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Abstract

Implications of a changing climate have become increasingly perceptible. Stakeholders in econ-
omy and politics recognize these changes and demand for temporal and spatially highly resolved
climate projections that describe future changes at their respective locations, or for their com-
munities. In order to make informed decisions, assessments on the robustness and significance of
the projected changes are also needed. Technical progress in computing and storage capacities,
as well as global partnerships that coordinate the science and applications of climate modeling
activities, allow to conduct highly resolved climate simulations, and to compile homogeneous
ensembles to estimate uncertainties of these projections that can be categorized into scenario
uncertainties, natural variability and model uncertainties. However, in order to increase the
temporal and spatial resolution of the simulations, climate models have to be adapted to the
desired scales, which is a grand challenge for the modeling community. Also, there is a need
for high temporal and spatial resolution of long-term observational data sets, to enable the
modeling groups to validate their climate models by comparing historic climate simulations to
observations.

The overall aim of this PhD-thesis is to develop empirical probabilistic frameworks, that help
to quantify the impacts of temporal and spatial scale dependencies and model uncertainties
of climate projections regarding precipitation-dependent parameters. These studies can be the
basis for the development of products that increase the value of climate projections for impact-
research and decision-makers.

The thesis is structured in four journal articles. Article one is the first study that analyzed
climate projections from the spatially highly resolved regional climate model (RCM) ensemble
EURO-CORDEX. Additionally, the significance and the robustness of the projected changes
are analyzed, and improvements related to the higher horizontal resolution of the new data
set are discussed. A major finding is that RCM simulations provide higher daily precipitation
intensities which are missing in the global climate model (GCM) simulations, and, that they
show a significantly different climate change of daily precipitation intensities, with a smoother
shift from low towards high intensities.

The second article elaborates on impacts of temporal and spatial aggregation on extreme precip-
itation intensities. By combining radar data with cloud observations, the different temporal and
spatial scaling behavior of stratiform and convective type precipitation events can be analyzed
for the first time. The separation between convective and stratiform type events also allows
to quantify the contribution of convective events to the extremes. Further, it is shown that
temporal averaging has similar effects on the precipitation distribution as spatial averaging.
Associated pairs of temporal and spatial resolutions that show comparable intensity distribu-
tions are identified. This knowledge can be used to improve data storage, to setup measuring
campaigns and to bring together data sets that are stored at different resolutions. The latter
issue is the focus of the third paper.

In order to use climate model output for impact assessments, a bias-adjustment towards the
observed climatology (also referred to as “bias correction”) is often inevitable. In many regions
of the world the gauge station density is not sufficient to represent the spatial variability of
precipitation within the gridbox size of regional climate models. In some cases only single
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station data is available. Using precipitation data from radar observations, a gauge station
network, and a spatially highly resolved regional climate model, the third paper optimizes the
process that finds associated temporal and spatial scales (see second article). This information
is used to develop a method that adjusts point measurements to the temporal and spatial scale
of a previously defined model grid. The study shows that this procedure can be used to improve
bias-adjustment methods in areas with a low gauge station density.

It is known that the EURO-CORDEX ensemble overestimates precipitation and shows a com-
mon cold bias in the Alpine region. The fourth article evaluates how these biases are changing
the temperature distribution, and the temperature dependency, of precipitation-frequencies.
These biases are a source of uncertainty that is not captured by the robustness tests performed
in the first article. A probabilistic-decomposition-framework is developed to quantify the impact
of these biases on precipitation-frequency changes, and to investigate causes for the ensemble
spread. Because of the high economic relevance of snow for that region, the article distinguishes
between total precipitation- and snowfall-frequencies. Two different intensity thresholds are
used in order to analyze if heavy precipitation events deviate from the average.
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Article Summary

The first article: EURO-CORDEX: new high-resolution climate change projections for Eu-
ropean impact research

The first article introduces the high-resolution climate change projection ensemble created
within EURO-CORDEX. The paper was the first that compared large-scale climate change
patterns of the EURO-CORDEX and the ENSEMBLES data set. Besides temperature
and precipitation, also complex climate indices are analyzed regarding future projected
changes. The paper analyses how the comparatively high spatial resolution of EURO-
CORDEX is improving the climate change projections. A strong focus is set on assessing
the robustness and the inherent uncertainties of the projections considering different cli-
mate change scenarios. For this paper new kinds of figures were developed, that show not
just the ensemble mean statistics but also illustrate the significance and the robustness of
the given information. It is found that the large-scale patterns of mean-temperature and
precipitation changes are similar in both ensembles. For heat waves, the way the parame-
ter is defined has a stronger influence on the investigated changes, than differences found
between the scenarios or time periods. However, the EURO-CORDEX ensemble shows a
reduced northward shift of Mediterranean drying evolution, and a slightly stronger mean
precipitation increase over most of Europe. Further, more detailed spatial patterns are
observed in the high-resolution data, that can be connected to better resolved physical
processes and surface characteristics. A comparison between the EURO-CORDEX ensem-
ble and the driving Global Climate Models (GCMs), revealed that the Regional Climate
Models (RCMs) simulate higher daily precipitation intensities, and that they show a sig-
nificantly different change signal of daily precipitation intensities, resulting in a smoother
shift in the intensity distribution from weak to high intensities.

The second article: Temporal and spatial scaling impacts on extreme precipitation

The second article elaborates on differences in the precipitation distributions of differently
resolved data sets, that are caused by aggregation effects. For this analysis a very highly
resolved radar dataset with a 1 km horizontal and 5 min temporal resolution is used. The
data set covers entire Germany over the period 2007-2008. It is investigated separately for
different regions and seasons as well as for events of convective and stratiform type. The
first part of the article concentrates on the intensity reduction due to spatial and temporal
smoothing of the data set when aggregated to lower resolutions. Type-dependent reduction
factors are calculated for different seasons and regions. With up to 30% higher reduction
factors for the convective type compared to stratiform extremes, these differences exceeded
all other observed seasonal and regional differences within one type. In a second step, the
effect of these different reduction factors on the contribution of each type to extreme
events as a whole is analyzed. It is found that the temporal and spatial resolution as well
as the chosen threshold that is used to identify the extremes have a profound influence
on the contribution of convective events to the extremes. A third study presented in
this article compares the ratio of area to duration reduction factors for convective and
stratiform events. This ratio can be used to associate temporal and spatial scales. The
matching scales can be thought of as the average time an event will stay in a grid box of
the matching size before it is advected out of the box. This ratio mainly depends on the
type of event. Comparing this ratio over different scales, a self-affine behavior is identified.
This indicates fractal properties of precipitation. In the last analysis of the paper, the
entire precipitation intensity distribution is analyzed at different scales. Matching pairs
of temporal and spatial resolutions are identified that show similar intensity distributions.
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Also the information loss due to temporal and spatial aggregation is investigated. It is
found that the information loss due to temporal aggregation is disproportionately high in
many extreme precipitation studies compared to spatial aggregation effects.

The third article: Statistical precipitation bias correction of gridded model data using point
measurements

With increasing model resolution the demands for temporal and spatial higher resolved
observation data increases. Especially precipitation events that show strong spatial and
temporal inhomogeneities need a dense station network in order to capture these events
properly. For validation and bias-adjustment of climate models, it is important to capture
the variability preferably at least on the scale of the model grid. Therefore, the demands
for the station network increase with model resolution and can not always be fulfilled.
On the basis of the Taylor hypothesis of frozen turbulence, this article takes account of
the connection between temporal and spatial scales as described in the second article.
The study introduces a concept in which this information is used to improve state-of-
the-art bias correction methods in areas where model and observation data sets are not
available at the same resolution. This is especially interesting if only point measurements
are available. In this case the station will always be spatially higher resolved as a grid
average from the model output. A nonparametric method is developed that is called
scale-adaptation statistical bias correction (SABC). The study shows that the results of
the bias correction can be improved if a lack of spatial information is partly compensated
by using high temporal information or vice versa.

The fourth article: Uncertainties in snow and precipitation projections in the northern Alps:
the role of model biases

Precipitation, especially when falling as snow, is a key element of the Alpine climate
system. Simulations and observations are known to contain errors regarding snowfall-
and precipitation-frequencies in this region. It is likely that observations underestimate
snowfall, while climate models tend to overestimate precipitation especially in the winter
season. Based on EURO-CORDEX data the fourth article analyzes how these errors im-
pact the temperature distribution and the temperature dependent occurrence distribution
of snowfall- and precipitation-frequencies. Differences are found between the shape of the
observed and the simulated distributions. The impact of these biases on past and pro-
jected changes is analyzed. A framework is developed in which changes are decomposed
into two parts: changes in the temperature distribution and changes in the tempera-
ture dependency of the event occurrence. Past changes are analyzed and compared to
observations allowing to quantify the impact of model biases on these changes. The ob-
servations show an increase in (heavy) precipitation-frequency above the model spread at
most altitudes. The main reason is a common cold bias in the surface-temperature of all
ensemble members. A bias in the surface-temperature dependency of these events is a
second reason. This bias also impacts snowfall-frequency changes. The study shows that
mean snowfall-fractions at a specific temperature depend on the regional climate model, or
snowfall discrimination method. These differences impact the temperature dependency of
snowfall-frequencies and influence the simulated changes. After investigating the impact
of model errors on past climate changes, future changes are analyzed using the RCP4.5
scenario. This analysis is performed with and without bias-adjustment. Major parts of
the differences in the projected changes that are caused by the bias-adjustment, can be
related to biases identified in the past period.
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1. Introduction

1.1 Motivation

Climate change has become broadly accepted as a major threat to society (Rosenzweig et al.,
2007). In recent years, the focus of the scientific discourse has changed from the question
whether the global climate is changing, to the questions what these changes mean for humans
and the environment at a local level, and how to adapt to the imminent changes (e.g. Pfeifer
et al. (2015); Cortekar et al. (2016); Hackenbruch et al. (2017); Lemos et al. (2012)). As climate
change becomes more and more evident (Cubasch et al., 2013), the information derived from
climate projections is increasingly becoming part of decision-making processes. Especially for
precipitation related parameters this leads to high demands regarding the temporal and spatial
resolution of the projections. In addition, a better understanding of the uncertainties associated
with these projections is becoming increasingly important, the more far-reaching the connected
decisions are (Hawkins and Sutton, 2009).

Against this backdrop, the overall aim of this PhD-thesis is to develop empirical probabilistic
frameworks that help to quantify the impacts of temporal and spatial scale dependencies and
model uncertainties of climate projections regarding precipitation dependent parameters.

1.1.1 Temporal and spatial scales of climate simulations

To simulate future climate scenarios, global models are deployed, which are driven by different
greenhouse gas concentration pathways. However, today’s computing performance is still not
sufficient to conduct large ensembles of global climate model simulations at spatial grid resolu-
tions below ∼100 km (Taylor et al., 2012), which are needed for uncertainty analyses. At best,
the coarse resolution results in a lack of information on the sub-grid scale spatial variability of
the model output parameters, whereby the precise spatial distribution is not captured, and the
distribution functions of spatial inhomogeneous parameters are smoothed. The latter leads to
an information loss particularly on the tails of the distribution, which prevents an analysis of
local extreme values. In addition to the loss of information, decisive processes that are necessary
to represent the regional or local climate may not be resolved by the coarse grid. On the one
hand, this can lead to the fact that future changes in local processes are not taken into account
(Di Luca et al., 2012a,b; Torma et al., 2015). On the other, these unresolved processes can also
have an influence on the resolved scales (Mesinger et al., 2012).

Regional climate models (RCMs) have been developed in order to better resolve atmospheric-
processes at the regional to local scale. These models use data from GCM simulations as lateral
constraints and dynamically refine the global data sets for selected regions (EURO-CORDEX
community et al., 2017). In order to be able to assess uncertainties of climate projections,
homogeneous RCM ensembles were created. Widely used RCM ensembles for the European
continent are ENSEMBLES (Hewitt and Griggs, 2004), and a comparatively new data set
from the EURO-CORDEX (EURO-CORDEX community et al., 2017) project. Technological
advances in computation and storage capacities allowed to significantly increase the spatial
resolution of RCM simulations in recent years. While the ENSEMBLES climate projections
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have a spatial resolution between 25 and 50 km, the EURO-CORDEX ensemble has a spatial
resolution of ∼12.5 km. However, these resolutions still do not match the needs of local impact
studies. For many practical applications, climate data is needed at the local scale, meaning
that the mean amplitude, the temporal variability and the long term trends of the analyzed
variables should be comparable with data obtained from point measurements.

A further increase in the temporal and spatial resolutions of the climate models is a grand
challenge for the community. Besides the high demands on computational infrastructures,
modelers have to adapt their models to the desired scales. This adaptation process includes
improvements in the resolution of the surface boundary information, including the topography,
the soil type, land cover and land use data sets (e.g. Suklitsch et al. (2011)). Also improvements
in the physical parameterizations, like the implementation of a 3D turbulence scheme, a 3D
radiation or an advanced precipitation scheme may be relevant. In addition the hydrostatic
balance, a simplification made in many regional climate models, has to be revoked for higher
resolved simulations.

Today only a few long-term climate model simulations at convection-permitting-scales (∼1- 2
km) are available (Kendon et al., 2014). Most of these simulations are conducted over small
domains and span only a few decades. Therefore impact modelers often depend on statistical
downscaling methods. However, as discussed above, climate models do not necessarily detect
changes that are caused by insufficiently resolved processes and statistical methods are usually
not capable of capturing these deficits either.

Because of the high inhomogeneity of precipitation in time and space, precipitation is strongly
smoothed when aggregated over large areas and time scales. To describe the average decrease
of precipitation intensities due to spatial and temporal aggregation (Bacchi and Ranzi , 1996),
areal reduction factors (ARFs) and intensity-duration functions (IDFs), have previously been
used. These aggregation effects result in a strong scale dependency of precipitation dependent
parameters and their associated impacts. Therefore a specification of the analyzed spatial and
temporal resolution is needed for the assessment of precipitation extremes, for example as de-
fined by an intensity threshold. Whereas precipitation extremes relevant to large catchments
may be analyzed at a daily time scale, using climate projections conducted at ∼100 km horizon-
tal resolution (Arnbjerg-Nielsen et al., 2013), the analysis of urban drainage systems requires
input data of at least 10 km spatial resolution and temporal resolutions from minutes to hours
(Arnbjerg-Nielsen et al., 2013; De Toffol et al., 2009). To analyze soil erosion, precipitation
information is needed at even smaller scales (Mueller and Pfister , 2011).

Besides the statistical aggregation effects that change the precipitation distributions depending
on the analyzed scale, also the major physical processes that cause precipitation events may
change. A common separation of precipitation events is made between convective and stratiform
types. Convection is associated with local radiative surface heating that results in a buoyantly
unstable atmosphere (Houze, 1997). Stratiform type precipitation stems from large-scale frontal
systems and comparatively weak and uniform up-lifting. Because of the reduced spatial and
temporal extent of convective type precipitation events, these types of events will be strongly
affected by aggregation effects. Therefore highly resolved spatial and temporal scales are needed
to analyze convective type extremes. First studies that use high-resolution model simulations
suggested, that heavy precipitation at high temporal resolutions will increase strongly in a
future climate and suppose that convective events contribute the most to this increase (Kendon
et al., 2014; Muller et al., 2011; Attema et al., 2014).

In this thesis two different approaches are used to compare precipitation distributions at different
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scales. In the first article the two spatially differently resolved ensemble data sets ENSEMBLES
and EURO-CORDEX are compared. Both the differences in the spatial patterns of the climate
change signal, and the differences in the precipitation distribution are discussed. However, the
identified differences between these two data sets can have a variety of reasons, that can not
be clearly distinguished, e.g. new model developments and different greenhouse gas emission
scenarios. The second article elaborates on the statistical differences of precipitation extremes
between differently resolved data sets. For this study, a temporal and spatially highly resolved
radar data set is aggregated in time and space. The data set is separately analyzed for different
regions and seasons, as well as for convective and stratiform type events.

Regarding temporal and spatial scale dependencies of precipitation events, the following two
research questions are addressed:

• How strong do temporal and spatial scale dependencies influence the intensity distributions
of convective and stratiform type precipitation events, and at which temporal and spatial
scales are extreme events dominantly convective type events?

• Has temporal aggregation similar effects on the precipitation distribution as spatial ag-
gregation, and can a lack of spatial information be partly compensated by using high
temporal information, or vice versa.

1.1.2 Uncertainties in climate model simulations

Besides the need for highly resolved data sets, also uncertainty estimates are needed in or-
der to make informed decisions. According to Hawkins and Sutton (2009) (cf. Foley (2010))
these uncertainties can be grouped into three primary categories: scenario uncertainty, internal
variability of the climate system, and model uncertainty.

Scenario uncertainties are mainly associated with human action caused by unknown greenhouse
gas emissions and land use changes. Other factors are uncertainties from external forcing like
volcanic eruptions or solar variability (Foley , 2010). Internal (natural) variability of the climate
system, refers to deterministic and random fluctuations that are not connected to any forcing
(Hawkins and Sutton, 2009). This uncertainty is also known as sampling uncertainty, because
it results from a too small sample size. Climate is estimated by averaging over a finite number
of years (commonly 20 to 30 years). This time-average may not always be sufficient to capture
the natural variability (Déqué et al., 2007). Model uncertainties are associated with incomplete
understanding and simplified formulations. This category includes the above mentioned scale
dependencies that cause downscaling uncertainties. Differences in the climate projections that
are caused by any of these uncertainties can be amplified or diminished by climate feedback
mechanisms (Foley , 2010). Hawkins and Sutton (2009) point out that the relative importance of
each source of uncertainty varies with prediction lead time, and with spatial and temporal scales.
Whereas most uncertainties come from the fact that future greenhouse gas concentrations are
not known for predictions of the end of the century, model uncertainty and internal variability
are the dominant contributions for predictions of the next few decades.

Most regional climate modeling studies, that analyze uncertainties use large model ensembles
and consider different greenhouse gas emission scenarios (e.g. Gobiet et al. (2014)). The dif-
ferent ensemble members implement different methods to discretize the dynamic equations and
different parameterizations to represent sub-grid scale effects. These differences results in an
ensemble spread of the projected changes which can be used to approximate the sensitivity of
the climate signal to possible model deficiencies, and thus to describe model uncertainties. Also
the uncertainties caused by natural variability of the climate system are captured if different
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GCM simulations are used as lateral boundary condition. However, knowledge gaps or insuffi-
cient temporal-spatial resolutions are only two examples that could lead to common errors in
most models. Therefore uncertainties related to model errors cannot always be captured by
the ensemble spread. The Alpine region is an example for an area where most of the models
show similar biases. In this area, most models show a cold bias in the surface-temperature in a
range from -0.8 to -1.9 K, and a wet precipitation bias between 14.8 % in summer and 41.5 %
in winter (Smiatek et al., 2016). This raised the following research question that is addressed
in the fourth article.

• How strong are total-precipitation and snowfall projections influenced by these model
biases and can this information be used to complement ensemble robustness tests.

1.2 Aims and objectives

In order to answer the research questions from section 1.1 the following aims and objectives
were defined in the individual articles.

Aim 1: To analyze climate change projections of the EURO-CORDEX ensemble including the
robustness and significance of the signal with a focus on precipitation (article #1).
Objectives:

• To analyze the EURO-CORDEX data set using different greenhouse gas emission scenar-
ios, focusing on temperature and precipitation dependent parameters.

• To identify improvements and benefits of the spatially highly resolved simulations com-
pared to earlier RCM ensembles.

• To analyze the robustness and the significance of the projected changes, and to combine
this information with information about the amplitude of the signal.

Aim 2: To analyze the temporal and spatial scaling behavior of extreme precipitation events,
and to quantify how strong convective type events contribute to the extremes (article #2)
Objectives:

• To quantify the reduction of extreme precipitation events due to temporal and spatial
aggregation depending on the type of the precipitation event, the regional and seasonal
characteristics, and the threshold used to detect extreme events.

• To identify how the differences in reduction factors affect the contribution of the convective
and stratiform type to extreme events as a whole, dependent on the scale, region, season
and the threshold chosen.

• To analyze the temporal and spatial scaling behavior of convective and stratiform ex-
treme precipitation events, and to establish a connection between temporal and spatial
aggregation effects.

• Assessing aggregation effects in the entire precipitation distribution to quantify the infor-
mation loss, and to optimize data storage.

Aim 3: To assess the potential use of temporal and spatial scaling relations of precipitation to
improve bias-adjustment methods, when only point measurements are available (article #3)
Objectives:
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• To identify matching pairs of temporal and spatial resolutions that show the best agree-
ment in the precipitation distribution.

• To perform a scale-adjustment for two exemplary cases in order to associate the scales of
the model simulations with point measurements.

• To bias-adjust the model data before and after a scale-adaptation by applying quantile
mapping, and to compare the performance between the scale-adapted bias-adjustment
and the non-scale-adapted bias adjustment.

Aim 4: To quantify uncertainties in future climate projections of total-precipitation- and
snowfall-frequencies, that result from common biases in the model simulations (article #4)
Objectives:

• Identify and analyze model biases in the temperature distribution and the temperature
dependency of snowfall- and precipitation-frequencies.

• Analyze the impact of different snowfall discrimination methods on the temperature de-
pendency of snowfall and its impact on the observed changes.

• Develop a probabilistic-decomposition-framework to analyze impacts of model biases on
the past and projected changes of precipitation- and snowfall-frequencies, at different
altitudes.

1.3 Research approach

To pursue the aims and objectives from section 1.2, the following research approaches are used.

Aim: 1 To analyze climate change projections of the EURO-CORDEX ensemble including the
robustness and significance of the signal, with a focus on precipitation (article #1)

An ensemble analysis is performed using daily data of all land areas of the EURO-
CORDEX domain. The ensemble includes as many RCM and GCM model combinations
from the EURO-CORDEX database as available at that time, in order to capture the
entire ensemble spread. All models are equally weighted and only models that show clear
errors are excluded. The analysis is based on seven different RCMs that were driven by
five different GCMs. To include uncertainties caused by the different greenhouse gas emis-
sion scenarios different RCPs are compared. Using different RCM-GCM combinations, in
total nine RCP4.5 simulations, and ten RCP8.5 simulations are analyzed. To study how
the ensemble mean is influenced by the domain size, and by the neglection of certain
simulations, sensitivity studies are performed. To get a broad overview of the ensemble
quality, different indices are analyzed. These indices include temperature, precipitation,
heavy precipitation, dry spells and heat waves. Further indices are calculated for a set of
sub-regions that were classified based on Metzger et al. (2005). All of these indices have
a high impact on infrastructure, agriculture and human health.

To identify a possible added value due to the high resolution, the results of the ∼12.5
km EURO-CORDEX simulations are compared to the ENSEMBLES data set (Hewitt
and Griggs, 2004). The ENSEMBLES data set consists of 20 transient RCM simulations
that include simulations with a 50 km and 25 km grid size. A comparison of large scale
climate change patterns is conducted. For a more detailed analysis of the differences in the
spatial patterns of EURO-CORDEX and ENSEMBLES, a spatial correlation of the mean
annual temperature and annual total precipitation is performd between EURO-CORDEX
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and ENSEMBLES. To analyzed if the high spatial resolution of the RCMs improve the
precipitation distribution, and if this has an effect on the projections, a comparison of
the precipitation intensity distribution between the RCM’s and the driving models is
performed.

A method later published in Pfeifer et al. (2015) is adopted, to identify regions where the
ensemble shows robust and significant changes. The robustness test regards the agreement
of the simulations in terms of the direction of the changes. Regions in which more than
66% (according to the Cubasch et al. (2013) associated with a likely outcome) of the
projections agree in direction of change are called robust. Whether a climate change
signal is significant or not, is assessed by applying the two-sided Mann-Whitney-Wilcoxon
test. This test is robust against outliers and does not require the assumption of normal
distributions that is needed e.g. for the t-test.

Aim: 2 To analyze the temporal and spatial scaling behavior of extreme precipitation events
and to quantify how strong convective type events contribute to the extremes (article #2)

The strong inhomogeneity of precipitation in space and time leads to a dependency of
precipitation intensities on the temporal and spatial resolution of the data set. The higher
precipitation extremes found in the spatially higher-resolved simulations, are identified
as an important added value in the first article. For a more detailed comparison of
precipitation events at different grid resolutions, knowledge about the scaling behavior
of precipitation as well as the processes behind the events is needed. The second paper
analyzes the scaling behavior of extreme precipitation events using radar data. For this
kind of study it is most important to capture the shape, the size and the velocity of these
events. Station observations are often too dispersed to sufficiently capture these properties.
It has been shown that radar data deliver good results in deriving area reduction factors
(Bacchi and Ranzi (1996); Arnbjerg-Nielsen et al. (2013)). The study is based on the
RADOLAN-RY radar composite from the German Weather Service. This data set is
provided on an 1 km horizontal and 5 min temporal resolution. To study how scaling
impacts affect the intensity distributions, the radar grid points are aggregated in time,
i.e., ∆t ∈ {5, 10, 15, 20, 30, 45, 60, 120, 180, 240, 360}min, and in space over square grid box
areas with linear dimensions ∆x ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 25, 50} km, including all
possible pairs {t, x}. Using only one data set that is aggregated to different scales makes it
possible to analyze intensity changes that only occur due to the change in grid resolution.
Like for the first article, different percentile thresholds are used to identify precipitation
extremes. Compared to a fixed threshold, this has the advantage that the analysis can
be applied to different scales and over large regions, that show different precipitation
characteristics.

An objective of this study is the analysis of the different scaling behaviors of convective and
stratiform type events and to identify at which resolution the transition from stratiform
to convective type dominated extremes occurs. In order to analyze this transition the
data is split in stratiform and convective type conditions. This separation is done using
cloud observations obtained from the Met Office Integrated Data Archive System (MI-
DAS). After the data separation, the number of convective and stratiform events with
intensities above a common percentile threshold are counted. This allows to assess the
relative likelihood of a certain precipitation type to cause extreme precipitation.

A comparison of the area against the time reduction factors gives information about the
relevance of space compared to time aggregation. By matching identical precipitation
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extremes the study associates pairs of temporal and spatial resolution. Dividing the
spatial resolution by the temporal resolution defines a velocity (veff ), which is used to
generalize the Taylor hypothesis (Taylor et al. (2012)). Presuming a precipitation event
with a constant intensity in the analyzed time frame, veff would be scale independent.
Deviations from this assumption can result in situations where temporal scales change
disproportionately strong compared to spatial scales, and veff becomes scale dependent
(self-affinity; Deidda (2000)).

Changing the resolution has an impact on the entire distribution function. If a dataset
has to be transferred to a lower resolution, e.g. to save storage space, it is important
to know how strong the entire distribution will be affected. To provide an estimate of
the information loss due to the aggregation process, a measure similar to the Perkins
skill score (Perkins et al. (2007)) is used. This measure allows a quantification of the
overlap between two intensity probability density functions (PDF) at different horizontal
and temporal resolutions. The overlap value is referred to as PDF overlap.

Aim: 3 To assess the potential use of temporal and spatial scaling relations of precipitation,
to improve bias-adjustment methods when only point measurements are available (article
#3)

With increasing model resolution, gridded observations at a sufficient spatial resolution
are not always at hand. Often, only point measurements exist with a poor spatial cover-
age. The basic idea of this study is that information about the spatial variability in the
surrounding area of a gauge station is contained in the temporal variability. Therefore,
lowering the temporal resolution can be a good estimate to mimic an area average. This
procedure is called scale adaptation.

That temporal and spatial scales can be connected to compensate missing spatial informa-
tion with an increased temporal resolution or vise versa, is an observation already made
by Taylor (1938), known as the Taylor hypothesis of frozen turbulence. The identification
of these matching pairs is a main objective in order to pursue the third aim of this the-
sis. For this objective, the procedure used to identify matching pairs, that was developed
in the second article, is optimized. Three different methods are tested to measure the
PDF-agreement: The intensity-weighted and the non-intensity-weighted PDF-overlap, as
well as the Kolmogoroff-Smirnov test. For further analysis, the intensity-weighted PDF
overlap is applied. The intensity weighting gives more emphasis to high precipitation
intensities but ensures that the entire distribution is considered. First, the detection is
done using observational data. As detailed information about the temporal and spatial
scales of precipitation events are needed, the aggregated radar data sets from the second
article are taken. In a second step the process is repeated using a regional climate model
simulation. For this step, COSMO-CLM (Doms and Schättler (2002)) simulations driven
with ERA-Interim (Dee et al. (2011)) are used. The simulation is provided at a 7 km
horizontal and 1 h temporal resolution.

To assess how scale adaptation can improve the results of bias-adjustment methods, the
regional model simulation is bias-adjusted in three different ways, all based on empirical
quantile mapping (Gudmundsson et al. (2012)). In article three, the term “bias correction”
is used. However recent discussions within the EURO-CORDEX community suggest to
speak of bias-adjustment instead, to emphasize that the corrected data is not free from
errors. For the bias-adjustment procedure, a dense rain gauge network over southwestern
Germany is applied. Besides the good station network the area is particularly well suited

7



because it covers topographically less variable sites in the Rhine Valley as well as more
complex topographic regions in the Black Forest. An eight year time period with the
most dense station network is selected (1997-2004). Stations with more than 10% missing
data are discarded. Because the model is driven with ERA-Interim data, a close match
between the model and the simulations is ensured.

The first adjustment is designed as a benchmark. An entire station network is taken to
analyze the performance of the bias-adjustment procedure. For this benchmark gridboxes
with less than three stations are not considered. This first adjustment is assumed to
be the optimal solution, with enough stations to capture the spatial variability within
the gridbox. The second adjustment takes only a single station per gridbox to identify
the performance if only one station is available. The third adjustment also takes only
one station, but the quantile mapping is applied after the scales of the station and the
simulation are adjusted. After the quantile mapping, all three data sets are compared to
the station network. Besides the PDF-agreement also the 99.9th percentile and the dry
period fraction are compared. Two different test cases are calculated. In the first case
the model data is aggregated to 28 km spatial and 1 h temporal resolution. In this case
the data is bias-adjusted using 1 h gauge data. For the second test case the model data
is aggregated to a 77 km spatial and 1 h temporal resolution and the gauge station is
assumed to have only daily data.

Aim: 4 To quantify uncertainties in future climate projections of precipitation- and snowfall-
frequencies that result from common biases in the model simulations (article #4)

Precipitation and especially snowfall are key elements of the Alpine climate system.
Changes in this parameters will have a high environmental and economic impact. It
is known that most regional climate models show a cold temperature bias in the region,
and overestimate precipitation especially in the winter season. An objective to pursue aim
four is to identify how these biases modify the temperature distribution, and to analyze if
the temperature dependency of snowfall- and precipitation-frequencies is subject to model
biases. Assuming a future temperature increase it can be expected that a bias in the tem-
perature dependency will impact the projected changes. This objective is assessed by
comparing the ensemble data to observations. For this comparison the ensemble median
as well as the ensemble spread (5th to 95th percentile) is applied to analyze the ensemble
agreement and to identify if the observations are within the range of the ensemble. For
both parameters two different thresholds are used to analyze if heavy events deviate from
the average. The temperature dependency of an event is identified by calculating the
probability of the event occurrence at different temperatures.

Gridded snowfall observations at a daily temporal resolution are not available for the
studied region, therefore snowfall has to be estimated. Different approaches exist to de-
termine the precipitation phase (solid or liquid). Because atmospheric data is often not
available at different heights, the most common methods estimate snowfall by applying
an empirical relationship between snowfall-fractions and surface-temperature (Ye et al.,
2013). However, including information about the atmospheric conditions that act on the
falling hydrometeors e.g. relative humidity and air-temperatures at different heights, has
a large potential to improve these estimates Feiccabrino et al. (2015). Depending on
the discrimination method a different percentage of total precipitation will be counted
as snow. This differences are especially high at temperatures close to 0 ◦C where the
most and the heaviest snowfall is to be expected. Therefore the second objective is, to
asses how different discrimination methods modify the temperature dependency of snow-
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fall and how this effects past and projected climate changes. To analyze these differences
two substantial different discrimination methods are used. The first method is a simple
surface-temperature threshold scheme derived from snow-flux observations (Feiccabrino
et al., 2013), that proved to show good results over large regions of northern Europe
(O’Gorman et al., 2014). This method is applied to the Alpine gridded precipitation data
set EURO4M-APGD (Isotta et al., 2013) using surface-temperature data from E-OBS
(Haylock et al., 2008) and HISTALP (Chimani et al., 2011). The two different tem-
perature observations allow to account for uncertainties resulting from scale mismatches
between the different data sets. The second method uses snowfall statistics (snowfall-
intensity-fraction and snowfall-frequency-fraction) from the model ensemble. It includes
a dependency on precipitation intensity and altitude.

Because clear differences in the surface-temperature and precipitation distributions are
found between the model ensemble and the observations, a third objective is to develop
a probabilistic-decomposition-framework to analyze the impact of these biases on the cli-
mate change signal of precipitation- and snowfall-frequencies. The framework is based on
the law of total probability. The occurrence probability of an event is decomposed into
the probability that an event will occur at a specific surface-temperature (temperature
dependency) and the probability that a specific surface-temperature will occur (temper-
ature distribution). On the basis of this distinction, frequency changes of precipitation
and snowfall can be directly related to changes in the temperature distribution. The spa-
tially highly resolved precipitation data set covers the period 1971-2008. Splitting this
period into two nineteen year time slices (1971-1989 and 1990-2008) allows to compare
observed changes against simulated changes. Differences are identified and related to the
observed model biases to quantify their impacts. In total, the study separates between
eleven different terms that together explain the different changes in the simulations and
the observations. After analyzing the model biases and their impacts on past climate
changes, projected climate changes are analyzed by the end of the century. The analysis
is conducted with and without bias-adjustment of the temperature distribution and the
temperature dependency of the events, in order to identify how the bias in the distributions
affects the projected changes.

1.4 Results and discussion

Aim: 1 To analyze climate change projections of the EURO-CORDEX ensemble including the
robustness and significance of the signal with a focus on precipitation (article #1)

Article one is the first ensemble study that analyzes the EURO-CORDEX data set us-
ing different greenhouse gas emission scenarios (Representative Concentration Pathways
Moss et al. (2010)). For RCP8.5 and RCP4.5 similar change patterns are found for surface-
temperature and precipitation, with more pronounced changes in RCP8.5. Surface-temperature
projections indicate a greater warming in Southern Europe and towards the north east in
the range of 2.5-5.5 ◦C for RCP8.5, and between 1.0-4.6 ◦C for RCP4.5. An increase in
mean annual precipitation is found for most parts of central and northern Europe and a
decrease in the south. The climate projections indicate a reduction of precipitation inten-
sities below 9 mm/day and an increase for all intensities above this threshold. This shift
towards more intense precipitation events is most noticeable in RCP8.5. The analysis of
impact indices shows that for almost all indices the changes are stronger in RCP8.5 than
for RCP4.5. Also more pronounced differences are found for temperature-based indices
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than for precipitation-based indices. Changes in dry spells show substantial differences
between the two scenarios only by the end of the century. For heat waves stronger differ-
ences between RCP8.5 and RCP4.5 are identified. However, the definition of heat waves
is found to dominate regional change patterns more than the differences in scenario or
time period.

An objective of this study is to identify improvements and benefits of the high-resolution
of EURO-CORDEX compared to earlier ensemble data sets. Overall comparisons against
the ENSEMBLES data set (A1B scenario) show similar spatial patterns for temperature
and precipitation changes as well as for all related indices. The spatial correlations of
temperature and precipitation changes between RCP8.5 and A1B are very high. For the
mid of the century correlation coefficients between 0.82-0.97 for temperature changes and
between 0.59-0.92 for precipitation changes are found. The magnitude of temperature and
precipitation changes for the A1B scenario are mostly in-between RCP4.5 and RCP8.5.
However, the new EURO-CORDEX ensemble shows more detailed spatial patterns, re-
lated to better-resolved physical processes like convection and heavy precipitation and to
better representation of surface characteristics and their spatial variability. Differences are
especially found for heavy precipitation changes. The RCPs project strongest heavy pre-
cipitation changes of up to 35 % in central and eastern Europe, whereas A1B only projects
changes of up to 25 % within this region. Comparisons between EURO-CORDEX and the
driving GCM ensemble show that the RCMs provide higher daily precipitation intensities,
which are not observed in the GCM simulations. The higher precipitation intensities add
value to the projections, because of the better representation of the right tail of the precip-
itation distribution results in a different climate change of daily precipitation intensities,
with a smoother shift from weak to moderate and high intensities.

Validation of the robustness and the significance of the projected climate change signal
shows that a statistically significant and robust warming is found for all land parts of Eu-
rope. For mean annual precipitation the increase for most parts of central and northern
Europe as well as the decrease over southern Europe is found to be mostly robust and sig-
nificant. Between these two different patterns a transition zone is located, where changes
are neither robust nor significant. Projected changes in the 95th percentile of the length
of dry spells are mostly robust but significant only in parts of southern Europe. Changes
in heat waves are mostly robust and significant, except of parts in northern Europe where
the robustness and significance of the change considerably depend on the definition of the
indices.

Aim: 2 To analyze the temporal and spatial scaling behavior of extreme precipitation events
and to quantify how strong convective type events contribute to the extremes (article #2)

A main objective is to quantify the reduction due to temporal and spatial aggregation
of extreme precipitation events. The analysis is conducted depending on the precipi-
tation type, the regional and seasonal characteristics and the percentile used to detect
extreme events, which has not been done before. Compared to stratiform events, convec-
tive extremes show clear regional and seasonal differences, with the strongest extremes in
southern Germany during summer. Analyzing the duration (DRF) and the area (ARF)
reduction factors, up to 30% higher values are found for convective compared to stratiform
extremes, exceeding all other observed seasonal and regional differences within one type.
After the separation of convective and stratiform events, regional and seasonal differences
are only observed in the area reduction factors of convective type events. This proves
the importance of distinguishing between these events, e.g. for statistical downscaling
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exercises.

Analyzing the contribution of the convective type to extreme events as a whole, it is found
that the contribution is strongest in summer and over southern Germany. Besides the ex-
pected seasonal and regional differences, also the resolution and the intensity threshold
show an impact. Convective type events contribute more to the extremes when the res-
olution or the intensity threshold is increased. At a fixed horizontal resolution of about
10 km (∼EURO-CORDEX grid size) changing the temporal resolution or the intensity
threshold can change the dominant precipitation type accountable for the extremes.

Another objective of article two is to analyze the temporal and spatial scaling behavior
of convective and stratiform extreme precipitation events, and to establish a connection
between space and time. By matching identical precipitation extremes, the study asso-
ciates pairs of temporal and spatial resolution, which define an effective velocity defined
as (veff ). For constant veff the Taylor hypothesis would be obeyed. However, veff of
convective and stratiform extreme precipitation decreases with increasing spatial scale,
with similar exponents for both precipitation types. The main scaling difference between
convective and stratiform events can be described by a constant scaling factor. This scal-
ing factor leads to about 1.75 times higher advection velocities for stratiform than for
convective events. Analyzing the associated temporal resolution at horizontal scales close
to the EURO-CORDEX grid size, shows that temporal resolutions of approximately 20
to 25 min are needed in order to avoid an imbalance between duration and area reduction
effects.

To assess aggregation effects in the entire precipitation distribution, the PDFs from dif-
ferent temporal and spatial resolutions are compared with each other by calculating the
overlap of these PDFs hereafter referred to as PDF-overlap (Perkins et al., 2007). It is
found that the impact of temporal aggregation strongly depends on the spatial scale of
the data and vice versa. For example, PDF changes that are observed when the temporal
resolution is decreased from 5 min to 2 h at 50 km horizontal resolution are quantitatively
comparable with PDF changes when going from 5 to 30 min at 10 km horizontal resolu-
tion, or from 5 to 10 min at 2 km horizontal resolution. Comparisons between a certain
reference resolution to all other aggregated resolutions show a ridge with PDF-overlap
values close to 1 (values go from 0 to 1 with 1 being a perfect match). Using a 60 min
temporal and 10 km spatial reference resolution the ridge ranges from 5 min and 25 km
to 120 min at 1km resolution for convective type events, and from 5 min and 25 km to 90
min at 1 km resolution for stratiform events. This proves that associated pairs of temporal
and spatial resolution can also be found, when the entire distribution is considered.

Aim: 3 To assess the potential use of temporal and spatial scaling relations of precipitation,
to improve bias-adjustment methods when only point measurements are available (article
#3)

Article three analyzes if pairs of temporal and spatial resolution, that show similar ag-
gregation effects (see article two), can be used to improve bias-adjustment methods. The
first objective is to optimize the procedure to identify these pairs for the application of
bias-adjustment and to apply the procedure in two case studies. Three different methods
are tested to measure the PDF-agreement. The intensity-weighted and the non-intensity-
weighted PDF-overlap as well as the Kolmogoroff-Smirnov test. It is found that all meth-
ods give similar results, albeit with varying degree of noise. The intensity-weighted PDF-
overlap showed the best performance. Therefore, it is used for all further evaluations and
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revered to as PDF agreement.

To test whether the scale-adjustment improves bias-adjustment methods, two different
cases are analyzed. In the first example, model data at a 28 km spatial and 1 h tem-
poral resolution is bias-adjusted using station data at a 1h resolution. In this case, the
scale-adjustment indicates that the temporal resolution of the station data needs to be
aggregated to 3 h resolution, in order to mimic an area average of the 28 km model grid
(highest PDF-aggrement). Because the temporal resolution of the station data needs to be
reduced, this case is referred to as model-limited correction. For the second case a coarser
model resolution of 77 km spatial and 1 h temporal is assumed and bias-adjusted using
daily station data. Because of the low temporal resolution of the station data, in this case
the model data has to be aggregated to a 19 h temporal resolution (Gauge-limited).

Quantile mapping is applied to scale-adjusted and non-scale-adjusted data, to analyze
possible improvements of the scale-adaptation. First, an adjustment using at least three
stations in each gridbox is performed as a benchmark. This represents the ”ideal correc-
tion” obtainable when sufficient stations were available to calculate a spatial average. A
good agreement is found between the bias-adjusted data and the observations with a PDF
agreement above 95% for all gridboxes. In the next step, bias-adjustment is performed
assuming that only a single station is available for bias correction. In the Model-limited
case, this correction significantly shifts the original distributions to more extreme inten-
sities. The point information is spatially too highly resolved for the model grid, causing
unrealistic extremes. Repeating the bias-adjustment using the aggregated 3 h station
observations results in an increase > 10% in the PDF agreement between the observed
gridbox average and the corresponding bias-adjusted model values. In addition, improve-
ments are found in the dry period fraction and the extremes. Analogous improvements in
all three parameters are also shown for the Gauge-limited case. In that case, the model
data can be disaggregated back to hourly data after the bias-adjustment. It is found
that especially when gauge density is low scale-adjustment may allow for substantially
improved bias correction at essentially no cost in terms of model output, data storage, or
mathematical complexity.

Aim: 4 To quantify uncertainties in future climate projections of total-precipitation- and
snowfall-frequencies that result from common biases in the model simulations (article
#4)

Within the Alpine region, regional climate models are known to contain common biases in
the simulated surface-temperature and precipitation fields. The fourth article develops a
new framework to analyzes how these errors impact the temperature distribution, and the
temperature dependent occurrence distribution, of snowfall- and precipitation-frequencies.

Analyzing the surface-temperature distribution, it is found that the center of the observed
distribution is, compared to the simulations, shifted towards higher temperatures. Also,
the shape of the distributions differ. The simulated distributions are stronger skewed to
the right with a more pronounced peak at 0 ◦C. The overestimation of days with a mean
surface-temperature of 0 ◦C could be caused by an overestimation of snowfall days as well
as the overall cold bias in the region, that may lead to an enhanced snow-cover.

For the surface-temperature dependency of precipitation-frequencies (P (I|T )) three im-
portant observations are made. First, the slope of the P (I|T ) distributions is not constant.
Therefore, the sensitivity of the precipitation-frequency on temperature changes depends
on the temperature distribution itself. Second, within the temperature range of ∼0 ◦C
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to 12 ◦C, the slopes of the observed and simulated P (I|T ) distributions point to opposite
directions. This modifies the response of precipitation changes to changes in the tempera-
ture distribution. Third, a kink between 0 to 1 ◦C is found in the model ensemble that is
not present in the observed distribution. This kink could be caused by parameterizations
that describe interactions between liquid- and ice-cloud-content and should be further
investigated.

An objective of the study is to analyze the impact different snowfall discrimination meth-
ods have on the temperature dependency of snowfall and to quantify resulting uncertain-
ties in the observed climate change signal. Depending on the discrimination method, the
temperature range with the highest snowfall occurrence shifts from -2 ◦C using snowfall-
fraction statistics from the model ensemble, to 0 ◦C when a surface-temperature thresh-
old scheme developed by (Feiccabrino et al., 2013) is applied. The shift towards higher
temperatures clearly attenuates the projected snowfall decrease. Further, comparisons
against observations indicate that the models likely underestimate snowfall-fractions in a
temperature range close to 0 ◦C. An explanation for this underestimation may be miss-
ing information about the sub-grid orography. The model grid only provides an average
altitude for each gridbox. Parts of the area within one gridbox will, however, be located
higher as the mean which will likely result in colder temperatures and higher snowfall
probabilities.

A further objective is to develop a framework to analyze the impact of the observed model
biases on the climate change signal of precipitation- and snowfall-frequencies. This task
is addressed in two steps. First, the simulated past climate change signal is compared
to observations. Second, future climate projections are analyzed with and without bias-
adjustment of the distributions.

Analyzing changes in the surface-temperature probability distribution between the periods
1971-1989 and 1990-2008, it is found that the simulations underestimate a reduction that
is observed in the probability distribution between -5 to 3◦C as well as an increase above
12 ◦C. Also no clear changes in the temperature dependent occurrence probability of
total-precipitation events are simulated, whereas the observations show an increase at
temperatures above 2 ◦C and decreasing below. For past changes in total-precipitation-
frequency, the observations indicate an increase above the spread of the model ensemble
at most altitudes. On average the observations show an increase of ∼3 % for precipitation-
and∼9 % for heavy precipitation frequencies. The precipitation increase in the simulations
is close to 1 % for both intensity thresholds. The main cause for these differences is the
cold temperature bias. The different climate change signal in the temperature distribution
played only a minor role. Because of this cold bias, temperatures above ∼10 ◦C occur
less often in the simulations. Precipitation-frequencies are however especially increasing
at days with mean surface temperatures above ∼10 ◦C. Past snowfall-frequency changes
were mainly driven by temperature changes. For heavy snowfall-frequencies also non-
temperature dependent changes become important.

The study highlights that the different snowfall discrimination methods clearly influence
the observed snowfall-frequency changes. The spread between the different observational
data sets is in the same order of magnitude as the changes themself. Compared to observa-
tions, the simulations underestimate the decrease in snowfall-frequency at all altitudes. At
low altitudes these differences are mainly caused by an underestimation of the decrease in
the precipitation probability at cold temperatures. At high altitudes the different changes
in the temperature distribution are the main reason. It is discussed that the enhanced
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reduction of days close to 0 ◦C may be a result of feed-back processes with a decrease
in snow cover. The high precipitation intensities and the cold model bias might have
prevented this feedback loop in the simulations.

Future projections show no clear signal for the change in the precipitation-frequency. The
ensemble mean increases less than 1 %. Heavy precipitation-frequencies are projected to
increase by about 10 %. In both cases the bias in the temperature dependency of these
events results in a decrease in the event frequency caused by the projected warming. After
the bias-adjustment the temperature-precipitation relation is changing which results in a
stronger total increase in precipitation- and heavy precipitation-frequencies.

Like past snowfall-frequency changes, future projections indicate that changes in these
indices are mainly driven by temperature changes. Stronger changes are projected for
snowfall-frequencies as for heavy snowfall-frequencies. The main reason for this is an in-
crease in the temperature dependent occurrence probability for heavy events, that coun-
teracts the warming induced decrease of snowfall events.

1.5 Conclusion

The first article highlights a strong agreement between the large scale climate change patterns of
the new high-resolved EURO-CORDEX ensemble and the ENSEMBLES data set. The finding
that neither model improvements, changes in grid size, nor the use of different greenhouse gas
scenarios lead to drastic changes in these patterns increases the credibility of the results.

Tests for significance and robustness of the projected changes reveal that in most areas where
significant changes are detected these changes are also robust. This indicates a strong agreement
between the different climate models in the direction of the projected changes. However, it is
important to clarify that the robustness test does not include all sources that could cause
uncertainties in the projected changes. The fact that most models agree gives comfort in the
results, but it does not necessarily mean that the models are right or that the results are also
valid at different temporal and spatial scales.

In order to apply climate projections for decisions-making, knowledge about the inherent un-
certainties is essential (Foley , 2010). Article one is a first step towards providing this additional
information together with the climate signal. Results of this thesis suggest that additional in-
formation about uncertainties and scale dependencies can be gained from the EURO-CORDEX
ensemble, which should be further researched and included in new developed products, in order
to increase the value of climate projections for impact-research and decision-makers. The fol-
lowing conclusions about guidelines of data usability, as well as the uncertainties arising from
common model biases suggest that the definition of the indices, as well as the temporal and
spatial scales of the provided data sets, have to be tailored to the questions asked.

Guidance for data usability

Two important findings concerning the usability of the projections are highlighted. It is found,
that care has to be taken when the data is transformed to different temporal and spatial scales.
Article one and two both indicate that changes in the resolution of the data set impact the
intensity distribution of precipitation. Significantly different changes are projected by the RCMs
compared to the lower resolved GCMs. Also, it is found that the ratio between convective
and stratiform type extremes is changing depending on the resolution of the data set. The
impacts of extreme precipitation events vary enormously with scale (Blöschl and Sivapalan
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(1995); Arnbjerg-Nielsen et al. (2013); Mueller and Pfister (2011)). As climate model output is
mostly not available at the desired scales, the simulations are often statistically downscaled. It
is questionable whether these procedures are able to reflect scale dependencies in the projected
changes. Especially for precipitation that is strongly inhomogeneous in time and space, it
should be considered to complement the information about future climate projections with a
scale range of validity in order to prevent misuse.

A second finding is that the projected changes of several parameters indicates a dependency on
their definitions. In the first article the definition of a heat wave dominated the regional change
pattern. In the second article, the threshold used to define precipitation extremes influenced
the ratio of convective vs. stratiform extreme events and in the fourth study the snowfall
discrimination method clearly modified the change signal of snowfall-frequencies. The results
highlight the importance of clearly defining the index that needs to be tailored to the sector of
interest. For the tourism sector it might for example be more sufficient, if days with sleet are
not counted as snow days, even though the amount of snow exceeds a certain threshold.

Complementing the robustness test with additional model uncertainties resulting
from common model biases

An analysis of past changes within the Alpine region demonstrated that for certain parameters
the observations are outside of the model spread (article 4). Common model errors are a major
source for these differences. In earlier studies, little focus is set on the question how errors in
the models and the observations effect regional climate change signals. However, especially for
climate change analysis for the near future, or under a fixed global warming threshold, these
errors may be of utmost importance to estimate the underlying uncertainties.

Detection of model biases

To detect model biases and their possible impacts on the climate change signal, articles one, two
and four stress the importance of analyzing the entire distribution of the indices in question. In
many cases, changes in the shape or at the tails of the distribution can have a stronger impact
on society as changes in the mean. Further, it is found that a correlation analysis between
different parameters is needed to detect model deficiencies, e.g. a correct representation of the
temperature dependency is identified to be a key issue for changes in precipitation dependent
parameters.

Bias-adjustment is mostly applied in order to make climate model results usable for impact
analysis. Article four emphasizes the utility of bias-adjustment methods for model development
by using the adjusted data sets to quantify the impacts of the identified biases. However, for
this kind of application it is important that deviations in the projected changes can be directly
related to a certain change made by the adjustment method. Many bias-adjustment methods
are applied as a ”black box”, making it impossible to explain resulting impacts.

Nexus of time and space

A major part of the analysis in article two and three investigates the connections between
temporal and spatial aggregation effects of (extreme) precipitation. From these studies, the
following two conclusions are drawn.

First, aggregation in time has similar effects on the intensity distribution of precipitation than
aggregation in space. Therefore it is possible to use highly resolved temporal information to
estimate spatial variability and vice versa. This needs to be kept in mind when bringing data
sets with different temporal and spatial scales together. In article two it is shown that even in
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regions with moderate topographic variability, point measurements can be adjusted to the scale
of gridded data sets by taking a lower time average to mimic the area mean. However, this
method can only be used to adjust statistical changes in the intensity distribution that apply
over the entire gridbox area. Spatial information about the sub-scale variability e.g. caused
by strong orographic gradients as well as temporal patterns like the diurnal cycle cannot be
restored or can even get lost by the averaging.

Second, the smoothing effect caused by temporal aggregation depends on the spatial scale of the
data set and vice versa. The good agreement in the change signal between the EURO-CORDEX
ensemble and the ENSEMBLES data set is partly a result of the low temporal resolution used.
By applying daily data most of the high spatial variability will be smoothed. The analysis
indicates that the temporal resolution of regional model output needs to be reconsidered. The
temporal output of RCMs is often low compared to the horizontal grid size. For variables like
precipitation, that show strong inhomogeneities in time, this results in a pronounced loss of
information about the variability of these events.

1.6 Future perspectives

This thesis focused on the quantification of uncertainties and scale dependencies of observed and
simulated precipitation dependent indices. The analysis are mostly exemplary and conducted
for specific regions and variables. Extending the analysis using additional data can improve
confidence in the results. Most of the methods and the results can likely be transferred to
other regions and variables. The scaling analysis from the second article for example could also
be applied to other variables with a strong inhomogeneity in space and time e.g. wind-speed
or tracer concentrations. In addition to the expansion of the analysis mentioned above, the
following suggestions for future research are proposed, based on the work presented in this
study.

Postprocessing information to aid in decision-making

Adding information about the robustness and the significance to the results, is an important
step towards postprocessing climate projections for impact-modelers and stakeholders (e.g.Foley
(2010)). However, this thesis highlights, that further information about scale dependencies and
model uncertainties can be gained from the RCM ensembles. In the first article, the climate
change signal is detected to be robust if 66% of all models agree in the direction of change.
This method does not give any information about whether the projections can also be trusted
quantitatively. Including a quantitative robustness test, that is defined over the ensemble spread,
could make the information more versatile. As the robustness test only checks for the direction
of change, the meaning of the test becomes less clear in areas where only minor changes are
projected. In these areas the robustness test is often rejected although most models agree that
the changes are small. A solution for this problem might be to consider all areas as robust,
where 66% of all models agree that the changes are not significant. However, a quantitative
approach of the robustness-test is likely a more sophisticated solution.

The analysis of the first and the second article shows that the climate change signal of precipi-
tation is likely to be scale dependent. If this is true, providing an information about the valid
scales at which the information from a model projection can safely be used, should be thought
about. The studies indicate that a better representation of the precipitation intensity distri-
bution at spatially higher resolved data sets, has a major impact on the climate projections.
Therefore, it could be possible to estimate the valid scales as scales with similar intensity distri-
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butions. However these scales may differ for different variables, regions, and seasons. Further
analysis is needed to test if this behavior can also be detected for other variables.

Article four demonstrates, that common model biases have the potential to strongly modify the
climate signal of the entire ensemble. It should be considered to include this information in the
robustness test e.g. by marking areas with strong biases. In extreme cases, these areas might
need to be excluded from the analysis.

Analysing scale dependencies in the climate change signal of precipitation extremes

Article two analyzes the intensity distributions of convective and stratiform type precipitation
events at different scales. It is found that the contribution of convective type events to the
extremes is changing depending on the temporal and spatial scale, the region and the season.
Based on these results the following next steps are proposed. First, it should be analyzed if
the changing contribution of convective events is impacting the observed temperature scaling
of precipitation events. This would be expected following the results from Berg et al. (2013).
Secondly, the results of this analysis should be confirmed using climate model simulation that
were conducted at different grid sizes. For this test the temporal output needs to be very high
in all simulations in order to avoid stronger duration than area reduction effects. Most studies
that compare highly resolved data sets still use hourly or even daily temporal resolutions that
prove too be to coarse for this kind of analysis.

Nexus of time and space

The different temporal and spatial aggregation effects on convective and stratiform type events
make it difficult to statistical downscale precipitation. Assumptions have to be made about the
size and the duration of precipitation events as well as about the sub-grid temporal and spatial
variability. For most impact-assessments precipitation data is needed at scales well below the
gridsize of most climate model simulations. Downscaling precipitation data while the model
is running would have two major benefits. First, the very high temporal information at run
time can be used to estimate the spatial variability of the event. Secondly (not subject of the
articles), most models calculate the area of precipitation within a grid-box at each model time
step in order to parameterize evaporation of falling rain. Using this information about the size
of the event would be consistent with the model physics.

The similar impact of temporal and spatial aggregation on the precipitation distribution is also
used in the second article, to adjust the scales between point measurements and model data.
This method could further be improved if the different aggregation effects of convective and
stratiform type events are considered. Further it should be investigated if this information can
also be used to improve very highly resolved gridded observation data sets.

Additional model output

This thesis highlights the benefits of an improved representation of the precipitation distribution
for climate change analysis. Further it is shown that temporal aggregation has a strong impact
on the distribution, as precipitation events are strongly inhomogeneous in time. Increasing the
temporal output frequency of climate models leads to a considerable increase in data volume
which makes it difficult to store and handle the files. Introducing a new model output format,
that only stores information, e.g. in daily or monthly histograms, would be a solution to store
information about the temporal variability with a comparatively low increase in the required
storage space. Information on the chronological sequence including e.g. the diurnal cycle, are
not captured. However, using histograms, sub-hourly information could effectively be stored
and processed, which would be a large benefit for studies that analyze extreme events.
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Abstract A new high-resolution regional climate change

ensemble has been established for Europe within the World

Climate Research Program Coordinated Regional Down-

scaling Experiment (EURO-CORDEX) initiative. The first

set of simulations with a horizontal resolution of 12.5 km

was completed for the new emission scenarios RCP4.5 and

RCP8.5 with more simulations expected to follow. The aim

of this paper is to present this data set to the different

communities active in regional climate modelling, impact

assessment and adaptation. The EURO-CORDEX ensem-

ble results have been compared to the SRES A1B simu-

lation results achieved within the ENSEMBLES project.

The large-scale patterns of changes in mean temperature

and precipitation are similar in all three scenarios, but they

differ in regional details, which can partly be related to

the higher resolution in EURO-CORDEX. The results

strengthen those obtained in ENSEMBLES, but need fur-

ther investigations. The analysis of impact indices shows

that for RCP8.5, there is a substantially larger change

projected for temperature-based indices than for RCP4.5.

The difference is less pronounced for precipitation-based
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indices. Two effects of the increased resolution can be

regarded as an added value of regional climate simulations.

Regional climate model simulations provide higher daily

precipitation intensities, which are completely missing in

the global climate model simulations, and they provide a

significantly different climate change of daily precipitation

intensities resulting in a smoother shift from weak to

moderate and high intensities.

Keywords Regional climate change � Impact indices �
EURO-CORDEX � Heat wave � Heavy precipitation �
Dry spells

Introduction

Climate impact assessments and the development of

regional to local-scale adaptation strategies require the

availability of high-resolution climate change scenarios,

including an assessment of their robustness and their

inherent uncertainties. The WCRP Coordinated Regional

Downscaling Experiment (CORDEX, http://wcrp-cordex.

ipsl.jussieu.fr/; Giorgi et al. 2006) provides an interna-

tionally coordinated framework to improve regional cli-

mate scenarios. This includes harmonisation of model

evaluation activities in the individual modelling centres

and the generation of multi-model ensembles of regional

climate projections for the land-regions worldwide.

As part of the global CORDEX framework, the EURO-

CORDEX initiative (http://www.euro-cordex.net/) pro-

vides regional climate projections for Europe at 50 km

(EUR-44) and 12.5 km (EUR-11) resolution, thereby

complementing coarser resolution data sets of former

activities like, e.g., PRUDENCE and ENSEMBLES. The

regional simulations are downscaling the new CMIP5

global climate projections (Taylor et al. 2012) and the new

representative concentration pathways (RCPs) (Moss et al.

2010; van Vuuren et al. 2011). Twenty-six modelling

groups contributing 11 different regional climate models,

partly in different model configurations, actively support

EURO-CORDEX.

In its initial phase, EURO-CORDEX mainly focussed

on model evaluation in present-day climate (e.g., Vautard

et al. 2013; Kotlarski et al. 2013). So far more than 30

evaluation simulations have been conducted. Further

activities include the coordinated analysis of future climate

simulations, the joint analysis of dynamical and empirical–

statistical methods and the design of suitable bias correc-

tion techniques to tailor EURO-CORDEX data for direct

application in climate impact research. Particular emphasis

is put on the construction of a simulation matrix that covers

uncertainty in emission scenarios, the driving global cli-

mate model and the downscaling method in the best

affordable manner. Here, we present the first results of the

high-resolution (EUR-11) future climate simulations from

EURO-CORDEX.

We used for comparison the results obtained from the

regional climate projections in the FP6 ENSEMBLES

project (Hewitt and Griggs 2004; van der Linden and

Mitchell 2009). A number of regional limited-area models

were used to downscale transient global climate projections

over Europe at a 25 and 50 km resolution over the second

half of the twentieth century and along the twenty-first

century. The ENSEMBLES climate projections were car-

ried out under the assumptions of the Special Report on

Emission Scenario (SRES) A1B scenario (IPCC 2000).

This scenario follows the storyline of the IPCC family of

A1 scenarios. It assumes a rapid economic growth and

development of technologies, with a worldwide population

peaking in the middle of the twenty-first century, and a
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N. Kröner � S. Kotlarski

Institute for Atmospheric and Climate Science, ETH Zurich,
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balanced use of energy resources. This scenario leads to

a rapid increase in fossil CO2 emissions until 2050 and

a decrease afterwards. As compared to other SRES sce-

narios, the CO2 emissions lie in the middle of the scenario

range.

EURO-CORDEX scenario simulations use the new

Representative Concentration Pathways (RCPs) defined for

the Fifth Assessment Report of the IPCC (Moss et al.

2010). In contrast to the SRES scenarios, RCP scenarios do

not specify socioeconomic scenarios, but assume pathways

to different target radiative forcing at the end of the twenty-

first century. For instance, scenario RCP8.5 assumes an

increase in radiative forcing of 8.5 W/m2 by the end of the

century relative to pre-industrial conditions.

A comparison between the climate effects of SRES and

RCP scenarios (Rogelj et al. 2012) indicates that the A1B

scenario leads to a global mean temperature increase in the

likely range of 2.8–4.2 �C, which approximates to RCP6

and lies clearly between RCP4.5 and RCP8.5.

The aim of the present study is to present a new high-

resolution (12.5 km) data set from a multi-model multi-

scenario ensemble of regional climate simulations for

impact research. Such a high resolution has not been

reached before in previous climate model projections. The

ENSEMBLES project covered RCM simulations for Eur-

ope with a maximum resolution of 25 km, and in PRU-

DENCE, all simulations were done on a 50 km grid.

The analysis carried out here is directed towards

regional climatic changes in Europe, addressing the dif-

ferences of mean changes in annual mean temperature and

total precipitation for the scenarios A1B, RCP4.5 and

RCP8.5. In addition to the mean values, a range of climate

indices important for climate impact studies in different

sectors were calculated for sub-regions of Europe includ-

ing: heavy precipitation events, dry spells and heat waves.

Experimental setup, statistical methods and definitions

of indices

Experimental setup

In total, nine simulations have been done for RCP4.5

and ten for RCP8.5. They were all performed on the

EURO-CORDEX domain, expect one simulation, which

covered only the MED-CORDEX domain. The size and

location of the CORDEX domains can be seen on the

CORDEX web page (http://wcrp-cordex.ipsl.jussieu.fr/).

The EURO-CORDEX domain covers all countries in the

European Union, but it does not map perfectly to the

Europe region defined for the IPCC Fifth Assessment

Report. For the eastern part of Turkey, unfortunately, no

regional model projections are available.

A summary of the grid configuration and differences in

the parameterisation schemes for the participating regional

models (ALADIN5.1: Colin et al. 2010, Herrmann et al.

2011, CCLM: Rockel et al. 2008, HIRHAM: Christensen

et al. 1998, RACMO2: Meijgaard van et al. 2012, RCA4:

Samuelsson et al. 2011, Kupiainen et al. 2011, REMO:

Jacob et al. 2012, WRF Version 3.3.1: Skamarock et al.

2008) is given in the supplementary material (Table s1).

The RCP scenarios, the driving GCMs and the driven

RCMs as well as the simulation length are listed in the

supplementary material (Table s2a). Seven different RCMs

and five different GCMs have been used in this study. Two

of the RCMs were driven by four/five different GCMs; five

GCM-RCM chains did simulate both RCP scenarios. They

all provide data at least until the mid of the century. Eight

RCP4.5 simulations and nine RCP8.5 simulations had

reached the end of the century.

Two additional sensitivity studies have been performed

to study the influence of the smaller domain size used by

one model (supplementary material, Figure s6) and the

effect of using one RCM more often than others (supple-

mentary material, Figure s7).

From the ENSEMBLES data set, 20 transient RCM

simulations reaching the end of the century are used for

most of the analysis (supplementary material, Table s2b).

Maximum and minimum temperature values were only

available from nine simulations. The ensemble includes

simulations on 50 and 25 km grid scale, but most simula-

tions were carried out on a 25 km grid (16 out of 20 and 7

out of 9). The coarser resolution simulations were included

to enlarge the sample size for the statistical analyses. A

sensitivity study using only the 25 km simulations for the

analyses of changes in the mean fields of temperature and

precipitation and in the indices showed that there are only

minor differences in the horizontal pattern of the meteo-

rological parameters as well as in the regions with a sig-

nificant and/or robust change (not shown).

Statistical methods

All regional changes have been analysed for the land areas

of the EURO-CORDEX domain using daily data for three

time periods: 1971–2000, 2021–2050 and 2071–2100. For

changes in all outcome measures (mean annual and sea-

sonal temperature, total annual and seasonal precipitation,

heavy precipitation, heat waves and dry spells), signifi-

cance and robustness were tested using a method adapted

from Pfeifer et al. (2013). This method identifies regions

with relatively strong and robust climate changes from an

ensemble of climate change simulations. It can be applied

to simulation results on regular model grids or to data

aggregated onto larger regions. The robustness of the

information given by the ensemble of climate projections is
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analysed using two statistical tests. The first test regards the

agreement of the simulations in terms of the direction of

the changes. In the second test, the significance of the

projected changes in each simulation is assessed by

applying the Mann–Whitney–Wilcoxon test. Only regions,

which pass both tests, are identified as regions with robust

projected changes.

The stringency of the tests can be adjusted by the choice

of several parameters, for example the significance level, or

by shifting the percentage of simulations, which have to

pass the individual tests. We visualise the regions with

relatively strong and robust climate changes. Regions with

non-significant changes are treated in the same way as

regions where the models strongly disagree on the direction

of the changes. It is thus by purpose not possible to dis-

tinguish between regions where to a certain confidence no

significant changes are projected to occur and regions

where the projected changes cannot be given with suffi-

cient confidence. Insignificant changes are not equivalent

to the lack of agreement in the projected changes and

should be interpreted differently, depending on the context.

First, the direction of change was assessed. Changes in

regions in which more than 66 % of the models agree in the

direction of change were called robust changes. For the

analyses of the significance, two different data preparation

methods were used. For total precipitation and maximum,

mean and minimum temperature, one value each per year

and grid box was calculated (30 values per simulation per

grid box). For heat waves, dry spells and heavy precipita-

tion, only one value exists for each simulation and grid box,

since they are defined over a 30-year period. Again they

were calculated for all three time periods. For significance

testing, the Mann–Whitney–Wilcoxon test was applied to

the entire ensemble data set for the respective time periods.

For the climate change signal of mean annual temper-

ature and total annual precipitation, a spatial correlation is

calculated for the respective parameters of the SRES A1B

and RCP8.5 simulation results for the end of the century

based on the five sub-regions. For this analysis, all

parameters for both scenarios were remapped to the

ENSEMBLES grid with 25 km resolution.

Definitions of impact-relevant indices

In addition to the calculation of mean temperature and

precipitation changes, we focussed on high-impact phe-

nomena. Heavy precipitation, dry spells and heat waves

were calculated according to the following definitions:

• ‘‘Heavy precipitation’’ is defined as the intensity of the

heavy precipitation events defined as the 95th percen-

tile of daily precipitation (only days with precipitation

[1 mm/day are considered).

• ‘‘Dry spells’’ are defined as periods of at least 5

consecutive days with daily precipitation below 1 mm.

The 95th percentile of the length of all identified dry

spells is considered in this analysis and referred to as

‘‘extended dry spells.’’

• For the analysis of the change in number of heat waves,

we used two different definitions. In the first definition,

heat waves were considered as periods of more than

three consecutive days exceeding the 99th percentile of

the daily maximum temperature of the May to

September season of the control period (1971–2000).

The second definition, representing more extreme heat

wave events, is based on the WMO definition (Frich

et al. 2002). Heat waves were defined as periods of

more than 5 consecutive days with daily maximum

temperature exceeding the mean maximum temperature

of the May to September season for the control period

(1971–2000) by at least 5 �C.

A range of indices was selected based on known climate

impacts in Europe for infrastructure, agriculture and human

health (Alcamo et al. 2007). The impact indices are cal-

culated as means for 5 European sub-regions used in the

European chapter of the forthcoming IPCC Fifth Assess-

ment Report. The sub-regional classification is based on

Metzger et al. (2005) (supplementary material, Fig. s1) and

selected to represent 5 different climate and environmental

characteristics: Alpine, Atlantic, Continental, Northern and

Southern Europe. The list of impact index definitions is

given in http://cccma.seos.uvic.ca/ETCCDI/list_27_indices.

shtm.

For all ensembles, the ‘‘likely’’ range is defined as

range within the 17th and 83rd percentile of projected

changes.

Results

Mean changes of temperature and precipitation

To date, the regional climate change projections provided

by the EU-FP6 ENSEMBLES multi-model ensemble for

the SRES A1B scenario are considered as state-of-the-art

for European climate impact research. Therefore, we

compared this data set to the new regional EURO-COR-

DEX data set for RCP8.5 and RCP4.5. Figure 1 shows the

ensemble mean of the mean annual temperature and total

annual precipitation change until the end of the century.

Figure 1b, d shows a robust and statistically significant

warming, with regional differences, in the range of

1–4.5 �C for RCP4.5 and of 2.5–5.5 �C for RCP8.5. These

ranges encompass the warming range projected for the

A1B scenario, where temperature increases between 3 and
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Fig. 1 Projected changes of total annual precipitation (%) (left) and

annual mean temperature [K] (right) for 2071–2100 compared to

1971–2000, for A1B (e, f), RCP8.5 (c, d) and RCP4.5 (a, b) scenarios.

Hatched areas indicate regions with robust and/or statistical signif-

icant change (a, c, e). Changes are robust and significant across the

entire European continent (b, d, f)
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4.5 �C (Fig. 1f). The projected spatial patterns are very

similar in all scenarios with greater annual mean warming

in Southern Europe and towards the northeast. Under

RCP8.5, large parts of Northern Scandinavia, Eastern

Europe and the Alpine ridge might be exposed to a

warming of more than 4.5 �C compared to 1971–2000,

which could be avoided by RCP4.5.

Associated with the large increase in temperature in

RCP8.5 are robust changes in annual precipitation. The

ensemble mean projects a statistically significant increase

in large parts of Central Europe and Northern Europe of up

to about 25 % and a decrease in Southern Europe. A zone

with small changes, which are not significant (however,

partially robust in the sign of change), indicates where the

climate change signals change the sign (Fig. 1c, white

areas). The pattern of the changes is very similar for

RCP4.5, but less pronounced (Fig. 1a). The spatial pattern

for A1B precipitation changes qualitatively agrees with the

described changes for RCP4.5 and RCP8.5, and the mag-

nitude of the changes mostly lies in-between the two RCPs.

However, differences in the spatial patterns are seen over

the British Isles, Benelux and Germany (Fig. 1e).

For mean temperature and precipitation change, a spatial

correlation has been done between RCP8.5 and A1B results

(Table 1). For all sub-regions, the spatial correlation

between SRES A1B and RCP8.5 is very high, with

0.82–0.97 for temperature changes and 0.59–0.92 for pre-

cipitation changes depending on the region for mid-cen-

tury. Towards the end of the century, the correlation is even

stronger for both parameters.

Seasonal changes of mean temperature and precipitation

are shown in the supplementary material (Fig. s2-s5). The

seasonal temperature change signals show more regional

heterogeneity than the annual mean. The zone between

regions in which precipitation increases in the north and

decreases in the south shifts southwards in summer and

northwards in winter.

Seasonal mean changes for heavy precipitation

The projected seasonal mean changes in heavy precipita-

tion for the three emission scenarios are relatively similar,

but some regional differences are visible (Figs. 2

(RCP8.5), 3 (A1B), 4 (RCP4.5)). Most obvious differences

are the increased regional detail in the RCP8.5 and

RCP4.5, which is related to the higher horizontal resolution

of about 12.5 km for the RCPs compared to 25 km for

A1B, for which more homogeneous changes are calculated.

The annual cycle of changes in heavy precipitation is

similar in all three scenarios, but the amplitude of the

change is stronger in RCP8.5 than in A1B in several

regions. The results for RCP8.5 include a possible decrease

in heavy summer precipitation by about 25 % over some

parts of the Iberian Peninsula and Southern France,

accompanied by regional increases in parts of Spain and

Portugal. For winter, RCP8.5 projects strongest increases

in heavy precipitation (up to 35 %) in Central and Eastern

Europe, whereas A1B projects changes up to 25 % only in

this region. Only for some parts in Scandinavia, A1B

shows similar values as RCP8.5.

Important regional differences in heavy precipitation are

projected for the RCP4.5 scenario. Compared to RCP8.5,

the seasonal patterns of change are similar, but the amount

of change is much smaller (up to 15 % in large areas with

isolated spots up to 25 %) and—besides isolated regions in

Southern Europe (mostly along coastlines)—no decrease in

heavy precipitation is indicated.

GCM simulations tend to underestimate the high pre-

cipitation intensities (Sun et al. 2006). An improved dis-

tribution of high precipitation intensities is an important

advantage of regional climate simulations. Figure 5 shows

the relative frequencies of daily precipitation intensities of

an ensemble of five GCM simulations and the corre-

sponding regional downscaling experiments for the refer-

ence period 1971–2000 analysed over a central land region

of the EURO-CORDEX domain (45�N–50�N and 2�E–

17�E). For this analysis, data from all grid cells were taken

into account. The distribution illustrates that the GCMs

generally produce more precipitation intensities with up to

12 mm/day. The RCMs, in contrast, show higher intensi-

ties. Strong intensities above 30 mm/day do hardly occur

in the GCM simulations. Figure 6 shows the temporal

changes of the precipitation frequencies between the near

future period and the reference period for both scenarios

and the GCM and the RCM ensembles. Striking is that both

model types reduce the number of weak precipitation

intensities below 9 mm/day in both scenarios and increase

the relative frequencies in all higher intensity classes. This

shift in daily precipitation intensities, however, turns out

much more moderate in the RCM than in the GCM sim-

ulations of both scenarios, the RCP4.5 and the RCP8.5.

Table 1 Spatial correlation of SRES A1B and RCP8.5 emission

scenarios for changes in mean annual temperature and annual total

precipitation of the sub-regions for the time periods 2021–2050 and

2071–2100

Spatial

correlation of

RCP8.5 and

SRES A1B

Climate parameter

Mean annual

temperature

Annual total

precipitation

2021–2050 2071–2100 2021–2050 2071–2100

Alpine 0.88 0.95 0.92 0.94

Atlantic 0.82 0.98 0.87 0.94

Continental 0.94 0.96 0.72 0.92

Northern 0.97 0.97 0.59 0.81

Southern 0.90 0.89 0.71 0.96

568 D. Jacob et al.

123



The frequency changes of the RCM simulations are espe-

cially in the range between 10 and 20 mm/day less than

half of the GCM changes. Above 30 mm/day, however, the

increase in the RCM ensembles exceeds the climate change

signal of the GCMs. Figure 6 also demonstrates that both

effects—the reduction in weak intensities and the increase

in strong intensities—are more pronounced in the RCP8.5

scenario. The analyses of the processes leading to the

different behaviour are beyond the scope of this paper and

will be studied in a separate paper.

This analysis proves two effects of an increased reso-

lution, which can be regarded as an added value of regional

climate simulations. On the one hand, the RCMs provide

higher daily precipitation intensities, which are completely

missing in the GCM simulations, and on the other hand,

they provide a significantly different climate change of

daily precipitation intensities resulting in a smoother shift

from weak to moderate and high intensities.

Mean length of dry spells

Projected changes in the 95th percentile of the mean length

of dry spells are shown in Fig. 7 for A1B (top), RCP8.5

(middle) and RCP4.5 (bottom) for 2021–2050 and

2071–2100 with respect to 1971–2000. For the early per-

iod, the change patterns are very similar in all scenarios

(left row), although the number of simulations taken into

account for each scenario ensemble is different. Beside

some common features in South-West Europe, substantial

differences in the projected changes for dry spells lengths

Fig. 2 Projected seasonal changes of heavy precipitation (%) based on the RCP8.5 scenario for 2071–2100 compared to 1971–2000. Hatched

areas indicate regions with robust and/or statistical significant change
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are visible until 2100. For RCP4.5 and A1B, a small

increase in the length of extended dry spells is projected for

Central Europe, which is more pronounced in A1B. A

decrease in the length of extended dry spells is calculated

in A1B for parts of Scandinavia. This feature is extended

towards the Alps in the RCP8.5, in which the number of

dry spells increases (not shown). This means that under

RCP8.5 more but shorter dry spells are projected in the

alpine region. For regions with a large increase in the

length of extended dry spells, the number of dry spells is

decreasing (not shown).

Mean number of heat waves

Projected changes in the mean number of heat waves

during May–September are presented in Fig. 8, for RCP4.5

and RCP8.5, for the two future time periods and for two

different definitions of heat waves. From the upper four

panels, displaying the p99-heat wave definition, it is

obvious that with less warming (see ‘‘Mean changes of

temperature and precipitation’’ section) in RCP4.5, the

increase in number of heat waves is smaller than in

RCP8.5. This is more pronounced towards the end of the

century (Fig. 8c, d) than for the earlier time period

(Fig. 8a, b). For both scenarios, the increase is strongest in

Southern Europe, but towards the end of the century the

number of heat waves increases all over Europe. The

number of heat waves for Southern Europe is projected to

increase by more than 45. The increase is mostly robust

and significant. The change in the number of heat waves

considerably depends on the definition (thresholds and

duration), which is used. Therefore, a second definition was

Fig. 3 Projected seasonal changes of heavy precipitation (%) based on the A1B scenario for the period 2071–2100 compared to 1971–2000.

Hatched areas indicate regions with robust and/or statistical significant change
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used based on that developed by the World Meteorological

Organization (see ‘‘Definitions of impact-relevant indices’’

section). Under this definition, the increase in the mean

number of heat waves is much less (Fig. 8e, f). For the

WMO-heat wave definition not a single heat wave is

detected in the ensemble mean for the reference period as

well as for mid of the century, because the criteria are

much stricter. Also the duration of the heat wave is two

days longer than in the p99-heat wave definition. For

RCP8.5, meaning under the strongest projected warming,

towards the end of the century, an increase is only pro-

jected for some parts of Southern Europe with additional 5

to more than 9 heat waves. The increase is significant and

robust south of 55� latitude.

Indices by sub-region

Projected changes of several impact indices, which could

be of interest for impact studies in different sectors, are

listed in Tables 2 (A1B) and 3 (RCP4.5 and RCP8.5) for

the 5 sub-regions. For all sub-regions and indices, the

median shifts into the same direction, independent of the

scenario. For almost all indices, a substantially larger

change in the median is projected in RCP8.5, compared to

RCP4.5, however, the likely ranges frequently overlap.

Exceptions to this are annual total precipitation in the

Atlantic and Continental sub-regions, tropical nights in the

Northern sub-region and the cold spell duration every-

where. Here the projected changes in RCP4.5 and RCP8.5

Fig. 4 Projected seasonal changes of heavy precipitation (%) based on the RCP4.5 scenario for the period 2071–2100 compared to 1971–2000.

Hatched areas indicate regions with robust and/or statistical significant change
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are rather similar. Differences between the RCP scenarios

are most pronounced for growing season length and warm

spell duration index, with no overlap between the likely

ranges over all sub-regions (even the full range seldom

overlaps).

The median change in A1B is generally centred within

RCP4.5 and RCP8.5. For some cases like annual total

precipitation in the Southern sub-region or tropical nights

in the Atlantic, Northern and Southern sub-regions, how-

ever, the median change in A1B is even stronger than the

median change in the RCP8.5 and only for change in

annual total precipitation in the Continental sub-region, the

median change in A1B is lower than the median change in

RCP4.5. The spreads of the projected changes defined as

the likely ranges are generally the same between RCP4.5

and RCP8.5 or slightly larger in RCP8.5. Exceptions to this

are frost days in the Continental sub-region, tropical nights

in the Northern sub-region and total rainfall amount above

the 99th percentile of daily rain (wet days only) in the

Southern sub-region. Here the likely ranges of projected

changes are larger in the RCP4.5 scenario.

Conclusions and outlook

Regional climate change patterns for Europe projected by

the high-resolution regional climate change ensemble

within the EURO-CORDEX initiative for the new emission

scenarios RCP4.5 and RCP8.5 have been compared to the

state-of-the-art regional climate change data set from

ENSEMBLES. The overall spatial patterns for temperature

and precipitation changes and related indices are similar.

There is a large degree of consistency between the

ensembles of the three emission scenarios. The results

clearly strengthen the previous findings obtained from the

ENSEMBLES data set; however, there are some important

new findings.

Climate projections from the new ensemble indicate a

reduced northwards shift of Mediterranean drying evolu-

tion and slightly stronger mean precipitation increases over

most of Europe. This is consistent with the two evaluation

papers by Vautard et al. (2013) and Kotlarski et al. (2013),

for reanalysis-driven hindcast simulations, where it was

found that higher resolution leads to more precipitation in

the climate models.

The high-resolution in the EURO-CORDEX simulations

is clearly visible in the change pattern for heavy precipi-

tation events. This spatial information is potentially very

useful for climate impact studies. The more detailed spatial

patterns in the high-resolution simulations can be related to

better resolved physical processes like convection and

heavy precipitation, and due to better representation of

surface characteristics and their spatial variability. This

needs to be elaborated further to understand the physical

processes involved and the robustness of the pattern.

For some regions, especially the Alps, a connection

between the changes in length of extended dry spells and

the number of all dry spells (not only the longest ones) is
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reference period 1971–2000 over a central land region of the EURO-
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Fig. 7 Projected changes in the 95th percentile of the length of dry

spells (days) for 2021–2050 compared to 1971-2000 (a, c, e) and

2071–2100 compared to 1971–2000 (b, d, f) for A1B (a, b), RCP8.5

(c, d) and RCP4.5 (e, f) scenarios. Hatched areas indicate regions

with robust and/or statistical significant changes
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detected. In this region, the decreasing length of extended

dry spells is linked to an increasing number of all dry

spells. This seems to be plausible, but follow-up studies are

needed to understand the governing processes.

The investigation related to possible changes in heat

waves shows clearly that the definition of the heat wave is

dominating the regional change pattern more than the

differences in scenarios or time periods. Therefore, it is of

utmost importance to clearly define the index in the light of

the specific study and most likely for the sector of interest.

Fig. 8 Projected changes in the mean number of heat waves

occurring in the months May–September for 2021–2050 compared

to 1971–2000 (a, b) and 2071–2100 compared to 1971–2000

(c through f). Heat waves in figures a through d are defined as

periods of more than 3 consecutive days exceeding the 99th percentile

of the daily maximum temperature of the May to September season

for the control period (1971–2000). Heat waves in figures e and f are

defined as periods of more than 5 consecutive days with daily

maximum temperature exceeding the mean maximum temperature of

the May–September season for the control period (1971–2000) by at

least 5 �C. They are based on A1B emission scenario (e), the RCP8.5

(b, d, f) and the RCP4.5 (a, c). Hatched areas indicate regions with

robust and/or statistical significant change

b

Table 2 Projected changes of selected climate parameters and indices for 2071–2100 with respect to 1971–2000 spatially averaged for European

sub-regions for A1B scenario

Scenario A1B Climate parameters Measure Alpine Atlantic Continental Northern Southern

2071–2100 minus 1971–2000 Mean annual

Temperature in K**

Median 3.4 2.5 3.3 3.8 3.6

Min 2.8 1.9 2.1 3.2 2.3

Likely in the range 3.1–4.5 2.1–3.5 2.8–4.5 3.5–5.0 3.3–4.1

Max 5.4 4.7 5.7 5.8 5.5

Frost days (1) per

year*

Median -50 -24 -44 -54 -24

Min -37 -13 -26 -38 -12

Likely in the range -38 to -57 -15 to -34 -27 to -53 -40 to -55 -12 to -31

Max -72 -39 -56 -71 -34

Summer days (2) per

year*

Median 14 21 32 7 48

Min 4 9 21 3 33

Likely in the range 11–20 16–32 22–41 5–14 33–51

Max 21 34 43 27 51

Tropical nights (4) per

year*

Median 3 8 21 4 47

Min 1 2 14 1 18

Likely in the range 2–9 6–17 16–35 1–7 35–52

Max 11 32 43 10 60

Growing season

length (5) days per

growing season**

Median 47 41 52 41 36

Min 27 23 20 25 14

Likely in the range 34–56 33–51 33–62 27–46 27–41

Max 75 55 81 61 51

Warm spell duration

index (14) days per

year*

Median 57 44 42 67 91

Min 46 29 26 37 67

Likely in the range 51–84 35–72 37–69 47–96 85–112

Max 126 125 94 119 144

Cold spell duration

index (15) days per

year*

Median -5 -5 -6 -6 -5

Min -4 -4 -4 -5 -3

Likely in the range -4 to -5 -4 to -6 -5 to -6 -5 to -8 -4 to -5

Max -8 -9 -9 -9 -8

Annual total

precipitation (27)

in %**

Median 7 3 3 16 -15

Min 1 9 -9 4 -7

Likely in the range 5–12 -4 to 5 -1 to 5 13–21 -12 to -18

Max 15 -11 12 29 -25

Annual total

precipitation where

RR [ 99p of

1971/2000 (26) in

%**

Median 57 65 53 64 43

Min 35 28 31 32 21

Likely in the range 47–68 42–98 44–77 47–88 35–57

Max 117 112 110 105 74

Numbers are based on 9 (indicated with*) and 20 (indicated with**) regional model simulations. The likely range defines the range of 66 % of all

projected changes around the ensemble median
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For example, the stricter (WMO) definition is more rele-

vant to human health impacts. Any statement about pos-

sible changes in heat waves without this detailed

information can easily be misleading regarding the risk of

increases in future heat waves in Continental and Northern

Europe.

The added value of regional climate simulations could

be stated. RCMs provide higher daily precipitation inten-

sities than GCMs, and they provide a significantly different

climate change of daily precipitation intensities resulting in

a smoother shift from weak to moderate and high intensi-

ties. Shifts of weak precipitation events are crucial for

impact studies, in particular for hydrology, agriculture and

air pollution.

The intention for this paper is not an in depth inter-

comparison of the time periods or scenarios, but the pre-

sentation of the new ensemble and a comparative analysis

to currently used regional climate change information.

The EURO-CORDEX high-resolution data set will grow

continuously and made available to the community. At the

time of writing, more ensemble members are being con-

ducted for both, the RCP4.5 and RCP8.5 scenarios. Most

simulations will run until 2100 and will enlarge the

ensemble. The EURO-CORDEX community agreed on

common quality control and will provide a wealth of

information for future climate research, impact assessment

and adaptation.
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France/CNRM were carried out in the frame of Med-CORDEX and

HyMeX programs and can be downloaded at www.medcordex.eu, the

Med-CORDEX database hosted at ENEA. The CCLM simulations

were supported by the Federal Ministry of Education and Research

(BMBF) and performed under the ‘‘Konsortial’’ share at the German

Climate Computing Centre (DKRZ). The ETH Zurich simulations

were supported by a Grant from the Swiss National Supercomputing

Centre (CSCS) under project ID s78. The REMO simulations were

supported by CSC, MPIM, as well as BMBF and performed under the

‘‘Konsortial’’ share at the German Climate Computing Centre

(DKRZ), which we are further thankful for their various support. The

KNMI-RACMO2 simulations were supported by the 7th Framework

EU-projects IMPACT2C (FP7-ENV.2011.1.1.6-1 Grant Nr 282746)

and ECLISE (FP7-ENV.2010.1.1.4-1 Grant Nr 265240), and by the

Dutch Ministry of Infrastructure and the Environment. The sub-

regions (see Figure s1) used in this study are a result of the work

carried out as part of the Vulnerability Assessment of the EU funded

Fifth Framework project ATEAM (Advanced Terrestrial Ecosystem

Assessment and Modelling). Part of SMHI contribution was done in

the Swedish Mistra-SWECIA programme founded by Mistra (the

Foundation for Strategic Environmental Research).

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use,

distribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

References

Alcamo J, Moreno JM, Novaky B, Bindi M, Corobov R, Devoy RJN,

Giannakopoulos C, Martin E, Olesen JE, Shvidenko A (2007)

Climate change 2007: Impacts, Adaptation and Vulnerability. In:

Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson

CE (eds) Contribution of Working Group II to the Fourth

Assessment Report of the Intergovernmental Panel on Climate

Change. Cambridge University Press, Cambridge, UK, pp 541–580

Christensen OB, Christensen JH, Machenhauer B, Botzet M (1998)

Very high-resolution regional climate simulations over Scandi-

navia—Present climate. J Climate 11:3204–3229
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Abstract. Convective and stratiform precipitation events

have fundamentally different physical causes. Using a radar

composite over Germany, this study separates these precip-

itation types and compares extremes at different spatial and

temporal scales, ranging from 1 to 50 km and 5 min to 6 h, re-

spectively. Four main objectives are addressed. First, we in-

vestigate extreme precipitation intensities for convective and

stratiform precipitation events at different spatial and tem-

poral resolutions to identify type-dependent space and time

reduction factors and to analyze regional and seasonal dif-

ferences over Germany. We find strong differences between

the types, with up to 30 % higher reduction factors for con-

vective compared to stratiform extremes, exceeding all other

observed seasonal and regional differences within one type.

Second, we investigate how the differences in reduction fac-

tors affect the contribution of each type to extreme events as

a whole, again dependent on the scale and the threshold cho-

sen. A clear shift occurs towards more convective extremes at

higher resolution or higher percentiles. For horizontal resolu-

tions of current climate model simulations, i.e., ∼ 10 km, the

temporal resolution of the data as well as the chosen thresh-

old have profound influence on which type of extreme will be

statistically dominant. Third, we compare the ratio of area to

duration reduction factor for convective and stratiform events

and find that convective events have lower effective advec-

tion velocities than stratiform events and are therefore more

strongly affected by spatial than by temporal aggregation. Fi-

nally, we discuss the entire precipitation distribution regard-

ing data aggregation and identify matching pairs of tempo-

ral and spatial resolutions where similar distributions are ob-

served. The information is useful for planning observational

networks or storing model data at different temporal and spa-

tial scales.

1 Introduction

The IPCC’s fifth assessment report highlights an intensifi-

cation of heavy precipitation events in North America and

Europe (Hartmann et al., 2013) and projects further increase

of extremes as global temperatures rise (Collins et al., 2013).

The study of extreme events is complex due to a strong in-

homogeneity of precipitation intensities in space and time.

Assessment of precipitation extremes, e.g., as defined by an

intensity threshold, is strongly scale dependent and therefore

requires specification of the analyzed spatial and temporal

resolution.

Even though spatial and temporal scales are far from in-

dependent (Taylor, 1938), it is often unclear how to compare

data sets directly when their data are measured at differing

resolutions. The data resolution needed by users, e.g., hy-

drologists or crop modelers, often differs from that at which

observed or modeled data are recorded (Willems et al., 2012).

The primary societal interest in extreme precipitation lies

in its hydrological implications, typically requiring statistics

of precipitation extremes for the area of a given catchment or

drainage system, which is not identical to that of model grid

boxes or the observations.

Moreover, temporal scales relevant to flood risk vary

enormously with area (Blöschl and Sivapalan, 1995; Wes-

tra et al., 2014): for catchments, hours to days are relevant

(Mueller and Pfister, 2011), whereas urban drainage systems

of ∼ 10 km (Arnbjerg-Nielsen et al., 2013) are impacted at
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timescales from minutes to hours (De Toffol et al., 2009),

and soil erosion can occur at even smaller scales (Mueller

and Pfister, 2011).

Areal reduction factors (ARFs) and intensity–duration

functions have previously been used to describe the decrease

of average precipitation intensity due to spatial and tempo-

ral aggregation (Bacchi and Ranzi, 1996; Smith et al., 1994).

The capability of radar data to capture the spatial structure

of storms was identified as a key factor in deriving the ARFs

(Bacchi and Ranzi, 1996; Arnbjerg-Nielsen et al., 2013). A

general outcome was that ARFs exhibit a decay with respect

to the return period (Bacchi and Ranzi, 1996; Sivapalan and

Blöschl, 1998) and a dependency on the observed region, re-

sulting from different governing rainfall generation mecha-

nisms (Sivapalan and Blöschl, 1998).

In the current study we separate the physically different

processes leading to convective and stratiform type precip-

itation events. Using synoptic observation data, we classify

precipitation events into these two types, allowing us to ana-

lyze their aggregated statistics individually across scales.

The two types physically differ in that convection is of-

ten initiated by local radiative surface heating, resulting in a

buoyantly unstable atmosphere (Houze, 1997), whereas strat-

iform precipitation stems from large-scale frontal systems

and relatively weak and uniform up-lifting. Analyzing these

two types separately regarding their intensities at different

scales can, e.g., be important when considering temperature

changes, such as anthropogenic warming: over large scales,

the changes were found to be moderate, whereas for very

small scales it has been argued that the two processes may

increase with warming (Trenberth, 1999; Trenberth et al.,

2003; Trenberth, 2011; Lenderink and van Meijgaard, 2008),

albeit at very differing rates (Berg et al., 2013). Using high-

resolution model simulations, heavy precipitation at high

temporal resolutions was suggested to increase strongly in

a future climate and a dominant contribution to extreme

events to stem from convective events (Kendon et al., 2014;

Muller et al., 2011; Attema et al., 2014). In spite of their

small horizontal and temporal range, convective events can

cause substantial damage (Kunz, 2007; Kunz et al., 2009),

e.g., through flash floods (Marchi et al., 2010).

Numerous studies have assessed the temporal and spatial

characteristics of precipitation events using a storm centered,

or Lagrangian, approach (Austin and Houze Jr., 1972; Houze

Jr. and Hobbs, 1982; Moseley et al., 2013) which focuses on

the storm dynamics, e.g., lifetime or history of its spatial ex-

tent. Moseley et al. (2013) showed that, for Lagrangian event

histories of 30 min, the convective type can produce signifi-

cantly higher intensities than the stratiform type. As we here

focus on potential hydrological applications and those ad-

dressing possible impact of extremes, e.g., floods, defining

events over a fixed surface area and time period is more

appropriate (Berndtsson and Niemczynowicz, 1988; Onof

et al., 1996; Bacchi and Ranzi, 1996; Michele et al., 2001;

Marani, 2003, 2005). The statistics thereby constitute aver-

ages over a defined space–time window within which both

dry and wet sub-intervals may occur.

In this study, we analyze at which fixed temporal and spa-

tial scales convective precipitation dominates precipitation

extremes. To this end, we analyze 2 years of mid-latitude

high-resolution radar data (5 min temporally and 1 km spa-

tially), classified by precipitation types and separated into

seasons (summer vs. winter) and geographic areas (northern

vs. southern Germany). Analysis of these data over large spa-

tial and temporal periods characterizes the statistical aggre-

gation behavior in space and time. It can quantify the require-

ments on minimal model resolution sufficient for the proper

description of the respective extremes. Revisiting the Taylor

hypothesis (Taylor, 1938), we contrast the two precipitation

types as to how resolutions in space and time can be com-

pared. Using a resulting effective advection velocity, we give

a simple means of quantifying effective temporal averaging

in models, resulting from a given spatial resolution.

The structure of the article is as follows: in Sect. 2 we

describe the data and methods used. Section 3 presents the

results for extremes at different resolutions (Sect. 3.1) and

suggests a method to compare the corresponding probability

density functions (PDFs) (Sect. 3.2). We close with discus-

sions and conclusions (Sect. 4).

2 Data and methods

A Germany-wide radar composite (RADOLAN-RY) from

the German Weather Service is used in this study. This data

set is provided on an approximate 900 km× 900 km grid with

a 1 km horizontal resolution and contains information de-

rived from 17 radar measurement facilities (Fig. 1). The rain-

fall rates (R) were derived from raindrop reflectivities (Z) us-

ing the Z–R relationship (Steiner et al., 2004). The data are

stored as discrete instantaneous intensities with an increasing

bin size towards higher values. For the analysis, the 2-year

time period covering 2007–2008 is considered. The data have

been used (Moseley et al., 2013) and compared with gauge

data previously (Berg et al., 2013).

For the current analysis, radar grid points are aggregated

in time, i.e., 1t ∈ {5, 10, 15, 20, 30, 45, 60, 120, 180, 240,

360}min, and in space over square grid box areas with linear

dimensions 1x ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 25,

50} km. Aggregation includes all possible pairs {1t , 1x}.

Spatial aggregation is performed such that a coarser grid box

starts at the bottom left corner of the domain and aggre-

gates over the respective number of grid points towards the

top right, with no overlap between the coarser grid boxes.

As a consequence, the number of aggregated grid box scales

∼ 1/(1t1x2). In cases where the original horizontal resolu-

tion cannot evenly be divided by the resolution of the coarser

grid, the remaining grid points at the top and right border are

not considered. This is the closest mimic of a gridded model.
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Synoptic cloud observations, at 222 stations, obtained

from the Met Office Integrated Data Archive System (MI-

DAS) data base (http://badc.nerc.ac.uk/view/badc.nerc.ac.

uk__ATOM__dataent_ukmo-midas) are used to separate

large-scale and convective precipitation following Berg et al.

(2013). The locations of the stations used are shown in Fig. 1.

The classification process is carried out such that first a clas-

sification is made for each station and each 3 hourly obser-

vation into convective, stratiform, mixed or no observations.

Second, to ensure more stable conditions, the classifications

are aggregated in space to quadrants over the region (see

Fig. 1) such that each quadrant contains one single classi-

fication for each 3 hourly time period. The aggregated clas-

sification can only be convective (stratiform) if there are no

simultaneous observations of stratiform (convective) in the

quadrant, or else the classification will be considered to be of

the mixed type.

For the aggregated time resolutions 5 to 180 min, the pre-

cipitation is flagged as convective, respectively stratiform,

according to the corresponding 3 hourly time slice. For time

resolutions longer than 3 hours, two 3 hourly time slices have

to be considered. Here we classify the precipitation event as

stratiform or convective only if the type is identified at least at

one of the time slices and the other time slice was not identi-

fied as the opposite type of event. This procedure was found

to be the best compromise between rigid classification and

sufficient data availability at the coarsest averaging windows.

Next, for each averaging window, the total number of con-

vective and stratiform events, i.e., single time steps with an

intensity higher than 1 mm day−1, is counted. To ensure that

enough events for statistical analysis are present, the analysis

is restricted to resolutions where at least 500 convective and

500 stratiform events were detected. All other fields will be

marked as insufficient (gray squares in the Figs. 3, 4 and 8).

3 Results

3.1 Quantifying the impact of spatial and temporal

aggregation on convective and stratiform

precipitation extremes

3.1.1 Differential impact on exceedance probabilities

We define the cumulative distribution function (CDF) as the

probability of precipitation intensity exceeding a given inten-

sity I :

CDF(1t,1x,I )≡

∞∫
I

N(1t,1x,I ′)dI ′

∞∫
I0

N(1t,1x,I ′)dI ′
, (1)

where N(1t , 1x, I ) is the number of data aggregates to res-

olution 1t and 1x with averaged precipitation intensity I ,

and I0 is the lower measurement cutoff. In the following, we

Figure 1. Data used in the analysis. Map of Germany with the syn-

optic stations (red crosses) and the radar locations and approximate

range (gray circles). Dashed black lines indicate the division of the

domain into quadrants.

choose I0= 1 mm day−1 throughout. CDF(1t , 1x, I ) thus

describes the percentiles of precipitation intensity when con-

ditioning on wet periods. Figure 2 shows CDF(1t , 1x, I )

for Germany for different1t and1x conditional on convec-

tive and stratiform events. Note the logarithmic representa-

tion of the data, i.e., the figure focuses on the high precipita-

tion intensities between the 99.9th percentile (10−1) and the

90th percentile (101) of the distribution.

It is important to realize the effect of aggregation at vary-

ing scales. Consider first spatial aggregation (see legend in

Fig. 2). Convection forms patterns with intense and local-

ized precipitation peaks, separated spatially by regions with-

out precipitation (Austin and Houze Jr., 1972; Moseley et al.,

2013; Berg et al., 2013). Performing averages over areas of

increasing size therefore yields broad variation of averages at

small spatial scales but rapid decrease of variation as data are

aggregated over larger areas. Stratiform precipitation is more

uniform in the sense that sampling over small areas yields a

good description of the statistics also at larger areas of aggre-

gation.

Consider now temporal aggregation from an interval well

below the convective lifetime (e.g., � 30 min): the effect of

temporal aggregation is to even out spatial variations due to

the large-scale flow. This makes convection appear spatially
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Figure 2. Cumulative probability density functions of precipitation intensities. All of Germany for the years 2007–2008, aggregated at

different horizontal and temporal resolutions: (a) convective events and (b) stratiform events.

more uniform. For stratiform precipitation, patterns are al-

ready less localized in space and temporal aggregation will

change the statistics less.

We make several observations in support of this assess-

ment (Fig. 2): first, while convective precipitation can be

much more intense (compare, e.g., the solid curves in Fig. 2a

vs. b), the decrease of mean intensity due to aggregation is

more pronounced than for stratiform precipitation. Second,

we find that the relative differences in the CDFs between the

1 and 50 km data are stronger if the data are stored at 5 min

resolution than for the 360 min data. For stratiform events

we find almost no differences between precipitation intensi-

ties at resolutions below 12 km for a 360 min temporal reso-

lution. Only at the largest regions, 50 km, do the spatial ag-

gregations clearly modify the CDF as the non-precipitating

region off the boundary of the event is included. This finding

suggests that, for a given time resolution, there should be an

associated horizontal resolution to store or collect data, i.e., a

resolution that carries similar information about the distribu-

tion function.

More generally, this highlights the close match of the con-

vective intensity CDFs when comparing two data sets of dif-

ferent resolution, namely 5 min and 50 km vs. 360 min and

1 km. For these pairs of resolutions time aggregation has a

similar statistical effect on precipitation intensities as does

spatial aggregation.

This latter observation can be appreciated when remem-

bering the Taylor hypothesis of “frozen turbulence” (Taylor,

1938), which states that as the mean atmospheric flow ad-

vects eddies past a station, information about spatial varia-

tions can be gained as long as the properties of the eddies

remain frozen in time. Consider, for example, an average

convective event with constant precipitation intensity over its

lifetime. According to Berg et al. (2013) and Moseley et al.

(2013) the average convective event has a lifetime of approx-

imately 30 min, a spatial extent of ∼ 10 km and a propaga-

tion speed of ∼ 10 m s−1. When using a 50 km grid box and

5 min temporal resolution, the event will move about 3 km;

therefore it can be assumed that the event stays in one grid

box. It will affect roughly 10× 10
50× 50

≈ 4 % of the cell at a time.

When an event of ∼ 10 km cross section moves over a loca-

tion with∼ 10 m s−1, its passage over the location would last

∼ 1000 s, which is ∼ 17 min and 17
360
≈ 5 % of the matching

time interval of 6 h.

In the following we discuss how the actual observations

depart from the approximation of the Taylor hypothesis and

how this departure is influenced by the precipitation type. In

reality, there are complications such that events change in-

tensity also on short timescales, many events can be super-

imposed in space and time, and the large-scale flow is not

constant.

To proceed, we now focus on intensity changes at a spe-

cific percentile, defined for a given combination of 1t and

1x by the inverse of Eq. (1), i.e., the intensity corresponding

to a choice of exceedance probability. We will later return to

the entire distribution functions in Sect. 3.2. Specifically, we

now choose the 99th percentile of all detected precipitation

events and refer to this percentile as extreme precipitation.

This percentile was found to be a good compromise between

the aim of focusing mainly on the high end of the intensity

distributions and the need for sufficient data for the statistics.

Using a percentile value as threshold to define precipitation

extremes is a common practice.

For varying 1x and 1t , Figs. 3 and 4 show the 99th per-

centile of precipitation intensities for convective (termed

Îcv(1t , 1x)) and stratiform (termed Îls(1t , 1x)) events, re-

spectively, for the entire region of Germany and separated

into northern and southern Germany as well as for the whole

year and separated into the summer (April–September) and

winter (October–March) seasons. Note that we used a nonlin-

ear scaling for the horizontal and vertical axes to better visu-

alize the intensity changes at very high resolutions. The same

plots as in Figs. 3 and 4 but with linear scales are shown in

the Supplement. In the linear case the arcs, found when con-

necting fields with similarly extreme intensities, become al-

most straight lines. Straight lines mean that for any choice of
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Figure 3. Convective extremes as a function of resolution. The 99th percentile of convective precipitation intensities, aggregated over dif-

ferent parts of Germany for the years 2007–2008, on different horizontal (horizontal axis) and temporal (vertical axis) resolutions: entire

year (a–c), summer season (d–f) and winter season (g–i). All of Germany (a, d, g), northern Germany (b, e, h), southern Germany (c, f, i);

intensities given in mm h−1.

a resolution pair, equivalent resolutions, i.e., those of similar

extremes, can be obtained by simple linear transformations.

When comparing Îcv(1t , 1x) (Fig. 3) to Îls(1t , 1x)

(Fig. 4), it is striking that at high temporal and spatial resolu-

tions the intensity Îls is only about one-third of Îcv. However,

Îls shows much less spatial and seasonal differences when

compared to Îcv. For example, the increase in intensity at the

highest resolution in summer vs. winter is about 220 % for

Îcv but only approximately 20 % for Îls. This finding is in

line with the relatively weak temperature response of strati-

form precipitation intensities as reported recently (Berg et al.,

2013).

Regionally, southern Germany exhibits higher Îcv in sum-

mer as compared to the north. This may largely be due to not

only complex orographic areas in southern Germany, e.g., the

highly convectively active area of the Black Forest in south-

western Germany (Khodayar et al., 2013), but also latitudinal

temperature differences and the more continental climate of

the south.

The highest intensities of stratiform precipitation occur in

northern Germany in the months May to September. We find

that for time durations shorter than 3 h the highest intensities

occur between June to August. For longer time durations, the

highest intensities occur in the months September to Novem-

ber (see Supplement).

3.1.2 Scaling behavior of convective and stratiform

precipitation events

To quantify the reduction due to spatial aggregation, we de-

fine the area reduction factor ARF(1x) as the reduction of

the 99th percentile at spatial resolution x relative to the per-

centile (here defined as Îori) at the original resolution (5 min,

1 km). Varying now the spatial resolution while keeping the

temporal resolution fixed (at 5 min), we define

ARF(1x)≡ 1−
Î (1x)

Îori

, (2)

where Î and Îori is shorthand for either of the precipitation

types. Analogously, we define the duration reduction factor

DRF(1t) as the intensity reduction due to temporal aggre-

gation relative to Îori, while keeping the spatial resolution at

1 km, i.e.,

DRF(1t)≡ 1−
Î (1t)

Îori

. (3)

ARFs and DRFs are shown in Fig. 5a and b, respectively,

for both precipitation types and separately for the summer

and winter seasons, as well as for northern and southern Ger-

many. Considering Îcv, a strong intensity reduction can be
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Figure 4. Stratiform extremes as a function of resolution; otherwise similar to Fig. 3.

seen when the spatial (Fig. 5a) or temporal (Fig. 5b) res-

olution is decreased. The reduction due to spatial aggrega-

tion shows clear seasonal and regional differences: the lowest

ARFs occur in northern Germany in winter (68 % at 50 km

grid size) and the highest in southern Germany in summer

(84 % at 50 km grid size). Temporal aggregation is nearly in-

dependent of seasonal and regional distinctions and reaches

values of about 80 to 85 % at a 6 hourly resolution. The dif-

ferences found between Îcv and Îls are hence larger than all

other seasonal or regional differences within one type.

Îls shows much less pronounced ARFs and DRFs. For the

maximum spatial aggregation, only 52 % reduction is found

in northern Germany in winter. The seasonal and regional

differences are smaller than for Îcv and differ only by less

than 10 percentage units. Temporal aggregation shows also

only small regional and seasonal differences, causing DRFs

of 60 to 70 % at a temporal resolution of 6 h.

3.1.3 Comparing the relevance of space compared to

time aggregation

We can distinguish the behavior of spatial and temporal ag-

gregation using two kinds of approaches (Deidda, 2000). The

first approach would be to regard precipitation as a self-

similar process (simple scaling). In this case the Taylor hy-

pothesis (Taylor, 1938) would be obeyed, and temporal vari-

ations can be reinterpreted as spatial variations that are ad-

vected over a fixed location by a large-scale flow that is con-

stant over the observed temporal and spatial scales.

Following the notion of “frozen turbulence”, intensity

change due to spatial aggregation can then be calculated from

the intensity changes that result due to temporal aggregation

multiplied by a constant velocity u, i.e., 1x≈1t · u. This

would only hold if precipitation extremes could be seen as

objects of temporally constant characteristics that are trans-

lated by large-scale advection. If we also assume spatial

inhomogeneity only to occur in the advection direction, a

gauge station could be used to measure the precipitation in-

tensities that fall over an area (Fig. 6a).

The second approach would assume that the spatial and

temporal aggregation behavior of precipitation extremes

would behave like a self-affine process (a process where the

ratio of scales is changing as one of the scales changes). In

this case, the simple linear relation that connects changes

due to time aggregation with changes due to spatial aggre-

gation through an advection velocity generally does not hold

anymore (e.g., due to temporal (Fig. 6b) or spatial inhomo-

geneity (Fig. 6c)). A multifractal analysis is needed where,

in short, the “velocity” itself would become a function of

the respective spatial and temporal scales. If this function is

known, it is possible also for self-affine processes to connect

spatial and temporal scales. Proper understanding of the rela-

tionship between spatial and temporal aggregation is crucial,
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Figure 5. Area and duration reduction factors. (a) Area reduction

factors at 5 min temporal resolution. (b) Duration reduction factors

(DRFs) for 1 km× 1 km spatial resolution in percent for convective

(blue) and stratiform (red) precipitation. Data shown for the summer

and winter seasons and northern and southern Germany.

e.g., for precipitation downscaling and bias correction meth-

ods (Wood et al., 2004; Piani et al., 2010a, b).

Our goal here is to characterize the differences in scaling

of convective and stratiform extremes. Comparing the inten-

sity reduction due to time aggregation for the 1 km data set

(Fig. 3a, left column) with the intensity reduction that results

from spatial aggregation at a temporal resolution of 5 min

(bottom row), a 4 km spatial aggregation is comparable to

that of spatial aggregation for roughly 15 min. Similarly, for

stratiform precipitation (Fig. 4a) we find that 6 km spatial ag-

gregation corresponds to 15 min temporally. There is hence

a dependence on the precipitation type, a relation we now

analyze.

Figure 7a shows for each horizontal resolution the match-

ing temporal resolution that achieves similar intensity reduc-

tion. We describe the relation between temporal and spatial

aggregation at a fixed 1x by

f1x(1t)= |Î (1t, 1km)− Î (5min, 1x)|. (4)

We now define φ1x as the minimum value of f1x w.r.t. 1t :

φ1x =min
1t
f1x(1t). (5)

The best matching time window 1t for a given 1x can be

determined using the inverse function of f1x : 1t = f−1(φ).

Figure 6. Schematic illustration of the Taylor hypothesis. (a) One-

dimensional case showing space, grid box width and precipitation

intensity (black curve); the location of a gauge station is marked in

red. (b) Similar to (a) but illustrating how the curve may change

due to small-scale dynamics after a time interval 1t =1x/v, with

v the atmospheric advection velocity. (c) Two-dimensional inhomo-

geneities (different colors indicate different intensities) perpendicu-

lar to the advection direction (direction indicated by the thin arrow).

Small (red) and large (gray) grid boxes as marked.

In practice, we determine 1t by an iterative numerical pro-

cedure, using first an interpolation between available res-

olutions for better approximation. The result for several

high percentiles is shown for both precipitation types over

Germany for the entire year on a log–log plot (Fig. 7a),

i.e., straight lines represented power laws. If the Taylor hy-

pothesis is obeyed, the exponent would equal unity.

Within the limitations of the relatively noisy data, we find

that the data represent a straight line over most of the ana-

lyzed spatial range and can be fitted to a power law func-

tion 1t = a×1xb with fitting parameters a and b, or by

using dimensionless variables (i.e., defining χ ≡1x/1x0,

τ ≡1t/1t0 and ã≡ a1xb0/1t0) we have

τ = ãχb, (6)

with fitting parameters ã and b. The parameter ã is a scaling

parameter and describes the 1t0 corresponding to 1x0. χb

describes how the relevance of space compared to the time

aggregation changes with resolution.

In Fig. 7a and b, the best fit for the 99th intensity percentile

is shown for convective and stratiform precipitation. We find

that b is similar for both types (generally between 1.17

and 1.32), a departure from unity that should be confirmed

by other data sources than the radar data at hand. An expo-

nent b> 1 indicates that extreme precipitation is self-affine

(self-similarity would require b= 1). The fractal properties

of precipitation were already highlighted in earlier studies

and are found to be a result of the hierarchical structure of

precipitation fields (Schertzer and Lovejoy, 1987) with cells

that are embedded in small mesoscale areas which in turn

occur in clusters in large-scale synoptic areas (Austin and

Houze Jr., 1972).

Table 1 displays ã and b for the different percentiles shown

in Fig. 7a (non-dimensional). We find that for convective pre-
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Figure 7. Consistent spatial and temporal resolutions. 1t derived

using Eq. (5) for different values of 1x for convective (blue) and

stratiform (red) precipitation extremes at the 95th, 98th, 99th and

99.9th percentiles. Black lines are least square fit of 1t = a×1xb

with the fitting parameters a and b for the 99th percentile. Er-

ror bars indicate the standard deviation of parameter estimates.

Gray lines show 1t ∼1x and 1t ∼1x2. (a) Initial resolutions

1t0= 5 min, 1x0= 1 km. (b) 1t0= 5 min and aggregated spatial

resolutions 1x0= 2 km (convective) and 1x0= 3 km (stratiform).

(c) veff (Eq. 7) for both precipitation types for Germany over the

entire year.

cipitation ã is near 0.5. Within the error bars there is no ob-

vious dependence on percentile. This is also the case for the

stratiform type but not for the 99.9th percentile, which has

higher ã and lower b values.

Since the values of b are similar for both precipitation

types (Table 1), the difference between the matching tempo-

ral resolution of stratiform and convective events is kept con-

stant over the entire range of 1x analyzed. We find that the

different scaling between the two precipitation types mainly

results from the varying ã.

Table 1. Estimation of the exponent b and the pre-factor ã for the

different precipitation types and percentiles together with the stan-

dard deviation of the parameter estimate.

Precipitation type Percentile ã b

Convective 95th 0.51± 0.05 1.17± 0.03

98th 0.45± 0.03 1.25± 0.02

99th 0.43± 0.04 1.27± 0.02

99.9th 0.55± 0.01 1.24± 0.01

mean 0.49± 0.03 1.23± 0.02

Stratiform 95th 0.20± 0.04 1.32± 0.06

98th 0.35± 0.03 1.18± 0.02

99th 0.28± 0.02 1.24± 0.02

99.9th 0.76± 0.03 0.96± 0.01

mean∗ 0.28± 0.03 1.25± 0.03

∗ Excluding the 99.9th percentile.

Note also the kink in the observed curves in Fig. 7a at

about 6 km, where a change of slope is observed. To show

that this kink is a manifestation of the scale mismatch, we

aggregate data spatially to 2 km (3 km for stratiform) hori-

zontal resolution and re-plot (Fig. 7b). Due to this procedure

the kink almost vanished. This test shows that aligning reso-

lutions according to Eq. (6) allows smooth scaling.

For further analysis, and to make contact to the Taylor hy-

pothesis, we use the ratio of the matching 1x and 1t to cal-

culate the mean effective advection velocity, which we call

veff. We define

veff(χ)≡ χ/τ = χ
1−b/̃a. (7)

This effective velocity is not obviously the same as the ve-

locity obtained by tracking algorithms, such as in Moseley

et al. (2013), as veff combines all reasons for changes caused

by aggregation. The main sources for these changes are ad-

vection of the precipitation field out of the grid box, tempo-

ral inhomogeneity caused by the temporal evolution of the

precipitation event (Fig. 6b) and horizontal inhomogeneities

perpendicular to the advection direction, which will increase

the area reduction factors (Fig. 6c).

Figure 7c shows veff calculated for different 1x for

the 95th, 98th, 99th and 99.9th percentile, using data with-

out seasonal distinctions over Germany. veff lies in the same

range as the velocities calculated by Deidda (2000) and

Moseley et al. (2013) who calculated the velocities using

tracking techniques. This shows that advection is likely the

major source for changes due to temporal and horizontal ag-

gregation. Low veff for horizontal resolutions below about

2 to 4 km are again a result of the mismatch of the 5 min

temporal resolution and the 1 km spatial resolution explained

above.

Note the deviating value of ã for the 99.9th percentile

of stratiform precipitation. This could be explained by

mesoscale stratiform systems with embedded convection,
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i.e., systems that are somewhat intermediate between strat-

iform and convective events. The corresponding graph

(Fig. 7c) shows intermediary behavior, connecting the curves

of convective precipitation (low 1x) to those of stratiform

precipitation at high1x. Due to substantial noise at high spa-

tial resolution it is not possible to identify whether veff shows

a constant behavior (b= 1) at the high resolutions, therefore

the results in Zawadzki (1973) and Waymire et al. (1984) that

indicate the Taylor hypothesis holds for timescales less than

40 min can neither be confirmed nor rejected.

Realizing that veff combines all sources for changes caused

by aggregation enables a simplified view on the aggrega-

tion process. In a similar way as in Deidda (2000) we can

use veff to generalize the Taylor hypothesis for a self-affine

process by using veff instead of a constant velocity to de-

scribe the relation between space and time. Following the

Taylor hypothesis we can now interpret the matching tem-

poral and spatial scales from Fig. 7a as the mean time that

is needed to advect the information about the precipitation

field over the matching horizontal scale (implicitly including

all other sources of aggregation changes as described above).

For example the typical timescale for a convective precipita-

tion area to cross a grid box with a 10 km grid size, a typ-

ical resolution of state-of-the-art climate models, would be

about 40 min. For a stratiform precipitation event the infor-

mation about the precipitation field is already captured after

about 20 to 25 min. Reasons for the lower effective advec-

tion velocity might be that stratiform events are statistically

more homogeneous than convective events which results in

a shorter period to capture the structure of the event. Also,

convective events often occur at high-pressure weather con-

ditions where low wind velocities might entail lower advec-

tion velocities.

Aggregation effects at a specific resolution will always be

a combination of duration and area reduction factors. Con-

necting space and timescales using veff allows the associa-

tion of temporal and spatial scales, shown in Fig. 7a. If, for

a given spatial resolution, a larger temporal output period is

used as indicated by Fig. 7a, the event will on average be

advected beyond the grid box area, leading to high duration

reduction factors (a “smearing out”).

3.1.4 Dominance of convective vs. stratiform extremes

including event occurrences

So far we have only illustrated differences in the 99th per-

centiles of detected convective and stratiform events with

precipitation intensities above 1 mm day−1, i.e., conditional

probability density functions. The sample size therefore de-

pends on the number of detections of the specific precipita-

tion type, the resolution of the data set and the area fraction

in the detected quadrants with precipitation intensities higher

than the specified threshold. Including the events without

precipitation in the statistics will have a major impact on

the percentile values; therefore a sensitivity analysis per-

Table 2. Occurrence of convective and stratiform events. Number of

quadrants of Germany classified as convective (C) or stratiform (S)

in the 3 hourly synoptic observations. The maximum possible val-

ues for the 2 years and for all four quadrants is 23 360. This number

reduces by about half for the seasonal data and again by half for the

sub-regions of Germany.

Area Type Year Summer Winter

All S 1358 206 1152

All C 1537 1270 267

North S 761 103 658

North C 741 590 151

South S 597 103 494

South C 796 680 116

forming the same analyses shown in Figs. 3 and 4 but with

non-conditional probability density functions was done (not

shown). This demonstrated that veff is not strongly affected

by this threshold. Naturally, due to the high number of non-

precipitation values, the high percentiles show correspond-

ingly lower intensities. Table 2 indicates the event occur-

rences classified as convective or stratiform in the 3 hourly

synoptic observations.

To consider the strong variation in occurrences, e.g., con-

cerning season, we find that also the relative occurrence fre-

quency of the two types of events has to be accounted for. We

again use the 99th percentile for all data above 1 mm day−1,

but now without distinction of precipitation type, for each

aggregation interval as well as for each region and season.

In the following we redefine Î as the corresponding intensity

(see Supplement for Î values).

To assess the relative likelihood of a certain precipitation

type to cause extreme precipitation, Fig. 8 shows the ratio

of the number of convective events exceeding the intensity Î

vs. the total number (convective+ stratiform) of events ex-

ceeding Î , i.e., Ncv(I > Î )/(Ncv(I > Î )+Nls(I > Î )).

However, dominance again depends on resolution: e.g., in

southern Germany (all year) 80–90 % of precipitation ex-

tremes are of the convective type for the higher resolutions.

Only when the data are aggregated to resolutions with grid

spacings of 25 km and more does the percentage of strati-

form events become appreciable. Even stronger differences

occur between seasons: in summer, convection dominates ex-

tremes but is of less importance in winter (less than 10 % for

the aggregated data sets and less than 35 % even at the very

high-resolution data sets).

It is important to note that we used a percentile threshold

for this analysis and the corresponding intensity threshold

fluctuates with seasons. To test whether our findings simply

are a consequence of overall higher intensities in summer we

also compare similar intensities for summer and winter (us-

ing the 98th percentile for summer and the 99th percentile

in winter, see Fig. 8g–i and Supplement). This revealed that

seasonal differences nonetheless prevail.
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Figure 8. Convective dominance as a function of resolution including dry periods. The ratio of the number of convective precipitation events

with precipitation intensities greater than or equal to the threshold intensity. Threshold intensity is defined as the 99th percentile of total

precipitation intensities over the different parts of Germany for the years 2007–2008. Panels otherwise as in Fig. 3.

Figure 9 shows the convective dominance as a function

of the horizontal resolution for the 95th, 98th, 99th and

99.9th percentiles. The role of convective precipitation in the

extremes increases with higher percentiles, and convective

precipitation becomes more relevant also over larger aggre-

gated areas and time steps (see Supplement). At relatively

low percentiles convective and stratiform events have the

same exceedance probability, but with increasing percentile

convection dominates, especially at high spatial resolution.

3.2 Assessing PDF changes due to data aggregation

The results of Sect. 3.1 highlight the interdependence of spa-

tial and temporal scales and their impact on extreme precip-

itation. Changing resolutions, however, modifies the entire

distribution function. To give an estimate of the information

loss due to the aggregation process, we adopt a measure sim-

ilar to that of the Perkins skill score (Perkins et al., 2007),

originally designed to validate a model against observations

by assigning a skill score. Here, we use it to quantify the

overlap between two intensity PDFs at different horizontal

and temporal resolutions. We define the PDF overlap as

Figure 9. Convective dominance vs. horizontal resolution. The ratio

of the number of convective precipitation events with precipitation

intensities greater than or equal to the labeled percentile of total pre-

cipitation intensities over entire Germany for the years 2007–2008.

The data are aggregated to 5 min temporal and different horizontal

resolutions.

S (1t1,1x1;1t2,1x2)≡

∞∫

I0

min
(
ρ1t1,1x1

(I ),ρ1t2,1x2
(I )
)

dI , (8)

where I is precipitation intensity, I0 is the measurement

cutoff, ρ1t,1x(I ) is the normalized PDF as in Eq. (1) and

min(·, ·) gives the minimum of the two arguments. Hence,
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Figure 10. PDF overlap for convective precipitation intensity. All of Germany for the years 2007–2008, aggregated to different horizontal

(horizontal axis) and temporal (vertical axis) resolutions. (a) PDF overlap of each horizontal resolution between every temporal resolution

and the 5 min data. (b) PDF overlap of each temporal resolution between every horizontal resolution and the 1 km data. (c) PDF overlap of

each horizontal and temporal resolution compared to the 10 km, 60 min data.

S(1t1, 1x1; 1t2, 1x2) quantifies the overlap between PDFs

of aggregated data at the spatiotemporal resolutions (1t1,

1x1) and (1t2,1x2). If the two PDFs are identical, the over-

lap value is 1; if there is no overlap at all, it is 0. The PDF

overlap is a means of comparing not only a fixed percentile

of precipitation intensity but measuring the similarity of en-

tire distribution functions. It is hence a way to quantify our

initially qualitative discussion regarding Fig. 2.

We aggregate convective precipitation intensities over

Germany and present the PDF overlap in three different

ways: Fig. 10a shows the PDF overlap between the aggre-

gated time resolution with the corresponding 5 min data but

at fixed horizontal resolution, i.e., S(5 min, 1x; 1t , 1x) at

matrix element position (1t ,1x). For the spatially highly re-

solved data (1x < 7 km), the PDF overlap degrades quickly

when temporal resolution is reduced, while degradation is

much slower at lower spatial resolution. In practice, if a de-

fined spatial area, say a metropolitan region of 25 km, is of

interest, performing measurements at 60 min resolution may

lead to a tolerable margin of error while a smaller region of

2 km would require 5 or 10 min temporal resolution for the

same margin of error. The chart could hence be used to esti-

mate the error when data are available at one resolution but

another is of interest. In Fig. 10b we present an analogous

analysis, but we have now fixed the temporal resolution and

compare to the 1 km data sets, i.e., S(1t , 1 km; 1t , 1x) at

matrix element position (1t ,1x). A similar pattern emerges

with degradation now occurring for decreased spatial resolu-

tion.

In a third analysis (Fig. 10c) we calculate the overlap

S(60 min, 10 km; 1t , 1x) among aggregated data of spa-

tiotemporal resolution (t , x) and the data set at 60 min tem-

poral resolution and 10 km spatial resolution. This reference

point was chosen because it is close to current state-of-the-

art regional climate model simulation over Europe. The plot

shows a ridge with values close to 1, ranging from 5 min and

25 km to 120 min and 1 km resolution. Apparently all spa-

tiotemporal resolutions along this curve produce PDFs which

differ only slightly from the 5 min, 10 km aggregation. PDF

overlap values quickly decrease when departing from this

ridge. Comparing this ridge with the intensity decrease in the

99th percentile as illustrated in Fig. 3a, we find that the PDF

overlap mirrors the changes found in the 99th percentile. Us-

ing cumulative PDF measures as the Kolmogorov–Smirnov

statistics is an alternative way of comparing PDFs. Fig-

ure 10c shows that different pairs of resolution give very sim-

ilar PDFs. This can be used when comparing data sets of dif-

ferent resolution. This information also proved to be useful

for statistical bias correction, further analyzed in the paper

by Haerter et al. (2015).

For stratiform precipitation (Fig. 11), the analogous PDF

overlap degrades more slowly compared to convective pre-

cipitation. For example, at a 50 km grid size we find that

twice the temporal aggregation can be tolerated as compared

to convective precipitation when a given PDF overlap is de-

manded (Fig. 11a). Similar conclusions hold for the degrada-

tion as function of horizontal resolution (Fig. 11b). Starting

at about 20 min we again find that the 1x can be increased

to about twice the value for convective events to achieve the

same PDF overlap value. For the overlap S(60 min, 10 km;

1t , 1x), shown in Fig. 11c, the lower sensitivity to resolu-

tion changes for stratiform precipitation translates to a sub-

stantial widening of the red-shaded area near the ridge, indi-

cating much lower errors of estimating extremes at unavail-

able resolutions when stratiform precipitation is concerned

compared to the case for convective precipitation (Fig. 10c).

Performing measurements over extended regions can already

serve as a reasonable predictor of more local extremes. We

also find that due to the different area and duration reduction

factors of stratiform and convective type events, the ridge

with values close to 1 is shifting. For the stratiform type we

find that this ridge ranges from 5 min and 25 km to 90 min

and 1 km resolution.
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Figure 11. PDF overlap of stratiform precipitation intensity; otherwise similar to Fig. 10.

4 Discussion and conclusions

Precipitation is strongly inhomogeneous in time and space.

Averaging over a specific temporal or spatial interval there-

fore transforms the distribution function. The resulting

smoothing especially affects the extreme values, as it nar-

rows the distribution function while preserving the mean. In

this study, the focus is on how such averaging affects the two

synoptically identifiable precipitation types, namely strati-

form and convective extreme precipitation events. Convec-

tive events are known to produce strong, short-duration and

localized precipitation while stratiform events are less bursty

and cover larger areas. Using synoptic observations we sep-

arate radar-derived high-resolution precipitation intensities

conditional on events of either of these two types. Unlike

other studies, we here concentrate on the different aggrega-

tion behavior of the two precipitation types at different sea-

sons and regions of Germany. Although we have not ana-

lyzed this behavior in other regions and climate zones, we

expect that the findings will depend on the mean advection

velocity and also the orography might have an impact on re-

sults.

4.1 Space–time dependency of intensity distributions

We found that convective extremes were considerably

stronger in the south than in the north of Germany and

also showed clear seasonal differences with the highest ex-

tremes occurring in summer. Stratiform extremes showed

much more moderate differences over seasons and regions.

When aggregating data temporally or spatially, we find

much stronger reduction for convective than for stratiform

events (about 20 to 30 % higher). These differences are larger

than seasonal or regional differences that were observed

within one type. This highlights the importance of distin-

guishing between these two types of events, for example for

statistical downscaling exercises. After the type separation,

only the convective extremes show clear regional and sea-

sonal differences and only in the area reduction factors. For

the convective type, the strongest intensity reductions with

spatial scale were found in southern Germany in summer and

the lowest in northern Germany in winter.

4.2 Temporal and spatial scales at which shifts occur

between dominantly convective and dominantly

stratiform extreme events

Depending on the spatial and temporal resolution, different

meteorological events will be considered extreme. We point

out that this makes it difficult to compare different studies

of extremes in which these extremes were defined at differ-

ent scales. To demonstrate this we present the contribution of

convective events to the total, as a function of data aggrega-

tion, for the 99th percentile of all precipitation events.

This information is needed to identify which space–time

resolutions contain comparable information about the distri-

bution function, including the extremes. It will further help

to identify at which resolution and percentile one can ex-

pect to obtain information about convective extreme precipi-

tation events. Besides expected seasonal and regional differ-

ences with higher contribution of convective events in sum-

mer and over southern Germany, we also found a clear de-

pendency on the scale and the threshold used. Over north-

ern Germany, stratiform events contribute to the 99th per-

centile extremes only at horizontal resolutions coarser than

12 km when the duration interval is kept constant to 5 min.

For a higher threshold (99.9th percentile), convective events

dominate even more strongly and convective extremes con-

sequently prevail over even larger areas and durations.

4.3 Pairs of temporal and spatial resolutions with

similar aggregation effects on the extremes

For proper choice of model output resolution, precipitation

downscaling as well as bias correction, the relation between

the DRFs as compared to ARFs is important. Originating

from the radar data resolution of 5 min temporally and 1 km

spatially, we produced sequences of aggregation, both in

space and time, yielding (i) temporally aggregated intensi-

ties for spatial scales held fixed and (ii) spatially aggregated

intensity for temporal scales held fixed. Associating the re-

spective aggregation resolution by matching identical pre-
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cipitation extremes, we yield pairs of temporal and spatial

resolutions, which define a curve.

The results allow us, e.g., to identify pairs (1x, 1t) of

spatial and temporal resolutions for which the decrease in

extreme precipitation intensities due to temporal aggregation

matches that due to horizontal aggregation. In terms of the

Taylor hypothesis, the timescales can roughly be viewed as

the mean duration needed to advect the precipitation pattern

by the width of a grid box (Fig. 6).

For example, if for a given horizontal grid size a larger

temporal output interval is used the event will likely be ad-

vected further than the size of the grid box, leading to strong

duration reduction factors. We find that for state-of-the-art re-

gional climate simulations, performed at a 11 km horizontal

resolution, the temporal resolution needed in order to avoid

stronger duration than area reduction effects would be ap-

proximately 20 to 25 min.

In practice, in regional climate models the temporal output

is often lower than the resolution computed here. It should

therefore be reconsidered why many regional models do not

output at sub-hourly frequency and why often only daily av-

erages are stored.

If a model can resolve some small-scale features, e.g., con-

vective extremes, information can only be preserved by out-

putting at the appropriate temporal resolution, while in-

formation gets lost when using lower temporal resolutions

(Fig. 8). High temporal resolution is accessible by most

models already (most models have computing time steps

∼ seconds–minutes) but is not routinely output at such short

periods. Recording at higher frequency would mainly affect

storage space and not simulation run time (assuming efficient

I/O handling).

The pairs of corresponding grid sizes and durations de-

fine a velocity veff, which can be used to generalize the Tay-

lor hypothesis to the situation where temporal scales change

disproportionately compared to spatial scales (self-affinity;

Deidda, 2000). For constant veff as function of spatial scale,

the Taylor hypothesis would be obeyed. However, veff of

convective and stratiform extreme precipitation algebraically

decreases with increasing 1x with similar exponents for

both precipitation types. The main scaling difference be-

tween convective and stratiform events can be described by

a constant scaling factor. This scaling factor leads to about

1.75 times higher advection velocities for stratiform than for

convective events.

4.4 PDF overlap

Changes caused by temporal aggregation depend on the spa-

tial scale of the data and vice versa. We examine these de-

pendencies by comparing pairs of PDFs derived for different

aggregation resolutions using a method developed by Perkins

et al. (2007), here defined as PDF overlap.

We find that PDF changes that were observed when de-

creasing the temporal resolution from 5 min to 2 h at 50 km

horizontal resolution are quantitatively comparable with PDF

changes when going from 5 to 30 min at 10 km horizontal

resolution or from 5 to 10 min at 2 km horizontal resolution.

Furthermore, we show that the PDF overlap of a cer-

tain reference resolution (we chose as an example 60 min,

10 km) compared to all other aggregated resolutions shows

a ridge with values close to 1. This ridge ranges from 5 min

and 25 km to 120 min at 1 km resolution for convective type

events (Fig. 10c) and from 5 min and 25 km to 90 min at 1 km

resolution for stratiform events (Fig. 10c). These differences

can be explained by the strong area reduction factors found

for the convective type. The patterns found in this analysis

are very similar to the patterns found in Figs. 3 and 4, high-

lighting that most of the differences found in the PDF overlap

result from changes in the extremes.

The Supplement related to this article is available online

at doi:10.5194/acp-15-5957-2015-supplement.
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Abstract It is well known that climate model output data cannot be used directly as input to impact
models, e.g., hydrology models, due to climate model errors. Recently, it has become customary to apply
statistical bias correction to achieve better statistical correspondence to observational data. As climate
model output should be interpreted as the space-time average over a given model grid box and output time
step, the status quo in bias correction is to employ matching gridded observational data to yield optimal
results. Here we show that when gridded observational data are not available, statistical bias correction
can be carried out using point measurements, e.g., rain gauges. Our nonparametric method, which we
call scale-adapted statistical bias correction (SABC), is achieved by data aggregation of either the available
modeled or gauge data. SABC is a straightforward application of the well-known Taylor hypothesis of frozen
turbulence. Using climate model and rain gauge data, we show that SABC performs significantly better than
equal-time period statistical bias correction.

1. Introduction

Statistical bias correction, as a field, has received substantial attention in recent years as it is a simple tool
that makes impact studies possible in situations where climate model data are available but are subject to
inherent biases. Since the early approaches [Wood et al., 2004], statistical bias correction techniques have
now diversified considerably [Maraun et al., 2010; Piani et al., 2010a, 2010b; Haerter et al., 2011; Teutschbein
and Seibert, 2012; Piani and Haerter, 2012] and have been widely applied to a range of global [Piani et al.,
2010b; Li et al., 2010] and regional climate model (RCM) data sets [Berg et al., 2012a; Gudmundsson et al.,
2012; Teutschbein and Seibert, 2012].

Most current statistical bias correction techniques have in common that some form of quantile mapping is
applied to match the probability distribution function of climate model output to that of observed climate
data. It is generally necessary that the spatial and temporal resolution of modeled and observed data match
as closely as possible—e.g., in order to avoid the so-called inflation or deflation issue [von Storch, 1999;
Maraun, 2013]. However, in many practical situations, observed spatial data may not be available. Some type
of derived data set, such as reanalysis data [Dee et al., 2011] or data products combining data from multiple
sources [Weedon et al., 2011; Berg et al., 2015], must be used. The former, as a model interpolation technique,
still suffers from error and bias, while in the latter, due to the blend of data sources, little is sometimes
known on the exact details of the underlying data resolution in specific regions or time periods. Further,
both model and observations must typically be regridded to obtain matching resolutions. For station data
(point measurements), regridding to a common grid, i.e., finding an area representation of observations,
is impossible from the outset—especially when few stations are available in the region of interest. One
possible option are then stochastic methods to account for variability at small scales [Eden et al., 2014; Wong
et al., 2014], which, however, entail assumptions on the distribution functions.

In this study we take a different approach that may be suitable when gridded observations of dynamical
variables are not available, but reliable station measurements are. The approach is a simple application
of the Taylor hypothesis of frozen turbulence. The original Taylor hypothesis states that as the mean
atmospheric flow advects eddies past a station, the properties of the eddies remain unaltered [Taylor, 1938].
The hypothesis has previously been used for precipitation disaggregation [Deidda, 2000]. Recognizing this,
mapping to a common grid is no longer necessary as lacking spatial information can be compensated by
increased temporal information.
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Figure 1. Map of the data used. Figure shows available rain gauge stations, the model grid at 7 km, and grid points (red
and blue numbers) used for the 28 km and 77 km correction. Red and blue boxes exemplify areas of respective grid
boxes. Also shown: topography in meters, coordinates, and state boundary (black) of Baden-Württemberg, Germany.

Here we will consider simulated precipitation versus rain gauge station observations. Each value of
simulated precipitation represents a space and time average determined by the grid size 𝛿x,mod and time
step 𝛿t,mod of the output. By contrast, station precipitation data represent a spatial point measurement
(𝛿x,obs=0) and a time average determined by the measurement time step (𝛿t,obs). In general, we will have
𝛿t,mod ≠𝛿t,obs. In the case of high-frequency observations, one might be tempted to simply aggregate
station data to a coarser time interval so that 𝛿t,mod =𝛿t,obs and use the resulting data set to perform a
statistical bias correction of the simulated precipitation. For example, if correcting simulated daily values
of precipitation with hourly station data, one might simply derive daily station data and proceed as usual.
We will show that further aggregation onto longer time intervals of the observed station data may lead
to better quality bias correction, while also avoiding the inflation issue [Maraun, 2013]. We also show the
inverse, when model data have comparably high resolution. In that case, moderate coarse graining of the
model data improves the statistical bias correction.

2. Data

We use a fine-resolution (1 km and 5 min) composite of radar images from the RADOLAN-RY product of
the German Weather Service (DWD) for Southern Germany, which was aggregated for varying resolutions
[Eggert et al., 2015]. Rainfall rates were calculated from radar echoes with the Z-R relationship [Steiner
et al., 2004] and are available for the 2 years 2007–2008. Additionally, a set of 1 h resolution rain gauge
data from Baden-Württemberg in southwestern Germany was used for the bias correction experiments.
The stations constitute a relatively dense network covering both the Black Forest mountain range and
the topographically less variable Rhine Valley (Figure 1). The station network is most dense in the period
1997–2004, which is used here. Stations with more than 10% missing data were discarded from the analysis,
and for the remaining stations NaNs were set to zero precipitation to simplify. This has little impact on the
results presented here.

The model data are taken from a simulation with the COSMO-CLM (COnsortium for Small scale
Modelling-CLimate Mode) [Doms and Schättler, 2002]. The current simulation uses ERA-Interim reanalysis
[Dee et al., 2011] as driving data in a double nesting setup with a second 7 km nest domain covering all
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of Germany, with the lateral boundaries well outside Germany’s borders. The output time step is 1 h for
precipitation. (Simulation details: Berg et al. [2012b].) For the current investigations, the model results
are applied at the original 7 km resolution, and also as representatives for coarser model resolution by
remapping to 28 km and 77 km. As shown in Berg et al. [2012b] and Fosser et al. [2014], the model has a
strong bias in mean precipitation amounts but performs well regarding the intensity distribution for both
daily and hourly timescales. Equally long periods of 8 years are used for the model and station data.

3. Methodology

The Taylor hypothesis [Taylor, 1938] states that observations at a given spatial and temporal resolution
should be similar to those at lower spatial but higher temporal resolution. Our method is hence based
on the idea that lacking spatial resolution can be compensated by increased temporal resolution. Point
measurements, i.e., data at high spatial resolution, should therefore be compared to spatially averaged data
at correspondingly higher temporal resolution.

3.1. Frozen Turbulence and Comparison of PDFs
The probability density function (PDF) of precipitation intensity I depends on the resolution in space and
time, expressed by the size of the grid box or time step (𝛿x or 𝛿t), of the precipitation data. Our methodology
is based on the assumption that PDFs of precipitation intensity obtained with different spatial and temporal
data resolutions (𝛿x , 𝛿t) can have similar, albeit not identical, features. For example, should the Taylor
hypothesis hold perfectly, then PDF(𝛿x , 0, I) = PDF(0, 𝛿t =𝛿x∕v, I), where v is an advection speed.

Using observed or modeled precipitation data (section 2), we produce PDFs of precipitation intensity at
varying spatial and temporal resolutions. We then compare the PDFs at different resolutions (𝛿x , 𝛿t): The
PDF agreement

S
(
𝛿x , 𝛿t; 𝛿′x , 𝛿

′
t

) ≡ 1 − ∫
∞

I0

dI |||w(𝛿x , 𝛿t, I) − w
(
𝛿′x , 𝛿

′
t , I
)||| (1)

measures the similarity of the PDFs corresponding to different resolutions [compare Perkins et al., 2007;
Eggert et al., 2015]. In equation (1), w(𝛿x , 𝛿t, I) is some function of the probability density function of
precipitation intensity and I0 defines a possible low-intensity cutoff. Note that for most regions of the
globe, zero intensity constitutes the bulk of the probability weight in the PDF, i.e., dry periods outnumber
the wet. Intensity weighting gives more emphasis to nonzero intensities. For this study, we therefore
choose w(𝛿x , 𝛿t, I) as the intensity-weighted PDF of precipitation, i.e., w(𝛿x , 𝛿t, I)≡ I ⋅PDF(𝛿x , 𝛿t, I)∕ ∫ ∞

0 dI′ I′ ⋅
PDF(𝛿x , 𝛿t, I′) and I0 =0. Other reasonable choices are the Kolmogoroff-Smirnov statistics or the use of the
bare PDF with a nonzero intensity cutoff I0 >0. We found all to give similar results, albeit with varying degree
of noise (not shown).
3.1.1. Observed Data
For observed high-resolution data (section 2) and for a given reference resolution (e.g., 𝛿x0 = 25 km,
𝛿t0 = 5 min, shown as a large white circle in Figures 2a and 2b), we now determine all equivalent resolutions.
This can be done in two equivalent ways leading to similar, albeit not identical, results:

1. Consider Figure 2a, where we directly compare PDFs of all resolutions with that of the reference resolu-
tion. The PDF agreement is therefore maximal, i.e., unity, not only for (𝛿x , 𝛿t)=(𝛿x0, 𝛿t0) but also for other
pairs of resolutions the figure shows high-agreement values along a “ridge” with increasing space and
decreasing time resolution. To the extent that the ridge top can be approximated by a line, this indicates
that PDFs for resolutions

(
𝛿x , 𝛿∗t − r𝛿x

)
, with 𝛿∗t the ridge intersect with the vertical axis, are all very similar.

Defining, analogously, 𝛿∗x as the ridge intersect with the horizontal axis and r∗≡𝛿∗x∕𝛿
∗
t , v∗ =1∕r∗ has units

of a velocity and gives the effective speed of advection [Taylor, 1938]. We note that as r∗ is the slope
of the ridge, it can also be estimated when any two points (𝛿t, 𝛿x) and

(
𝛿′t , 𝛿

′
x

)
on this line are known,

i.e., r∗ ≈
(
𝛿′t − 𝛿t

)
∕
(
𝛿′x − 𝛿x

)
. This will then also deliver 𝛿∗t , e.g.,

𝛿∗t = 𝛿t + r∗𝛿x

(
= 𝛿′t + r∗𝛿′x

)
. (2)

We will refer to the line defined by r∗ and 𝛿∗t as the relevant ridge. In short, scale-adapted statistical bias
correction (SABC) demands finding this relevant ridge. This ridge will then be used to identify the proper
scale adaptation.
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Figure 2. Mapping of distribution functions. (a) PDF agreement (equation (1)) of radar precipitation PDFs of different
spatial and temporal resolution to the origin radar precipitation PDF with 25 km and 5 min resolution (shown as black
star symbol). Resolutions equivalent to the reference resolution (white circle) shown as blue circles. (b) Similar to
Figure 2a but using contours of similar PDF agreement for extrapolation. The origin distribution is now chosen at 1 km
and 5 min (star symbol). Optimal resolutions shown as green squares. (c) Comparison of equivalent temporal resolutions
from Figures 2a and 2b as function of spatial resolution. Dashed lines indicate reference resolution. (d) PDF agreement
as function of spatial resolution: black circles indicate maximal PDF agreement derived in Figure 2a; red triangles denote
PDF agreement when keeping temporal resolution fixed to 5 min. (e) PDF agreement with an origin resolution chosen
at (7 km; 60 min) for model data. White triangles/diamonds/circles are computed ridges for reference resolutions (28 km;
60 min) and (77 km; 60 min), as well as 𝛿∗t =1440 min, respectively. (f ) Similar to Figure 2c but for an origin resolution
chosen at (154 km; 1440 min). Note the similar results for the ridges in Figures 2c and 2d. (g) Comparison to radar data.
Color bars denote respective PDF agreement.

2. Another approach is to use a contour line of PDF agreement, not the maximum, to obtain the optimal
resolutions. To obtain contours of PDF agreement, we specify a different origin resolution, that is, a
resolution that serves as a comparison. In (1), this origin had been set to the same value as the reference
resolution, but we now show that it can also be moved to another point in the plane, i.e., away from the
reference resolution. Figure 2b exemplifies this for the case where the origin is set to (1 km; 5 min). Using
now the PDF agreement corresponding to the reference resolution (i.e., 25 km and 5 min), i.e., comparing
PDF(1 km, 5 min) to PDF(25 km, 5 min), we find the line of similar resolutions, this time by comparing with
the respective PDF agreement (compare Figure 2b, green line).

Not surprisingly, the contour line (symbols in Figure 2c) differs very little from the ridge found in method (1).
This is clear when noting that all PDFs along the ridge are very similar. Hence, also the agreement of any of
them with an origin resolution away from the ridge should yield comparable values. Methods (1) and (2)
are two equivalent ways to obtain the value of 𝛿∗t , i.e., the desired temporal resolution of the rain gauge. In
practice (section 3.3) we use method (2).
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We can compare the PDF agreement S
(

0, 𝛿∗t , 𝛿x0; 𝛿t0

)
of PDF

(
0, 𝛿∗t

)
, obtained with method (1) with the

standard approach of simply taking the time resolutions to match, i.e., maintaining a temporal gauge
resolution of 5 min (Figure 2d). The values obtained for the ridge top are reasonably good (black circles),
and much better than when using unchanged temporal resolution (red triangles). From the example we
see that when the gauge data are first aggregated to approximately 80 min, it constitutes a much better
representation of the distribution function of spatial data, i.e., PDF(0, 80 min) ≈ PDF(25 km, 5 min), while
PDF(0, 5 min) ≠ PDF(25 km, 5 min).
3.1.2. Climate Model Data
In Figures 2e and 2f we repeat the analysis of PDF agreement for high-resolution climate model data
(7 km spatially and 60 min temporally). Setting the origin resolution first to the highest model resolution
(lower left corner in Figure 2e), we compute the contour lines for several choices of reference resolution
(solid white symbols). These choices are made to reflect the cases of (i) typical high-resolution RCM output
resolution (28 km, 60 min), (ii) high-resolution global climate model output (77 km, 60 min), and (iii) daily
gauge temporal resolution (1440 min). Fitting linear functions, we extrapolate the corresponding values
of 𝛿∗t (compare equation (2)). The fits show the following: For (i), the equivalent gauge resolution would
be approximately 3 h. For (ii), gauge resolution should be chosen at 7.5 h. For (iii), daily gauge resolution
requires model resolution given by any of the symbols (white circles) in Figure 2e. One possible choice is
(150 km, ≈ 12 h). That is, if a model of 150 km spatial resolution was available, optimal temporal resolution
would be approximately 12 hourly.

We repeat the analysis for another origin resolution (154 km spatially, and 1440 min, temporally, upper right
corner in Figure 2f ). Producing again the contour lines and corresponding fits, we obtain very similar values
of 𝛿∗t , confirming that the choice of origin resolution has little impact on the resulting contour lines.

To compare these results with the observational data, we also extrapolate the contour line corresponding
to one of the reference resolutions (28 km, 60 min) in the radar data (Figure 2g). In the observational data,
the closest corresponding spatial resolution is 25 km. We use this to obtain the slope r. Together with
the reference resolution (28 km, 60 min) we yield the extrapolated value of 𝛿∗t ≈161 min. This value lies
somewhat lower than those from the model data (there, 𝛿∗t ≈180 min). However, given the shortcomings of
both observational and modeled data and limitations of available resolutions, the agreement of the results
is remarkably good.

The previous analysis shows that the patterns obtained with observational data can approximately be
reproduced using model data. However, typically, the model output resolution will lie at lower resolutions
than the one used for Figures 2e and 2f. Consider, e.g., the resolution (77 km; 1 h); available spatial and
temporal model resolutions are hence 77, 154, 231, … , km, respectively 60, 120, 180, … , min (shown as
white crosses in Figures 2e and 2f). Desired contour lines must hence be determined using exclusively these
discrete combinations of resolutions. We will show how to obtain these in the following.

3.2. Bias Correction Methodology
We distinguish the two cases resulting from comparably low model resolution (model limited) and
comparably low gauge resolution (gauge limited).
3.2.1. Model-Limited Correction
Consider a climate model with a given output resolution (blue cross, Figure 3a). We assume that observa-
tions are only available through a rain gauge (red cross, Figure 3a), with a relatively high gauge resolution.
The goal is now to estimate the contour line that is defined by the model output resolution, i.e., the blue
cross symbol must lie on the contour line. The offset 𝛿∗t for this line will define the required coarsening,
i.e., scale adaptation, of the gauge data. Once the scale adaptation has been produced, standard statistical
bias correction [e.g., Piani et al., 2010b] can be performed.
3.2.2. Gauge-Limited Correction
In many practical situations, it is also possible that rain gauge resolution is poor compared to the model
resolution (Figure 3b, gauge-limited case). This may especially be the case in very data sparse regions, such
as areas of the globe with little infrastructure (deserts and glaciated regions), but even in developed areas,
complete spatial coverage by subdaily precipitation gauges is by no means standard and daily temporal
resolution is usually the best available data. Under such circumstances, scale adaptation can only be
performed by aggregating the model data. It must thereby be assured that the available gauge resolution
lies on top of the contour line. Available model resolutions are shown in Figure 3b (small cross symbols). It is
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Figure 3. Scale-adapted statistical bias correction. (a) Model-limited correction. Two-dimensional schematic of spatial and temporal averaging intervals and PDF
agreement ridges (black lines). Red and blue cross: symbols indicate available gauge and model resolutions, respectively. (b) Gauge-limited correction. Similar
to Figure 3a but also including the range of resolutions where aggregation could be performed (green shades). Dotted green line indicates a possible aggre-
gation choice. (c) Schematic showing the construction of equivalent resolutions. Corners of green-shaded region show available aggregated model resolutions.
Dashed gray line indicates choice of (n=2,m=3) and (n=1, m̃=6), yielding r=3𝛿t0∕𝛿x0 and 𝛿t = m̃𝛿t0 + r𝛿x0 =9𝛿t0. Solid gray line shows equivalent resolutions
yielding 𝛿t =𝛿∗t for the gauge-limited case (GL). Dotted purple line shows equivalent resolutions yielding 𝛿t =𝛿∗t for a model-limited case (ML); this line
must be extrapolated (purple arrow indicates extrapolation). (d) Model-limited, extrapolation of t̃ as 𝛿x →0 for an assumed model of resolution (28 km; 1 h).
(e) Gauge-limited case, interpolation of 𝛿t as 𝛿x →0 for an assumed model of resolution (77 km; 1 h) and gauge of 24 h resolution. (f ) Schematic of data aggrega-
tion and disaggregation: (i) aggregation of pairs of two subsequent precipitation measurements (blue bars) to respective averages (black lines). (ii) Statistical bias
correction (SBC) of aggregated data (black lines converted to red lines) and subsequent disaggregation of corrected data (gray bars).

now possible that multiple model resolutions can in principle be used for scale-adapted correction, i.e., any
that are compatible with a contour line through (0,𝛿∗t ). Note that once the correction has been performed,
the model data can be disaggregated to its original resolution. For each aggregated data point, we simply
separate the data by applying the appropriate correction to each of its individual contributions (Figure 3f ).

3.3. Practical Implementation
In practice, the resolution of the model output defines the reference resolution (𝛿x0, 𝛿t0) and we set the
origin resolution equal to this. Available model resolutions are all combinations of integer multiples
(n 𝛿x0;m 𝛿t0) of the reference resolution, with n and m integers (Figure 3c). Implementation of scale-adapted
bias correction follows four steps:

1. Set 𝛿t to 𝛿t0, i.e., m=1. Observe all PDFs for several accessible n 𝛿x0, e.g., 𝛿x0 and 2𝛿x0.
2. Fix a specific PDF in (1) by choosing a multiplication ñ, e.g., choose the resolution (2𝛿x0, 𝛿t0). Now obtain

the value m̃ where m̃ ⋅ 𝛿t0 yields maximum PDF agreement between PDF(ñ𝛿x0, 𝛿t0) and PDF(𝛿x0, m̃𝛿t0),
i.e., both will lie on the same contour line. The pairs (ñ𝛿x0, 𝛿t0) and (𝛿x0, m̃𝛿t0) define lines which can be
used to extrapolate to 𝛿x =0, yielding a value 𝛿t (compare equation (2) and Figure 3c).

3. Repeat steps (1) and (2) starting with m>1 in (1).
4. Extrapolate or interpolate the resolution for required 𝛿∗t , i.e., achieving 𝛿t ≈𝛿∗t .

Note: For better results, in step (2) a fit with respect to PDF agreement should be used to obtain m̃, thereby
allowing noninteger m̃ and yielding more exact estimation of 𝛿t .

Once 𝛿∗t has been obtained, in the ML case the gauge data will be aggregated to the resolution 𝛿∗t . In the GL
case, the model data will be aggregated to a resolution closest to the line defined by the contour through
𝛿∗t . Once the data have been aggregated, standard statistical bias correction will be performed.
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Figure 4. Bias correction results. (a) Model-limited bias correction; intensity-weighted PDFs for the estimated observa-
tions (Obs, gray), i.e., the average of all stations in a grid box, 28 km model data (Mod, pink), SBC1 using a single gauge at
a 1 h resolution (orange), and SABC using a single gauge at 3 h temporal data aggregation (dark blue). PDFs shown are
aggregate distributions for all stations and grid boxes. Values marked in parentheses in legend are PDF agreement values
with 𝜌obs in percent. (b) Gauge-limited bias correction for 77 km model; curves and colors analogous to Figure 4a. SBC1
is now for a single station and model data aggregated to 24 h; SABC uses 19 h temporal aggregation of model data. Note
the different horizontal axes and units in Figures 4a and 4b. Results for individual grid boxes and stations for the ML case
shown in Figure 4a: (c) PDF agreement , (d) 99.9th intensity percentile, and (e) dry period fraction. Colors as in Figures 4a
and 4b. Symbols for each grid box are the different available stations (Figure 1), thin blue (pink) lines are guides to the
eye, linking same stations for increased (decreased) performance. (f–h) Similar to Figures 4c–4e but corresponding to the
GL case shown in Figure 4b.

4. Results

Does scale-adapted bias correction yield measurable improvement in practice? We carry out both types

of corrections (Figures 3d, 3e, and 4) and compare each to the correction where temporal resolutions are

simply matched for model and observations. Specifically, the tests are as follows.
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(ML) Model-limited correction. We employ the same model used in Figures 2e and 2f but start from a minimal
resolution of 𝛿x0 =28 km spatially and 60 min temporally. This is to mimic output resolution typical of current
RCMs. We assume station data to be available at 1 h resolution.

(GL) Gauge-limited correction. Again, using the same model and hourly temporal resolution, we now use
coarse spatial resolution (77 km), mimicking state-of-the-art global climate model output. The station
resolution is assumed to be daily.

Following the steps in section 3.3, we now obtain an estimate for the corresponding contour line (white
triangles and circles in Figure 2f for the ML and GL cases) without the knowledge of the data corresponding
to spatial scales below 𝛿x0. Specifically, we compute various curves (such as those shown in Figure 3c) and
for each determine the corresponding 𝛿t . This procedure yields a set of corresponding temporal resolutions
(m̃𝛿t0, 𝛿t), which is plotted in Figures 3d and 3e. For the ML case, these points allow us to extrapolate the
𝛿∗t corresponding to model temporal resolution 𝛿t0, yielding 𝛿∗t ≈163 min. The best equivalent gauge
aggregation (integer multiple of 1 h) is hence 3 h. We proceed analogously for the GL case, where we
determine the value of m̃ that corresponds to 𝛿∗t =1440 min, yielding m̃≈19, hence a model aggregation to
19 h (compare Figure 2e, where the value is ≈18 h).

To obtain a proxy for spatially averaged observations, we first group rain gauge stations into 28 km
(respectively 77 km) grid boxes and simply average their precipitation intensities. We discard grid boxes with
fewer than three stations. For the ML case, we maintain a temporal resolution of 1 h, and for the GL case, we
aggregate temporally to 24 h. The resulting spatially averaged signals will be less variable than that of any
station by itself, but, due to the finite number of stations per grid box, somewhat more variable than the
actual spatial average (i.e., that corresponding to an infinite number of stations per grid box). For each grid
box, the averaged station data serve as the “ground truth” for our procedure (we call its probability density
function 𝜌obs in the following).

We now use any single station within the grid box as constituting the only available station for a given
practical situation. Our hypothesis is that SABC yields better agreement with 𝜌obs than the standard
correction with matching time resolutions (SBC1). To exemplify the bias correction procedure, we use simple
empirical quantile mapping by estimating a regularly spaced quantile distribution, following Gudmundsson
et al. [2012]. Our approach is, however, generic and should also apply for more sophisticated bias correction
techniques [e.g., Piani et al., 2010b; Mehrotra and Sharma, 2012; Rocheta et al., 2014]. As a benchmark, we
first perform a correction with 𝜌obs (SBC0). This represents the ideal correction obtainable when sufficient
data are at hand. As expected, the resulting corrected model PDF is very close to 𝜌obs, as seen in Figures 4a
and 4b.

For the ML case, for each available grid box and for each possible choice of associated station, we now
repeat the procedure using the hourly data—assuming that only this single station is available for the bias
correction. For each combination of a grid box and station, this yields a histogram for the corrected data.
SBC1 significantly shifts the original distributions to more extreme intensities (Figure 4a); affecting the
overall PDF agreement and high percentiles. Repeating for SABC (gauge data coarsened to 3 h), markedly
closer agreement with 𝜌obs is reached. Besides the overall skill, also extremes and dry period fraction are
consistently improved for each single station used as reference (Figures 4c–4e). Also, the average intensities
are corrected well to that of the relevant reference station, which trivially produces a spread of results
around the average of 𝜌obs with only small differences between SBC0 and SABC.

An analogous comparison is performed for the GL case; now SBC1 employs temporal coarsening of model
data to match the assumed daily resolution of the station, leading to generally too heavy intensities
compared to 𝜌obs (Figure 4b). Again, SABC overall yields substantial improvement for PDF, extremes and dry
period fraction. Disaggregation back to hourly data (Figure 3f ) retains the increased skill seen in the daily
statistics but does not, e.g., affect other bias such as in the diurnal cycle.

We end with a comment on GL corrections: When multiple options are available for coarsening, one
relevant criterion for optimal choice might be loss of data samples in the statistics. Reduction of sample size
is greatest for intermediate options of spatial coarsening, but low for both the original spatial resolution
and very high values of the spatial coarsening. We consider the latter only a theoretical option, as it may
require substantial domain sizes and removes all spatial information, e.g., orographic effects (details on
sample reduction: Appendix A).
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5. Discussion and Conclusion

Statistical bias correction of precipitation has emerged as an indispensible tool at the intersection between
climate and impact modeling—but hinges on the availability of adequate observational data. Especially in
data sparse regions of the globe, successful bias correction is hampered by the lack of agreement of model
precipitation output resolution and the resolution observed. We have shown that even with observational
data from a single rain gauge station, considerable improvement can be achieved when aggregating the
available data to yield maximal PDF agreement between model and observations. We suggest the use of
this method, which we have called scale-adapted statistical bias correction (SABC), in situations where bias
correction is required but only limited point measurements are available.

Crucially, SABC capitalizes on the ability of the model to capture the space-time dynamics of precipitation.
The model is hence employed to associate adequate scales. In SABC, the variability of precipitation
intensity—measured at a station—is compared to model data measured over a spatial domain but
accordingly chosen, shorter time intervals. Our results point to the utility of outputting temporally highly
resolved model data, even (or especially if ) spatial resolution is low—the information on fluctuations,
encoded in the higher temporal output rate, will then be preserved and can be used for SABC. In this way,
the method can help remedy the inflation issue [von Storch, 1999; Maraun, 2013]. SABC can naturally not
impact on inherent model shortcomings in simulating temporal variability [Maurer and Pierce, 2014]. Also,
when atmospheric advection is not described adequately, the association of scales needed for SABC may
itself be biased.

The methodology is straightforward and can be applied for any type of climate model data. It requires only
to compute probability density functions for several choices of coarsened resolutions. This is simply done by
data aggregation, e.g., by doubling or tripling of spatial and temporal scales. Pairs of matching resolutions
then define appropriate gauge resolutions. Our results are encouraging in that quantitative improvement of
intensity distributions is reached for the overall histogram, extreme precipitation as well as dry periods.

SABC should not be limited to precipitation correction but may also be relevant for other meteorological
variables where the hypothesis of frozen turbulence applies, i.e., where advection of the quantity is the
dominant cause of local fluctuations. While our method works well even in regions of moderate topographic
variation (Southern Germany), stronger variation, e.g., mountainous regions, may introduce features that
naturally require fine-scale knowledge of local climate, not captured by single gauges. Especially when
gauge density is low, as is the case in vast parts of the globe, our method may allow for substantially
improved bias correction at essentially no cost in terms of model output, data storage, or mathematical
complexity.

Studying precipitation intensity at resolutions finer than that of convective systems has recently become of
widespread interest [e.g., Lenderink and Van Meijgaard, 2008; Berg et al., 2013; Eggert et al., 2015]. Observa-
tionally, data describing such extremes is often limited to individual gauges: Measurements from gauges
are usually considered more reliable than other sources of data, i.e., constitute the preferred source of
information. Yet modeling of station scale characteristics will—for the time being—not be feasible. Our
study speaks to an alternative solution, where low spatial resolution could again be compensated by high
temporal resolution. A station with hourly temporal resolution could then be modeled by a regional climate
model with approximately 12 km spatial and 5 min temporal output. Again, simply using the same temporal
output rate as available from the station would lead to sizeable error in the comparison (compare Figures 2a
and 2b).

As an alternative to recent stochastic methods [Eden et al., 2014; Wong et al., 2014], SABC could also be
used for simple, direct, downscaling of model data to the point scale—possibly circumventing the need for
a statistical model. In the example of the previous paragraph, each value of (12 km, 5 min) model output
would then be a proxy for an hourly average for a point measurement. An analysis of such downscaling is,
however, left to a future study.

Finally, it may be promising to combine SABC with two-dimensional bias correction [Piani and Haerter,
2012; Mehrotra and Sharma, 2015]. Given the large amount of data necessary to populate 2-D histograms
of dynamical variables, for example, temperature and precipitation, gridded data sets with sufficiently long
time series are hard to come by. Using SABC, climate impact modelers can access the information in station
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data directly without prior gridding. This has the potential to make 2-D bias correction a standard procedure
and will be the focus of future work.

Appendix A: Sample Size Reduction

We comment on the possible choices for gauge-limited corrections: When multiple choices are available for
possible coarsening, one relevant criterion for optimal choice might be loss of data samples in the statistics.
When coarsening, using equivalent resolutions along the relevant ridge, the reduction of sample size is
R(ñ)≡ ñ2 ⋅ m̃(ñ). Dropping the tilde for simplicity, and noting that m=𝛿t∕𝛿t0, 𝛿t =𝛿∗t − r𝛿x , and n=𝛿x∕𝛿x0,
we have

R(n) =
𝛿∗t
𝛿t0

n2 − r
r0

n3, (A1)

where we have defined r0 ≡𝛿t0∕𝛿x0. Equation (A1) states that R initially increases as a function of n but decays
for large n. Noting that n,m≥1, we have the bounds

nmin ≡ 1 ≤ n ≤ 𝛿∗t − 𝛿t0

r𝛿x0
≡ nmax. (A2)

Intermediate choices of n yield extreme reductions of data, for the case studied in Figure 4b, Rextr >100
is possible. Generally, n=1 may be a reasonable choice (in our example R(1)=19) but in some cases also
n=nmax should be considered, especially when high temporal resolution, i.e., small 𝛿t0, is available. In those
cases, R(nmax)<R(1) is possible, allowing a larger sample size to be preserved. In the plot, n ranges from
unity to nmax. Extremal Rextr occurs at intermediate values of n and can substantially exceed R(1) and R(nmax).
Dependencies on system parameters: R(1)=𝛿∗t ∕𝛿t0 − r∕r0. The value of n where extremal R is reached:
nextr =2r0𝛿∗t ∕3r𝛿t0; extremal R: Rextr =4r2

0𝛿
∗3
t ∕27r2𝛿3

t0. In practice, however, possible degradation of PDF agree-
ment, even along the ridge, should be evaluated when using large n. Assessment of this question should be
left for future work.
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Abstract6

Precipitation, especially when falling as snow, is a key element of the Alpine climate sys-7

tem. Within this region, regional climate models are known to contain common biases in the8

simulated surface-temperature and precipitation fields. While climate simulations tend to9

overestimate precipitation observations likely underestimate precipitation in particular when10

falling as snow. Based on EURO-CORDEX data, we analyzes how these errors impact the11

temperature distribution and the temperature dependent occurrence distribution of snowfall-12

and precipitation-frequencies. Differences are found between the shape of the observed and13

the simulated distributions. To analyzed the impact of these biases on the climate change sig-14

nal (CCS) a probabilistic framework is developed in which the CCS is decomposed into two15

parts. Changes in the temperature distribution and changes in the temperature dependency16

of the event occurrence. Past changes are compared against observations allowing to quan-17

tify the impact of model biases on the CCS. The observations show an increase in (heavy)18

precipitation-frequency above the model spread at most altitudes. The main reason is a com-19

mon cold bias in the surface-temperature of all ensemble members. A second reason is a20

bias in the temperature dependency of these events, that also impacts snowfall-frequency21

changes. We find, that mean snowfall-fractions at a specific temperature depend on the re-22

gional climate model and discrimination method. These differences impact the temperature23

dependency of snowfall-frequencies and hence influence the CCS. Using the RCP4.5 sce-24

nario, future changes are analyzed with and without bias-adjustment. Differences are found25

and related to biases identified in the past period.26

1 Introduction27

Projected future changes in precipitation and especially snowfall are expected to have a28

high environmental and economic impact in the Alpine region (Beniston [2003]; 200 [2007]).29

Snowfall plays a major role for the winter tourism sector as well as for hydro-power produc-30

tion and water management systems (Schaefli et al. [2007]; Coppola et al. [2016]). Heavy-31

snowfall events may lead to avalanches, cause severe damage on buildings and lead to traffic32

breakdowns (200 [2007]), whereas heavy-rain events can cause floods or landslides (Ruiz-33

Villanueva et al. [2012]).34

Indications for a changing climate have already been observed in the last decades,35

which makes the region particularly interesting to validate simulated past changes against36

observations. In the 20th century an increase in surface-minimum-temperature of over 2 ◦C37
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has been observed (Beniston [2006]). Half of this increase is belived to be caused by high38

values in the North Atlantic circulation (NAO) index, that occurred towards the end of the39

20th century (Beniston et al. [2010]). Especially for lower elevations, where the tempera-40

ture trends were found to be stronger (Ceppi et al. [2010]), a decrease in the proportion of41

snowfall days relative to precipitation days is observed (Serquet et al. [2011]; Scherrer et al.42

[2004]). In contrast to changes in snow and temperature, observed long-term trends for pre-43

cipitation show strong regional differences. An increase in the total precipitation amount was44

found north of the Alpine chain, that is mainly due to positive precipitation trends in the win-45

ter and spring season ([Brunetti et al., 2006]), while a decrease was observed over the central46

Alps (Brugnara et al. [2011]), and south of the Alps (Brunetti et al. [2006]).47

Projections using the new greenhouse gas concentration pathway RCP4.5 (Moss et al.48

[2010]), indicate a mean-surface-temperature increase of 2.5 ◦C over the alpine region by49

the end of the century, with a slightly stronger increase in winter compared to the summer sea-50

son (Smiatek et al. [2016]; Jacob et al. [2013]). For RCP8.5, substantially larger changes51

are projected with a temperature increase of more than 4.5 ◦C (Jacob et al. [2013]). At the52

same time, winter precipitation is expected to increase under the RCP4.5 scenario by about53

12 %, while summer precipitation is projected to decrease by 1.7% (Smiatek et al. [2016]).54

Projected changes of total annual precipitation show that the Alps are in a transition zone55

between a precipitation increase in the north of Europe, and a decrease in the south (Jacob56

et al. [2013]). In winter, this transition zone is expected to move further south, suggest-57

ing a slight increase of total- and heavy-precipitation events over the alpine region (Jacob58

et al. [2013]). These findings are in line with the already observed precipitation trends found59

by Brunetti et al. [2006]. Frei et al. [2017], analyze snowfall changes over the alpine region60

and find reductions in September to May snowfall from -25% in the RCP4.5 scenario, to -61

45%, using an ensemble of RCP8.5 projections.62

In order to make informed decisions, stakeholders need to know about uncertainties63

that are associated with the model projections. Most studies that analyze uncertainties use64

large model ensembles and consider different greenhouse gas emission scenarios (e.g. Jacob65

et al. [2013]; Gobiet et al. [2014]). However, knowledge gaps, and insufficient temporal-66

spatial resolution, could lead to common errors in all models. Uncertainties related to model67

biases can therefore not always be captured by the ensemble spread (Foley [2010]; Eggert68

et al. [2015]). This could be particularly relevant for the analysis of projected changes in the69

next few decades (Hawkins and Sutton [2009]), or when changes under fixed global warm-70
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ing thresholds (e.g. 1.5 or 2 ◦C global warming) are compared. For these kind of studies,71

scenario uncertainties are reduced and model uncertainty as well internal variability gain72

of importance.73

To determine if the models are able to correctly represent the relevant processes in a74

region, models are validated against observations. In the Alpine region, it is known that there75

are significant biases in the simulations of current and past climate (Gobiet et al. [2014]). Smi-76

atek et al. [2016], analyzed an ensemble of EURO-CORDEX simulations and found a mean-77

surface-temperature bias in the range from -1.9 to -0.8 K and a wet precipitation bias rang-78

ing from 14.8 % in summer to 41.5 % in the winter season. They also showed that the over-79

estimation of precipitation is found for the frequency of days with precipitation sums above 180

mm/day, as well as for the mean precipitation intensity. Similar model biases for temperature81

and precipitation are also found in other studies (Kotlarski et al. [2014]; Frei et al. [2017];82

Rajczak et al. [2013]). However it has to be kept in mind that also the observations are prone83

to errors that influence the biases mentioned above (e.g. Kotlarski et al. [2014]; Prein and84

Gobiet [2016]).85

In this study we analyze past and future precipitation- and snowfall-frequency changes86

over the northern alpine region using a 1 mm/day and a 25 mm/day threshold at different al-87

titudes. For these variables it is well known that not just the variables show a temperature88

dependency (Allen and Ingram [2002]; Trenberth [2011]; O’Gorman [2014b]), but also the89

CCS of these variables is found to be dependent on the mean temperature in the control pe-90

riod (Piazza et al. [2013]; de Vries et al. [2014]; O’Gorman [2014a]). The snow-albedo feed-91

back (SAF), has been identified as an important mechanism, that may cause nonlinear snow92

and temperature changes (Kotlarski et al. [2011]; Giorgi et al. [1997]; Winter et al. [2016]).93

These findings suggest that the temperature bias found for the alpine region will have an im-94

pact on the CCS.95

To date, little research effort has been spend on the question of how these errors in the96

models and the observations affect the climate change signal (CCS). Therefore we develop a97

probabilistic decomposition-framework to test the sensitivity of past and projected changes to98

biases in the temperature distribution and in the temperature dependency of precipitation and99

snowfall events.100

The framework is used to analyze the following research questions.101
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• How do the known temperature and precipitation biases modify the temperature dis-102

tribution and in the temperature dependency of total-precipitation- and snowfall-103

frequencies at different altitudes in the northern alpine region.104

• How strong can different snowfall-fraction estimates influence snowfall-frequency105

changes.106

• How strong are the observed model biases influencing the past and projected CCS of107

total-precipitation- and snowfall-frequencies at different altitude.108

We show, that the framework can also be used to perform a temperature dependent109

bias-adjustment of the analyzed parameters. After we quantify the impact of biases in the110

temperature distribution, and in the temperature dependent precipitation distributions on the111

CCS, we use the bias-adjusted data to identify the combined effect.112

The paper is structured as follows: in Sect. 2 we describe the data and methods used.113

Sect. 3 presents the results from the snow discrimination analysis (Sect. 3.1), the validation114

experiment (Sect. 3.2), the future projections (Sect. 3.3) and the bias-adjustment (Sect. 3.4).115

We close with a summary and conclusions (Sect. 4).116

2 Data and Methods117

2.1 Research area and model selection118

Figure 1. Orography of the alpine region at 0.11◦ resolution as used in the regional climate model REMO.

The red box indicates the study area “northern Alpine region”.

119

120
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GCM RCM

MPI-M-MPI-ESM-LR MPI-CSC-REMO2009

MPI-M-MPI-ESM-LR SMHI-RCA4

ICHEC-EC-EARTH SMHI-RCA4

ICHEC-EC-EARTH DMI-HIRHAM5

ICHEC-EC-EARTH KNMI-RACMO22E

IPSL-IPSL-CM5A-MR IPSL-INERIS-WRF331F
Table 1. Overview of global and regional climate models used in the present study129

The domain of interest for this study is the northern Alpine region (9.7 - 13.5 ◦E, 47.1121

- 48 ◦N) illustrated by the red box in Fig. 1. The analysis is performed on a 0.11◦ grid. All122

observation data sets were interpolated to this grid. We use simulations from the EUROpean123

branch of the COordinated Regional Downscaling EXperiment initiative (EURO-CORDEX)124

(Jacob et al. [2013]). As snowfall is a mandatory output variable for this study we can only125

use a subset of all available simulations Tab. 1. From each RCM that outputs snowfall, we126

selected at least one simulation. Only SMHI-RCA4 is used twice to establish a connection127

between the MPI-M-MPI-ESM-LR and the ICHEC-EC-EARTH driven simulations.128

2.2 Observation Data130

We use the Alpine precipitation gridded data sets (EURO4M-APGD) version 1.0 (Isotta131

et al. [2013]), hereafter referred to as EURO4M data. This data set covers the European Alps132

and is available at a horizontal resolution of 5 km. Especially over the northern part of the133

Alps the station density is high with more than 1 station / 100 km2 in Germany, Austria and134

Switzerland (Isotta et al. [2013]). For precipitation observations only EURO4M data is used.135

The high resolution and the high station density is a key feature to capture the high spatial136

variability of precipitation. EURO4M was the only data available that can be expected to137

have at least a similar effective resolution as the EURO-CORDEX simulation for the domain.138

We do not have temperature observations on the same resolution as the precipitation139

data, therefore we use two different temperature data sets to account for uncertainties result-140

ing from the scale mismatch. One of these data sets is E-OBS version 14.0. E-OBS provides141

daily surface-air-temperature observations at a 0.25◦ horizontal resolution (Haylock et al.142

[2008]). The second set of temperature observations came from the HISTALP data set (Chi-143
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mani et al. [2011]). HISTALP provides monthly information at a high horizontal resolution144

of 5min degree. Because the analysis is performed on daily data, we need to add daily devia-145

tions to the monthly mean data. This information is taken from the E-OBS data set.146

2.2.1 Creation of snowfall data sets147

Gridded snowfall observations at a daily temporal resolution are not available for the148

studied region. Therefore snowfall is estimated from EURO4M precipitation observations,149

using both temperature data sets described above. These estimates affect the snowfall amounts150

that will fall at temperatures close to 0 ◦C. This can have an impact on the correlation be-151

tween snowfall and temperature.152

To investigate this impact, we use two different snowfall discrimination methods. These153

methods will be called SFE1 and SFE2. HISTALP also provides monthly snowfall informa-154

tion. In the supplementary material a comparison of the yearly cycle of total precipitation155

and snowfall between HISTALP and EURO4M is given.156

The air-temperature thresholds (ATT scheme) SFE1 uses a simple temperature de-157

pendent function, that was derived from snow flux observations over Sweden (Feiccabrino158

et al. [2013]), to obtain a snow-precipitation ratio (PrsnFrac). This function is also used159

by O’Gorman [2014a] who finds that the function can be used over large parts of northern160

Europe. For surface-temperature values above 7 ◦C it is assumed that no snowfall will oc-161

cur and the snowfall-fraction is set to 0. At surface-temperature values below -4 ◦C the snow162

fraction is set to 1, all precipitation will be seen as snow. Between -4 to 7 ◦C equation 1 is163

used to determine the snow-fraction (PrsnFrac).164

PrsnFrac = exp(−8.58E−5 ∗ (T + 7.5)4.12) (1)

For the second snowfall discrimination approach SFE2, we decided to use snowfall165

statistics from the EURO-CORDEX ensemble rather than to use a second conventional method.166

This has the advantage that differences in snowfall between models and observations can di-167

rectly be related to differences in precipitation and temperature, as the snowfall-fractions168

at a specific temperature are statistically the same. Specifically we create a lookup-table169

(LUT) from the model ensemble. This LUT provides ensemble mean snowfall-frequency-170
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and snowfall-intensity-fractions, dependent on temperature, precipitation intensity and alti-171

tude. The same dependencies that will later be used for further analysis. To create the LUT,172

the information is binned in the following way: 1 Kelvin bins for temperature, 100 m bins for173

orthographic height and 1 mm/day bins for precipitation intensity. For orthographic height174

and precipitation intensity a smoothing is applied as centered mean over neighbored bins.175

Figure 2 (a), shows the dependency of mean snowfall-frequency-fractions (number of176

snowfall events vs. number of precipitation events) and snowfall-intensity-fractions (mean177

snowfall-intensity vs. mean total precipitation-intensity) on total precipitation at 0 ◦C. For178

temperatures below -5 ◦C the snowfall-fraction is set to 1. For temperatures above 10 ◦C the179

snowfall-fraction is set to 0. In the temperature range between -5 to 10 ◦C we use the calcu-180

lated snowfall-frequencies from the LUT to randomly declare precipitation days as snow days181

(Fig. 2 a: event frequency). Compared to SFE1 the temperature range where the snowfall-182

fractions can deviate from zero is extendet. However, between 7 and 10 ◦C the models show183

also snow-fraction values ∼0 ◦C (Fig. 2 b).184

Solid and liquid precipitation can occur on the same day, therefore not all precipitation185

on a snowfall day can be counted as snow. In order to match the snowfall-fractions to the186

values from the LUT, we reduce the snowfall intensity of each event until the mean snowfall-187

fractions at each temperature bin are equal (Fig. 2 a: intensity adjustment). Since this step is188

done after we declared only a certain percentage of all precipitation days as snowfall days,189

the intensity reduction for the remaining events is lower compared to SFE1.190

Figure 2 b shows the temperature dependency of SFE1 and SFE2 compared to snow-191

fractions simulated by the EURO-CORDEX models. Between about -5 to 5 ◦C snow frac-192

tion statistics strongly depend on the climate model. Also SFE1 and SFE2 show clear dif-193

ferences in this temperature range. For temperatures higher than 2 ◦C SFE1 estimates are194

above the model spread. SFE2 uses statistical information from the model ensemble and rep-195

resents the ensemble mean. The difference between different ensemble members can be up to196

55%.197

With two different temperature data sets and two different functions to estimate snow-198

fall, we obtain four snowfall data sets based on EURO4M total precipitation data: SFE1-199

EOBS, SFE2-EOBS, SFE1-HISTALP and SFE2-HISTALP. In Sect. 3.1 we show a compar-200

ison of these data stets. Hereafter we will call snowfall estimates that are based on observa-201
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tional data “snowfall observations”, in order to distinguish them from snowfall estimates that202

are based on EURO-CORDEX simulations.203

a) b)

Figure 2. a) Ensemble mean statistics used in the SFE2 look-up table. Dependency of the total snowfall-

fraction, the snow event frequency and the intensity adjustment on total precipitation intensity at 0 °C. b)

Snowfall-fractions as a function of surface-air-temperature in EURO-CORDEX simulations compared to the

estimations SFE1 and SFE2 for the period 1971-2000.

204

205

206

207

2.3 Introduction to the concept of the probabilistic decomposition-framework208

2.3.1 Distinguishing occurrence probabilities by mean daily surface air-temperatures209

We separate temperature related changes from the total CCS of precipitation- and210

snowfall-frequencies using the law of total probability (Fahrmeir et al. [2016]).211

According to this law we can split the total probability that an event will occur (P(I)),212

into separate probabilities that an event will occur at a specific temperature range (P(I |Ti)).213

The total probability can than be calculated by weighting the probabilities P(I |Ti) with the214

probability that a day will have a mean daily air-temperature in the temperature range P(Ti)215

and integrate over the entire sample space of temperatures. In practice we sum from Tmin to216

Tmax using 1 K temperature bins (eq. 2).217

P(I) =
Tmax∑

T=Tmin

P(I |Ti) ∗ P(Ti) (2)

The letter I stands for indices, the letter T for temperature. P(I) and P(I |Ti) are used as gen-218

eral terms to indicate the total probability and the temperature dependent probability. In this219

study these terms will be use for all data sets and indices.220
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2.3.2 Using the probability separation to analyze the climate change signal221

The chance, that an event will occur in the future period (Pf ), can be thought of as the222

sum of the chance that an event occurs today (Ph) and a term that represents changes in the223

occurrence probability (Pccs). Adding the terms for future changes to equation 2, we get the224

following equation for the total occurrence probability in the future period (Pf (I)).225

Pf (I) =
Tmax∑

T=Tmin

[Ph (I |Ti) + Pccs (I |Ti)] ∗ [Ph (Ti) + Pccs (Ti)] (3)

After expanding the product, we obtain the following terms:226

1. Ph (I |Ti) ∗ Ph (Ti): The total occurrence probability in the control period (Ph (I)).227

2. Three terms that together form the CCS.228

(a) Ph (Ti) ∗ Pccs (I |Ti): CCS caused by changes in the temperature dependent oc-229

currence probability P(I |Ti). Changes in this term will change the temperature-230

dependency of the events. A main cause for changes in this term are changes in the231

large scale circulation. This term will further be referred to as P(I |Ti) dependent232

CCS.233

(b) Ph (I |Ti) ∗ Pccs (Ti): CCS caused by changes in the temperature distribution P(Ti).234

These changes are mainly related to thermodynamic effects. This term will further235

be referred to as P(Ti) dependent CCS.236

(c) Pccs (I |Ti) ∗ Pccs (Ti): CCS caused by correlations between changes in the P(Ti)237

and the P(I |Ti) distribution. This term will further be referred to as correlation238

dependent CCS.239

2.3.3 Decomposition of model biases in the climate change signal240

In the first part of the analysis we compare the two 20 year time periods 1971-1989241

and 1990-2008. For both periods, observation data is available, allowing a comparison of the242

simulated changes against observations.243

From equation 3 we derive three terms that describe changes in the event occurrence244

(2: a-c). Comparing the model simulations with observational data, we find differences in245

the historic distributions and in the CCS. To analyze the impact of these biases individually,246

a δ term is added to each probability distribution (2: a-c), that represents a possible model247

bias. We obtain the following equation for the observed distribution changes:248
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Pccsobs (Index) = [Ph (Ti) + δPh (Ti)] ∗ [Pccs (I |Ti) + δPccs (I |Ti)]+

[Ph (I |Ti) + δPh (I |Ti)] ∗ [Pccs (Ti) + δPccs (Ti)]+

[Pccs (I |Ti) + δPccs (I |Ti)] ∗ [Pccs (Ti) + δPccs (Ti)]

(4)

After expanding the products, we obtain the CCS as simulated by the model:249

Ph (Ti) ∗ Pccs (I |Ti) + Ph (I |Ti) ∗ Pccs (Ti) + Pccs (I |Ti) ∗ Pccs (Ti)250

additionally we obtain nine terms, that add up to the total bias in the climate change251

signal see table 2. If percentage changes are analyzed we receive two additional terms P1 and252

P2 (for more details see the supplementary material). These terms become important if there253

is a mismatch in the magnitude of the historic distribution between models and observations.254

We will refer to the terms P1 and P2 as scaling terms. In section 3.2.3 the terms from Tab.255

2 are used to analyze the origin of differences we find between observed and simulated past256

climate changes.257

2.3.4 Adjustment of the temperature and precipitation distribution260

Decomposing the CCS bias according to Tab. 2 enables us to quantify how strong bi-261

ases in the temperature distribution and biases in the temperature dependency of the events262

influence the climate signal. Under consideration of this knowledge, we analyze the com-263

bined impact from biases found in the historic distributions P(T) and P(I|T) on the simulated264

CCS. In order to calculate the combined impact, we adjust the simulated distributions to the265

observed data. For the historic distributions, we take the observed data instead of data from266

the simulations. The future distributions are calculated by adding the simulated changes from267

the model ensemble to the observed data from the control period. For the analysis of percent-268

age changes, the percentage CCS is added to the observed distributions instead of absolut269

values. This adjustment is similar to the delta change method which is often used for bias-270

adjustments (Schmucki et al. [2014]; Bosshard et al. [2011]). Here we use the delta change271

method on the P(T) and on the P(I|T) distributions. Superimposing changes in the P(I|T) dis-272

tribution upon the observed P(I|T) distribution in the control period, leads to a temperature273

dependent bias-adjustment of precipitation.274
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distribution nr. term description and comments

1 Ph (Ti ) ∗ δPccs (I |Ti ) bias caused by a bias in the CCS of Pccs (I |Ti ). These dif-

ferences are caused by all non-temperature related changes

in precipitation e.g. caused by circulation changes

Model bias in the CCS,

caused by changes in

P(I |T )

2 δPh (Ti ) ∗ Pccs (I |Ti ) bias caused by a bias in the historic temperature distribu-

tion Ph (T )

3 δPh (Ti ) ∗ δPccs (I |Ti ) bias caused by correlations between the bias in the historic

temperature distribution Ph (T ) and the bias in the CCS of

the temperature dependent frequency-distribution

P1. 100 ∗ Ph (Ti )∗Pccs (I |Ti )
Ph (I ) −

100 ∗ Ph (Ti )∗Pccs (I |Ti )
Pobs (I )

additional term for percentage changes as result of differ-

ences in the base period Ph (I) and Pobs (I) (see supple-

mentary material for details)

4 Ph (I |Ti ) ∗ δPccs (Ti ) bias caused by a bias in the CCS of P(T )

Model bias in the CCS

caused by changes in P(T )

5 δPh (I |Ti ) ∗ Pccs (Ti ) bias caused by a bias in the historic distribution Ph (I |T )

6 δPh (I |Ti ) ∗ δPccs (Ti ) bias caused by correlations between the bias in the historic

distribution Ph (I |T ) and the bias in the climate change

signal of P(T )

P2. 100 ∗ Ph (I |Ti )∗Pccs (Ti )
Ph (I ) −

100 ∗ Ph (I |Ti )∗Pccs (Ti )
Pobs (I )

additional term for percentage changes as result of differ-

ences in the base period Ph (I) and Pobs (I) (see supple-

mentary material for details)

Model bias in the CCS

caused by changes in the

correlation between P(T )

and P(I |T )

7, 8,

9

Pccs (I |Ti ) ∗ δPccs (Ti )

δPccs (I |Ti ) ∗ Pccs (Ti )

δPccs (I |Ti ) ∗ δPccs (Ti )

We find the three terms (7, 8, 9) to be small and therefore

combine these terms in the result section

SUMS SUM1 SUM of the terms with the

number: 2, 5, P1, P2

SUM1: sum of all products that do not include a δPccs

term. These terms only need observation information from

the control period and can be calculated for the future

periods.

SUM2 SUM of the terms with the

numbers: 1, 3, 4, 6, 7, 8, 9

SUM2: sum of all products that include a δPccs term.

These terms need an observed CCS and can not be calcu-

lated for future periods.

Table 2. Overview of the nine terms (plus P1 and P2 for percentage changes) that add up to the total bias in

the climate change signal

258

259
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3 Results275

3.1 Comparison of the snowfall discrimination methods SFE1 and SFE2 with276

model simulated snow fractions.277

Two snowfall discrimination methods are used in order to analyze the sensitivity of278

observed snow frequency changes to different snowfall estimations. To understand discrepan-279

cies in the CCS caused by differences in snowfall-fraction, we need to analyze how strong the280

temperature dependency of snowfall is influenced by the discrimination methods and how the281

snowfall estimates compare to the simulations. For this comparison we apply the discrimina-282

tion methods SFE1 and SFE2 (Sect. 2.3.1) to temperature and precipitation data from each283

ensemble member. We obtain one simulated and two estimated snowfall ensembles.284

We start with a validation of these three data sets. Fig. 3 shows temperature depen-285

dent snowfall statistics for the three ensembles. SFE2 matches the simulated ensemble mean286

snowfall values closely over the entire temperature range (Fig. 3 a). As a consequence of287

SFE1 being at the upper limit of the simulated snow fraction range (Fig. 2 b), also the mean288

snowfall values are at the upper limit. Figure 3 b shows the standard deviation of snowfall289

intensities. SFE2 is again able to capture the simulated curve progression. SFE1 agrees290

better with the models in the standard deviation than in the mean values. For higher per-291

centiles SFE1 seems to better match the model ensemble. A likely explanation for this ob-292

servation is, that the simulated snow fraction statistically increases for more intense events293

(Fig. 2 a). The strongest discrepancy between SFE1 and the simulated snowfall is found for294

snowfall-frequencies using a 1 mm/day threshold (Fig. 3 c). The assumption that every pre-295

cipitation event at temperatures below 7 ◦C will have a certain snowfall-fraction, leads to an296

increased number of snowfall events between about -6 to 7 ◦C. This moves the temperature297

range where snowfall events are most likely to occur, towards higher temperatures. Intense298

snowfall events are not as strongly affected by this (Fig. 3 d).299

Analyzing the curve progression we find that the most snowfall is simulated at surface300

air-temperatures of about -5 ◦C with values between 4 to 7 mm/day. The highest snowfall-301

frequency is located at temperatures close to -6 ◦C. For heavy-snowfall events the distribu-302

tion becomes narrower and shifts slightly to higher temperatures.303
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mean snowfall std snowfall

snowfall > 1 mm/day snowfall > 25 mm/day

a) b)

c) d)

Figure 3. Comparison of estimated and simulated snow indices using snow, precipitation and surface air-

temperature data from the EURO-CORDEX ensemble. a) mean snowfall, b) standard deviation of snowfall,

c) snowfall-frequency, d) heavy-snowfall-frequency. Shaded areas indicate the ensemble spread (5th to 95th

percentile).

304

305

306

307

3.2 Observed climate changes 1971-2008308

To analyze the sensitivity of projected precipitation- and snowfall-frequencies to model309

biases, we compare simulated and observed historic changes (CCSh), between the periods310

1971-1989 and 1990-2008. To give an overview about the observed CCSh and to indicate311

differences between the observation data sets, we show timelines of the observational data312

sets described in Sect. 2.2 as field-mean values over the entire northern Alpine region (Sect. 2.1).313

The straight lines indicate temporal mean values over the periods 1971-1989 and 1990-2008.314

Between these periods we find a temperature increase of 0.7 to 0.9 ◦C, depending on the tem-315

perature data set chosen (Fig. 4 a). The difference in the temperature change signal between316

EOBS and HISTALP, is due to slightly colder temperatures in HISTALP over the period317
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1971 to 1990. We also see an increase in the frequency and in the mean intensity of precipi-318

tation (Fig. 4 b, d). At the same time mean snowfall amounds and frequencies are decreasing319

(Fig. 4 c, e, f). These findings are in line with earlier studies that analized station data in the320

Alpine region (Brunetti et al. [2006]; Beniston [2006]; Beniston and Rebetez [1996]; Scher-321

rer et al. [2004]).322

snowfall > 1 mm/day

a)

d) e) f)

b) c)

snowfall > 25 mm/day

mean snowfall

precipitation > 1 mm/day

surface temperature mean precipitation euro4m

Figure 4. Yearly mean timelines of the different observation data sets described in Sect. 2. The data rep-

resents a field-mean over the northern Alpine region. Straight lines indicate 20 year mean values over the

periods 1971 to 1989 and 1990 to 2008.

323

324

325

3.2.1 Comparing simulated vs. observed probability distributions326

Earlier studies revealed significant biases in the historic model simulations over the327

Alpine region (Kotlarski et al. [2014]; Frei et al. [2017]; Rajczak et al. [2013]; Smiatek et al.328

[2016]). We analyze how these biases modify the temperature distribution as well as the tem-329

perature dependency of (heavy) precipitation- and snowfall-frequencies at different altitudes.330

Assuming a change in the temperature distribution, biases in these distributions will alter331

the CCS. In the following section we will use this information to explain differences we find,332

between the observed and the simulated CCS in the past period.333
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Figure 5 a, shows the temperature probability distribution P(T) for the periods 1971-334

1989 and 1990-2000 as well as changes that occurred between these periods, for the model335

ensemble and the observations. Changes in the temperature distribution will have an impact336

on all indices. The strength of this impact depends on the temperature dependency of the337

event, indicated by the temperature dependent probability distribution P(I|T) (Fig. 5 b, d, f,338

h). As explained in Sect. 2.3 the total occurrence probability of an event (P(I)) is the product339

of the probability P(T) and P(I|T) (Fig. 5 c, e, g, f).340

Analyzing changes in the temperature distributions we find that compared to the sim-341

ulations the center of the observed distribution is shifted towards higher values (Fig. 5 a).342

Also the shapes of the observed and simulated distributions differ. The simulated distribu-343

tions are stronger skewed to the right with a more pronounced peak at 0 ◦C. The cold bias is344

also a result of the shape mismatch and not just a result from a shift towards higher tempera-345

tures in the observations.346

Analyzing the temperature distributions at different heights (see supplementary ma-347

terial) we find, a shift from a bimodal distribution, to a unimodal distribution with altitude.348

At altitudes below 1000 m two modes close to 0 ◦C and ∼12 ◦C are visible. At high altitudes349

above 1500 m only the single peak at 0 ◦C is found. This shift is not as pronounced in the ob-350

servation data set explaining the weaker skewness of the temperature distribution when using351

data from all altitudes.352

For total-precipitation-frequencies we make the following observations. Figure 5 b,353

shows the temperature dependent frequency-distribution (P(I|T)) for precipitation events354

above 1 mm/day. Observations and the simulations show a substantial different shape of this355

distribution. The observed distribution is skewed left with a maximum at ∼12 ◦C, whereas356

the simulated distributions are skewed right and have a peak at ∼1 ◦C. Because of these357

differences, the simulations show a higher chance for precipitation events at temperatures358

below ∼12 ◦C than observed and a lower chance above ∼12 ◦C. For heavy-precipitation359

events (Fig. 5 f), this pattern is more pronounced and shifted towards lower temperatures.360

The switch from a wet to a dry bias is located at ∼ 8 ◦C. At 0 ◦C the chance for a heavy-361

precipitation event to occur, is 2 to 5 times larger in the model ensemble than in the obser-362

vation data.363

The chance that a (heavy) precipitation day with a certain mean-surface-temperature364

will occure (P(I)), is shown in figure 5 c (g). The cold temperature bias, in combination with365

–16–



Confidential manuscript submitted to AGU Journal

the overestimation of precipitation-frequencies at cold temperatures, leads to an overestima-366

tion of precipitation days at temperatures below ∼5 ◦C. The largest bias is found at tempera-367

ture close to 0 ◦C. In this temperature range the models simulate a ~50 % higher occurrence368

probability for a precipitation event.369

Analyzing altitudinal aspects we find a lower altitude dependency in the precipitation-370

frequency in the observations than in the models (see supplementary material). The lower371

dependency on altitude seems to be a result of a latitude dependency that is specific to the372

northern Alpine region (Isotta et al. [2013]; Masson and Frei [2014]). Other reasons could373

be measurement errors, that are found to be especially large for high elevations in the winter374

season (Prein and Gobiet [2016]).375

Figure 5 d, e show the P(I|T) distribution for snow and heavy-snowfall-frequencies.376

Precipitation-frequencies are overestimated below 0 ◦C, at these temperatures most precipita-377

tion will fall as snow, therefore also the snowfall-frequencies are overestimated. Differences378

between precipitation and snowfall are described by the snowfall-fraction. Especially in the379

range between -5 to 5 ◦C the different snowfall-fraction statistics illustrated in Fig. 2 intro-380

duce additional errors. Depending on the model or discrimination method, a different frac-381

tion of the total precipitation is identified as snow. To analyze this effect, we use the two382

discrimination methods SFE1 and SFE2 from section 2.3.1. The largest differences between383

SFE1 and SFE2 are found for snowfall-frequencies using the 1 mm/day threshold (Fig. 3).384

For this threshold SFE1 shows higher snowfall-frequencies for all temperatures above 0 ◦C.385

This is shifting the maximum in the observed P(I|T) distribution from about -2 ◦C using386

SFE2, to 0 ◦C using SFE1 (Fig. 5 d blue shade). The maximum P(I|T) values in the model387

ensemble are located at ~-5 ◦C with probabilities between 45 to 62 %. Because of the dif-388

ferent snowfall-fraction statistics, the observations show a higher probability for a snowfall389

day at temperature above 0 ◦C although total precipitation-frequency is overestimated in the390

models.391

The total probability P(I) for snowfall events is shown in Fig. 5 e (Fig. 5 f, heavy-392

snowfall events). Because of the peak in the temperature distribution at 0 ◦C, the maximum393

is located at higher temperatures than for P(I|T). The peak in the temperature distribution is394

more pronounced in the simulations than in the observations, causing a stronger shift towards395

higher values. We find that models and observations both show the most snowfall days at396

temperatures between -1 to 0 ◦C.397
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A comparison of the snowfall-frequency-distributions at different altitudes (see sup-398

plementary material) shows a shift in the maximum of P(I|T) from about 0 ◦C at altitudes399

below 1000 m to ~-6 ◦C at altitudes above 1500 m, that can not be found for heavy-snowfall-400

frequencies. We also find that the differences between models and observations become401

larger at high altitudes.402

ensemble median
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CCS ensemble median
CCS observations median

1971-1989
1990-2008
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m
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Figure 5. Temperature dependent probability distributions P(T), P(I|T) and P(I) for precipitation- and

snowfall-frequencies. Shaded areas indicate the ensemble spread (5th to 95th percentile).

403

404

3.2.2 Past snowfall and precipitation-frequency changes405

We compare the simulated CCSh between the two selected past periods 1971-1989406

and 1990-2008 against observations. This enables us to compare not just the P(T) and P(I|T)407

distributions themself but also the sensitivity to changes in these distributions.408

Analyzing observed changes in the surface-temperature distribution (Fig. 5 a), a strong409

reduction in the probability distribution for temperatures close to 0 ◦C and an increase for410
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temperatures above 12 ◦C is found. In the ensemble mean of the simulations, P(T) is in-411

creasing for most temperatures above about 1 ◦C and decreasing for temperatures below this412

threshold. The observed reduction between -5 to 3 ◦C is less pronounced in the model en-413

semble. The number of observed precipitation events increased at temperatures above 2 ◦C414

and decreased below (Fig. 5 c), causing a decrease in snowfall-frequency (Fig. 5 e).415

In Fig. 6 we analyze the difference between the observations and the simulations in-416

tegrated over the entire temperature range. For this comparisons we decompose the climate417

change signal according to equation 3. Fig. 6 shows the total CCSh as well as the decom-418

posed terms. These terms show the CCSh if only one of the two distributions (P(T), P(I|T))419

would have changed. The CCSh of the model ensemble is illustrated by boxplots. The ob-420

served CCSh is indicated by orange lines.421

Analyzing past precipitation-frequency changes (Fig. 6 a, c), the observations show422

an increase of ~3 % (P(I) CCS) and ~9 % for heavy-precipitation-frequencies. The mean423

increase in precipitation-frequency of the model ensemble is close to 1 % for both inten-424

sity thresholds. Comparing the CCSh we obtain by changing only one of the two distribu-425

tions (P(T) dep. CCS, P(I|T) dep. CCS) we find, that changes in the temperature distribu-426

tion as well as the correlation terms played only a minor role for precipitation- and heavy-427

precipitation-frequency changes.428

For snowfall-frequencies (Fig. 6 e, g) the different snow estimation methods (SFE1,429

SFE2), in combination with the different temperature data sets, result in considerably differ-430

ent climate change signals which increases the spread in the obsesrvations. SFE1-EOBS is431

always the top orange line and SFE2-HISTALP always the bottom line (see supplementary432

material for details). Unlike precipitation-frequency changes, snowfall-frequency changes433

were mainly driven by temperature changes. For heavy-snowfall-frequencies, however, changes434

in both distributions are important. Comparing the simulations against the observations we435

see that the observations show a stronger decrease in snowfall-frequency and that these dif-436

ferences are mainly caused by changes in the temperature distribution.437

Analyzing altitudinal aspects we find, that the observed increase in (heavy) precipitation-438

frequency is (100 %) 50 % stronger at altitudes above 1000 m. This behavior is not found in439

the simulations. The observed decrease in the snowfall-frequency is about 50 % stronger at440

low altitudes. For heavy-snowfall events the altitude dependency becomes even more sig-441

nificant. The decrease in snowfall-frequency is mostly underestimated in the simulations at442
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all altitudes. At low altitudes this is mainly caused by underestimating P(I|T) dep. changes443

whereas at high altitudes an underestimation of P(T) dep. changes is found to be the main444

reason.445
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Figure 6. CCSh of precipitation-freq. (a, b), heavy-precipitation-freq. (c, d) snowfall-freq. (e,f) and heavy-

snowfall-freq. (g, h), in total (P(I) CCS) and separated by P(T) dependent CCS, P(I|T) dependent CCS and

correlation dependent CCS, according to equation 3. Observed changes are indicated by orange lines. The

boxplots show the interquartile range of the model ensemble. The whiskers indicate the ensemble spread (5th

to 95th percentile). The ensemble (mean) median is illustrated by the dark green (blue) line.
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450

3.2.3 Decomposition of model biases in the historical climate change signal451

In Fig. 6 differences between the observed and simulated CCSh become visible. De-452

composing the CCSh in P(T) and P(I|T) dependent changes gives first insights about the453

causes for the observed changes. To relate differences in the CCSh to specific model bi-454

ases, a further step is needed. The observed impact of temperature changes on snowfall-455
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frequencies (P(T) dep. CCS) could be stronger than simulated because of the following456

three reasons. First, the observations could experience stronger temperature changes as sim-457

ulated. Second, a bias in the temperature dependency of snowfall-frequencies within the458

control period (model-bias) could result in a lower CCSh. A third reason could be correla-459

tions between these biases (correlation-Bias). Similar considerations can be made for P(I||T)460

dependent changes and the correlation dependent changes. In total we obtain nine terms461

that explain why the observed and the simulated CCSh differ. Each of these terms points to462

different biases. Detailed knowledge about the main reasons that cause the bias in CCSh ,463

can help to detect shortcomings in the model simulations. It also enables us to explain why464

bias-adjustment is changing the CCSh. As the observations are not free from errors, the de-465

tailed information also helps to identify, if the CCSh bias may partly be explained by obser-466

vation errors. In the following section we decompose the biases in the CCSh according to467

Sect. 2.3.3.468

In Fig. 7 (a-d) the term 1 describes differences in the CCSh of the respective indices,469

that are caused by different changes in the temperature-dependency. For this term a large470

spread in the model ensemble is visible. This indicates disagreements between the ensem-471

ble members in terms of circulation changes. For precipitation- and heavy-precipitation-472

frequencies (Fig. 7 a, b) the ensemble mean value of term 1 is close to the observations,473

whereas snowfall-frequencies show a positive bias. The positive bias means that the mod-474

els show a lower reduction in the frequency of snowfall than the observations475

Term 4 represents differences in the CCSh of the respective indices, caused by different476

changes in the temperature distribution. For this term a better model agreement is found for477

all indices (Fig. 7 a-d). However, for all four indices a positive bias is shown. Considering478

only the different changes in the temperature distribution between models and observations,479

these differences would cause a stronger increase in the precipitation-frequency which leads480

to a reduced decrease in the snowfall-frequency.481

The terms 3, 6, 7, 8, 9 all present correlation related biases in the CCSh. Terms 7, 8,482

9 show small values and are therefore combined in one boxplot. The terms 3 and 6 indicate483

differences in the CCSh of the respective indices, that are caused by correlations between a484

model-bias and a different change of either the temperature distribution or the temperature-485

dependency. Because these terms include a model-bias, they will be influenced by bias-486

adjustment approaches. The bias described by term 3 reduces the simulated precipitation-487
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frequency increase by ~2 %. The models simulate fewer days with mean daily surface-temperatures488

above ~3 ◦C than observed. Especially for these days the observations show a stronger in-489

crease in the precipitation-frequency (Fig. 5 a, b).490

The remaining terms 2, 5, P1 and P2 all describe an influence of a specific model-491

bias on the CCSh. To calculate these terms, observations are needed only for the control pe-492

riod. Information about future changes in the temperature distribution or in the temperature-493

dependency of the event are not needed. Therefore we can also calculate these terms for fu-494

ture climate scenarios (Sec. 3.3). In order to analyze the combined impact of these terms and495

to identify the relative impact compared to all other terms, we create two sums. The first sum496

(SUM1) includes the terms [2, 5, P1, P5] and the second sum (SUM2) includes all remaining497

terms [1, 3, 4, 6, 7, 8, 9].498

For (heavy) precipitation-frequency we find that the mean simulated increase is (~7 %)499

~2 % weaker in the simulations than in the observations. For the 1 mm/day threshold term 3500

is identified as the major reason for discrepancies between observations and simulations. For501

heavy-precipitation SUM1 explains most part of the bias. In both cases the identified model502

biases strongly influence the climate signal.503

Analyzing snowfall-frequencies we find that the observed decrease is underestimated504

in the simulations by about 5 %. This underestimation is mainly caused by the model bi-505

ases described in the terms 1 and 4. The observations show a stronger decrease of days with506

surface-temperatures close near 0 ◦C (term 4) as well as a stronger decrease in the snowfall507

probability at temperatures below 0 ◦C (term 1) (compare to Fig. 5). However, the cold tem-508

perature bias and the temperature dependency of these events lead to a stronger increase in509

snowfall-frequency (SUM1). Unlike for precipitation-frequency changes, SUM1 and SUM2510

point in different directions, therefore partly compensate each other.511

3.3 Future climate change515

After the validation of precipitation- and snowfall-frequency changes within the past516

period, we analyze the effect of temperature changes as well as the effect of the model bi-517

ases on climate projections, using the RCP4.5 scenario. For this study we compare the period518

1971-2000 to 2071-2100. Figure 8 (a-d) shows the projected CCS for snow- and precipitation-519

frequencies. In addition the expected biases in the projected CCS that are caused by the520

terms (2, 5, P1, P5) are illustrated for the future period.521
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Figure 7. Difference in the percentage CCSh between each ensemble member and the mean of the obser-

vations for (a) precipitation-freq., (b) heavy-precipitation-freq., (c) snowfall-freq., (d) heavy-snowfall-freq., in

total and separated according to equation 4. For a description of the terms see Tab. 2. Boxplots as in Fig. 6.

512

513

514

Analyzing precipitation-frequency changes we find, that the ensemble mean shows a522

slight positive trend. Two out of six models, however, show a decrease. For heavy-precipitation-523

frequencies all models point in the same direction, with a 10 % increase in the ensemble524

mean. It shows that the increase in the precipitation-frequency is mainly a result of changes525

in the P(I|T) distribution. Changes in the P(T) distribution caused a decrease in precipitation-526

and in heavy-precipitation-frequency.527

Snowfall-frequencies show a decrease of ∼19 % in the ensemble mean. These changes528

are almost completely explained by changes in the temperature distribution. Changes in529

heavy-snowfall-frequencies, caused by changes in the temperature distribution are also close530

to 19%. However, changes in the P(I|T) distribution considered by itself, would lead to an531

increase in heavy-snowfall-frequency of about 7%. Therefore the total decrease in heavy-532

snowfall-frequency is only ∼13% ( ∼1 % decrease because of the correlation term).533

For precipitation-frequencies as well as for snowfall-frequencies, we find that the bias534

in the CCS, that is caused by model biases in the P(T) and P(I|T) distributions, is increas-535

ing compared to the validation study. In the case of precipitation, these biases likely reduce536

the expected increase in precipitation-frequency. The projected increase should therefore be537
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higher for bias-adjusted data. For snowfall-frequencies the biases are also negative. The pro-538

jected decrease in snowfall-frequency could be overestimated due to these biases.539
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Figure 8. Future climate change signal for (a) precipitation-freq., (b) snowfall-freq., (c) heavy-

precipitation-freq., (d) heavy-snowfall-freq., as simulated by the model ensemble. The first four boxplots

in each graph show the climate change signal in total, and separated by P(T) and P(I|T) dependent changes

according to equation 4. The other four boxplots illustrate a possible bias in the climate change signal that

results from a bias in the P(T) and P(I|T) distributions in the control period.
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3.4 Bias-adjustment545

From the decomposition analysis we learn, that the different CCSh between models546

and observations can partly be explained by model biases in the P(T) and the P(I|T) distri-547

butions. After we gained understanding about these processes and quantified the impact548

of the relevant terms, we analyze the total effect of these changes. The historical distribu-549

tions P(T) and P(I|T) are adjusted to the observations (Sect. 2.3.4). The distributions for550

the future period are obtained by adding the projected CCS to the adjusted distributions.551

Figure 9 shows the CCS for the adjusted data. Comparing Fig. 9 a-d, against the non-bias-552
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adjusted CCSh from Fig. 6, we find a closer agreement to the observed total CCSh for both553

precipitation-frequencies. Looking at the dependent climate signals (P(T), P(I|T)), we see554

only an improvement for heavy-precipitation-frequencies. For the 1 mm/day threshold, the555

bias in the CCSh is mainly caused by a bias in the CCSh of P(T) and P(I|T), that is not cor-556

rected by the adjustment. For snowfall-frequencies we show, that the model biases in P(T)557

and P(I|T) partly compensate the underestimated decrease in the simulations (Fig. 7 (c, d)).558

In this case the bias-adjustment leads to a larger difference between the simulated and the559

observed CCSh.560

For the future projections (Fig. 9 e-h) the changes caused by the bias-adjustment point561

in the same direction as for the control period but prove to be stronger. Because of the large562

differences between models and observations in P(I|T), the temperature increase leads to a563

clear increase in precipitation-frequency in the bias corrected case and to a decrease if the564

data is not bias corrected (P(T) dep. CCS) . We also find a stronger increase for P(I|T) de-565

pendent changes in the precipitation-frequency. This differences are mainly explained by the566

cold temperature bias. The models show lower occurrence probabilities of days with high567

surface-temperatures where the probability of precipitation events is increasing the most.568

% % % %

% % % %

19
71
-2
00
0

vs
.2
07
1-
21
00

19
71
-1
98
9

vs
.1
99
0-
20
08

precipitation snowfall
25 mm/day 25 mm/day1 mm/day 1 mm/day

a)

e) f) g) h)

b) c) d)

Figure 9. Bias-adjusted climate change signal (a-d) between the periods 1971-1989 and 1990-2008, (e-h)

between the periods 1971-2000 and 2071-2100. Boxplots as in Fig. 6.
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4 Summary and Conclusions571

Probability decomposition: In this study we split the occurrence probability of a (snow-572

fall) precipitation event into the two probabilities P(T) and P(I|T). The separation allows us to573

analyze future changes caused by a change in each of these distributions separately. Com-574

paring the simulations against observations we find profound differences in the shape of their575

distributions. These differences can be connected to known model- as well as observation576

errors. The mismatch in the shape of these distributions has important impacts on bias-577

adjustment methods. Adding a constant factor to the temperature data set in order to cor-578

rect the cold bias will only shift the distribution. This shift could even enhance the mismatch579

compared to the observations. The peak in the temperature distribution at 0 ◦C is physically580

explainable by snow-cover and surface-temperature interactions and should not be shifted by581

the adjustment procedure. However, the peak is likely overestimated in the simulations. This582

overestimation could be caused by too many snowfall days as well as the overall cold bias in583

the region, that may leads to an enhanced snow-cover.584

For the temperature dependency of precipitation-frequencies we make three important585

observations. First, the slopes of the P(I|T) distribution in the models and the observations586

are opposite within the temperature range ∼0 ◦C to 12 ◦C. The observations show a statis-587

tical increase with temperature, while the models show a decrease. The observed increase588

may be overestimated, because the observations suffer from undercatch errors that are more589

pronounced for snowfall (particularly snowfall that falls at low temperatures) than for rain590

(Prein and Gobiet [2016]). Especially for heavy-precipitation however, theoretical explana-591

tions from Trenberth [2011] suggest, that this relation should be positive. Second, the slope592

of the P(I|T) curve is not constant over the entire temperature range. A shift in the tempera-593

ture distribution will therefore have a different impact depending on the temperature ranges594

that are subject to changes. In the case of a simple shift of the distribution towards higher595

temperatures, these changes would mainly occur at the tails. For temperature it can be ex-596

pected, that the location of the tails will be closely related to the location of the mean value.597

We find, that this statistical effect offers an additional explanation to the observed depen-598

dency of snowfall changes on the long term mean-surface-temperature (Ceppi et al. [2010]).599

Other reasons for this dependency are temperature dependent feedback processes like the600

snow-albedo effect (Winter et al. [2016]). A major implication of this finding is, that a model601

bias in the temperature distribution will impact future changes in snow and precipitation-602

frequencies. Third, the P(I|T) distribution of the model ensemble shows a kink between 0 to603
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1 ◦C that is not existent in the observed distribution. This kink could be caused by param-604

eterisations that describe interactions between liquid- and ice-cloud-content and should be605

further investigated.606

Estimation of snowfall-fractions: To investigate the impact of different snowfall-fraction607

discrimination methods on the CCSh of precipitation- and snowfall-frequencies, we use608

two different methods in this study. We find, that the different methods clearly modify the609

temperature dependency of snowfall. This modification is strongest for temperatures close610

to 0 ◦C were the chance for snowfall and heavy-snowfall events is high. Differences in the611

snowfall-fraction therefore show a large impact. Depending on the discrimination method,612

the temperature range with the highest snowfall occurrence shifts from -2 ◦C using the en-613

semble snowfall-fraction statistics to 0 ◦C when the ATT-sheme is applied. The shift to-614

wards higher temperatures reduces the projected decrease in snowfall. Comparisons to the615

HISTALP data set suggest, that all models underestimate snowfall-fractions in a temperature616

range close to 0 ◦C. One reason for this finding may be, that the model grid is to coarse to617

represent the topography. Sub-grid orography information may be a key to correctly repre-618

sent snowfall-fractions. Increasing the horizontal resolution may increase the snow-fraction619

at temperatures close to 0 ◦C. This would shift the peak in the snowfall probability towards620

higher temperatures and therefore reduces the projected decrease in snowfall-frequency.621

These findings should be the object of further analysis.622

The clear effect the different snowfall-fractions have on the projected changes in snowfall-623

frequency also highlight the importance of a clear definition when precipitation is counted as624

snow. For the tourism industry e.g. it could be beneficial if a day where only sleet is falling625

is not counted as snow day. Excluding sleet would however shift the temperature range where626

the most snowfall occurs to lower values.627

Validation of the past CCSh: Analyzing the climate change signal between the periods628

1971-1989 and 1990 -2008 we find, that the different snow discrimination methods, result in629

a clear spread in the CCSh of snowfall-frequencies for both intensity thresholds. The spread630

in the CCSh between the different estimates, in combination with the use of the two differ-631

ent temperature data sets, is in the same range as the CCSh itself. The upper bound is always632

SFE1-EOBS and the lower bound always SFE2-HISTALP (for details see supplementary633

material). The lack of trustful information on snowfall-fractions as well as the spread be-634

tween the RCM’s leads to uncertainties in the CCSh. Comparing the differences in the CCSh635
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between models and observations we make the following findings. In the past period the ob-636

servations show an increase in the precipitation- and heavy-precipitation-frequencies above637

the model spread at most altitudes. We find that the cold temperature bias is the main cause638

for the lower precipitation-frequency increase in the simulations. The strongest increase in639

precipitation is found at days with surface-temperatures above ~10 ◦C. Because of the cold640

bias these temperatures are less likely to occur in the simulations. A reason for the enhanced641

precipitation increase at temperatures above ~10 ◦C may be an increase in convective events642

(Giorgi et al. [2016]).643

The strongest cause for differences between the ensemble members are differences in644

the CCSh of the P(I|T) distribution. These differences are likely connected to differences in645

the large scale circulation. For the CCSh of snowfall-frequencies the higher decrease found646

in the observations, is essentially a result of stronger changes in the P(T) and in the P(I|T)647

distribution. However, model biases in the P(T) and in the P(I|T) distribution reduce the648

lower decrease in the simulations, as the different shape of the simulated distributions am-649

plifies the decrease in snowfall-frequencies.650

Future climate change: Future climate projections (RCP4.5) indicate a mean-surface-651

temperature increase of 2.5 ◦C in the alpine region by the end of the century (Smiatek et al.652

[2016]). This increase will have a strong impact on the P(T) distribution. Analyzing the pro-653

jected changes we find, that the ensemble mean shows an increase of precipitation-frequencies654

of less than 1 % with some models projecting a decrease. For heavy-precipitation-frequencies655

we find a clear increase of about 10 % in the ensemble mean. In both cases changes in the656

temperature distribution cause a decrease. This can be explained by the negative temperature657

dependency found in the ensemble data, that is likely caused by model biases. Snowfall-658

frequencies are changing stronger than heavy-snowfall-frequencies. This confirms find-659

ings from earlier studies (O’Gorman [2014b]; Frei et al. [2017]). In contrast to O’Gorman660

[2014b] our findings suggest, that these differences are mainly the result of changes in the661

P(I|T) distribution. These differences cause an increase for heavy-snowfall-frequencies which662

counteracts with the decrease caused by changes in the temperature distribution.663

Bias-adjustment: After we analyzed the biases in the P(T) and P(I|T) distribution and664

quantified their impact on the past and future CCS, we investigate the combined effect of bi-665

ases in both distributions. For this analysis the distributions are bias-adjusted. After the ad-666

justment we find a stronger increase for precipitation and heavy-precipitation-frequencies.667
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Because of the change in the P(I|T) distribution the temperature increase now causes an668

increase for precipitation and heavy-precipitation-frequencies. Especially for the heavy-669

precipitation-frequency the increase with temperature is in line with theoretical concepts Tren-670

berth [2011]. For snowfall-frequencies the spread in the CCSh between the models and the671

observation increased. The differences are not reduced, because the main cause for the spread672

is, that the simulations show compared to the observations a weaker decrease in the probabil-673

ity of days close to 0 ◦C.674

In contrast to other studies that compared bias-adjusted and non bias-adjusted data675

([Frei et al., 2017]), we find clear changes in the results. Our results indicate that a tempera-676

ture dependent bias-adjustment is needed. Adjusting only the mean precipitation and temper-677

ature fields will not account for precipitation changes, that result because of the temperature678

adjustment.679

In this study we identified important biases in the model ensemble and found that these680

biases are modifying the simulated past CCSh as well as the projected CCS by the end of681

the century. We find a temperature dependent precipitation bias and temperature bias, that682

make it questionable if raw climate model output can be used for the analysis of snowfall.683

The framework we present helps to detect these biases and to quantify possible impacts. It684

shows that when thoughtful used, bias-adjustment can be a valid tool to detect important pro-685

cesses and dependencies, that need to be captured in order to project future changes. This686

makes it interesting for model development. The systematic assessment also enables us to ex-687

plain the changes caused by the bias-adjustment used in this study. Our results however show688

clear limitations of bias-adjustment approaches. Feedback processes like the snow-albedo689

feedback are difficult to correct by statistic approaches. Reducing model biases caused by690

these feedback mechanism is likely only possible by continuous development of dynamical691

models.692
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[Überwiegen-
der An-
teil]

1.0 Submittet J.
Geophys. Res.
Atmos.

Acronyms of the individual authors:

AA: Antoinette Alias; OBC: Ole Bøssing Christensen; LMB: Laurens M. Bouwer; PB: Peter Berg; AB: Alain Braun; AC: Augustin Colette;
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REMO 
 

RCA4 CCLM RACMO2 WRF ALADIN5.1 HIRHAM 

Institution CSC SMHI CLMCOM1) KNMI IPSL-
INERIS Météo-France DMI 

Grid 
resolution 

0.11 º 
x0.11º 0.11 º x0.11º 0.11 º x0.11º 0.11 º x0.11º 0.11 º x0.11º 0.11 º x0.11º 

2) 0.11 º x0.11º 

Grid (lat*lon) 433*433 438* 456 450*438 444*456 442 * 454  
432*288 
(total grid 
number) 

452*432 

Rotation lon -162° 
lat 39.25 

lon -162°  
lat 39.25° 

lon -162°  
lat 39.25°  

lon -162°  
lat 39.25° 

CORDEX 
specifications 0°E, 90°S lon -162°  

lat 39.25° 
Vertical 
levels 27 40 40 40 32 31 31 

Boundary 
layer scheme Louis 1979 Cuxart et al 

2000 Louis 1979 

Lenderink 
and Holtslag 
2004; 
Siebesma et 
al. 2007 

YSU, Hong 
et al. 2006 

Ricard and 
Royer 1993 Louis 1979 

Number of 
points 
(sponge zone) 

8 10 12 8 (16)3)  8  

Convection 

Mass flux 
Tiedtke 
1989; 
Nordeng 
1994 for 
CAPE 
closure; 
Pfeifer 
2006 

Kain and 
Fritsch 1990, 
1993; 
Kain 2004; 
Jones and 
Sanchez 
2002 

Tiedtke 1989 

Tiedtke 1989; 
Nordeng 
1994; 
Neggers et al 
2009 

Grell and 
Devenyi 
2002 

Mass flux 
Bougeault 
1985 

Tiedtke 
1989 

Microphysics 
Lohmann 
and 
Roeckner 
1996 

Rasch and 
Kristjánsson 
1998 

Doms et al. 2007; 
Baldauf and 
Schulz 2004 

Tiedtke 1993; 
Tompkins et 
al, 2007; 
ECMWF-IFS 
2007;Neggers 
2009 

Hong et al. 
2004 

Ricard and 
Royer 1993 

Lohmann 
and 
Roeckner 
1996 

Radiation 

Morcrette 
1986; 
Giorgetta 
and Wild 
1995 

Savijärvi 
1990; 
Sass et al. 
1994 

Ritter and Geleyn 
1992 

Fouquart and 
Bonnel 1980; 
Mlawer et 
al.1997 

RRTMG, 
Lacono et al, 
2008 

Morcrette 
1990 

Morcrette et 
al 1986; 
Giorgetta 
and Wild 
1995 

Land surface 
scheme 

Hagemann 
2002; 
Rechid et 
al. 2009 

Samuelsson 
et al. 2006 

TERRA-ML Doms 
et al. 2007 

Van den Hurk 
et al 2000; 
Balsamo et al. 
2009 

NOAH Douville et al 
2000 

Hagemann 
2002 

Soil thermal 
layers 5 5 10 4 4 4 5 

Soil moisture 
layers 1 3 8 4 4 2 1 

Main 
references 

Jacob et al. 
2012 

Samuelsson 
et al. 2011; 
Kupiainen et 
al. 2011 

Rockel et al. 2008; 
http://www.cosmo-
model.or 

Meijgaard 
van et al. 
2012 

Version 
3.3.1, 
Skamarock et 
al. 2008 

Colin et al.  
2010; 
Herrmann et 
al. 2011 

Christensen 
et al. 1998 

1) The Climate Limited-area Modeling Community (http://www.clm-community.eu) 
2) Simulation on MED-CORDEX domain 
3) 8 for temperature, humidity, surface pressure, 16 for horizontal wind components 
	
Table s1. Summary of grid configurations and parameterisations for models used in the 
present study 
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GCM GCM 

Member RCM Scenarios Time 

MPI-ESM-LR r1i1p1 CCLM RCP4.5, 
RCP8.5 until 2100 

CNRM-CM5-LR r1i1p1 CCLM RCP4.5 until 2100 

EC-EARTH r12i1p1 CCLM RCP4.5 until 2100 

HadGEM2-ES r1i1p1 CCLM RCP4.5 until 2100 

CNRM-CM5-LR  r8i1p1 ALADIN V5.2  RCP4.5, 
RCP8.5 until 2100 

MPI-ESM-LR r1i1p1 REMO RCP4.5, 
RCP8.5 until 2100 

IPSL-CM5A-MR r1i1p1 WRF331 RCP4.5 until 2100 

EC-EARTH r1i1p1 RACMO2 RCP4.5, 
RCP8.5 until 2100 

EC-EARTH r12i1p1 RCA4 RCP8.5 until 2100 

CNRM-CM5-LR r1i1p1 RCA4 RCP8.5 until 2100 

HadGEM2-ES r1i1p1 RCA4 RCP8.5 until 2100 

MPI-ESM-LR r1i1p1 RCA4 RCP8.5 until 2100 

IPSL-CM5A-MR r1i1p1 RCA4 RCP8.5 until 2100 

EC-EARTH r3i1p1 DMI-HIRHAM RCP4.5 
RCP8.5 until 2050 

 
Table	s2a:	Overview	of	the	global	and	regional	climate	models	for	RCP4.5	and	
RCP8.5	used	in	the	present	study	
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GCM RCM Resolution Time 

HadCM3Q16 C4IRCA3* 25 km until 2100 

ARPEGE CNRM-RM5.1 25 km until 2100 

ARPEGE HIRHAM5* 25 km until 2100 

ECHAM5 HIRHAM5 25 km until 2100 

BCM HIRHAM5 25 km until 2100 

HadCM3Q0 CLM* 25 km until 2100 

ECHAM5 REGCM3 25 km until 2100 

ECHAM5 RACMO2 25 km until 2100 

HadCM3Q0 HadRM3Q0* 25 km until 2100 

HadCM3Q16 HadRM3Q16 25 km until 2100 

HadCM3Q3 HadRM3Q3 25 km until 2100 

ECHAM5 REMO* 25 km until 2100 

IPSL REMO 25 km until 2100 

BCM RCA* 25 km until 2100 

ECHAM5 RCA* 25 km until 2100 

HadCM3Q3 RCA 25 km until 2100 

ECHAM5-r1 RACMO2 50 km until 2100 

ECHAM5-r2 RACMO2* 50 km until 2100 

MIROC3.2 RACMO2*  50 km until 2100 

ECHAM5 RCA 50 km until 2100 

 
Table	s2b:	Overview	of	the	global	and	regional	climate	models	for	emission	
scenario	A1B	used	in	the	present	study.	The	RCMs	indicated	with	*	are	used	for	the	
calculation	of	parameters	based	on	9	simulations	
	



	

Figure s1: Aggregated IPCC zones for Europe based on the classification of Metzger et al. (2005). 
The zones are used to calculate area means of several climate impact indices and their potential 
change. 

	

Reference 

Metzger M J, Bunce R G H, Jongman R H G, Muecher C A and Watkins J W  (2005) A climatic stratification of 
the environment of Europe.  Global Ecology and Biogeography 14:549-563 
	



Seasonal mean temperature and precipitation climate change signals 
 

 
Figure s2: Projected seasonal changes of temperature [K] based on the RCP4.5 scenario for the 
period 2071-2100 compared to 1971-2000. Changes are robust and significant across the entire 
European continent. 



 
Figure s3: Projected seasonal changes of temperature [K] based on the RCP8.5 scenario for the 
period 2071-2100 compared to 1971-2000.  Changes are robust and significant across the entire 
European continent. 
 



 
Figure s4: Projected seasonal changes of precipitation [%] based on the RCP4.5 scenario for the 
period 2071-2100 compared to 1971-2000.  Hatched areas indicate regions with robust and/or 
statistical significant change. 



 
Figure s5: Projected seasonal changes of precipitation [%] based on the RCP8.5 scenario for the 
period 2071-2100 compared to 1971-2000.  Hatched areas indicate regions with robust and/or 
statistical significant change. 
 
Figures s2 to s5 show the seasonal climate change signals of mean temperature and precipitation for 
the end of the 21st century, in the ensemble mean for the scenarios RCP4.5 and RCP8.5. 
Temperature change signals are significant and robust in all seasons, but they show more regional 
heterogeneity than the yearly mean. The horizontal patterns look very similar for the two scenarios, 
with a smaller magnitude for RCP4.5. In winter and spring, there is a less pronounced warming in 
Western Europe compared to the yearly mean, with a strong increasing gradient towards the north 
east. In contrast, in summer, and to a less extent in autumn, there is a north-south gradient with the 
strongest warming in the Mediterranean and Black Sea region. However, a particularly strong 
warming in the Sub-Arctic region (over 5 °C for RCP8.5 and over 3.5 °C for RCP4.5) is seen 
throughout the year.  
 
Same as for the yearly means, seasonal precipitation changes show a separating band between 
significant increases in the north and significant decreases in the south. However, this separation 
band shifts seasonally. In winter, only the most southern parts of Spain, Italy, Greece, and Turkey 
experience a decrease, while there is an increase for the rest of Europe. The separation band moves 



northward in spring, until in summer an increase is only seen in Scandinavia and North Eastern 
Europe, while there is a drying in Western, South-Eastern, and parts of Central Europe. In autumn, 
the band moves southward again. Same as for temperature, the precipitation change patterns are 
very similar for both scenarios, but for RCP8.5 they are larger in magnitude, and the separating 
band with insignificant changes is narrower.  
 

 



 
 
Figure s6: Sensitivity test for the change in the 95th percentile of the length of dry spells [days] for 
the RCP8.5 ensemble for the period 2071-2100 compared to 1971-2000. a) Ensemble mean without 
the RCM Aladin simulation for Med-CORDEX region. b) Ensemble mean including the Aladin 
simulation. Hatched areas indicate regions with robust and/or statistical significant change. 
 



 
 
 
Figure s7: Sensitivity test for projected seasonal changes of heavy precipitation [%] based on the 



RCP8.5 scenario for the period 2071-2100 compared to 1971-2000.  a) Full ensemble (see 
Supplementary Material Table S2) b) small ensemble (GCM: MPI-ESM-LR, RCM: CCLM; GCM: 
CNRM-CM5-LR, RCM: ALADIN V5.2; GCM: MPI-ESM-LR, RCM: REMO; GCM: EC-EARTH, 
RCM: RACMO2; GCM: IPSL-CM5A-MR, RCM: RCA4). Hatched areas indicate regions with 
robust and/or statistical significant change. 
 
 
 
Figure s6 shows the sensitivity of the change signal of dry spells to the changes in the size of the 
ensemble, for the end of the 21st century under RCP8.5: If the simulation by ALADIN, which, in 
contrast to the other simulations, covers only the Mediterranean (Med-CORDEX 
http://www.medcordex.eu/) region, is removed from the ensemble, only small changes in robustness 
in Central Europe can be seen. The magnitude of the changes and significance are hardly affected. 
Figure s7 shows a similar sensitivity test for the change in heavy precipitation on a seasonal basis, 
for RCP8.5. For the end of the 21st century, the result from the full ensemble of 9 simulations is 
compared with the results from a reduced ensemble of 5 simulations. Here, the robustness and, 
again, the magnitude of the changes is hardly affected, only the significance is weaker for the 
smaller ensemble. 
 





D.2 Article 2: Temporal and spatial scaling impacts on extreme
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Figure 1: Convective extremes as function of resolution. The 95th
percentile of convective precipitation intensities, aggregated over different parts
of Germany for the years 2007-2008, on different horizontal (horizontal axis) and
temporal (vertical axis) resolutions: Entire year (a,b,c), summer season (d,e,f)
and winter season (g,h,i). All of Germany (a,d,g), North Germany (b,e,h), South
Germany (c,f,i); Intensities given in mm h−1.
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Figure 2: Stratiform extremes as function of resolution. Otherwise sim-
ilar to Fig. 1.
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Figure 3: Precipitation extremes as function of resolution. Otherwise
similar to Fig. 1.
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Figure 4: Convective extremes as function of resolution. The 98th
percentile of convective precipitation intensities, Otherwise similar to Fig. 1.
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Figure 5: Stratiform extremes as function of resolution. The 98th per-
centile of stratiform precipitation intensities, Otherwise similar to Fig. 1.
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Figure 6: Precipitation extremes as function of resolution. The 98th
percentile of precipitation intensities, Otherwise similar to Fig. 1.
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Figure 7: Convective extremes as function of resolution. The 99th
percentile of convective precipitation intensities, aggregated over different parts
of Germany for the years 2007-2008, on different horizontal (horizontal axis) and
temporal (vertical axis) resolutions: Seasons: JJA (a,b,c), DJF (d,e,f), MAM
(g,h,i), and SON (j,k,l). All of Germany (a,d,g), North Germany (b,e,h), South
Germany (c,f,i); Intensities given in mm h−1.
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Figure 8: Stratiform extremes as function of resolution. Otherwise sim-
ilar to Fig. 7.
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Figure 9: Precipitation extremes as function of resolution. The 99th
percentile of precipitation intensities. Otherwise similar to Fig. 1.
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Figure 10: Convective extremes as function of resolution. The 99.9th
percentile of convective precipitation intensities. Otherwise similar to Fig. 1.
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Figure 11: Stratiform extremes as function of resolution. The 99.9th
percentile of stratiform precipitation intensities. Otherwise similar to Fig. 1.
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Figure 12: Precipitation extremes as function of resolution. The 99.9th
percentile of precipitation intensities. Otherwise similar to Fig. 1.
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Figure 13: Convective extremes as function of resolution. The 99th
percentile of convective precipitation intensities with a linear scaling at the x
and y-axis. The contour lines indicate the intensity decrease in %. Otherwise
similar to Fig. 1.
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Figure 14: Stratiform extremes as function of resolution. The 99th
percentile of stratiform precipitation intensities with a linear scaling at the x
and y-axis. The contour lines indicate the intensity decrease in %. Otherwise
similar to Fig. 1.
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Figure 15: Precipitation extremes as function of resolution. The 99th
percentile of precipitation intensities with a linear scaling at the x and y-axis.
Otherwise similar to Fig. 1.
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Figure 16: Convective dominance as function of resolution including
dry periods. The ratio of the number of convective precipitation events with
precipitation intensities larger or equal threshold intensity. Threshold intensity
is defined as the 95th percentile of total precipitation intensities over the dif-
ferent parts of Germany for the years 2007-2008. Panels otherwise as in Fig. 1.
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Figure 17: Convective dominance as function of resolution including
dry periods. The ratio of the number of convective precipitation events with
precipitation intensities larger or equal threshold intensity. Threshold intensity
is defined as the 98th percentile of total precipitation intensities over the dif-
ferent parts of Germany for the years 2007-2008. Panels otherwise as in Fig. 1.
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Figure 18: Convective dominance as function of resolution including
dry periods. The ratio of the number of convective precipitation events with
precipitation intensities larger or equal threshold intensity. Threshold intensity
is defined as the 99.9th percentile of total precipitation intensities over the
different parts of Germany for the years 2007-2008. Panels otherwise as in
Fig. 1.
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Figure 19: PDF overlap for convective precipitation intensity. PDF
overlap of each horizontal resolution between every temporal resolution and the
5 minute data. Panels otherwise as in Fig. 1.
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Figure 20: PDF overlap for convective precipitation intensity. PDF
overlap of each temporal resolution between every horizontal resolution and the
1 km data. Panels otherwise as in Fig. 1.
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Figure 21: PDF overlap for stratiform precipitation intensity. PDF
overlap of each horizontal resolution between every temporal resolution and the
5 minute data. Panels otherwise as in Fig. 1.
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Figure 22: PDF overlap for stratiform precipitation intensity. PDF
overlap of each temporal resolution between every horizontal resolution and the
1 km data. Panels otherwise as in Fig. 1.
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Figure 23: Consistent spatial and temporal resolutions. ∆t derived us-
ing Eq. 5 for different values of ∆x for convective (blue) and stratiform (red)
precipitation extremes at the 99th percentile for entire germany, north germany
and south germany. Black lines are least square fit of ∆t = a × ∆xb with the
fitting parameters a and b for entire germany. Errorbars indicate the standard
deviation of parameter estimates. Gray lines show ∆t ∼ ∆x and ∆t ∼ ∆x2,
respectively. a, Initial resolutions ∆t0 = 5 min, ∆x0 = 1 km. b, ∆t0 = 5 min,
and aggregated spatial resolutions ∆x0 = 2 km (convective) and ∆x0 = 3 km
(stratiform). c, ST-ratio (Eq. 7) for both precipitation types for different parts
of Germany over the entire year.
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D.3 Article 4: Uncertainties in snow and precipitation projec-
tions in the northern Alps: the role of model biases
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Percentage change

For percentage change we receive additional terms. As we will see below, the climate change signal from the
model is not canceled out, because of the different denominators Ph(I) and Pobs(I).

The difference in the percentage climate change signal between model and observations can be written like

this: δPccsp(I) = 100 ∗ Pccs(I)
Ph(I)

− 100 ∗ Pccs obs(I)
Pobs(I)

For percentage change, the first part of the analysis from above (terms 1-3) now have the following form:

1. 100 ∗ Ph(Ti)∗δPccs(I|Ti)
Pobs(I)

:

2. 100 ∗ δPh(Ti)∗Pccs(I|Ti)
Pobs(I)

:

3. 100 ∗ δP (Ti)∗δPccs(I|Ti)
Pobs(I)

:

Additionaly to these three terms we obtain term P1. This term describes differences that result from
percentage changes using model data as reference and percentage changes using observation data as reference.

P1. 100 ∗ Ph(Ti)∗Pccs(I|Ti)
Ph(I)

− 100 ∗ Ph(Ti)∗Pccs(I|Ti)
Pobs(I)

Terms 4-6 can be decomposed in the same way. We obtain the extra term P2.

P2. 100 ∗ Ph(I|Ti)∗Pccs(Ti)
Ph(I)

− 100 ∗ Ph(I|Ti)∗Pccs(Ti)
Pobs(I)

In the result section we will refer to the terms P1 and P2 as scaling terms. These terms become important
if there is a mismatch in the magnitude of the historic distributions between models and observations.
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Figure S1: Yearly cycle of precipitation and snowfall amounts over the entire northern Alpine region and for
selected altitude ranges.

Figure S2: Yearly mean timelines of different observation data sets. Data is an average over the northern
Alpine region, considering only grid boxes with a mean altitude between 500 to 1000 m asl. Straight lines
indicate 20 year mean values over the periods 1971-1989 and 1990-2008.
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all altitudes 1971-1989 1990-2008 difference difference in %
surface temperature eobs [◦C] 5.200 5.900 0.700 NaN
surface temperature histalp [◦C] 5.000 5.900 0.900 NaN
mean precipitation euro4m [mm/day] 3.800 3.900 0.200 4.2
snow flux SFE1: eobs [mm/day] 1.000 0.900 -0.100 -9.4
snow flux SFE1: histalp [mm/day] 1.100 1.000 -0.100 -12.4
snow flux SFE2: eobs [mm/day] 0.800 0.700 -0.100 -10.9
snow flux SFE2: histalp [mm/day] 0.900 0.700 -0.100 -14.5
precipitation frequency [%] 41.300 42.500 1.200 2.8
snowfall frequency SFE1: eobs [%] 16.800 15.600 -1.200 -7.0
snowfall frequency SFE1: histalp [%] 17.300 15.800 -1.500 -8.8
snowfall frequency SFE2: eobs [%] 12.200 11.200 -1.000 -8.8
snowfall frequency SFE2: histalp [%] 12.700 11.200 -1.500 -11.6
heavy snowfall frequency SFE1: eobs [%] 0.338 0.299 -0.039 -11.4
heavy snowfall frequency SFE1: histalp [%] 0.377 0.308 -0.069 -18.3
heavy snowfall frequency SFE2: eobs [%] 0.276 0.236 -0.040 -14.7
heavy snowfall frequency SFE2: histalp [%] 0.311 0.247 -0.064 -20.7

Table S1: Observed time averages over the 20 year time periods 1971-1989 and 1990-2008. Data is an average
over the northern Alpine region.

500-1000 m asl 1971-1989 1990-2008 difference difference in %
surface temperature eobs [◦C] 7.300 8.000 0.7 NaN
surface temperature histalp [◦C] 7.300 8.200 0.9 NaN
mean precipitation euro4m [mm/day] 3.700 3.800 0.1 3.3
mean snowfall SFE1: eobs [mm/day] 0.700 0.600 -0.1 -13.9
mean snowfall SFE1: histalp [mm/day] 0.700 0.500 -0.1 -18.3
mean snowfall SFE2: eobs [mm/day] 0.400 0.400 -0.1 -15.9
mean snowfall SFE2: histalp [mm/day] 0.500 0.400 -0.1 -21.5
precipitation frequency [%] 41.300 42.200 0.9 2.1
snowfall frequency SFE1: eobs [%] 13.000 11.400 -1.6 -12.1
snowfall frequency SFE1: histalp [%] 13.100 11.200 -1.9 -14.4
snowfall frequency SFE2: eobs [%] 8.100 7.000 -1.1 -14.2
snowfall frequency SFE2: histalp [%] 8.300 6.800 -1.5 -18.2
heavy snowfall frequency SFE1: eobs [%] 0.103 0.075 -0.028 -27.1
heavy snowfall frequency SFE1: histalp [%] 0.107 0.062 -0.045 -42.1
heavy snowfall frequency SFE2: eobs [%] 0.067 0.039 -0.028 -42.4
heavy snowfall frequency SFE2: histalp [%] 0.070 0.032 -0.038 -53.8

Table S2: Observed time averages over the 20 year time periods 1971-1989 and 1990-2008. Data is an average
over the northern Alpine region, concidering only altitudes between 500 to 1000 m asl.
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Figure S3: Yearly mean timelines of different observation data sets. Data is an average over the northern
Alpine region, considering only grid boxes with a mean altitude between 1000 to 1500 m asl. Straight lines
indicate 20 year mean values over the periods 1971-1989 and 1990-2008.
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1000-1500 m asl 1971-1989 1990-2008 difference difference in %
surface temperature eobs [◦C] 5.300 5.900 0.600 NaN
surface temperature histalp [◦C] 5.000 5.900 0.900 NaN
mean precipitation euro4m [mm/day] 4.300 4.500 0.200 4.3
mean snowfall SFE1: eobs [mm/day] 1.200 1.100 -0.100 -9.4
mean snowfall SFE1: histalp [mm/day] 1.300 1.100 -0.200 -13.5
mean snowfall SFE2: eobs [mm/day] 1.000 0.900 -0.100 -11.3
mean snowfall SFE2: histalp [mm/day] 1.000 0.900 -0.200 -16.9
precipitation frequency [%] 43.400 44.700 1.3 3.0
snowfall frequency SFE1: eobs [%] 18.000 17.200 -0.8 -4.1
snowfall frequency SFE1: histalp [%] 18.500 17.200 -1.3 -7.2
snowfall frequency SFE2: eobs [%] 13.100 12.200 -0.9 -7.4
snowfall frequency SFE2: histalp [%] 13.700 12.100 -1.6 -12.0
heavy snowfall frequency SFE1: eobs [%] 0.433 0.386 -0.047 -10.8
heavy snowfall frequency SFE1: histalp [%] 0.477 0.373 -0.104 -21.8
heavy snowfall frequency SFE2: eobs [%] 0.349 0.293 -0.056 -16.1
heavy snowfall frequency SFE2: histalp [%] 0.380 0.280 -0.100 -26.2

Table S3: Observed time averages over the 20 year time periods 1971-1989 and 1990-2008. Data is an average
over the northern Alpine region, concidering only altitudes between 1000 to 1500 m asl.

Figure S4: Yearly mean timelines of different observation data sets. Data is an average over the northern
Alpine region, considering only grid boxes with a mean altitude between 1500 to 2000 m asl. Straight lines
indicate 20 year mean values over the periods 1971-1989 and 1990-2008.
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1500-2000 m asl 1971-1989 1990-2008 difference difference in %
surface temperature eobs [◦C] 2.800 3.500 0.600 NaN
surface temperature histalp [◦C] 2.600 3.500 0.900 NaN
mean precipitation euro4m [mm/day] 3.600 3.800 0.200 5.6
mean snowfall SFE1: eobs [mm/day] 1.300 1.200 -0.100 -6.5
mean snowfall SFE1: histalp [mm/day] 1.400 1.300 -0.100 -8.5
mean snowfall SFE2: eobs [mm/day] 1.100 1.000 -0.100 -7.9
mean snowfall SFE2: histalp [mm/day] 1.200 1.100 -0.100 -10.2
precipitation frequency [%] 39.900 41.200 1.3 3.3
snowfall frequency SFE1: eobs [%] 20.200 19.100 -1.1 -5.5
snowfall frequency SFE1: histalp [%] 20.600 19.300 -1.3 -6.4
snowfall frequency SFE2: eobs [%] 16.100 15.100 -1.0 -6.2
snowfall frequency SFE2: histalp [%] 16.600 15.200 -1.4 -8.1
heavy snowfall frequency SFE1: eobs [%] 0.533 0.495 -0.038 -7.0
heavy snowfall frequency SFE1: histalp [%] 0.590 0.529 -0.061 -10.3
heavy snowfall frequency SFE2: eobs [%] 0.452 0.415 -0.037 -8.2
heavy snowfall frequency SFE2: histalp [%] 0.513 0.454 -0.059 -11.5

Table S4: Observed time averages over the 20 year time periods 1971-1989 and 1990-2008. Data is an average
over the northern Alpine region, concidering only altitudes between 1500 to 2000 m asl.

Figure S5: Yearly mean timelines of different indices. Data is an average over the northern Alpine region.
The shaded areas indicate the ensemble spread from the 5th to the 95th percentile.
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Figure S6: As Fig. S5, but averaged using gridboxes with an average altitude between 500 to 1000 m asl.

Figure S7: As Fig. 5, but averaged using gridboxes with an average altitude between 1000 to 1500 m asl.
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Figure S8: As Fig. 5, but averaged using gridboxes with an average altitude between 1500 to 2000 m asl.

P(I) hist P(I) future P(I) CCS P(T) dep. CCS P(I|T) dep. CCS corr. dep. CCS
EOBS all-all 0.41 0.42 2.78 -0.33 2.91 0.20

500-1000 0.41 0.42 2.10 -1.06 2.98 0.17
1000-1500 0.43 0.45 2.97 -0.53 3.30 0.21
1500-2000 0.40 0.41 3.35 -0.19 3.00 0.54

HISTALP all-all 0.41 0.42 2.78 -0.24 2.65 0.36
500-1000 0.41 0.42 2.10 -0.91 2.62 0.39
1000-1500 0.43 0.45 2.97 -0.31 2.87 0.41
1500-2000 0.40 0.41 3.35 0.13 2.76 0.46

ENSEMBLE mean all-all 0.51 0.51 0.71 -0.15 0.89 -0.03
500-1000 0.48 0.49 0.69 -0.09 0.83 -0.04
1000-1500 0.52 0.52 0.66 -0.08 0.66 0.08
1500-2000 0.54 0.54 0.73 -0.12 0.75 0.09

Table S5: Precipitation frequency changes within the historic period

P(I) hist P(I) future P(I) CCS P(T) dep. CCS P(I|T) dep. CCS corr. dep. CCS
EOBS all-all 0.03 0.03 8.65 0.73 7.45 0.47

500-1000 0.02 0.02 5.50 0.37 4.62 0.51
1000-1500 0.03 0.03 11.30 -0.02 10.93 0.39
1500-2000 0.02 0.03 11.32 0.69 10.06 0.57

HISTALP all-all 0.03 0.03 8.65 1.39 6.43 0.83
500-1000 0.02 0.02 5.50 1.12 3.37 1.00
1000-1500 0.03 0.03 11.30 1.21 9.05 1.05
1500-2000 0.02 0.03 11.32 1.60 8.96 0.76

ENSEMBLE mean all-all 0.04 0.04 1.33 -0.64 1.89 0.09
500-1000 0.02 0.02 1.91 0.48 1.28 0.15
1000-1500 0.04 0.04 1.16 -0.12 0.99 0.30
1500-2000 0.06 0.06 1.02 -0.16 0.92 0.27

Table S6: Heavy precipitation frequency changes within the historic period
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Figure S9: Temperature dependent probability distributions, P(I), P(I|T) and P(I) for precipitation frequen-
cies, at different altitudes. For the periods 1971-1989 and 1990-2008.
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Figure S10: Bias-adjusted temperature dependent probability distributions, P(I), P(I|T) and P(I) for pre-
cipitation frequencies, at different altitudes. For the periods 1971-1989 and 1990-2008.
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Figure S11: Temperature dependent probability distributions, P(I), P(I|T) and P(I) for heavy precipitation
frequencies, at different altitudes. For the periods 1971-1989 and 1990-2008.
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Figure S12: Bias-adjusted temperature dependent probability distributions, P(I), P(I|T) and P(I) for pre-
cipitation frequencies, at different altitudes. For the periods 1971-1989 and 1990-2008.
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Figure S13: Temperature dependent probability distributions, P(T), P(I|T) and P(I) for snowfall frequencies,
at different altitudes. For the periods 1971-1989 and 1990-2008.
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Figure S14: Bias-adjusted temperature dependent probability distributions, P(T), P(I|T) and P(I) for snow-
fall frequencies, at different altitudes. For the periods 1971-1989 and 1990-2008.
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Figure S15: Temperature dependent probability distributions, P(T), P(I|T) and P(I) for heavy snowfall
frequencies, at different altitudes. For the periods 1971-1989 and 1990-2008.
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Figure S16: Bias-adjusted temperature dependent probability distributions, P(T), P(I|T) and P(I) for heavy
snowfall frequencies, at different altitudes. For the periods 1971-1989 and 1990-2008.
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Figure S17: Temperature dependent probability distributions, P(T), P(I|T) and P(I) for precipitation fre-
quencies, at different altitudes. For the periods 1971-2000 and 2071-2100.
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Figure S18: Bias-adjusted temperature dependent probability distributions, P(T), P(I|T) and P(I) for pre-
cipitation frequencies, at different altitudes. For the periods 1971-2000 and 2071-2100.
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Figure S19: Temperature dependent probability distributions, P(T), P(I|T) and P(I) for heavy precipitation
frequencies, at different altitudes. For the periods 1971-2000 and 2071-2100.

19



Figure S20: Bias-adjusted temperature dependent probability distributions, P(T), P(I|T) and P(I) for heavy
precipitation frequencies, at different altitudes. For the periods 1971-2000 and 2071-2100.
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Figure S21: Temperature dependent probability distributions, P(T), P(I|T) and P(I) for snowfall frequencies,
at different altitudes. For the periods 1971-2000 and 2071-2100.
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Figure S22: Bias-adjusted temperature dependent probability distributions, P(T), P(I|T) and P(I) for snow-
fall frequencies, at different altitudes. For the periods 1971-2000 and 2071-2100.
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Figure S23: Temperature dependent probability distributions, P(T), P(I|T) and P(I) for heavy snowfall
frequencies, at different altitudes. For the periods 1971-2000 and 2071-2100.
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Figure S24: Bias-adjusted temperature dependent probability distributions, P(T), P(I|T) and P(I) for heavy
snowfall frequencies, at different altitudes. For the periods 1971-2000 and 2071-2100.
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Figure S25: Difference in the percentage climate change signal of precipitation frequencies between the
model ensemble and the observations within the periods 1971-1989 and 1990-2008 at different altitudes. The
Boxblots show the interquartile range of the model ensemble. The whiskers indicate the ensemble spread.
The ensemble (mean) median is illustrated by the blue (dark green) line.

Figure S26: Difference in the percentage climate change signal of heavy precipitation frequencies between
the model ensemble and the observations within the periods 1971-1989 and 1990-2008 at different altitudes.

Figure S27: Difference in the percentage climate change signal of snowfall frequencies between the model
ensemble and the observations within the periods 1971-1989 and 1990-2008 at different altitudes.

Figure S28: Difference in the percentage climate change signal of heavy snowfall frequencies between the
model ensemble and the observations within the periods 1971-1989 and 1990-2008 at different altitudes.
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P(I) hist P(I) future P(I) CCS P(T) dep. CCS P(I|T) dep. CCS corr. dep. CCS
SFE1-EOBS all-all 0.17 0.16 -7.03 -6.98 -0.07 0.02

500-1000 0.13 0.11 -12.06 -10.08 -2.12 0.14
1000-1500 0.18 0.17 -4.14 -6.56 2.58 -0.15
1500-2000 0.20 0.19 -5.46 -6.12 0.51 0.15

SFE1-HISTALP all-all 0.17 0.16 -8.79 -8.84 -0.13 0.19
500-1000 0.13 0.11 -14.37 -11.67 -3.17 0.47
1000-1500 0.19 0.17 -7.21 -9.28 1.89 0.18
1500-2000 0.21 0.19 -6.44 -7.63 1.01 0.19

SFE2-EOBS all-all 0.12 0.11 -8.49 -7.06 -1.54 0.10
500-1000 0.08 0.07 -14.06 -9.34 -5.06 0.35
1000-1500 0.13 0.12 -7.11 -6.74 -0.33 -0.03
1500-2000 0.16 0.15 -6.10 -7.04 0.75 0.20

SFE2-HISTALP all-all 0.13 0.11 -11.58 -10.07 -1.82 0.32
500-1000 0.08 0.07 -18.39 -12.56 -6.60 0.77
1000-1500 0.14 0.12 -11.56 -10.81 -1.11 0.37
1500-2000 0.17 0.15 -8.59 -9.20 0.35 0.25

ENSEMBLE mean all-all 0.21 0.20 -3.86 -5.46 1.66 -0.06
500-1000 0.13 0.12 -7.12 -7.81 0.71 -0.03
1000-1500 0.22 0.21 -4.44 -5.50 1.04 0.03
1500-2000 0.31 0.30 -2.35 -4.04 1.66 0.04

Table S7: Snowfall frequency changes within the historic period

P(I) hist P(I) future P(I) CCS P(T) dep. CCS P(I|T) dep. CCS corr. dep. CCS
SFE1-EOBS all-all 0.00 0.00 -11.44 -7.13 -4.29 -0.02

500-1000 0.00 0.00 -27.15 -8.67 -17.06 -1.42
1000-1500 0.00 0.00 -10.78 -8.30 -1.97 -0.51
1500-2000 0.01 0.00 -7.00 -7.96 0.90 0.05

SFE1-HISTALP all-all 0.00 0.00 -18.26 -10.67 -8.62 1.03
500-1000 0.00 0.00 -42.09 -13.25 -32.04 3.20
1000-1500 0.00 0.00 -21.79 -12.40 -11.14 1.74
1500-2000 0.01 0.01 -10.30 -9.99 -0.86 0.56

SFE2-EOBS all-all 0.00 0.00 -14.64 -6.97 -7.83 0.17
500-1000 0.00 0.00 -40.43 -6.20 -33.15 -1.08
1000-1500 0.00 0.00 -15.63 -8.33 -6.93 -0.38
1500-2000 0.00 0.00 -8.23 -8.82 0.49 0.09

SFE2-HISTALP all-all 0.00 0.00 -20.29 -11.21 -10.32 1.24
500-1000 0.00 0.00 -54.23 -12.78 -45.83 4.38
1000-1500 0.00 0.00 -26.27 -13.35 -15.20 2.28
1500-2000 0.01 0.00 -11.11 -10.91 -0.74 0.55

ENSEMBLE mean all-all 0.02 0.02 -8.06 -5.63 -2.38 -0.05
500-1000 0.00 0.00 -19.51 -7.25 -12.96 0.70
1000-1500 0.01 0.01 -12.00 -5.02 -7.15 0.17
1500-2000 0.03 0.03 -5.51 -4.09 -1.58 0.16

Table S8: Heavy snowfall frequency changes within the historic period

Figure S29: Precipitation frequency changes by the end of the century at different altitudes. Boxplots as in
Fig. S25.
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P(I) hist P(I) future P(I) CCS P(T) dep. CCS P(I|T) dep. CCS corr. dep. CCS
ENSEMBLE mean all-all 0.50 0.51 0.37 -1.69 1.33 0.73

500-1000 0.48 0.49 0.03 -2.04 0.69 1.38
1000-1500 0.51 0.52 0.66 -1.50 0.64 1.52
1500-2000 0.52 0.54 0.59 -1.82 0.23 2.18

Table S9: Precipitation frequency changes by the end of the century at different altitudes

Figure S30: Heavy precipitation frequency changes by the end of the century at different altitudes. Boxplots
as in Fig. 25.

P(I) hist P(I) future P(I) CCS P(T) dep. CCS P(I|T) dep. CCS corr. dep. CCS
ENSEMBLE mean all-all 0.04 0.04 10.77 -4.52 13.65 1.63

500-1000 0.02 0.03 16.20 -0.87 14.44 2.63
1000-1500 0.04 0.04 10.86 -1.92 10.07 2.72
1500-2000 0.05 0.06 8.06 -3.37 7.63 3.81

Table S10: Heavy precipitation frequency changes by the end of the century at different altitudes

Figure S31: Snowfall frequency changes by the end of the century at different altitudes. Boxplots as in
Fig. 25.

P(I) hist P(I) future P(I) CCS P(T) dep. CCS P(I|T) dep. CCS corr. dep. CCS
ENSEMBLE mean all-all 0.20 0.17 -18.73 -19.09 0.14 0.22

500-1000 0.13 0.09 -30.24 -28.00 -3.67 1.43
1000-1500 0.21 0.18 -18.94 -17.84 -2.01 0.91
1500-2000 0.29 0.26 -13.99 -13.91 -0.92 0.85

Table S11: Snowfall frequency changes by the end of the century at different altitudes

Figure S32: Heavy snowfall frequency changes by the end of the century at different altitudes. Boxplots as
in Fig. 25.
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P(I) hist P(I) future P(I) CCS P(T) dep. CCS P(I|T) dep. CCS corr. dep. CCS
ENSEMBLE mean all-all 0.01 0.01 -13.29 -19.18 7.22 -1.33

500-1000 0.00 0.00 -25.39 -28.46 4.84 -1.77
1000-1500 0.01 0.01 -16.41 -14.69 -2.26 0.54
1500-2000 0.03 0.03 -10.47 -11.03 -0.02 0.59

Table S12: Heavy snowfall frequency changes by the end of the century at different altitudes
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