 −3.13 2 −3.21 2 −3.79
Oklahoma 4 −1.66 4 −1.94 4 −1.57
Oregon 2 −3.56 2 −3.59 2 −4.33∗∗

Pennsylvania 0 −3.37 0 −3.44 2 −3.89
Rhode Island 2 −2.58 2 −2.64 2 −2.73
South Carolina 3 −3.84 0 −3.67 3 −4.82∗∗

South Dakota 6 −3.27 6 −2.88 6 −2.37
Tennessee 0 −2.65 0 −2.62 0 −2.9
Texas 2 −3.04 2 −3.18 3 −3.91
Utah 3 −4.16∗ 3 −4.28∗∗ 3 −5.60∗∗

Vermont 2 −2.60 2 −2.68 2 −2.75
Virginia 3 −2.74 3 −2.87 3 −3.09
Washington 5 −4.11∗ 5 −4.16 5 −4.62∗∗

West Virginia 0 −5.12∗∗ 0 −5.06∗∗ 0 −4.80∗∗

Wisconsin 0 −3.36 0 −3.24 2 −3.16
Wyoming 2 −3.16 2 −3.36 2 −2.84
Alaska 8 −3.46 8 −3.41 8 −2.52
Hawaii 2 −1.88 2 −2.00 2 −2.21

Notes: A single break in both intercept and trend included. Optimal lag order
denoted by p̂i. The 5% and 10% critical values are −4.2736 and −3.9417,
respectively, for a break in 2007Q3; −4.2638 and −3.9312, respectively, for
a break in 2007Q4; and −4.2536 and −3.9203, respectively, for a break in
2008Q1.
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Table 4.15: Results of Popp’s (2008) unit root test with struc-
tural breaks for US Real house price index pit
Break in: 2007Q3 2007Q4 2008Q1

p̂i t-stat p̂i t-stat p̂i t-stat

Alabama 6 −1.68 6 −1.77 6 −1.96
Arizona 0 −1.79 0 −1.93 0 −2.05
Arkansas 3 −3.52 3 −3.53 3 −3.39
California 3 −3.70 3 −3.67 3 −3.32
Colorado 6 −3.47 6 −3.48 6 −3.33
Connecticut 3 −3.17 3 −3.24 3 −3.13
Delaware 7 −3.90 7 −4.13∗ 7 −4.32∗∗

District of Columbia 4 −2.59 4 −2.79 4 −2.89
Florida 3 −3.13 3 −3.11 6 −3.74
Georgia 6 −3.30 6 −3.34 6 −3.34
Idaho 6 −3.42 5 −3.20 6 −3.69
Illinois 7 −4.50∗∗ 7 −4.62∗∗ 7 −4.64∗∗

Indiana 6 −1.56 8 −1.80 8 −1.52
Iowa 8 −2.99 8 −2.92 8 −2.64
Kansas 4 −1.94 4 −2.04 6 −2.16
Kentucky 0 −1.35 0 −1.40 7 −2.18
Louisiana 0 −2.81 0 −3.03 0 −3.16
Maine 8 −4.49∗∗ 8 −4.38∗∗ 8 −4.39∗∗

Maryland 4 −2.66 4 −2.87 6 −3.97∗

Massachusetts 5 −3.90 3 −3.24 5 −3.78
Michigan 6 −3.26 6 −3.29 6 −2.55
Minnesota 7 −3.81 7 −3.83 7 −3.62
Mississippi 0 −1.74 0 −1.83 0 −1.94
Missouri 7 −3.36 7 −3.46 7 −3.56
Montana 7 −3.34 7 −3.54 7 −3.59
Nebraska 6 −2.18 6 −2.15 6 −1.86
Nevada 3 −4.05∗ 3 −3.80 3 −3.44
New Hampshire 6 −3.79 6 −3.86 6 −3.80
New Jersey 3 −3.32 3 −3.34 3 −3.24
New Mexico 3 −1.96 3 −2.36 3 −2.38
New York 5 −3.80 5 −3.74 5 −3.65
North Carolina 6 −3.20 6 −3.29 6 −3.44
North Dakota 6 −2.22 6 −2.44 6 −2.36
Ohio 3 −0.58 3 −0.64 6 −1.07
Oklahoma 3 −3.64 3 −3.72 3 −3.72
Oregon 6 −4.66∗∗ 4 −4.57∗∗ 4 −4.44∗∗

Pennsylvania 5 −3.52 5 −3.54 5 −3.46
Rhode Island 4 −3.77 4 −3.78 3 −3.20
South Carolina 6 −1.72 6 −1.80 6 −2.03
South Dakota 7 −2.49 7 −2.56 7 −2.54
Tennessee 6 −2.98 6 −3.06 6 −3.13
Texas 3 −2.12 3 −2.29 3 −2.33
Utah 6 −4.58∗∗ 4 −4.31∗∗ 6 −4.48∗∗

Vermont 5 −3.58 5 −3.73 5 −3.55
Virginia 3 −2.43 3 −2.51 6 −3.93
Washington 3 −3.11 3 −3.35 3 −3.29
West Virginia 4 −1.72 4 −2.00 4 −2.09
Wisconsin 2 −1.87 2 −1.99 2 −1.70
Wyoming 3 −3.12 3 −3.32 3 −3.50
Alaska 7 −2.68 7 −2.83 7 −2.95
Hawaii 3 −3.51 3 −3.56 3 −3.57

Notes: A single break in both intercept and trend included. Optimal lag order
denoted by p̂i. The 5% and 10% critical values are −4.2736 and −3.9417,
respectively, for a break in 2007Q3; −4.2638 and −3.9312, respectively, for
a break in 2007Q4; and −4.2536 and −3.9203, respectively, for a break in
2008Q1.
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Table 4.16: Results of the Simes-SL test for US house prices dataset, sample
2008Q1–2018Q1

Trend allowed in the EC term Trend orthogonal to the EC term
p̂i LRtrace

SL p−value p̂i LRtrace
SL p−value Simes’ crit. value

Utah 7 14.39 0.083 7 25.85 0.000∗ 0.001
Washington 4 18.28 0.018 4 18.41 0.001∗ 0.002
Louisiana 8 6.63 0.704 8 14.42 0.006 0.003
North Dakota 8 19.62 0.010 8 14.65 0.006 0.005
Idaho 2 15.24 0.060 2 14.25 0.007 0.006
Oklahoma 3 10.94 0.259 3 13.82 0.009 0.007
Oregon 4 12.47 0.161 4 12.92 0.013 0.008
Wyoming 3 13.72 0.105 3 12.68 0.015 0.009
South Carolina 2 13.74 0.104 2 10.84 0.033 0.010
Rhode Island 2 8.26 0.517 2 10.79 0.034 0.011
Texas 4 10.58 0.288 4 10.34 0.041 0.013
Colorado 7 11.89 0.194 7 10.19 0.044 0.014
Missouri 2 8.81 0.456 2 10.00 0.048 0.015
Montana 2 11.74 0.203 2 9.50 0.059 0.016
North Carolina 6 8.32 0.510 6 8.66 0.083 0.017
Arizona 2 15.90 0.047 1 7.78 0.119 0.018
Kentucky 2 8.41 0.500 2 7.53 0.132 0.019
Illinois 2 10.89 0.263 2 7.31 0.143 0.020
Minnesota 2 9.18 0.417 2 7.26 0.146 0.022
New Hampshire 2 6.06 0.767 2 7.06 0.158 0.023
Tennessee 2 9.59 0.376 2 6.81 0.174 0.024
Virginia 2 6.00 0.774 1 6.79 0.175 0.025
Ohio 2 7.14 0.646 2 6.69 0.182 0.026
New Jersey 2 7.11 0.650 2 6.65 0.185 0.027
West Virginia 1 10.66 0.281 1 6.58 0.190 0.028
New Mexico 2 6.42 0.728 2 6.53 0.194 0.030
Alaska 1 6.27 0.745 1 6.39 0.204 0.031
Kansas 1 5.92 0.782 1 6.34 0.207 0.032
Massachusetts 2 6.27 0.745 2 6.16 0.222 0.033
Wisconsin 2 7.77 0.574 2 5.91 0.243 0.034
Pennsylvania 2 7.18 0.642 2 5.75 0.258 0.035
Connecticut 2 5.83 0.792 2 5.61 0.272 0.036
Vermont 2 6.71 0.696 1 5.43 0.290 0.038
Georgia 2 6.86 0.679 2 5.39 0.294 0.039
Alabama 2 7.98 0.548 2 5.25 0.308 0.040
Hawaii 5 12.96 0.137 2 5.13 0.322 0.041
Michigan 4 10.40 0.303 4 5.03 0.333 0.042
South Dakota 2 5.39 0.835 2 4.62 0.381 0.043
Nebraska 2 7.32 0.625 2 4.58 0.387 0.044
Delaware 2 6.11 0.762 2 4.31 0.422 0.045
Iowa 2 7.58 0.595 7 4.04 0.461 0.047
Maine 2 3.99 0.940 2 3.75 0.504 0.048
Indiana 2 5.66 0.809 2 3.01 0.624 0.049
Maryland 2 4.74 0.891 2 2.81 0.658 0.050

Notes: LRtrace
SL denotes the LR trace statistic of Saikkonen and Lutkepohl (2000). The lag order

p̂i is selected by the MAIC criterion of Qu and Perron (2007). The results are presented sorted by
the p−value of the test with trend orthogonal to the EC term, as required for the Simes procedure.
p-values which are smaller than the corresponding critical value of Simes are marked by an asterisk.
Arkansas, California, District of Columbia, Florida, Mississippi, Nevada and New York are excluded
as the unit root null hypothesis has been rejected by the ADF test at the 5% level for either yit or
pit or both.
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5
Exchange rate pass-through to import prices
in Europe: A panel cointegration approach

Antonia Arsova

This paper takes a panel cointegration approach to the estimation of short- and
long-run exchange rate pass-through (ERPT) to import prices in the European countries.
Although economic theory suggests a long-run relationship between import prices and
exchange rate, in recent empirical studies its existence has either been overlooked, or it
has proven difficult to establish. Resorting to novel tests for panel cointegration, we
find support of the equilibrium relationship hypothesis. Exchange rate pass-through
elasticities, estimated by two different techniques for cointegrated panel regressions,
give insight into the most recent development of the ERPT.

Keywords: Exchange rate pass-through, import prices, panel cointegration, cross-
sectional dependence, common factors
JEL classification: C12, C23, F31
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5.1 Introduction

Exchange rate pass-through measures the extent to which import prices, expressed
in the currency of the importing country, reflect changes in the exchange rate with
its trading partners. Assuming that export prices are determined by a markup over
marginal costs, the import price elasticity w.r.t. the exchange rate depends on the
exporters’ pricing strategies. If exporters choose to absorb exchange rate fluctuations
into their markup, a strategy also known as local currency pricing (LCP) or pricing-to-
market, then import prices remain largely unaffected by exchange rate shocks and the
ERPT is said to be incomplete. On the other hand, if exporters choose not to adjust
their markup, exchange rate fluctuations get reflected in full into import prices, which
is known as producer currency pricing (PCP). The ERPT in this case is said to be
complete. Under complete ERPT, depreciation of the importing country’s currency
translates into increase of import prices and may thus lead to inflation. Therefore,
the degree and the determinants of exchange rate pass-through into import prices
(a.k.a. first-stage pass-through) and subsequently into consumer prices (second-stage
pass-through) pose an important issue to policy-makers looking to stabilize inflation,
especially in a monetary union such as the euro area.

In the ever growing body of empirical literature on ERPT one issue becomes apparent
– namely, whether there exists a long-run equilibrium relationship between import prices,
nominal exchange rate and other potential macroeconomic determinants of import
prices. For example, Campa and Goldberg (2005), Ben Cheikh and Rault (2016) and
Ben Cheikh and Rault (2017) find no or only weak evidence of cointegration and proceed
to estimate an ERPT equation in first differences. De Bandt and Razafindrabe (2014)
do not even consider the possibility of cointegrating relations and having established the
nonstationarity of the model variables proceed to estimate a model in first differences
as well.

On the other hand, De Bandt et al. (2008) and Brun-Aguerre et al. (2012) do
establish a cointegrating relation and thus estimate error-correction (EC) models for
the ERPT. However, De Bandt et al. (2008) allow for level shifts and structural breaks
in the cointegrating relation, while Brun-Aguerre et al. (2012) employ individual-unit
and first-generation panel cointegration tests, whose results might be compromised by
unattended cross-sectional dependence. Delatte and López-Villavicencio (2012) and
Brun-Aguerre et al. (2017) also find strong evidence for cointegration, but they focus
on asymmetric ERPT – that is, allowing the effects of exchange rate appreciation or
depreciation on import prices to differ. Consequently, they argue that imposing the
restriction of symmetric ERPT may hinder revealing the long-run equilibrium. The
evidence on the existence of a linear cointegration relationship is, therefore, inconclusive.

The presence or absence of cointegration determines the choice of estimation method-
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ology and models which do not consider it have been criticized on two grounds. First,
ignoring a significant error-correction (EC) term leads to omitting essential information
and hence to inferior model performance (Brun-Aguerre et al., 2012). Second, by
evading the notion of cointegration as long-run equilibrium, other ad-hoc measures
of long-run ERPT need to be constructed, whose estimates strongly depend on the
choice of other model parameters, e.g. the lag order, and can thus become unreliable
(De Bandt et al., 2008). Therefore, the debate on whether cointegration underlies
the ERPT not only constitutes an interesting econometric puzzle but has far-reaching
consequences concerning the estimation results.

The contribution of this paper is twofold. First, employing novel second-generation
panel cointegration tests it provides evidence on the existence of a long-run equilibrium
relationship between import prices and nominal exchange rate for a panel of nineteen
European countries. Contrary to some recent findings (e.g. De Bandt et al., 2008),
cointegration emerges without the necessity to allow for structural breaks neither in the
deterministic terms, nor in the cointegrating relation. The cointegrating relationship is
shown to be driven by unobserved global stochastic trends. Second, taking cointegration
and its driving forces into account, the paper presents estimates of the long-run and
short-run pass-through elasticities at the panel level and for the individual countries
using most recent data covering the period since the introduction of the Euro in 1999.
The continuously updated fully modified (Cup-FM), and continuously updated bias-
corrected (Cup-BC) estimators of Bai et al. (2009), and the dynamic common correlated
effects (DCCE) estimator of Chudik and Pesaran (2015), all of which are robust to cross-
sectional dependence induced by unobserved common factors, are employed. Despite the
technical differences of these estimators, the results they yield are remarkably similar.
Following a 1% depreciation of the exchange rate, the import prices are inclined to
rise by 0.37% on average as estimated by the Cup-FM and Cup-BC estimators, and
by 0.33% as estimated by the DCCE estimator. These results indicate only partial
pass-through, rejecting both the LCP and PCP hypotheses for the panel as a whole.

The rest of the paper is organized as follows. Section 2 postulates the econometric
model for the ERPT and describes the data used for the analysis. Section 3 presents the
results of the unit root and cointegration analyses. Section 4 describes the econometric
methodology for the estimation and discusses the empirical results, and Section 5
concludes. Auxiliary results are collected in the Appendix.
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5.2 Model and data

5.2.1 Exchange rate pass-through into import prices

The analysis is based on the framework adopted by Campa and Goldberg (2005),
which is commonly applied in the literature. For notational simplicity the model is
written suppressing the dependence on the cross-sectional dimension i. It assumes that
the import prices, Pt, equal the export prices of the country’s trading partners, P x

t ,
multiplied by the exchange rate, Et, expressed per unit of foreign currency:

Pt = EtP
x
t . (5.1)

The export prices comprise the producers’ marginal cost, Ct, and gross markup, Mt:

P x
t = CtMt. (5.2)

The marginal cost, in turn, depends on the wages in the exporting market, Wt, and
on the demand conditions in the importing market, Yt. Denoting the logarithms of all
variables by lowercase letters, eq. (5.1) thus becomes

pt = et + ct +mt (5.3)

= et + a1yt + a2wt +mt.

The markup is assumed to comprise both a fixed effect φ and a component depending
the macroeconomic conditions, which may be reflected in the exchange rate and/or the
demand conditions:

mt = φ+ b1et + b2yt. (5.4)

Hence the general ERPT equation in log-linear form becomes

pt = φ+ (1 + b1)et + (a1 + b2)yt + a2wt, (5.5)

or, more succinctly,

pt = β0 + β1et + β2yt + β3wt. (5.6)

The primary focus of this paper is the pass-through elasticity given by the coefficient
β1 in eq. (5.6). If β1 = 1, the pass-through to import prices is said to be complete.
Exchange rate fluctuations are reflected one-to-one in the exporters’ prices in the
domestic market, and in this case producer currency pricing is present. If β1 = 0, then
exchange rate movements do not affect the prices in the importing market. Exporters
do not adjust their prices abroad, but rather fully absorb the exchange rate fluctuations
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in their markup, and hence local currency pricing takes place.

5.2.2 Data description

The dataset comprises a balanced panel (T = 77, N = 19) with quarterly time series
covering the period 1999Q1 – 2018Q1 for nineteen European countries: Austria, Bel-
gium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Italy, Lithuania,
Luxembourg, Netherlands, Norway, Poland, Portugal, Spain, Sweden, Switzerland, and
the United Kingdom.

The data on import prices are taken from the Main Economic Indicators (MEI)
database of the OECD and reflect the prices of non-commodity imports of goods and
services. Nominal effective exchange rate (NEER), weighted by the unit labour costs of
a country’s trading partners, is taken from the IMF International Financial Statistics
(IFS) database for the model’s exchange rate variable. It is defined in quantity notation
such that an increase represents an appreciation of the domestic currency. This implies
that the coefficient β1 in (5.6) is expected to be negative, with β1 = −1 indicating
complete pass-through. Domestic demand is approximated by real GDP taken from
the OECD Quarterly National Accounts database.

The choice of variable for the producers’ costs is more involved, since there exists no
directly observed variable which controls for the trade shares of the exporting countries.
Therefore, a proxy for w has to be constructed from trade data. We follow Bailliu
and Fujii (2004), who exploit the real effective exchange rate (REER) based on unit
labour costs to create a trade-weighted measure of foreign producers’ costs. Denoting
the natural logarithm of REER by q, it can be represented as

qt = et + ulct − ulc∗t , (5.7)

where ulct and ulc∗t stand for the domestic and foreign unit labour costs in natural
logarithms, respectively. REER is given in price notation, such that an increase reflects
a worsening of the international competitive position, and e is given in quantity notation.
Solving eq. (5.7) for ulc∗t yields a trade weighted proxy for foreign producers’ costs,
which is then taken as w in the analysis. The unit labour costs series are obtained from
the OECD MEI database, while REER and NEER are taken from IMF IFS.

5.3 Preliminary analysis

5.3.1 Testing for cross-sectional dependence

The first step of the analysis is to determine the degree and source of cross-sectional
dependence in the panel. This is important in order to select the correct tools for
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analysing the integration and cointegration properties of the data and for the subse-
quent estimation of the ERPT. It is well-known that unattended strong cross-sectional
dependence may result in oversized panel unit root and cointegration tests and biased
estimates of the slope coefficients in eq. (5.6) (see, e.g., Banerjee et al., 2004 and Phillips
and Sul, 2003, 2007).

For this aim the CD test of Pesaran (2015) is applied to the panel with country
cross-sections for each variable in eq. (5.6). The test assumes weak1 cross-sectional
dependence under the null hypothesis, such as a spatial-type dependence or dependence
driven by common factors affecting only a limited number of units as N → ∞, for
example. Rejection of the null is taken as evidence of the presence of strong cross-
sectional dependence such as one caused by global (unobserved) common factors.
The test statistic is computed as the standardized average of the pairwise correlation
coefficients between the series in the panel and is normally distributed under the null
hypothesis. To avoid spurious correlation arising from unit roots, the variables have
been transformed into first differences. The results are presented in Table 5.1.

Table 5.1: Pesaran’s (2015) CD statistic for
the observed data

Variable CD test statistic p-value ρ̂ij
∣∣ρ̂ij∣∣

∆p 42.72∗∗∗ 0.000 0.375 0.390
∆e 42.95∗∗∗ 0.000 0.377 0.483
∆y 52.45∗∗∗ 0.000 0.460 0.461
∆w 12.03∗∗∗ 0.000 0.106 0.172

Notes: ρ̂ij denotes the average pairwise correlation coef-
ficient while

∣∣ρ̂ij∣∣ denotes the average absolute pairwise
correlation coefficient over cross-sections.
∗, ∗∗ and ∗∗∗ denote significance at the 10, 5 and 1%
level, respectively.

The null of weak cross-sectional dependence is convincingly rejected for all variables.
This is expected, given the tight economic and financial links between the European
countries and the common currency and monetary policy in the euro area. Hence the
analysis proceeds taking into account the presence of strong cross-sectional dependence.

5.3.2 Unit root and cointegration analysis

Unit root testing

Next the integration and cointegration properties of the time series are examined by
second-generation panel unit root tests which are robust to cross-sectional dependence.
In particular, the simple panel unit root test of Pesaran (2007) and the meta-analytic
tests of Demetrescu et al. (2006) and Hanck (2013) are applied to the panel with

1For definitions of notions of weak and strong cross-sectional dependence refer to Chudik et al. (2011).
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country cross-sections of each variable in eq. (5.6)2. Tables 5.8 and 5.9 in the Appendix
summarize the results. The test of Pesaran (2007) rejects only for the exchange rate
series at lags 1, 2, 3 and 4 and for the import price series at lag 1 (Table 5.9). On
the other hand, a unit root at the panel level cannot be rejected for any variable in
levels by the tests of Hanck (2013) and Demetrescu et al. (2006) (Table 5.8). All three
tests reject the presence of a unit root in the first-differenced variables.3 Hence there is
prevailing evidence of the presence of unit roots in all variables in the model.

Cointegration testing

The next step in the analysis is to test the observed variables for cointegration. For
this purpose the meta-analytic test of Arsova and Örsal (2019) is employed. Similarly to
the panel unit root test of Hanck (2013), this test is too based on Simes’ multiple testing
procedure, where p-values from individual-unit likelihood-ratio (LR) cointegrating rank
tests of Saikkonen and Lütkepohl (2000) (SL) are used. Two versions of the latter test
are considered, one allowing for a deterministic time trend both in the variables in
levels and in the error-correction (EC) term, and one allowing for a trend only in the
variables in levels only. Denoting the cointegrating rank of the system for country i by
ri, the null hypothesis of the test is H0 : ri = r, where r = 0, 1, 2, 3 denotes the common
cointegrating rank in a sequential testing procedure. The alternative hypothesis is
H1 : ri > r for at least one i.

The results are presented in Table 5.2. As the smallest individual p-value for
testing H0 : r = 0 by the first variant of the SL test is lower than the corresponding
Simes’ critical value, while H0 : r = 1 cannot be rejected, there is evidence of a single
cointegrating relationship in the panel at the 5% significance level. In order to ensure
that the long-run equilibrium connects not only a certain pair of variables, the test of
Arsova and Örsal (2019) is applied to all eight different bi-variate systems. The null
hypothesis of no cointegration is rejected for neither pair; the results are omitted for
brevity. Hence the equilibrium relationship is more complex, involving at least three or
all four of the variables in the system.

Analysis of the unobserved common and idiosyncratic components

Having established nonstationarity and the presence of a single long-run equilibrium
relationship in the data, the analysis proceeds to uncover their driving forces. For
this purpose the approach of panel analysis of nonstationarity in idiosyncratic and
2More details on the computation of the tests by Hanck (2013) and Demetrescu et al. (2006) are given
in the Appendix.

3The results of the tests by Hanck (2013) and Demetrescu et al. (2006) for the variables in first
differences are omitted for brevity.
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Table 5.2: Arsova and Örsal’s (2019) intersection-type panel cointegration test

Simes’
Trend in EC term Trend orthogonal to EC term crit. values

Country lag LRSL
trace p-value Country lag LRSL

trace p-value 5% 10%

H0 : r = 0

Denmark 1 57.15 0.002∗∗ Denmark 1 42.95 0.007 0.003 0.005
Poland 4 50.25 0.014 France 2 40.41 0.014 0.005 0.011
Sweden 2 49.50 0.017 Lithuania 2 39.00 0.021 0.008 0.016
France 2 44.62 0.059 Czech Republic 2 37.37 0.033 0.011 0.021
Lithuania 2 43.10 0.083 Estonia 4 34.92 0.062 0.013 0.026
Luxembourg 1 42.66 0.092 Sweden 2 34.08 0.077 0.016 0.032
Czech Republic 2 41.85 0.109 Portugal 1 33.36 0.091 0.018 0.037
Austria 2 41.77 0.111 Netherlands 2 32.45 0.111 0.021 0.042
Estonia 4 41.76 0.111 Germany 2 32.39 0.113 0.024 0.047
Germany 2 40.76 0.136 United Kingdom 2 31.62 0.133 0.026 0.053
United Kingdom 3 39.69 0.167 Spain 2 31.55 0.135 0.029 0.058
Norway 1 39.26 0.181 Belgium 3 30.72 0.161 0.032 0.063
Netherlands 2 39.23 0.183 Italy 2 30.43 0.171 0.034 0.068
Italy 2 38.86 0.195 Luxembourg 2 29.20 0.217 0.037 0.074
Switzerland 3 36.25 0.303 Finland 3 28.60 0.243 0.039 0.079
Portugal 1 35.13 0.358 Poland 4 28.52 0.247 0.042 0.084
Belgium 2 34.43 0.394 Austria 2 27.91 0.275 0.045 0.089
Spain 2 33.29 0.457 Switzerland 3 27.60 0.290 0.047 0.095
Finland 3 32.31 0.513 Norway 2 22.90 0.568 0.050 0.100

H0 : r = 1

Czech Republic 2 27.73 0.063 Czech Republic 3 24.86 0.014 0.003 0.005
Netherlands 2 25.47 0.117 Lithuania 2 24.17 0.018 0.005 0.011
United Kingdom 2 24.62 0.146 United Kingdom 2 23.31 0.024 0.008 0.016
Spain 3 24.08 0.166 Luxembourg 1 18.94 0.093 0.011 0.021
Denmark 1 23.33 0.199 Switzerland 2 18.20 0.116 0.013 0.026
Sweden 2 23.00 0.214 Denmark 1 15.99 0.208 0.016 0.032
Germany 2 21.08 0.321 France 3 15.00 0.264 0.018 0.037
Italy 2 19.31 0.442 Germany 4 14.08 0.325 0.021 0.042
Switzerland 3 19.20 0.451 Spain 3 13.77 0.348 0.024 0.047
Luxembourg 3 18.53 0.501 Belgium 2 13.53 0.366 0.026 0.053
Estonia 4 17.79 0.558 Portugal 1 13.43 0.374 0.029 0.058
Portugal 1 16.69 0.643 Poland 4 13.37 0.378 0.032 0.063
Finland 4 15.75 0.714 Austria 3 12.49 0.450 0.034 0.068
Belgium 2 15.35 0.742 Finland 2 12.09 0.484 0.037 0.074
Austria 3 14.80 0.780 Italy 2 11.78 0.511 0.039 0.079
Poland 4 13.64 0.850 Netherlands 2 10.91 0.590 0.042 0.084
Norway 1 12.15 0.920 Estonia 2 9.06 0.754 0.045 0.089
Lithuania 4 11.72 0.935 Sweden 2 8.46 0.802 0.047 0.095
France 3 11.53 0.941 Norway 1 8.08 0.830 0.050 0.100

Notes: The lag order is selected according to the modified AIC criterion of Qu and Perron (2007). Results for each
variable are sorted according to the p-values in ascending order for ease of comparison with the corresponding Simes’
critical value.
∗, ∗∗ and ∗∗∗ denote significance of the panel intersection test at the 10, 5 and 1% level, respectively.

common components (PANIC) is employed, as set out in Bai and Ng (2004). The time
series are decomposed into unobserved common and idiosyncratic components and their
integration and cointegration properties are analyzed separately. The benefit of such
analysis is that it provides better understanding of the interconnections among the
variables in the system.

Unobserved dynamic common factors are extracted by the method of principal
components from the panel for each variable with country cross-sections. Prior to
the extraction the observed data are first-differenced. For the panels of import prices,
GDP and producer’s costs they are also demeaned to account for the observed time
trend. The data are also standardized to have unit variance. The number of unobserved
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common factors for each panel is selected by the criterion of Onatski (2010); the
maximum number allowed is six. The criterion picks two factors for the panels of p
and e, explaining 57% and 75% of the variation in the data, respectively. For each of
the panels of y and w a single factor is chosen, explaining 52% and 23% of the total
variation, respectively.

Once the estimated variable-specific common factors are extracted and subtracted
from the first-differenced (and potentially demeaned) observations, the remaining
residuals are accumulated to yield estimates êxi,t of the idiosyncratic components for
each variable and cross-sectional unit, x ∈ {p, e, y, w}. The estimated idiosyncratic
components are then tested for unit roots by the Pa, Pb, and PMSB tests proposed by
Bai and Ng (2010). Table 5.3 presents the results. The null hypothesis of a unit root
cannot be rejected for either panel.

Table 5.3: Bai and Ng’s (2010) panel unit root tests for the
estimated idiosyncratic components

Idiosyncratic component Avg. volatility Pa Pb PMSB

êp 0.037 −0.005 −0.005 0.027
êe 0.058 1.221 1.825 2.893
êy 0.034 −0.758 −0.682 −0.585
êw 0.035 0.945 1.092 1.266

Notes: Trend is included in the test regressions for p, y and w, while
only a constant is considered for e. All three test statistics have a N(0, 1)
distribution under the null hypothesis of a unit root with a rejection region
in the left tail of the distribution. The average volatility is computed over
all cross-sections.

Next, the cointegration properties of the idiosyncratic components are examined
by the PSLJdef test of Arsova and Örsal (2018) and the P ∗Φ−1 test of Örsal and Arsova
(2017). The first test computes the panel test statistic as the standardized average of
the individual LR trace statistics of Saikkonen and Lütkepohl (2000) computed from
defactored data, while the second one combines the p-values of these statistics by the
inverse normal method. Both statistics have a limiting N(0, 1) distribution under the
null hypothesis of a common cointegrating rank H0 : ri = r,∀i, whereas the rejection
region for the panel-SL test is in the right tail, and for the P ∗Φ−1 test in the left tail,
respectively. Örsal and Arsova (2017) show that the P ∗Φ−1 exhibits better finite-sample
properties than the panel-SL test in some situations. The value of the PSLJdef test
statistic under the null of no cointegration is 0.2, while that of the P ∗Φ−1 is −1.33, which
is significant at the 10% level. As neither test rejects the null of cointegrating rank one
(PSLJdef = −2.13 and P ∗Φ−1 = 4.99 in this case), we conclude that there is some, albeit
not very strong, evidence of a single cointegrating relationship among the idiosyncratic
components, matching the result for the observed variables.

We next turn our attention to the extracted and accumulated common factors.
They are denoted as F p

1 , F
p
2 , F

e
1 , F

e
2 , F

y, and Fw, with the superscript signifying the
variable-specific panel they have been extracted from and the subscript denoting the
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factor number. A graph of the factors is displayed in Figure 5.1. It reveals how they
all capture the effects of the Global Financial Crisis, reacting mostly simultaneously
and with similar turns in the dynamics. Such behaviour hints at possible cointegration
among them, which could lead to cross-unit cointegration of the observed variables.

Figure 5.1: Extracted common factors from the panel of each model variable
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Testing for unit roots in the extracted common factors is carried out by a standard
ADF test4. The results, presented in Table 5.4, indicate that the unit root null hypothesis
cannot be rejected for any individual factor. The test statistic of the modified inverse
normal panel test of Demetrescu et al. (2006) is −0.504, supporting this conclusion.

Table 5.4: Unit root tests for the estimated common factors

Factor Volatility deterministic term lag order ADFτ p-value

F p1 0.97 trend 2 −3.05 0.125
F p2 0.52 trend 4 −2.67 0.254
F y 2.42 trend 1 −1.89 0.651
Fw 0.83 trend 2 −2.13 0.522
F e1 3.80 const 2 −2.17 0.496
F e2 1.53 const 1 −3.03 0.131

Notes: ADFτ denotes the Augmented Dickey-Fuller test statistic. The
lag order is selected according to the modified AIC (MAIC) criterion of Ng
and Perron (2001). The p-values are computed as in MacKinnon (1996);
the author is grateful to Christoph Hanck for providing the GAUSS code.

It is interesting to note the enormous difference between the volatility of the estimated
common factors and that of the idiosyncratic components, displayed in Tables 5.3 and
5.4, respectively. Even the smallest volatility among those of the factors (0.52 for
F̂ p

2 ) is about ten times greater than the largest average volatility of the idiosyncratic
components (0.058 for êe). Hence we conclude that it is the unobserved common factors

4Bai and Ng (2004) show that the limiting distributions of the ADF test statistics, computed for
common factors extracted from first-differenced or first-differenced and demeaned data, coincide with
the usual limiting distributions of the ADF test with a constant only or a constant and linear time
trend, respectively.
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which to a large extent determine the behaviour of the observed variables, while the
idiosyncratic components have only a minor impact.

Having established the presence of global stochastic trends, we next assess whether
they exhibit any cointegration. For more reliable results the SL test of Saikkonen and
Lütkepohl (2000) is employed for each pair of estimated factors, as it is known that the
LR cointegrating rank tests become less powerful in larger systems (see, e.g. Saikkonen
and Lütkepohl (2000)). Table 5.5 displays the results.

Table 5.5: SL cointegration tests for the estimated common factors

Trend in EC term Trend orthogonal to EC term
Factors Lag order LRSL

trace p-value Factors Lag order LRSL
trace p-value

F p1 , F
p
2 2 20.81 0.006∗∗∗ F p2 , F

w 4 19.59 0.001∗∗∗

F p2 , F
w 4 18.01 0.020∗∗ F p1 , F

w 3 16.81 0.002∗∗∗

F p1 , F
w 3 16.90 0.032∗∗ F p1 , F

p
2 2 16.60 0.003∗∗∗

F e2 , F
w 3 13.75 0.105 F y , Fw 4 14.53 0.007∗∗∗

F e1 , F
y 3 12.52 0.159 F e2 , F

w 3 13.69 0.010∗∗∗

F p2 , F
e
1 4 12.45 0.163 F e1 , F

w 2 12.88 0.014∗∗

F e1 , F
w 2 12.43 0.163 F e1 , F

y 3 12.50 0.016∗∗

F p1 , F
e
1 3 11.73 0.205 FP1 , F

y 3 11.91 0.021∗∗

F p2 , F
y 4 11.15 0.244 F p2 , F

e
1 4 11.59 0.024∗∗

F p1 , F
e
2 2 10.63 0.284 F p2 , F

y 4 11.45 0.026∗∗

FP1 , F
y 3 10.12 0.327 F p1 , F

e
2 2 10.82 0.034∗∗

F y , Fw 4 9.96 0.342 F p1 , F
e
1 3 10.03 0.048∗∗

F e2 , F
y 3 7.76 0.574 F e2 , F

y 3 7.78 0.120
F p2 , F

e
2 4 5.99 0.776 F p2 , F

e
2 4 6.34 0.208

F e1 , F
e
2 1 5.14 0.858 F e1 , F

e
2 1 5.50 0.282

Notes: The lag order is selected according to the modified AIC criterion of Qu and Perron
(2007). Results for each variable are sorted according to the p-values in ascending order for
ease of comparison with the corresponding critical value of Hommel’s (1988) procedure.
∗, ∗∗ and ∗∗∗ denote significance at the 10, 5 and 1% level, respectively.

At first glance there seems to exist a cointegrating relationship between almost
any pair of factors considered when allowing for no trend in the cointegrating relation.
However, the results of these tests are highly correlated, and one must take the nature
of such multiple testing into account. In order to select only the meaningful rejections,
Hommel (1988) proposes a procedure which controls the family-wise error rate at a
chosen significance level α. Details on Hommel’s procedure can be found in Hanck
(2013), whose exposition is briefly reproduced here for convenience. Let the ordered
p-values of n tests be p∗(1) ≤ . . . ≤ p∗(n) and Nn denote the set of all natural numbers
between 1 and n. Selecting the meaningful rejections by the Hommel’s procedure is
then carried out in two steps: (A) Compute j = max{i ∈ Nn : p∗(n−i+k) >

kα
i
, ∀k ∈ Ni},

and (B) If p∗(n) ≤ α, reject all Hi,0; else, reject those Hi,0 for which p∗i ≤ α
j
.

Following this procedure, j = 10 is computed, and the corresponding Hommel’s
critical values at the 5% and 10% significance levels are 0.005 and 0.01, respectively.
Hence, only the first five rows in the second panel of Table 5.5 can be considered genuine
rejections at the 10%-level; at the 5%-level it would only be the first three. We may
therefore conclude that two global stochastic trends exist among the extracted common
factors: one which is shared by F p

1 , F
p
2 , F

y, Fw and F e
2 , and one driving F e

1 .
By analyzing the factor loadings (see Table 5.10 in the Appendix), F e

1 may be
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identified as the Euro-exchange-rate factor, which is perhaps not surprising, as the
dataset features both countries in and outside the euro area. On the other hand, F e

2

can be thought of the factor influencing more the dynamics of the exchange rates of the
non-euro area countries (including the newest members of the euro area like Lithuania,
for example). Relating these results to those from the cointegration testing of the
observed variables (Table 5.2), we conclude that there is much more evidence in favour
of a long-run equilibrium relationship in the ERPT for non-euro area countries than it
is for euro area ones. One explanation for this phenomenon may lie in the fact that the
import prices in euro area countries, whose principal share of imports come from other
euro area countries, react much less to aggregate exchange rate fluctuations because
these are basically zero between the one and the same currency. This leads us to believe
that the ERPT estimates would be lower for the older member-countries of the euro
area than they would be for the newer ones or the countries outside the euro area.

The results of the unit root and cointegration analysis can be summarized as follows.
All variables in the log-linear ERPT relationship in eq. (5.6) are integrated of order
one. There is evidence of a single cointegrating relationship at the panel level linking
the observed variables, suggesting that the average long-run elasticity of the exchange
rate is different from zero. It is worth noting that, contrary to the results of De Bandt
et al. (2008), this relationship emerges without the necessity to consider structural
breaks, neither in the deterministic components, nor in the long-run equilibrium. This
is so because of the present cross-unit cointegration driven by unobserved common
factors. These factors capture the major exogenous shocks such as the Global Financial
Crisis which, in turn, force the observed variables to react more or less simultaneously
and in a similar fashion. Although the data dynamics are mostly determined by six
unobserved common factors (two for the panel of import prices, two for the panel of
nominal exchange rate and one for each of the domestic demand and producer’s cost
proxy panels), the driving forces behind them are only two distinct global stochastic
trends. One of them is shared by the import prices panel, the domestic demand panel,
the producer’s costs panel, and by the exchange rate data for countries outside the
euro area as well as newer member-countries of the euro area. The second global
stochastic trend can be viewed as a Euro-nominal-exchange-rate factor, influencing
mostly the exchange rate series of the euro area countries. The idiosyncratic components
of the data, although with much less impact than the common components, are also
non-stationary and cointegrated by a single relationship. These findings lead us to
expect more significant ERPT elasticities for non-euro area countries than for euro area
ones.
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5.4 ERPT estimation

Having established the presence of a long-run equilibrium relationship at the panel
level, the next step is to estimate the ERPT equation (5.6). However, the presence of
cross-sectional dependence, depending on its nature, may yield the results of earlier
panel regression estimators either biased, inconsistent or inefficient (see, e.g. Phillips
and Sul (2003, 2007) and Moon and Weidner (2017)). Further, cross-unit cointegration
has also been shown by Urbain and Westerlund (2006) to pose an issue in pooled
ordinary least squares estimation. Hence an estimator which takes into account both
cointegration and cross-sectional dependence induced by global stochastic trends is
needed.

Two suitable approaches have recently been proposed in the literature. The first one,
put forward by Bai et al. (2009), features two estimators: the continuously-updated bias-
corrected (Cup-BC) and the continuously-updated fully-modified (Cup-FM) estimator.
They estimate level relationships in panel cointegration models where unobserved
common factors drive the dependence in the regression errors and which may also be
correlated with the regressors. This methodology has been widely applied in the recent
empirical panel data studies, employed by e.g. Bodart et al. (2015) for estimation of a
long-run relationship between real exchange rates and commodity prices, and by Örsal
(2017) for estimation of a long-run money demand relation.

The second approach, using a common correlated effects (CCE) mean-group (MG)
estimator, is due to Chudik and Pesaran (2015). They extend earlier work of Pesaran
(2006) to panel data models allowing for lagged dependent variables and weakly exoge-
nous regressors. The residual dependence induced by the unobserved common factors
is captured by cross-sectional averages of the observed variables included as additional
regressors in the individual equations. Details on the estimation by each estimator are
briefly outlined next, while the empirical results are discussed in Section 5.4.3.

5.4.1 The Cup-BC and Cup-FM estimators of Bai et al. (2009)

The ERPT equation (5.6) can be written in the Bai et al. (2009) estimation framework
as

pit = β0 + β1eit + β2yit + β3wit + uit, (5.8)

uit = λ′ift + εit. (5.9)

The errors εit are assumed to be stationary and only weakly cross-sectionally dependent,
while the unobserved common factors in the (r × 1)-vector ft are allowed to be I(0),
I(1) or a mixture of the two. They are treated as parameters and estimated together
with the common slope coefficients β = (β1, β2, β2) in an iterative procedure. Albeit
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consistent, the resulting β̂Cup estimator has been shown to be asymptotically biased,
hence a bias correction is necessary. The Cup-BC and the Cup-FM estimators differ
with regard to when this bias correction takes place. With the Cup-BC it is applied
only once at the final iteration, while with the Cup-FM the correction is made at each
iteration. β̂Cup is shown to be at least T -consistent regardless of the integration order
(zero or one) of the factors or that of the regressors. Being pure panel estimators,
however, both the Cup-FM and the Cup-BC assume homogeneity of the coefficients
across cross-sections, and hence do not produce individual-unit results, which may be
viewed as a drawback in practice.

In order to account for the trending behaviour of the variables p, y and w, eq. (5.9)
is estimated with demeaned and detrended series, as suggested by Bai et al. (2009).
The number r of residual common factors is selected by the criterion of Onatski (2010).
It picks two factors which account for 59% of the variance of the first-stage residuals ûit.

The results are presented in Table 5.6. The actual estimates of the elasticity
parameters are quite similar across the two estimators. The nominal exchange rate
elasticity, which is the only statistically significant coefficient, is estimated by both the
Cup-FM and the Cup-BC as β̂1 = −0.37. This implies that a 1% depreciation in the
exchange rate would lead to an average increase of 0.37% in the import prices. The
results are discussed in more detail in Section 5.4.3.

Table 5.6: ERPT estimation results by the Cup-BC
and Cup-FM estimators

Variable Cup-BC Cup-FM

Nominal exchange rate elasticity β̂1 −0.372∗∗∗ −0.369∗∗∗

[0.029] [0.029]

Domestic demand elasticity β̂2 −0.041 −0.009
[0.044] [0.042]

Producers’ costs elasticity β̂3 −0.011 0.007
[0.035] [0.035]

Notes: Standard errors are presented in brackets.
∗, ∗∗ and ∗∗∗ denote significance at the 10, 5 and 1% level,
respectively.

Figure 5.2 in the Appendix presents a graph of the estimated residual common
factors5. The Global Financial Crisis manifests itself in the two spikes in 2008Q4 and
2009Q1, respectively. Analysis of the Cup-FM6 model residuals, depicted in Figure 5.3
in the Appendix, reveals that the two factors adequately capture the effects of the crisis,
as no further common shocks can be observed. Applying Demetrescu et al.’s (2006)
panel unit root test to the estimated residuals yields a value of −5.25 for Hartung’s test
5These factors, common to the first-stage residuals of the Cup-FM and Cup-BC models, are not to be
confused with the common factors extracted from the panel formed by each variable.

6Results for the residuals of the CUP-BC estimation are very similar and omitted for brevity.
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statistic with κ = 0.2, which points to their stationarity. This leads us to the conclusion
that no model assumptions have been violated.

5.4.2 The dynamic CCE estimator of Chudik and Pesaran
(2015)

The second approach considered for the estimation of the ERPT equation (5.6) is
the panel autoregressive distributed-lag (ARDL) model with multifactor error structure
proposed by Chudik and Pesaran (2015). This framework differs from the specification
of Bai et al. (2009) in that it allows for (a) lagged values of the dependent and
independent variables as additional regressors and (b) heterogeneous coefficients βj,i, (i =
1, . . . , N, j = 0, . . . , 3), for each unit, which are then combined in a mean-group (MG)
estimator. As in Bai’s framework, unobserved common factors in the residuals drive
the strong cross-sectional dependence. The common factors, however, are not explicitly
estimated from the data. Instead, they are approximated by cross-sectional averages of
the observed model variables and the resulting regressions are estimated individually
for each unit by ordinary least squares. A necessary condition for the validity of the
resulting CCE MG estimator is that the number of unobserved common factors be no
more than the observed variables in the system. This assumption is likely to be satisfied
in our case, as Onatski’s (2010) criterion picks two factors in the residuals of the panel
regression in eq. (5.9). Initially proposed for stationary factors (Pesaran, 2006), the CCE
approach has been proved to be valid for integrated factors as well (Kapetanios et al.,
2011). With regard to the assumed weak exogeneity of the regressors, also necessary for
the validity of the DCCE MG estimator, we note that the preceding analysis is valid
upon the assumption that changes in the import prices do not contemporaneously affect
exchange rates, domestic demand or producers’ costs. This assumption is commonly
made in the empirical ERPT literature and is not a restrictive one, given the quarterly
frequency of the data; for a more detailed discussion we refer to Brun-Aguerre et al.
(2017).

To cast the ERPT model (5.6) into the CCE-framework, we begin with eq. (5.9),
allowing for heterogeneous coefficients7:

pit = β0,i + β1,ieit + β2,iyit + β3,iwit + uit, (5.10)

uit = λ′ift + εit. (5.11)

Taking the cointegrating relationship explicitly into account, we then put it in an
7The exposition is similar to that of Eberhardt and Presbitero (2015), whose Stata code for the
dynamic CCE MG estimator has been used for the estimation.
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error-correction form:

∆pit = β0,i + ρi (pi,t−1 − β1,iei,t−1 − β2,iyi,t−1 − β3,i−1wit − λ′ift−1) (5.12)

+ γ1,i∆eit + γ2,i∆yit + γ3,i∆wit + γi,f∆ft + εit,

so that, by re-arranging, we get

∆pit = π0,i + πec,ipi,t−1 + π1,iei,t−1 + π2,iyi,t−1 + π3,iwi,t−1 + π1f,ift−1 (5.13)

+ π4,i∆eit + π5,i∆yit + π6,i∆wit + π2f,i∆ft + εit.

The long-run parameters βj,i, (i = 1, . . . , N, j = 1, 2, 3), can be recovered from the
coefficients of eq. (5.13) as βj,i = −πj,i/πec,i, while the short-run parameters πj,i, j =
4, 5, 6, are estimated directly. The term πec,i describes the speed of adjustment to
equilibrium, and its statistical significance may be viewed as an additional evidence of
the presence of cointegration.

For the estimation, the unobserved common factors ft in eq. (5.13) are replaced by
cross-sectional averages of the observed variables:

∆pit = π0,i + πec,ipi,t−1 + π1,iei,t−1 + π2,iyi,t−1 + π3,iwi,t−1 (5.14)

+ π4,i∆eit + π5,i∆yit + π6,i∆wit
+ π∗1,i∆p̄t + π∗2,ip̄t−1 + π∗3,iēt−1 + π∗4,iȳt−1 + π∗5,iw̄t−1

+ π∗6,i∆ēt + π∗7,i∆ȳt + π∗8,i∆w̄t + εit.

So far, eq. (5.14) constitutes the model for the standard CCE MG estimator of
Pesaran (2006). As Chudik and Pesaran (2015) show, finite-sample bias arises in the
dynamic panel model with weakly exogenous regressors and recommend the inclusion of
sufficient number (s) lagged values of the cross-sectional averages to mitigate it. Their
suggested rule of thumb, s = int(T 1/3), gives ŝ = 4 in our case. Hence the complete
model to be estimated by the dynamic CCE (DCCE) estimator becomes

∆pit = π0,i + πec,ipi,t−1 + π1,iei,t−1 + π2,iyi,t−1 + π3,iwi,t−1 (5.15)

+ π4,i∆eit + π5,i∆yit + π6,i∆wit
+ π∗1,i∆p̄t + π∗2,ip̄t−1 + π∗3,iēt−1 + π∗4,iȳt−1 + π∗5,iw̄t−1

+ π∗6,i∆ēt + π∗7,i∆ȳt + π∗8,i∆w̄t

+
4∑
l=1

π∗9,l,i∆p̄t−l +
4∑
l=1

π∗10,l,i∆ēt−l

+
4∑
l=1

π∗11,l,i∆ȳt−l +
4∑
l=1

π∗12,l,i∆w̄t−l + εit.

The results from the estimation at the panel level are listed in Table 5.7, while
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results from the individual country models are available in Table 5.11 in the Appendix.

Table 5.7: ERPT estimation results by the CCE MG estimator

Standard MG estimator DCCE estimator Augmented DCCE estimator
Variable const trend const trend const trend

e LRA −0.473∗∗∗ −0.479∗∗∗ −0.420∗∗∗ −0.315∗∗∗ −0.441∗∗∗ −0.325∗∗∗

[0.069] 0.082 [0.121] [0.095] [0.154] [0.131]
SRA −0.363∗∗∗ −0.370∗∗∗ −0.305∗∗∗ −0.221∗∗ −0.240∗∗∗ −0.187∗

[0.073] 0.062 [0.071] [0.104] [0.081] [0.106]

y LRA 0.473∗∗∗ 0.337∗∗∗ −0.063 0.083 −0.003 0.112
[0.089] 0.089 [0.115] [0.170] [0.117] [0.158]

SRA −0.074 −0.163 0.000 0.105 0.069 0.106
[0.138] 0.137 [0.131] [0.131] [0.091] [0.116]

w LRA −0.124 −0.163∗∗∗ 0.026 0.132∗ 0.031 0.056
[0.080] 0.044 [0.065] [0.072] [0.092] [0.094]

SRA 0.116∗∗ 0.092∗ 0.022 0.028 0.029 0.024
[0.047] 0.049 [0.070] [0.071] [0.067] [0.068]

avg. EC coefficient ρ̄ −0.363∗∗∗ −0.428∗∗∗ −0.650∗∗∗ −0.729∗∗∗ −0.666∗∗∗ −0.748∗∗∗

[0.035] 0.035 [0.065] [0.064] [0.052] [0.045]

Implied half-life 1.54 1.24 0.66 0.53 0.63 0.50
RMSE 0.022 0.021 0.012 0.012 0.010 0.010
CD test 34.87 34.13 4.50 3.12 1.90 0.52
Trends share 0.47 0.42 0.37

Notes: Standard MG estimator refers to the MG estimator of Pesaran and Smith (1995). Augmented DCCE estimator
denotes the DCCE estimator augmented with a dummy variable accounting for the Great Recession in 2008. LRA
and SRA denote long-run average and short-run average coefficients, respectively. Standard errors are presented in
brackets. Implied half-life is computed as ln(0.5)/ ln(1 + ρ̄). CD test denotes Pesaran’s (2015) test for weak cross-
sectional dependence of the regression residuals; it has N(0, 1) distribution under the null hypothesis. Trends share
stands for the share of group-specific trends significant at the 5% level.
∗, ∗∗ and ∗∗∗ denote significance at the 10, 5 and 1% level, respectively.

The first two columns present the results from the estimation with the standard
mean-group panel estimator of Pesaran and Smith (1995), included to illustrate what
the effect of unattended cross-secitonal dependence would be. The residual correlation
as measured by Pesaran’s (2015) CD test is highly significant and the resulting estimates
are therefore likely to be biased and inconsistent (Moon and Weidner, 2017).

The middle two columns of Table 5.7 present the results from the DCCE estimator
with a constant or a constant and a linear time trend, respectively. The CD test statistic
has much lower values, indicating that the inclusion of the cross-sectional averages
controls well for the dependence. Nevertheless, it is significant at the 1% level. Analysis
of the regression residuals has identified a common shock due to the Great Recession
as a possible reason for the elevated correlation. Hence the model equation (5.15) is
augmented by a dummy variable which has the value one in 2008Q3, 2008Q4 and
2009Q1, and zero otherwise. It is then included as an observed common factor in the
estimation.

The results from this augmented DCCE model are presented in the last two columns
of Table 5.7. The CD test statistic (1.90) is significant at the 10% level in the constant
only case, showing that the residual cross-sectional correlation has not been eliminated
completely even after the inclusion of the Great Recession dummy variable. Such
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correlation might, however, be due to omitted incidental trends. Turning to estimation
results with trend included (last column), we note that this is indeed the case. The value
of the CD statistic is 0.52, meaning that there is no strong cross-sectional dependence
left among the residuals. Also more than a third (37%) of the time trend coefficients are
significant at the 5% level, suggesting that the trending behaviour of the variables must
be accounted for. The insignificant value of the CD test statistic serves also as evidence
that the number of unobserved common factors is less than the number of observed
variables in the system, thus rendering the DCCE estimator valid in this regard.

The residuals of the augmented DCCE model with trend are analyzed as a diagnostic
check. Demetrescu et al.’s (2006) panel unit root test yields a value of −17.64 for
Hartung’s inverse normal test with κ = 0.2, convincingly rejecting the unit root null
hypothesis. A plot of the estimated residuals, presented in Figure 5.4 in the Appendix,
reveals no anomalies which could have resulted from potentially unattended structural
breaks.

The next section compares the results from the Bai et al.’s (2009) estimators with
those from the augmented DCCE estimator with trend and discusses their implications.

5.4.3 Discussion

The results produced by the Cup-BC, Cup-FM and the DCCE estimators are
remarkably similar. The point estimate of the ERPT by both the Cup-BC and Cup-FM
estimators is −0.37 with a standard error of 0.03, while the average long-run ERPT
by the DCCE MG estimator is −0.33 with a standard error of 0.13. Hence their
95% confidence bands overlap, and neither includes the borderline values zero or one.
Therefore, there is no evidence of PCP or LCP in the long-run, but rather of incomplete
and low ERPT at the panel level. The average short-run ERPT coefficient estimated
by the DCCE model is −0.19, which is significantly different from zero at the 10% level,
but not at the 5%. These values are lower than the average exchange rate elasticity
of 0.54 reported by Ben Cheikh and Rault (2016) for twelve euro-area countries in
the period 1990Q3 - 2012Q4. Thus our results provide further evidence that ERPT
has been declining over time, as found in the recent literature (Campa and Goldberg,
2005, Ben Cheikh and Rault, 2016). This may be attributed to the fact that our data
comprises a longer period since the creation of the monetary union, so that a greater
degree of convergence to more stable macroeconomic conditions has taken place in
most countries of the panel. Another reason, however, might be the significant share
of intra-euro area trade, which biases the aggregate ERPT estimates downwards (see
Blagov, 2018).

Turning our attention to the average error-correction coefficient ρ̄, reported in the
last column of Table 5.7, we see that it is highly significant, once again highlighting the
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presence of cointegration in the system. Its value is −0.748, which implies high speed
of adjustment to equilibrium – the aggregate implied half-life8 is just 0.5 quarters.

The importing country’s demand and the producers costs proxy are not statistically
significant in either model. Domestic demand yit not being an informative regressor for
import prices despite predictions by economic theory is a result found also by other
empirical studies, see, e.g., Campa and Goldberg (2005) and Beirne and Bijsterbosch
(2009). The insignificance of the producers costs elasticity, on the other hand, could be
based on unit labour costs not being a sufficiently good approximation for the producers’
actual costs due to their slowly changing nature, for example. In a single-equation
framework such results could raise questions regarding the validity of the ERPT results,
as the estimation might be subject to omitted variable bias. In the panel framework,
however, the unobserved common factors become a remedy for such problem. Being
allowed to be I(0), I(1) or mixture of the two by both models, they capture the effects
of any common shocks that influence the import prices and are not contained in the
regressors. Hence besides controlling for cross-sectional dependence, the inclusion of
unobserved common factors in the regression equations (5.9) and (5.13) has the added
benefit of guarding against omitted variable bias. Therefore, the results for the exchange
rate elasticity remain valid.

Finally, we discuss the individual countries’ results from the DCCE estimator,
presented in Table 5.11 in the Appendix. The estimated long-run exchange rate
coefficients are quite heterogeneous with relatively large standard errors, which is the
price to pay for the inclusion of current and lagged values of the cross-sectional averages
in the individual equations. The long-run exchange rate elasticity is insignificantly
different from zero for most of the older euro area member countries (Austria, Belgium,
Finland, France, Luxembourg, Netherlands, Spain), and also for Switzerland and
Estonia. Notable exceptions are Germany, Italy, and Portugal. The estimated long-run
pass-through coefficients for these countries are −0.51, −1.08 and −1.26, respectively.
On the other hand, the long-run ERPT coefficients are significant and with the expected
negative sign for all non-euro area countries except for Switzerland: that is, for the
Czech Republic (−0.37), Denmark (−1.46), Lithuania (−1.17), Poland (−0.30), Sweden
(−0.82) and the United Kingdom (−0.47).

5.5 Summary and outlook

This paper establishes the presence of a long-run equilibrium relationship underlying
the ERPT in a panel of nineteen European countries by employing new second-generation
panel cointegration tests. Taking into account that unobserved global stochastic trends
8The period of time needed for deviations in import prices to decline by half following a unit shock of
the exchange rate.
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drive the cointegrating relationship and induce cross-sectional dependence in the data,
aggregate long- and short-run exchange rate elasticities are estimated by novel panel
estimators from most recent data. The results support the findings of earlier studies
which report declining ERPT over time.

Future work could broaden the scope of the present analysis in several directions.
Firstly, other data on import prices, which distinguish between imports from inside and
outside the euro area, could be considered. As argued in Section 3, since a significant
share of a Eurozone country’s imports comes from other Eurozone contires, this may
introduce a downward bias in an aggregate ERPT estimate. Monthly data on intra-
and extra-euro area import prices is available from Eurostat, however sufficiently long
time series exist for only six countries and the euro area as a whole. Hence the large-N
panel estimators in this study would not be applicable and other estimation techniques
would be needed. Secondly, ERPT to import prices could be investigated at an industry
level, as considerable heterogeneity in ERPT elasticities has been reported across
different industries (De Bandt et al., 2008; Blagov, 2018). Finally, the question of
asymmetric ERPT as in Brun-Aguerre et al. (2017) seems a promising avenue to explore,
in particular with regard to providing a better understanding of the pricing behaviour
of exporters w.r.t. currency appreciation or depreciation and its implications for policy
makers.
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5.A Appendix

5.A.1 Simes’ (1986) intersection test

Let p∗1 ≤ . . . ≤ p∗N be the p-values of N individual test statistics. Ordering them
as p∗(1) ≤ . . . ≤ p∗(N), the joint null hypothesis H0 := ⋂

iHi,0, i = 1, . . . , N, (that
all individual null hypotheses are simultaneously true) is rejected by Simes’ test at
significance level α if

p∗(i) ≤
iα

N
for any i = 1, . . . , N. (5.16)

Simes (1986) shows that the test is conservative under independence of the individual
test statistics, that is

PH0

{
p∗(i) ≥

iα

N
, i = 1, . . . , N

}
≥ 1− α. (5.17)

Simes’ intersection method has been introduced to testing for panel unit roots by Hanck
(2013) and to testing for panel cointegration in dependent panels by Arsova and Örsal
(2019).

5.A.2 Demetrescu et al.’s (2006) panel unit root test

Demetrescu et al. (2006) employ the modified inverse normal method of Hartung
(1999), in which the dependence is captured by a single correlation coefficient ρt, which
can be interpreted as a “mean correlation approximating the case of possibly different
correlations between the transformed statistics” (Hartung, 1999). The statistic has a
N(0, 1) distribution under the null hypothesis. It is computed as 9

t
(
ρ̂*

t , κ
)

=
∑N
i=1 ti√√√√N + (N2 −N)

(
ρ̂*

t +κ ·
√

2
(N + 1)(1− ρ̂*

t )
) . (5.18)

Here ti = Φ−1(p∗i ) denote the probits and the variance of the denominator is aug-
mented with an estimator of the correlation between the individual probits ρ̂*

t : ρ̂*
t =

max{− 1
N−1 , ρ̂t}, where ρ̂t = 1− 1

N−1
∑N
i=1

(
ti − 1

N

∑N
i=1 ti

)2
.

The correction term κ
√

2
(N+1)(1− ρ̂

*
t ), which simply scales the standard deviation

of ρ̂t by a factor κ, aims to avoid a systematic underestimation of the denominator in
eq. (5.18). For the κ parameter Hartung suggests two alternative values: κ1 = 0.2 and
κ2 = 0.1 ·

(
1 + 1

N−1 − ρ̂
*
t

)
, where κ2 is suitable mainly for smaller ρ̂*

t .

9For simplicity the computation of the statistic is presented with unit weights for all cross-sections, as
in its current implementation.
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The test statistic t
(
ρ̂*

t , κ
)
has a N(0, 1) limiting distribution under the null hypoth-

esis with a rejection region in the left tail.

5.A.3 Auxiliary results

Table 5.8: Hanck’s (2013) and Demetrescu et al.’s (2006) panel unit root tests

Country lag ADFτ p-value Country lag ADFτ p-value Simes’ crit. value

p e 5% 10%
Italy 2 −3.97 0.014 Poland 2 −3.13 0.029 0.003 0.005
Austria 2 −3.66 0.031 Sweden 1 −2.92 0.047 0.005 0.011
Belgium 2 −3.41 0.057 Denmark 4 −2.01 0.282 0.008 0.016
Luxembourg 4 −3.11 0.110 Austria 1 −1.95 0.308 0.011 0.021
Denmark 5 −3.08 0.119 Lithuania 4 −1.86 0.347 0.013 0.026
Portugal 2 −2.75 0.221 Germany 1 −1.86 0.347 0.016 0.032
Poland 3 −2.72 0.234 Italy 1 −1.84 0.357 0.018 0.037
France 2 −2.67 0.250 France 1 −1.71 0.425 0.021 0.042
United Kingdom 1 −2.60 0.282 Belgium 1 −1.68 0.436 0.024 0.047
Sweden 1 −2.56 0.298 Finland 1 −1.68 0.440 0.026 0.053
Finland 5 −2.27 0.443 Netherlands 1 −1.67 0.442 0.029 0.058
Germany 2 −2.13 0.521 Czech Republic 2 −1.66 0.446 0.032 0.063
Estonia 6 −2.12 0.525 Luxembourg 1 −1.66 0.449 0.034 0.068
Lithuania 3 −2.04 0.572 Spain 1 −1.62 0.466 0.037 0.074
Netherlands 3 −1.86 0.664 Portugal 1 −1.61 0.473 0.039 0.079
Czech Republic 2 −1.84 0.673 Norway 1 −1.38 0.588 0.042 0.084
Norway 1 −1.84 0.677 United Kingdom 1 −1.22 0.661 0.045 0.089
Switzerland 4 −1.63 0.771 Switzerland 1 −0.65 0.853 0.047 0.095
Spain 2 −1.48 0.827 Estonia 1 −0.23 0.929 0.050 0.100

y w 5% 10%
Sweden 3 −3.44 0.054 Italy 2 −3.91 0.016 0.003 0.005
Italy 1 −3.03 0.132 France 1 −3.24 0.084 0.005 0.011
France 2 −3.03 0.132 Norway 3 −3.15 0.102 0.008 0.016
Germany 1 −3.02 0.134 Spain 2 −2.92 0.162 0.011 0.021
Luxembourg 2 −2.94 0.157 Germany 2 −2.75 0.220 0.013 0.026
Estonia 3 −2.92 0.161 Switzerland 2 −2.73 0.230 0.016 0.032
United Kingdom 1 −2.89 0.170 Netherlands 3 −2.72 0.231 0.018 0.037
Switzerland 1 −2.89 0.171 Czech Republic 4 −2.70 0.240 0.021 0.042
Belgium 1 −2.73 0.226 Estonia 4 −2.63 0.267 0.024 0.047
Austria 1 −2.64 0.265 Portugal 2 −2.62 0.274 0.026 0.053
Finland 3 −2.57 0.294 Finland 2 −2.57 0.296 0.029 0.058
Lithuania 3 −2.54 0.309 Austria 4 −2.35 0.401 0.032 0.063
Spain 6 −2.49 0.330 Poland 1 −2.33 0.411 0.034 0.068
Netherlands 2 −2.40 0.378 Belgium 1 −2.29 0.433 0.037 0.074
Denmark 2 −2.39 0.381 Lithuania 3 −2.11 0.530 0.039 0.079
Poland 4 −2.27 0.446 Luxembourg 2 −2.02 0.580 0.042 0.084
Portugal 1 −2.14 0.513 United Kingdom 5 −1.94 0.624 0.045 0.089
Czech Republic 1 −2.06 0.561 Denmark 2 −1.89 0.650 0.047 0.095
Norway 5 −2.04 0.571 Sweden 1 −1.12 0.919 0.050 0.100

Variable Hartung’s κ2 test statistic
p -0.804
e -0.279
y -0.719
w -0.668

Notes: ADFτ denotes the Augmented Dickey-Fuller test statistic. A linear time trend is included in the test
regressions for p, y and w, while only a constant is considered for e. The lag order is selected according to the
modified AIC (MAIC) criterion of Ng and Perron (2001). The p-values are computed as in MacKinnon (1996); the
author is grateful to Christoph Hanck for the GAUSS code. Results for each variable are sorted according to the
p-values in ascending order for ease of comparison with the corresponding Simes’ critical value.
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Table 5.9: Pesaran’s (2007) CIPS panel unit root test

lag p e y w ∆p ∆e ∆y ∆w

6 −2.037 −1.662 −2.322 −1.548 −3.216∗∗∗ −3.708∗∗∗ −2.550∗∗∗ −2.659∗∗∗

5 −2.022 −1.734 −2.210 −1.503 −3.378∗∗∗ −4.134∗∗∗ −2.807∗∗∗ −3.071∗∗∗

4 −2.049 −2.221∗∗ −2.061 −1.571 −3.971∗∗∗ −4.442∗∗∗ −3.084∗∗∗ −3.751∗∗∗

3 −2.218 −2.460∗∗∗ −2.267 −1.851 −4.315∗∗∗ −3.880∗∗∗ −3.768∗∗∗ −4.300∗∗∗

2 −2.517 −2.305∗∗ −2.116 −2.050 −5.283∗∗∗ −4.236∗∗∗ −4.316∗∗∗ −4.520∗∗∗

1 −2.702∗∗ −2.278∗∗ −2.213 −1.857 −5.798∗∗∗ −5.200∗∗∗ −5.168∗∗∗ −5.196∗∗∗

Notes: Trend is included in the test regressions for p, y and w, while only a constant is considered for e.
The 10%, 5% and 1% critical values for the model with constant only are −2.11, −2.2 and −2.36, and
−2.63, −2.7 and −2.85 for the model with trend, respectively.
∗, ∗∗ and ∗∗∗ denote significance at the 10, 5 and 1% level, respectively.

Table 5.10: Estimated factor loadings

Country Λ̂p1 Λ̂p2 Λ̂e1 Λ̂e2 Λ̂y Λ̂w

Austria 1.19 0.57 −1.26 −0.13 1.14 1.76
Belgium 1.25 −0.20 −1.27 −0.15 1.13 1.47
Czech Republic 1.06 0.23 −0.46 −1.71 1.15 0.17
Denmark 0.71 −1.87 −1.23 0.49 0.81 1.20
Estonia 0.94 −0.90 −0.83 1.52 0.95 0.84
Finland 1.08 −0.18 −1.25 0.25 1.11 −0.32
France 1.37 −0.08 −1.27 −0.28 1.22 1.36
Germany 1.35 −0.26 −1.27 −0.17 1.11 0.35
Italy 1.32 −0.04 −1.27 −0.20 1.23 0.57
Lithuania 0.56 1.78 −0.15 1.32 0.93 −0.06
Luxembourg 0.09 −2.32 −1.26 0.17 0.64 0.84
Netherlands 0.88 0.72 −1.27 −0.01 1.16 1.12
Norway 0.80 −0.14 −0.22 −1.52 0.38 1.11
Poland 0.30 1.60 −0.09 −2.05 0.36 0.38
Portugal 1.20 −0.79 −1.27 −0.06 0.94 1.09
Spain 1.24 −0.41 −1.27 −0.07 1.06 0.96
Sweden 0.98 0.72 −0.25 −1.90 1.03 −0.72
Switzerland 0.62 0.70 0.22 0.50 1.06 1.68
United Kingdom 0.86 0.84 0.60 −1.07 1.01 0.63

Figure 5.2: Estimated common factors from the Cup-FM model
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Figure 5.3: Estimated residuals from the Cup-FM model
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Figure 5.4: Estimated residuals from the augmented DCCE model with trend
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Table 5.11: ERPT estimation results for the individual countries by the DCCE estimator

Exchange rate e Domestic demand y Producers’ costs w EC coefficient ρi
Country long-run short-run long-run short-run long-run short-run

Austria −0.11 −0.20 −0.15 0.34 0.01 0.06 −0.68∗∗∗

(0.17) (0.20) (0.25) (0.23) (0.12) (0.13) (0.19)
Belgium 0.08 −0.19 1.27 0.12 0.32 −0.04 −0.47∗∗∗

(0.49) (0.37) (0.89) (0.63) (0.38) (0.27) (0.15)
Czech Republic −0.37∗∗∗ −0.35∗∗∗ −0.34 0.79 −0.46∗ 0.00 −0.83∗∗∗

(0.14) (0.11) (0.34) (0.52) (0.24) (0.19) (0.18)
Denmark −1.46∗∗∗ −1.11∗∗∗ −0.42 0.30 −0.50∗∗∗ 0.01 −1.04∗∗∗

(0.39) (0.30) (0.30) (0.34) (0.15) (0.21) (0.17)
Estonia −0.05 0.26 0.43∗∗ 0.32∗ 0.09 0.11 −0.88∗∗∗

(0.09) (0.18) (0.20) (0.19) (0.12) (0.20) (0.15)
Finland −0.12 0.30 0.06 0.47 0.33 0.41 −0.80∗∗∗

(0.27) (0.38) (0.35) (0.45) (0.31) (0.19) (0.15)
France 0.03 0.29 0.40 0.00 0.21 0.05 −0.81∗∗∗

(0.14) (0.21) (0.47) (0.42) (0.16) (0.17) (0.18)
Germany −0.51∗∗ −0.44∗∗∗ −0.33∗ −0.06 0.10 0.22∗ −0.64∗∗∗

(0.24) (0.14) (0.20) (0.17) (0.13) (0.12) (0.15)
Italy −1.08∗∗ −0.72∗∗∗ 1.00∗∗ 0.02 0.20 −0.04 −0.61∗∗∗

(0.45) (0.23) (0.44) (0.35) (0.28) (0.14) (0.16)
Lithuania −1.17∗∗∗ −0.98∗∗∗ −0.62 −1.71∗∗ 0.52 −0.49 −0.82∗∗∗

(0.37) (0.33) (0.71) (0.73) (0.36) (0.39) (0.15)
Luxembourg −0.16 −0.26 0.80 0.67∗ −0.03 0.49∗ −0.61∗∗∗

(0.67) (0.68) (0.55) (0.35) (0.26) (0.26) (0.13)
Netherlands −0.03 −0.18 −0.53 −0.27 0.07 0.01 −0.87∗∗∗

(0.21) (0.29) (0.40) (0.43) (0.12) (0.15) (0.16)
Norway −0.46∗ −0.22∗∗ −0.62 −0.18 −0.21 0.19 −0.57∗∗∗

(0.24) (0.11) (0.82) (0.40) (0.35) (0.30) (0.19)
Poland −0.30∗∗ −0.25 −0.08 −0.27 −0.75∗ −0.53 −1.13∗∗∗

(0.13) (0.19) (0.31) (0.62) (0.42) (0.34) (0.20)
Portugal −1.26∗∗ 0.20 1.18∗∗∗ 0.42 0.46∗ 0.26∗ −0.71∗∗∗

(0.55) (0.61) (0.36) (0.35) (0.24) (0.15) (0.14)
Spain 0.64 0.48 0.63∗∗ 2.31∗∗∗ 0.41 −0.15 −0.84∗∗∗

(0.43) (0.54) (0.27) (0.67) (0.37) (0.21) (0.15)
Sweden −0.82∗∗∗ −0.41∗∗∗ 1.10∗∗∗ −0.15 0.00 −0.16∗ −0.80∗∗∗

(0.17) (0.07) (0.40) (0.28) (0.06) (0.09) (0.12)
Switzerland 0.65 −0.11 −2.61 1.38∗ −12.25 1.04 −0.10

(1.13) (0.12) (4.30) (0.82) (14.60) (0.92) (0.10)
United Kingdom −0.47∗∗∗ −0.31∗∗∗ −0.38 −0.45 −0.32 −0.23∗ −0.55∗∗∗

(0.18) (0.06) (0.36) (0.36) (0.24) (0.12) (0.15)

Notes: Results from the DCCE estimator with trend, augmented with a Great Recession dummy variable. Standard
errors are presented in brackets.
∗, ∗∗ and ∗∗∗ denote significance at the 10, 5 and 1% level, respectively.
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