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Preface ǀ I 

PREFACE 

The underlying work for this cumulative dissertation was conducted in the Laboratory for Operation 

Control and Research, Zweckverband Landeswasserversorgung in cooperation with the Institute of 

Sustainable and Environmental Chemistry (Prof. Dr. Kümmerer), Leuphana University of Lüneburg 

between October 2014 and October 2017. The work was funded by Zweckverband 

Landeswasserversorgung. 

This cumulative dissertation is based on three scientific contributions. Two articles are published in 

international peer-reviewed journals. The third contribution, a peer-reviewed book chapter, is 

published in the ACS Symposium Series. 

o Tobias Bader, Wolfgang Schulz, Klaus Kümmerer, Rudi Winzenbacher (2016). General 

strategies to increase the repeatability in non-target screening by liquid chromatography-high 

resolution mass spectrometry. Analytica Chimica Acta 935: 173-186. 

DOI: 10.1016/j.aca.2016.06.030 

[Hereinafter be referred to as ‘Paper 1’] 

 

o Tobias Bader, Wolfgang Schulz, Klaus Kümmerer, Rudi Winzenbacher (2017). LC-HRMS 

data processing strategy for reliable sample comparison exemplified by the assessment of 

water treatment processes. Analytical Chemistry 89: 13219-13226. 

DOI: 10.1021/acs.analchem.7b03037 

[Hereinafter be referred to as ’Paper 2’] 

 

o Tobias Bader, Wolfgang Schulz, Thomas Lucke, Wolfram Seitz, Rudi Winzenbacher (2016). 

Application of non-target analysis with LC-HRMS for the monitoring of raw and potable 

water: strategy and results. In: Assessing transformation products of chemicals by non-target 

and suspect screening - strategies and workflows volume 2 (Vol. 1242, pp. 49-70): American 

Chemical Society. 

DOI: 10.1021/bk-2016-1242.ch003 

[Hereinafter be referred to as ‘Book Chapter’] 

All articles are reprinted with kind permission of Elsevier and the American Chemical Society at the 

end of this thesis (see ‘Reprint of articles included in this thesis’). 

 

In the following extended summary, an introduction and the objectives of this work are described in 

chapters 1 and 2. The developed methods are stated in chapter 3 and the main results of the studies are 

presented and discussed in chapter 4, followed by the final conclusion and an outlook to future 

research purposes in chapter 5.  

https://doi.org/10.1016/j.aca.2016.06.030
https://doi.org/10.1016/j.aca.2016.06.030
https://doi.org/10.1016/j.aca.2016.06.030
https://doi.org/10.1016/j.aca.2016.06.030
https://doi.org/10.1021/acs.analchem.7b03037
https://doi.org/10.1021/acs.analchem.7b03037
https://doi.org/10.1021/acs.analchem.7b03037
https://doi.org/10.1021/acs.analchem.7b03037
https://doi.org/10.1021/bk-2016-1242.ch003
https://doi.org/10.1021/bk-2016-1242.ch003
https://doi.org/10.1021/bk-2016-1242.ch003
https://doi.org/10.1021/bk-2016-1242.ch003
https://doi.org/10.1021/bk-2016-1242.ch003
https://doi.org/10.1021/bk-2016-1242.ch003
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ABSTRACT 

The emission of anthropogenic trace substances into the aquatic environment continuously poses 

challenges to water suppliers. The contamination of raw waters with organic trace substances requires 

complex water treatment processes to secure drinking water quality. The routine monitoring of these 

raw waters as well as the behavior and fate of organic trace substances during different treatment 

processes is of great interest to recognize and counter potential dangers at an early stage. 

Chromatographic separation techniques coupled to triple quadrupole mass spectrometers are 

conventionally used for the reliable monitoring of traces of known polar substances. However, such 

analytical techniques usually fail to recognize unknown compounds. This weakness presents a serious 

restriction with regard to the monitoring of treatment processes, since transformation products are 

often not - or not sufficiently - characterized and are thus only detected sporadically. Non-target 

screening using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) 

allows the detection of thousands of compounds within a single run and covers known as well as 

unknown substances. Compared to the established analytical techniques, this is a decisive advantage 

for the monitoring of raw and process waters during water treatment. While the analytical technique 

LC-HRMS has undergone significant developments in recent years, the algorithms for data processing 

reveal clear weaknesses. 

This dissertation therefore deals with reliable processing strategies for LC-HRMS data. The first part 

of this work seeks to highlight the problematics of false positive and false negative findings. Based on 

repeated measurements, various strategies of data processing were assessed with regard to the 

repeatability of the results. To ensure that real peaks were barely or not removed by the filtering 

procedure, samples were spiked with isotope-labeled standards. The results emphasize that the 

processing of sample triplicates results in sufficient repeatability and that the signal fluctuation across 

the triplicates emerged as a powerful filtering criteria. The number of false positives and false 

negatives could be significantly reduced by the developed strategies which consequently improve the 

validity of the data. 

The second part of this thesis addresses the development of processing strategies particularly aimed at 

assessing water treatment processes. The detected signals were tracked across the treatment process 

and classified based on their fold changes. A more reliable signal classification was achieved by 

implementing a recursive integration approach. Special integration algorithms allow a reliable signal 

classification even though the signal to be compared was below the intensity threshold. Different 

combinations of replicates of process influents and effluents were processed for evaluating the 

repeatability. The good repeatability was indicated by the results of both the plausibility checks and 

the ozonation process (ozonation of pretreated river water) and thus points to high reliability. The 
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developed procedure enables the assessment of water treatment processes based on the changes in the 

pattern of all detected signals and offers a more comprehensive picture of the treatment efficiency. 

Particularly with regard to transformation products, existing knowledge gaps can be reduced by this 

approach, albeit the entire variety of chemicals cannot be covered completely. 

The applicability of the developed strategies to real world applications is demonstrated in the last part 

of this work. Besides the prioritization of the generated results, the main focus was the identification 

of recognized compounds. 

The developed strategies clearly improve the validity of the underlying data. The combination of LC-

HRMS analysis with reliable processing strategies opens up multiple possibilities for a more 

comprehensive monitoring of water resources and for the assessment of water treatment processes. 

The processing strategies and validation concepts may be easily transferred to other research fields. 
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ZUSAMMENFASSUNG 

Die Emission von anthropogenen Spurenstoffen in die aquatische Umwelt stellt Wasserversorger 

fortwährend vor neue Herausforderungen. Mit organischen Spurenstoffen belastete Rohwässer 

erfordern komplexe Aufbereitungsverfahren zur Sicherung der Trinkwasserqualität. Sowohl die 

routinemäßige Überwachung dieser Rohwässer als auch das Verhalten organischer Spurenstoffe 

während verschiedener Aufbereitungsprozesse ist von großem Interesse, um etwaige Gefahren 

frühzeitig zu erkennen. Herkömmlich verwendete Analysetechniken - meist chromatographische 

Trenntechniken gekoppelt an Triple-Quadrupol-Massenspektrometer - erlauben die Überwachung 

bekannter polarer Substanzen im Spurenbereich, versagen jedoch meist beim Erkennen unbekannter 

Verbindungen. In Hinblick auf die Überwachung von Aufbereitungsprozessen stellt diese 

Schwachstelle eine große Einschränkung dar, da Transformationsprodukte oftmals nicht oder nur 

unzureichend charakterisiert bzw. bekannt sind und demnach nur sporadisch erfasst werden können. 

Mit sogenannten „non-target screening“-Methoden lassen sich tausende Verbindungen in einer 

Analyse erfassen. Durch die Kopplung von Flüssigkeitschromatographie mit hochauflösender 

Massenspektrometrie (LC-HRMS) können neben bekannten auch unbekannte Spurenstoffe detektiert 

werden. In Hinblick auf die Überwachung von Roh- und Prozesswässern bei der Wasseraufbereitung 

stellt dies einen entscheidenden Vorteil gegenüber etablierten analytischen Techniken dar. Während 

die LC-HRMS-Analytik in den letzten Jahren stark weiterentwickelt wurde, zeigen die 

Auswertealgorithmen jedoch noch deutliche Schwachstellen. 

Die vorliegende Doktorarbeit befasst sich daher mit Strategien zur verlässlichen Auswertung von LC-

HRMS-Daten. Im ersten Schritt wurde die Problematik von falsch-positiv- und falsch-negativ-

Befunden beleuchtet. Basierend auf Wiederholmessungen wurden verschiedene Strategien der 

Datenauswertung hinsichtlich der Ergebniswiederholbarkeit bewertet. Durch das Dotieren 

isotopenmarkierter Standards wurde sichergestellt, dass echte Signale durch die Datenfilterung nicht 

entfernt werden. Die Daten zeigen, dass Probentriplikate hinreichend gute Ergebnisse liefern und die 

Berücksichtigung der Signalschwankungen über Replikatmessungen eine sehr effiziente Filtermethode 

darstellt. Durch die entwickelten Vorgehensweisen konnte die Anzahl von falsch-positiv- und falsch-

negativ-Befunden bei der Datenauswertung signifikant reduziert und die Validität der Daten gesteigert 

werden. 

Im zweiten Teil der Arbeit wurden Auswertestrategien speziell zur Bewertung von 

Wasseraufbereitungsprozessen entwickelt. Die detektierten Signale wurden während des 

Behandlungsprozesses verfolgt und einer Signalklassifikation unterzogen. Durch die Implementierung 

eines rekursiven Ansatzes unter Verwendung spezieller Integrationsalgorithmen konnte eine deutlich 

verlässlichere Signalklassifikation vorgenommen werden, auch wenn zu vergleichende Signale 
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unterhalb des festgelegten Intensitätsschwellenwertes lagen. Zur Bewertung der Wiederholbarkeit 

wurden verschiedene Kombinationen von Replikaten aus Prozesszu- und -abläufen ausgewertet. 

Sowohl die Ergebnisse der Plausibilitätskontrollen als auch die des realen Prozesses einer Ozonung 

von vorgereinigtem Flusswasser zeigten eine gute Wiederholbarkeit und lassen demnach auf eine hohe 

Reliabilität schließen. Diese Arbeit ermöglicht es, die Bewertung von Aufbereitungsprozessen 

basierend auf der Veränderung aller detektierbarer Signale vorzunehmen und dadurch ein deutlich 

umfangreicheres Bild der Prozesseffizienz zu erhalten. Besonders in Hinblick auf 

Transformationsprodukte können durch diese Herangehensweise bestehende Wissenslücken reduziert 

werden, wenngleich auch hierdurch die Vielfalt der chemischen Stoffe nicht vollständig abgedeckt 

werden kann. 

Im letzten Teil der Arbeit wurde die Anwendbarkeit der entwickelten Strategien in der Realität 

verdeutlicht. Neben der Priorisierung von Ergebnissen wurde ein Hauptaugenmerk auf die 

Identifikation erfasster Komponenten gelegt. 

Die in dieser Arbeit erarbeiteten Strategien tragen deutlich zur Steigerung der Datenvalidität bei. Die 

Kombination der LC-HRMS-Analytik mit verlässlichen Auswertestrategien eröffnet eine Vielzahl an 

Möglichkeiten zur umfassenderen Überwachung von Wasserressourcen und zur Beschreibung von 

Aufbereitungsprozessen. Die entwickelten Strategien und Validierungskonzepte lassen sich auf andere 

Forschungsgebiete übertragen.  
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1 INTRODUCTION 

A variety of tens of thousands of organic substances are in daily use and manufactured, consumed and 

disposed of in households or industry/agriculture. Various substance classes such as pharmaceuticals, 

pesticides, personal care products and industrial chemicals, among others, have the potential to enter 

the aquatic environment as micropollutants.1-5 The presence of these micropollutants in wastewater,6-9 

river water10-12 and, more rarely, drinking water13-16 has been reported by many studies. Forecasts 

suggest that both the demographic development and the climate change will lead to higher 

concentrations of micropollutants in aquatic systems.17,18 

Different water treatment processes, e.g. based on oxidation with ozone and / or adsorption onto 

activated carbon have been developed to improve the removal of micropollutants.19-23 In drinking 

water treatment, the primary objective of such processes is the disinfection. However, during the last 

decades, the occurrence and the fate of organic micropollutants during these treatment processes 

gained increasing importance. The Landeswasserversorgung (state water supply) uses river water 

which is directly abstracted from the River Danube for the production of drinking water. This multi-

step process is exemplary illustrated in Figure 1. 

 

Figure 1. Processes for drinking water treatment from river water (Waterworks Langenau); ML: multi-

layer, GAC: granulated activated carbon  

 

The supply of drinking water is subjected to the strict provisions of the German drinking water 

ordinance (TrinkwV 2001) and the Council Directive 98/83/EC which define limit values for selected 

compounds. Considering the entire universe of chemicals (e.g. > 100 Mio CAS Registry Numbers24), 

however, only a very small fraction is currently regulated by the water ordinance. From the water 

supplier perspective, comprehensive monitoring strategies are required to deal with the variety of 

substances. Strong variations in quality of the raw waters require reliable treatment processes to ensure 

good drinking water quality. Furthermore, the behavior and the fate of micropollutants during these 

treatment processes (e.g. ozonation, activated carbon filtration) are of great interest. Analytical tools 

are required to assess the treatment efficiency for each single treatment step of the process chain. 
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For the monitoring of polar organic micropollutants, liquid chromatography coupled to electrospray 

ionization triple quadrupole tandem mass spectrometry (LC-ESI-MS/MS) is the method of choice in 

environmental trace analysis.25-28 The high selectivity achieved by selected reaction monitoring in 

combination with good sensitivity enables the analysis at trace level. In most instances, pre-

concentration techniques (e.g. solid phase extraction) are no longer necessary to achieve prescribed 

limits of quantification.29-32 These analyses, however, are restricted to known target compounds and 

require reference standards during the method set-up. Due to the coupling with chromatographic 

techniques, the number of acquired transitions per run is limited to, realistically, less than 150.33,34 

With regard to the monitoring of water resources, this represents a serious restriction as only a very 

limited number of known and available compounds can be monitored. Such approaches usually fail to 

monitor unknown or unexpected components.35 For the assessment of water treatment processes, the 

elimination rates of present target compounds are normally quantified.21,22 By such approaches, 

however, the complete evaluation of the treatment process is based on a small number of 

components.36,37 Assuming many transformation products to be unknown yet, this group is particularly 

underrepresented by common analytical techniques.38-40 These restrictions expose the weaknesses of 

targeted approaches and emphasize the demand for new strategies. 

Recent developments in high-resolution mass spectrometry coupled with liquid chromatography (LC-

HRMS) have initiated new possibilities for the analysis of micropollutants without having any a priori 

information available.41-43 Modern HRMS instruments provide accurate mass data while combining 

sufficient selectivity and sensitivity for the determination of trace substances in complex 

environmental matrices.44-46 LC-HRMS has emerged as a powerful analytical tool as it enables the 

detection of thousands of compounds within a single run and does not require a reference standard 

during method set-up. The information of all detectable compounds, including unknown or unexpected 

substances, is available from the LC-HRMS data and can be used for a more comprehensive 

monitoring. Comparing the changes in the signal pattern of all detectable compounds in the influent 

and effluent provides a more holistic picture of the treatment process and thus allows a more reliable 

assessment of its treatment efficiency.47-52 

While the analytical technique LC-HRMS itself was dynamically improved over the last years, the 

software algorithms53,54 to reliably process the wealth of acquired data remained below expectations, 

although there were notable improvements.55-60 The insufficient reliability of the data, mainly caused 

by data processing, is the bottleneck in these untargeted approaches.  
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2 OBJECTIVES 

From the water supplier’s perspective, the comprehensive monitoring of raw and drinking water is 

important as micropollutants might affect the quality of these resources. Untargeted approaches also 

allow the monitoring of unknown or unexpected compounds and thus enable timely detection of 

possible risks for the water supply. Furthermore, the fate and the behavior of micropollutants during 

water treatment processes (e.g. ozonation, activated carbon filtration) is of great interest to assess the 

performance of these processes based on all detectable information. The monitoring of processes or 

the optimization of different operating conditions are important fields of application. 

In non-target screening, several thousands of signals are normally detectable within a single sample 

making manual review no longer a reasonable option. Instead, sophisticated algorithms are needed to 

automatically process the wealth of data. It was found that the processing of LC-HRMS data is a 

critical step which is prone to the generation of false positive and false negative findings.55,56 

 

This thesis addresses the following main objectives: 

o Illustrate the problems in peak recognition particularly for low abundant signals and develop 

strategies to reduce the number of false positive / negative findings 

o Develop data processing strategies particularly aimed at assessing water treatment processes 

using the information of all detectable compounds and estimate the reliability of the results 

 

The work summarized in paper 1 was aimed at showing the difficulties of false positive and false 

negative findings and providing general strategies to minimize these influences.61 Improvements 

caused by data processing should be underlined by comparative evaluation. The question of how many 

sample replicates were necessary to obtain representative results should be answered and finally, the 

general applicability should be evaluated critically. 

The work described in the second paper deals with the LC-HRMS data processing which was 

refined with special focus on the reliable comparison of treatment processes based on all detectable 

components.62 The consistency of the results should be underlined by developing an appropriate 

validation concept. 

Based on the selected case studies summarized in a book chapter, the applicability of the developed 

strategies on real world applications should be demonstrated.50 Different ways for the prioritization of 

generated results should be depicted and the identification of detected compounds based on novel in-

silico methods should be addressed.  
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3 METHODS AND RESEARCH APPROACH 

In the following the methods on which this thesis is based on are briefly described. More details are 

given in the published articles (see Reprint of articles included in this thesis) and the related 

supporting information, respectively. 

Due to the large amount of inventory LC-HRMS data from the past, it was decided that changes in the 

existing LC-MS method are to be kept to a minimum to allow for retrospective data processing. The 

LC-HRMS method used for data acquisition is described in Paper 1. To illustrate the problems in 

peak recognition on the basis of a systematic evaluation, multiple technical replicates (i.e. repeated 

measurements of the same sample) were subjected to peak finding and peak alignment. For each 

detected signal, the rate of recognition was determined by counting its occurrences (i.e. how often was 

the feature recognized) relative to the total number of technical replicates. Finally, the mean rate of 

recognition (𝑅𝑅̅̅ ̅̅ ) was calculated across all features. To underline the problematics in peak recognition, 

the 𝑅𝑅̅̅ ̅̅  was calculated from data which were processed using different intensity thresholds. In total, 

four different matrices spiked with varying concentrations of up to 263 target compounds were 

investigated. Spiked targets were treated as unknowns, extracted from the peaks table (based on mass 

and retention time) and evaluated separately. A key point for minimizing the false positive detections 

while still retaining real peaks of interest was the post-acquisition filtering of extracted ion 

chromatograms (EIC). After peak integration, various peak characteristics (e.g. peak width) were used 

to filter the peak lists for false positive detections. In addition to lower and upper cutoffs, also the 

fluctuation across technical replicates was considered for the design of valuable filter criteria which 

allow distinguishing between real peaks and noise. During data processing, five processing models, 

requiring different numbers of technical replicates (e.g. duplicates, triplicates), were introduced. The 

data sets were split into unknown signals and signals caused by the spiked target compounds. For the 

evaluation of the five processing models, a combinatorial approach was conducted in order to compare 

all possible combinations of sample replicates. The rates of recognition were also calculated when 

applying the combinatorial approach for each individual model. To show the improvements resulted 

from data processing, the mean improvement factor (𝐼)̅ was defined which compares the feature 

occurrences before and after data processing. The 𝑅𝑅̅̅ ̅̅  and 𝐼 ̅are meaningful characteristics which allow 

assessing the strengths / weaknesses of the processing models. 

As proof of concept, four different matrices (ultrapure water, groundwater, river water and pretreated 

(secondary) wastewater) were spiked with 130 isotope-labeled standards at three concentration levels 

(25, 100 and 500 ng L-1) with the objective to show that real peaks were barely or not removed by the 

developed filters. For an adequate assessment, each standard was manually reviewed before the 

untargeted approaches were applied and therefore allowed to evaluate the performance of the peak 

finding algorithm as well. This step was also required to report false positives during the automated 

data processing. The five models were evaluated with respect to the manual results. This was 
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necessary since several components were not even picked during peak finding. Such problems, 

however, were not caused by the EIC filtering.  

The second paper addresses the refinement of the entire EIC filtering approach. The peak integration 

was performed using two fundamentally different integration algorithms. Also relationships within the 

data obtained by one algorithm (e.g. difference between centroid and apex retention time) as well as 

between the data obtained by the two algorithms (e.g. relative changes in peak heights) were 

considered. In total, 23 filters were applied for the EIC filtering. For parametrization of these filters, a 

LC-HRMS training data set was used. The manual review of all recognized signals revealed more than 

1 300 true peaks. The parameters for the filters were derived from the distributions of the respective 

peak characteristics. Quantiles from these distributions were taken to set the minimum and maximum 

values (lower and upper cutoffs) for the filters. The (relative) standard deviation, (R)SD, across 

triplicates was taken as fluctuation criterion. The (R)SD distribution of the respective peak 

characteristic of all true peaks was considered to define the maximum (R)SD values (upper cutoff). 

For the evaluation of the EIC filtering, recall and precision were determined for four different test data 

sets.63 To accomplish this, the test data sets were manually reviewed and signals were assigned to the 

groups “peaks”, “no peaks” or “exclude”. The latter group was chosen for signals which could not 

unambiguously be assigned to “peaks” or “no peaks” (true / false decision is required to determine 

recall and precision). In addition, more than 400 target compounds were regarded throughout the 

individual stages of data processing. 

For the assessment of water treatment processes, the changes of all detectable compounds were 

regarded based on the detected signal heights in the influent and effluent sample. A fold change (fc) 

based signal classification of all features was introduced. The pairwise sample comparison of the 

influent and effluent of a treatment process is fraught with pitfalls such as the threshold problematic. 

To bypass this, a recursive approach using the so called Summation algorithm was introduced. The 

Summation algorithm forces EIC integration irrespective of absence / presence of a chromatographic 

peak. This approach was conducted if either the influent or the effluent sample has passed all filter 

settings. In the final workflow, the data from the recursive signal integration are automatically 

generated for all features and can thus easily be retrieved without the need of reprocessing the entire 

data set. 

To estimate the reliability of the LC-HRMS method in combination with the data processing 

workflow, technical replicates of influent and effluent samples of an ozonation process were 

compared. A “componentization” step was conducted to group isotopologues, adducts and dimers. In a 

combinatorial approach, all possible combinations for the pairwise comparison of sample triplicates 

were conducted and the final results were inspected regarding their consistency. This allows answering 

the question whether the same results would be obtained if the experiment was repeated. Two different 

aspects were considered during data evaluation: 
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(i) the repeatability of technical replicates within one sample, meaning influent and effluent were 

composed of the same sample but different replicates (e.g. Influent replicate #1 #2 #3 vs. Influent 

replicate #4 #5 #6). Considering this purely theoretical process, each signal should be classified to 

consistency (assuming the technical replicates to be identical). Thus, these considerations represent 

plausibility checks for the processing of the non-target data. 

(ii) the repeatability of technical replicates between two samples, meaning influent and effluent were 

composed of different samples (i.e. Influent replicate #1 #2 #3 vs. Effluent replicate #1 #2 #3). 

Changes caused by the treatment processes should be reflected by the features assigned to different 

categories (e.g. elimination). 

In addition to the mere numbers assigned to the respective categories, each feature was regarded 

individually, in order to preclude that the total numbers of assigned features were repeatable while the 

individual compositions were not. Isotope-labeled standards, well distributed across the considered 

retention time range, were co-injected to ensure consistent sensitivity throughout the batch and to 

account for matrix effects. 

The real world applications discussed in the book chapter describe different methods for the 

prioritization of non-target features. In case study 1, the temporal prioritization was exemplified by a 

spill detection in time series data from the monitoring of river water. The search for the spill in the 

time series was accomplished by ranking detected features in a way that highest intensities and lowest 

frequencies result in high scores. Using the information of accurate mass, isotope pattern and MS² 

information, a possible elemental composition was generated. To link the formula to possible 

structures, online databases (e.g. drugbank64, chemspider) were used. Finally, MS² information65,66 was 

available for the suggested compound which matched the acquired DDA MS² spectrum leading to a 

level 2a identification.67 For final confirmation, the reference standard was purchased which allowed a 

level 1 identification and retrospective semi-quantitative estimation of the concentrations. Multivariate 

statistics were used to search for other features that follow a similar time profile. A combination of 

principal component analysis and discriminant analysis (PCA-DA) was successfully implemented to 

find similarities. 

In case study 2, non-target screening was applied as a forensic tool to link a groundwater 

contamination to a possible polluter. For prioritization of the generated data, logical connections 

between different samples were applied. For features which followed the stated rules, the DDA MS² 

spectra were exported and uploaded to the platform FOR-IDENT68 which represents a compilation of 

water relevant chemicals. All structures which matched the accurate mass of the detected features  

(+/-10 ppm) were linked to the respective MS² spectra. The software package Metfrag69 was applied 

for in-silico fragmentation of the possible structures and for the comparison to the acquired spectra. 

Further efforts in terms of identification were conducted for candidates with high Metfrag scores. 

The third case study deals with the assessment of the fourth treatment step of a wastewater treatment 

plant (WWTP) using activated carbon filtration (granular activated carbon, GAC). To assess whether 
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or to what extent an improvement in the treatment efficiency occurred, the same influent was treated 

by both the conventional wastewater treatment and by the treatment comprising the additional 

activated carbon filter. To illustrate the differences between the two treatment branches, features were 

assigned to different categories (e.g. elimination, formation) and compared between the two treatment 

options. For features which were detected in both the influent and effluent, the changes in signal 

heights were considered. 
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4 RESULTS AND DISCUSSION 

In the following, the most important results are summarized and discussed. In paper 1, the 

problematic of false positive and negative findings during untargeted peak finding were discussed.61 

Furthermore, the strengths and weaknesses of different processing strategies were assessed by 

comparing the repeatability across all combinations of technical replicates. 

Regarding the spiked target compounds (between 100 and 1000 ng L-1), the vast majority of the 

standards were successfully recognized. Moreover, 𝑅𝑅̅̅ ̅̅ s of more than 95% were achieved suggesting 

that - in general and particularly for peaks with sufficient peak height - the peak finding algorithm 

works consistently. The target data obtained from the different processing models show that both the 

number of recognized standards and their 𝑅𝑅̅̅ ̅̅ s were hardly affected by the applied filters. Thus, the 

false negative rate is not significantly increased by the various filtering approaches. 

The problems in peak recognition, particularly for low abundant signals, were clearly evident if 

considering the 𝑅𝑅̅̅ ̅̅ s calculated for unknown features. Contrary to target compounds, the 𝑅𝑅̅̅ ̅̅ s resulted 

in substantially worse values (45% - 64%) which clearly point out the need for action. After data 

processing, the reported feature numbers were strongly reduced (by between 33% - 72%) while the 𝑅𝑅̅̅ ̅̅ s were increased with respect to the unprocessed data. This suggests that many false positive 

candidates were removed by the filtering. The gradual increase in 𝑅𝑅̅̅ ̅̅  became lower the more 

replicates were used. An increase in 𝑅𝑅̅̅ ̅̅ s can either be achieved by removing false positives or by 

correcting partially false negative findings. The latter was observed in many instances and quantified 

by the mean improvement factor 𝐼. The 𝐼s calculated for the different processing models (except for 

model a) clearly show the improvement with respect to the unprocessed data. It was not expected that 

partially false negative findings occurred to this extent. The use of replicates allows: 

(i) regarding the fluctuation of the peak characteristics across the replicates as a valuable filter 

criterion to remove false positive findings 

(ii) correcting partially false negative findings since a recognition rate of (number of replicates)-1 is 

sufficient to retain such signals during data processing 

These benefits, however, must be balanced against the decrease in sample throughput. 

As proof of concept, four different sample matrices were spiked with 130 isotope-labeled standards 

(IS) at three different concentration levels. The manual peak inspection in the positive ionization mode 

(ESI+) revealed that, on average, 88%, 95% and 99% of all IS (123) were successfully detected at 

25 ng L-1, 100 ng L-1 and 500 ng L-1, respectively. In the negative ionization mode (ESI-) considerably 

lower mean values of 38%, 69% and 92% of all IS (56) were detected at the same concentrations. The 

remaining standards were either below the limit of detection or concealed by strong matrix effects 

(signal suppression or interferences).70 As has been expected, the number of recognized standards 

decreased with lower concentrations and higher matrix complexity. The number of IS recognized by 

the non-target peak finding was always smaller than the numbers manually verified. The differences 
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were low at the highest concentrations whereas stronger deviations were observed for the lower 

concentrations. False positive findings became apparent at lowest concentrations in the pretreated 

wastewater. The numbers of retained IS obtained by the different processing models were similar to 

the ones recognized by non-target peak finding. When referring the recovery rates in ESI+ to the 

maximum achievable number of standards (model (x) - manual), 94%, 97% and 99% were recognized 

at 25 ng L-1, 100 ng L-1 and 500 ng L-1, respectively. In ESI-, values of 90%, 92% and 94% were 

reached for the respective concentration levels. These findings show that real peaks of interest were 

barely or not removed by the applied filters and furthermore indicate that the peak finding algorithm is 

the limiting step in the processing workflow. 

In ESI+, the 100 ng L-1 health orientation value71,72 for drinking water can be reached for most 

components. More than 90% of the IS were successfully detected in ultrapure water, groundwater and 

river water whereas more than 80% were found in the pretreated wastewater. The negative ionization 

mode was generally less sensitive leading to worse recovery rates. At 100 ng L-1 about half of the IS 

were found in all matrices except for the wastewater where about one third of the IS could be detected. 

This indicates that in ESI- several micropollutants cannot be detected at or below the health 

orientation value. 

In summary, the findings show that both the screening method and the data processing strategy are, 

albeit with some deficiencies in the negative ionization mode, generally applicable at trace level. Care 

must be given to complex matrices such as wastewater where insufficient selectivity and signal 

suppression may result in difficulties. 

 

In the second paper, the LC-HRMS data processing was refined with special focus on the reliable 

sample comparison for the assessment of water treatment processes.62 After parametrization of the 

derived filters using a training data set, the workflow was evaluated for its recall and precision.63 The 

good performance of the EIC filtering is emphasized by values for precision and recall above 98% and 

96%, respectively. The low numbers of false negatives were predominantly caused by features 

showing insufficient chromatographic separation. The false positive rate was always below 5%. In the 

next step, a multicomponent standard, comprising 411 target compounds at a concentration of 

100 ng L-1, was analyzed and processed with the EIC filtering approach. Out of 411 targets, 408 could 

successfully be recognized by the non-target peak finding. The three targets missed showed 

insufficient separation with other isobaric compounds from the mix. As the differences between the 

EIC apexes was smaller than the retention time tolerance used during peak alignment, only the more 

abundant species was reported. These problem candidates emphasize the importance of adequate 

chromatographic separation which is difficult to optimize in non-target screening.47 Concerning the 

EIC filtering workflow, 406 out of 408 possible compounds were retained. These findings suggest that 

the possibility of losing real peaks of interest is deemed to be low. 
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For the assessment of treatment processes, the influent and effluent samples of a process were 

compared. In this comparative sample evaluation, also cases where one signal (either influent or 

effluent) falls below the intensity threshold need to be processed to determine the fold changes (fc) for 

peak categorization. In general two different viewpoints exist for dealing with signals below the 

threshold: 

(i) values below the threshold are assumed to be zero (optimistic view) 

(ii) values below the threshold are assumed to be the threshold (pessimistic view) 

Irrespective of which view is considered to be the better option, inaccurate estimates may occur. The 

optimistic view tends to result in an overestimation of the groups elimination and formation, while the 

pessimistic view likely leads to an underestimation of these groups. Based on the applied intensity 

threshold and the fc intervals used for categorization, the “no influence threshold” was determined. 

After exceeding this threshold, the categorization is no longer affected by the choice of the viewpoint. 

Ideally, only features where the influent or effluent peak height exceeds this “no influence threshold” 

should be classified. 

The distribution of the peak heights detected in training and test data revealed that more than 75% of 

all signals were below the “no influence threshold”. Instead of discarding large parts of the data, a 

recursive approach was developed which allowed a more reliable assignment of signals below the 

intensity threshold. Here, peak heights below the intensity threshold were replaced by the median 

value across the triplicate peak heights determined by the Summation algorithm. This algorithm forces 

EIC integration irrespective of absence / presence of a chromatographic peak. The reported height is 

the difference between the data points of highest and lowest intensity within the considered summation 

window. In cases where no peak is present, the calculated fold change is to be seen as a signal-to-noise 

ratio. This strategy allows a more reliable classification of detected peaks without skewing the data by 

arbitrary assumptions concerning signals below the intensity threshold. The Summation algorithm was 

implemented for two different reasons: 

(i) using a second algorithm for post-acquisition EIC filtering provides more valuable filtering criteria 

(ii) the recursive approach is a main advantage in comparative data processing which allows a more 

reliable signal classification based on fold changes 

The same recursive approach was applied for a less error prone blank correction. The blanks were not 

subjected to the EIC filtering but rather compared to signals which met the derived filtering criteria. 

Features were rejected if neither the influent nor the effluent satisfied the fc criteria relative to the 

blank. 

For the evaluation of the repeatability, the stability of co-injected isotope-labeled standards (IS) was 

reviewed across the measured batch. The relative standard deviations calculated for the peak heights 

were always below 10% indicating sufficient system stability. Furthermore, the pairwise comparison 

of triplicates from the influent and effluent sample resulted in IS fold changes ranging between 0.88 

and 1.17 which clearly fell within the interval of the category consistency (0.5 ≤ fc ≤ 2.0). Thus, all IS 
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would always be assigned to C (without blank correction). It was therefore assumed that sensitivity 

changes or matrix effects - in this case - had negligible influence on the feature classification. 

The combinatorial approach was conducted for the plausibility checks (within samples comparisons) 

as well as for the real treatment process (between sample comparisons). For each single comparison 

(e.g. replicate #1 #2 #3 vs. #4 #5 #6), the number of features assigned to the five groups (E, D, C, I 

and F) were reported. This combinatorial approach and the obtained results are schematically 

illustrated in Figure 2. 

 

 

Figure 2. Combinatorial approach and results o f the repeatability experiments , IN: influent sample of 

treatment process, OUT: effluent sample of treatment process, n: number of analyzed replicates, k:  

number of replicates used for data processing (here: n = 9, k = 3), E: elimination, D: decrease, C: 

consistency, I: increase, F: formation, features which were unambiguously (i.e. in all possible 

comparisons) assigned to one category are indicated by the green diamonds  
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However, in addition to the mere numbers, each individual feature was considered separately as the 

sums of all features assigned to a certain category could be repeatable while the individual 

compositions of the sums were not. Thus, it was also reported how often (i.e. in how many of the 

comparisons) a particular feature was assigned to one group. After applying the combinatorial 

approach, features which were ambiguously assigned to multiple categories were reviewed. The 

manual inspection of these problem candidates revealed three main reasons: 

(1) signals were in vicinity of the intensity threshold or the blank threshold. With some signals slightly 

above / below these thresholds, the features were sometimes rejected during EIC filtering while other 

combinations of replicates passed the filters. 

To overcome these problems, the data were reprocessed using less stringent criteria for the minimum 

value of peak area and height as well as for the blank correction which were applied to all signals 

detected during the first processing.  

(2) the calculated fold change was close to the edge of the interval used for categorization. Across all 

combinations, some were slightly above / below this limit resulting in ambiguous assignment into two 

adjacent categories (e.g. elimination / decrease).  

To bypass this problem, the algorithm was adapted to handle such cases. If the number of all possible 

comparisons was reached by counting two adjacent categories, the feature was unambiguously 

assigned to the category comprising the larger number of comparisons.  

(3) real peaks showed implausible signal courses across the batch (strong fluctuations, trends). These 

features reflect real differences within the replicates of the same sample (unexplained circumstances) 

and are not subjected to data processing. A reasonable correction of this group is not possible. 

The reprocessing of the data with the conducted changes mentioned in (1) and (2) resulted in a 

significant decrease in the number of features that were ambiguously assigned to multiple categories. 

These findings show that many problem candidates were merely caused by the rigid thresholds. The 

problem cases described in (3), however, are not correctable since these signals expose real differences 

between technical replicates. 

As has been expected, the conducted plausibility checks indicate that differences between the technical 

replicates hardly exist. Almost all features were assigned to the category consistency while just few 

outliers were assigned to the remaining groups. The good repeatability of the sums of features 

assigned to the respective classes is indicated by the small variations of the assigned feature numbers. 

However, a certain offset between the number of features always assigned to consistency and the 

distributions of the sums of features assigned to this category exist. The majority of these differences 

were caused by implausible signal courses - see (3) - or interfering peaks. 

Considering the real process (ozonation of pretreated river water), strong changes between the influent 

and effluent samples became apparent. Contrary to the plausibility checks, most features were 

assigned to the group elimination or decrease. The variation of the numbers of features assigned to the 

five categories throughout the different comparisons revealed low fluctuation and thus points to 
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sufficient repeatability. Again, an offset between the number of features always assigned to a certain 

category and the actual distributions was recognized for the same reasons as stated above. The 

treatment efficiency of the ozonation process is indicated by the large proportion of features assigned 

to the categories elimination and decrease. Considering the median values of the respective 

distributions across all conducted comparisons, 55% of all signals were assigned to elimination, 26% 

to decrease, 9% to consistency, 5% to increase and 5% to formation. More features were expected to 

be assigned to formation as the ozonation process is known for the generation of transformation 

products.73-76 Even though the entire window of detectable substances is strongly enhanced by non-

target screening, there are still components which cannot be captured by this method.77 Each single 

step, i.e. separation, ionization, detection, as well as data processing, requires certain criteria which 

narrow down the diversity of substances being considered. 

 

The application of the developed strategies to real world applications is summarized in a book 

chapter.50 Different strategies for the prioritization (i.e. temporal, spatial and process related ones) 

were presented. Case study 1 exemplifies the spill detection in river water using non-target screening. 

The beta blocker Acebutolol was successfully identified and quantified (semi-quantitatively) in the 

river water. In the next step, multivariate statistics were used to search for similar time profiles which 

may be in conjunction with the detected spill event. After applying PCA-DA, the time profile of 

feature 557.255/6.6 (accurate mass / retention time) was found to have high similarities with 

Acebutolol. Despite further efforts in terms of identification, the feature remained a level 5 

candidate.67 This example shows the difficulties in identification if no information is available in 

public databases. In many cases, further analytical techniques (e.g. nuclear magnetic resonance) are 

required to fully elucidate the chemical structure.78,79 

The use of non-target screening as a forensic tool in water analysis is shown in case study 2. The 

anthropogenic contamination of a groundwater well was recognized by target analysis (data not 

shown). Besides two municipal WWTPs, also an industrial WWTP is located near the groundwater 

well. It has been suggested that the industrial WWTP might (also) be responsible for the 

contamination, however, no source specific contaminations were found so far. The aim of this study 

was to find groundwater contaminants which can exclusively be attributed to the industrial WWTP. 

After data processing, including all filtering steps, between 1 400 and 2 400 features remained in the 

different peak tables. Based on the analytical request, logical connections were applied between the 

five different samples. The complete list of thousands of features could be reduced to 54 candidates 

that might help answering the initial question. Further prioritization was accomplished by in-silico 

fragmentation of possible structures linked to the accurate feature masses. Seven candidates were 

ranked with high scores and therefore considered in more details. The component Triphenylphosphine 

oxide (TPPO)80 was successfully identified as a level 1 candidate. Further compounds related to TPPO 

were identified as level 2a and 2b candidates.67 The contamination with TPPO is much likely related to 
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the Wittig reaction where it is formed as a byproduct.11,81 The determined TPPO concentrations in the 

groundwater well were higher than 5 µg L-1 and thus clearly above the health orientation values of  

0.1 µg L-1.71,72 These findings clearly indicate the industrial influence on the regarded groundwater 

well and thus answer the initial question. Further measures were initiated to reduce the TPPO 

discharge from the industrial WWTP. 

Case study 3 was aimed at assessing the purification efficiency of the fourth treatment step of a 

WWTP in comparison to the conventional wastewater treatment. Based on the changes throughout the 

treatment, the signals were classified to different classes which allowed a comparison of the two 

treatment options. The higher purification performance using the GAC filtration was already evident if 

comparing the effluents of both treatment options. The fourth treatment step showed a reduction of 

more than 14% in terms of the feature numbers. The number of features assigned to the category 

elimination was 42% higher for the GAC filtration. Considering the group formation, 15% more 

features were formed in the conventional treatment. Features detected in both the influent and effluent 

sample were classified based on the relative changes in peak height. The proportion of features 

eliminated by at least 60% was three times higher for the GAC treatment. In the conventional 

treatment, 75% more features were subjected to increasing intensities. 

This simple comparison of the influent and effluent samples clearly indicated a lower rate of newly 

formed features and at the same time a higher elimination for features undergoing the additional GAC 

filtering step. A closer look at the features occurring in both the influent and effluent samples revealed 

higher numbers of features with decreasing signal intensities in the GAC filter compared to the 

conventional treatment. As was to be expected, the benefit of this additional adsorption step (GAC 

filter) is clearly evident. With regard to organic trace substances, the implementation of such an 

additional filtering step in wastewater treatment is to be recommended.  
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5 CONCLUSION AND FUTURE NEEDS 

In this thesis, LC-HRMS data processing strategies for the assessment of water treatment processes 

were developed. Improvement of the data quality, i.e. minimizing of false positive and false negative 

findings, was a key point. On this basis, sophisticated workflows for the reliable sample comparison 

were developed and validated using novel concepts. 

It was found that triplicate analysis and the post-acquisition filtering of extracted ion chromatograms 

significantly improved both the repeatability and the data quality. These findings suggest that 

problems were primarily caused by insufficient processing rather than by measurement problems. It 

was further found that the peak finding is the limiting step of the entire workflow. The following 

improvements are therefore suggested: (i) combining different peak finding algorithms to pool their 

individual strengths and thus increase the feature coverage (ii) replace the fixed intensity threshold by 

a signal-to-noise based peak recognition. 

For the assessment of water treatment processes, the reliability of the data needs to be high to avoid 

skewing of results. The recursive peak integration was found to be a major improvement for the 

reliable fold change categorization of the signals. The use of internal standards is strongly 

recommended to estimate the influence of matrix effects, which have to be seen with particular 

caution. The strength of the entire LC-HRMS processing strategy is indicated by the good 

repeatability of the signal classification. The plausibility checks considered during data processing 

fulfilled the expectations and emphasized the reliability of the results. Further efforts need to be 

conducted to reduce implausible signal courses and redundancies in data interpretation. In the 

presented workflow(s), the componentization is conducted after peak alignment and hence requires 

much higher retention time and mass tolerances. It is therefore recommended to perform this grouping 

step before peak alignment as smaller tolerances would decrease the number of false positive linkages. 

The assignment of in-source fragmentation is another point which requires further research needs. 

Considering the MS² information (DDA or DIA, e.g. SwathTM), potential in-source fragments could be 

linked to parent compounds. Despite these restrictions, non-target screening using LC-HRMS is a very 

powerful tool for the assessment of water treatment processes. The much broader view will help to 

reduce existing knowledge gaps and to identify new components of interest. 

The real world applications underline the general applicability of non-target screening in combination 

with sophisticated workflows and prioritization concepts. The identification of unknown or 

unexpected chemicals represents the bottleneck of non-target screening workflows and emphasizes 

further research needs. 

The LC-HRMS opens up a new dimension for monitoring the fate of organic contaminants in the 

aquatic environment and also during treatment processes. The application of the presented concepts is 

not limited to treatment processes. The processing strategies and the combinatorial validation concept 

may be transferred to other research fields where sample comparisons are conducted.  
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h i g h l i g h t s g r a p h i c a l a b s t r a c t

� Combinatorial approach for valida-

tion of the data evaluation in non-

target screening.

� Replicates decrease false negative

and false positive findings.

� Signal fluctuations emerged as

powerful filter criteria.

� Data processing increases

repeatability.

� Screening method and data evalua-

tion in general applicable at trace

levels.
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a b s t r a c t

This article focuses on the data evaluation of non-target high-resolution LC-MS profiles of water samples.

Taking into account multiple technical replicates, the difficulties in peak recognition and the related

problems of false positive and false negative findings are systematically demonstrated. On the basis of a

combinatorial approach, different models involving sophisticated workflows are evaluated, particularly

with regard to the repeatability. In addition, the improvement resulting from data processing was sys-

tematically taken into consideration where the recovery of spiked standards emphasized that real peaks

of interest were barely or not removed by the derived filter criteria. The comprehensive evaluation

included different matrix types spiked with up to 263 analytical standards which were analyzed

repeatedly leading to a total number of more than 250 injections that were incorporated in the

assessment of different models of data processing. It was found that the analysis of multiple replicates is

the key factor as, on the one hand, it provides the option of integrating valuable filters in order to

minimize the false positive rate and, on the other hand, allows correcting partially false negative findings

occurring during the peak recognition. The developed processing strategies including replicates clearly

point to an enhanced data quality since both the repeatability as well as the peak recognition could be

considerably improved. As proof of concept, four different matrix types, including a wastewater treat-

ment plant (WWTP) effluent, were spiked with 130 isotopically labeled standards at different concen-

tration levels. Despite the stringent filter criteria, at 100 ng L�1 recovery rates of up to 93% were reached

Abbreviations: A, peak area; C, number of combinations; Cmax, maximum achievable number of combinations; cps, counts per second; CV, coefficient of variation; DDA,

data-dependent acquisition; FWHM, full width at half maximum; H, peak height; HRMS, high-resolution mass spectrometry; I, mean improvement factor; k, number of

samples taken from n to form a subsample; n, number of technical replicates; N, number of variables, i.e. features or standards; R, retention time; RKI, river kilometer index; r,

number of remaining replicates; RR, rate of recognition; RR, mean rate of recognition; u, number of different injection levels; V, injection volume; W, peak width.
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in the positive ionization mode. The proposed model, comprising three technical replicates, filters less

than 5% and 2% of the standards recognized at 100 and 500 ng L�1, respectively and thus indicates the

general applicability of the presented strategies.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Recent developments in high-resolution mass spectrometry

coupled to liquid chromatography (LC-HRMS) have initiated new

possibilities for the analysis of micropollutants without having any

a priori information available [1]. Modern HRMS instruments pro-

vide accurate mass data while combining sufficient selectivity and

sensitivity, which allows the determination of trace substances in

complex environmental matrices [2e5]. LC-HRMS has emerged as a

powerful tool as it enables the detection of thousands of com-

pounds within a single run and does not require a reference stan-

dard during the method set-up [1,6] as it is usual for triple

quadrupole instruments. In contrast, conventional targeted

analytical methods only allow to monitor a tiny fraction of known

contaminants per run and therefore miss unknowns, such as

transformation products and chemicals which were initially not

anticipated regardless of how high their concentrations might be

[7]. While the untargeted data acquisition offers a variety of ad-

vantages, sophisticated processing strategies are needed to handle

the wealth of data and to extract the significant information. In the

first step of most untargeted workflows, peak finding algorithms

are used to extract peaks (features) from the existing data set [8,9].

Throughout a large number of studies, it became evident that the

peak finding step, independently of the software used, reveals type

I (false positive) and type II (false negative) errors. The intensity

threshold to differentiate noise from real peaks is one of the most

important parameters in non-target screening. Setting a low in-

tensity threshold favors type I errors whereas higher thresholds

will cause real peaks of interest to be missed. Many authors found

that false positives, i.e. noise or matrix background recorded as

peaks, as well as false negatives, i.e. true peaks which were not

recognized, represent the main challenge especially if dealing with

low abundant signals [6,10,11]. Consequently, different strategies

have been developed in order to distinguish real peaks from noise

signals while still keeping a chosen set of known peaks, i.e. spiked

standards [7,12e15]. Many approaches attempt to emphasize the

temporal, spatial or process-based variances among different

samples [16,17] usingmultivariate statistics. This, however, requires

that the variance is attributed to true differences between the

samples [14]. Problems in peak recognition between different

samples appear largely random and therefore hamper the eluci-

dation of discriminating features as real differences are super-

imposed by apparent ones created during the peak finding.

The objective of this study was to illustrate the problematics of

false positive and false negative findings on the basis of a system-

atic evaluation of multiple technical replicates of different matrix

types. The improvement in feature detection by comparative

evaluation of different processing strategies involving various

models is shown. The features' frequency of recognition was

therefore adopted as a measure for the repeatability of the method,

which was determined using a combinatorial approach that is

exemplified in the supplementary video. Starting with very poor

repeatability, pointing to the above mentioned problems of type I

and type II errors, the rate of recognition is successfully increased

by applying different models and the involved filter criteria.

Moreover, the question of how many replicates are needed to

provide a representative result will be discussed.

Supplementary video related to this article can be found at

http://dx.doi.org/10.1016/j.aca.2016.06.030.

2. Materials and methods

2.1. Chemicals

The standard substances combined in the stock solutions

(supplemental table S1 and S2) were purchased from various

suppliers (supplemental table S3) Isotopically labeled standards

(supplemental table S4) were provided by the Swiss Federal Insti-

tute for Aquatic Science and Technology (Dübendorf, Switzerland)

as a multi-component standard. Water (Rotisolv® Ultra LC-MS),

acetonitrile (Rotisolv® � 99.95%, LC-MS-Grade) and methanol

(Rotisolv® � 99.95%, LC-MS-Grade) were purchased from Carl Roth

(Karlsruhe, Germany) while formic acid (for mass spectrom-

etry ~ 98%) was supplied by Sigma-Aldrich (Steinheim am Albuch,

Germany). For mass calibration, the APCI positive and negative

calibration solutions were delivered by Sciex (Framingham, USA).

2.2. Sample preparation

Except spiking the samples with different stock solutions, in

general, no prior sample preparation was performed to avoid

discriminating against certain substances. In non-target analysis,

we believe this to be very important even though the analytical

method might suffer from the lack of pretreatment. Samples that

obviously contained suspended matter were centrifuged for

5 min at 5000 rpm before the analyses.

2.2.1. Stock solutions

An exact amount of each pure substance was dissolved in

methanol, stored at �18 �C and, shortly before the analyses, multi

component standards were produced by diluting numerous stan-

dard solutions to the required concentration. Based on this proce-

dure, stock solution I (supplemental table S1) covering 32

pharmaceutical drugs as well as stock solution II (supplemental

table S2) comprising 263 various substances from different clas-

ses (e.g. pesticides, biocides, industrial chemicals and corrosion

inhibitors) were produced. Stock solution III (supplemental table

S4) containing 130 isotopically labeled substances was received

fully prepared and thus only had to be diluted to the desired con-

centration. Note that reference substances were selected to be

compatible with the method applied whereas special attentionwas

given to adequately cover a relevant polarity range (logP z �1 to

5).

2.2.2. Samples for the comprehensive evaluation

Sample - A - Stock solution II was prepared and diluted with

ultrapure water to a final concentration of 500 ng L�1; Sample - B -

Stock solution I was prepared and diluted with ultrapure water to a

final concentration of 1000 ng L�1; Sample - C - River water sample

which was collected from the Danube River at RKI 2568 (24 h

composite sample, DOC z 2.7 mg L�1) spiked with stock solution I

to reach a final concentration of 100 ng L�1; Sample - D - Stagnant

T. Bader et al. / Analytica Chimica Acta 935 (2016) 173e186174



tap water (DOC z 2.7 mg L�1) collected from a plastic pipe after

incubation for 96 h at 40 �C and spiked with stock solution I to

obtain a concentration level of 100 ng L�1.

2.2.3. Samples for the final confirmation

A total number of 130 isotopically labeled standards

(supplemental table S4) were spiked to four different sample

matrices - ultrapure water -E-, groundwater -F-, river water -G- and

pretreated wastewater -H-. The ultrapure water was produced by

Milli-Q® Advantage A10® system (Merck, Darmstadt, Germany), the

groundwater was directly taken from a local well (DOC z

2.0 mg L�1) while the river water sample consisted of a 24 h

composite sample which was collected from the Danube River at

RKI 2568 (DOCz 2.5 mg L�1). The most complex matrix represents

a 24 h composite sample taken after the secondary clarifier of a

conventional wastewater treatment plant (725,000 population

equivalent, incl. 400,000 from industry, 60,000 m3 d�1 (during

sampling), DOC z 9.5 mg L�1). In this particular case, the sample

was filtered using a 0.45 mm pore size membrane filter. All four

matrices were spiked with isotopically labeled standards at the

three concentration levels 25, 100 and 500 ng L�1 to cover a rele-

vant magnitude including the 100 ng L�1 limit for pesticides ac-

cording to Council Directive 98/83/EC. Furthermore, the German

Federal Environment Agency suggests a health orientation value

“for substances that cannot (or can only partially) be toxicologically

assessed […]” of 100 ng L�1 [18,19].

To avoid extensive dilution effects, 950 mL of each sample were

spiked with 50 mL of stock solution III leading to a dilution of 5% for

all matrices. The concentration of the stock solution was varied to

reach the desired sample concentration by always adding the same

volume.

2.3. LC-MS sample acquisition

All samples were analyzed with a HPLC system (LC20 series

Shimadzu, Kyoto, Japan) coupled to the Q-TOF/MS System Triple-

TOF™ 5600 (Sciex, Framingham, USA) equipped with a DuoSpray™

Ion Source. Ions were generated by electrospray ionization in pos-

itive and negative ionization mode (ESIþ/ESI-) in separate runs and

monitored within a mass range of m/z 100 to 1200. For data-

dependent acquisition (DDA), a 250 ms survey scan was acquired

followed by a maximum number of 12 individual MS2 experiments

(descending intensity order) covering a mass range of 30e1200 m/

z. Precursor ions exceeding a threshold of 100 counts per second

(cps) that did not appear on a previously generated exclusion list

were automatically selected for MS2. Ions as well as their isotopes

were excluded from DDA for a period of 20 s after eight occur-

rences. The fragmentation was accomplished with a collision en-

ergy ramped from 25 to 55 eV within an accumulation time of

64 ms adding to a maximum cycle time of about 1.1 s. The calibrant

delivery system enables mass recalibration after every fifth run by

infusion of so-called APCI positive (or negative) calibration solu-

tion. The column used for the separation was a Zorbax Eclipse Plus

C18 (2.1 � 150 mm, 3.5 mm, Agilent, Santa Clara, USA) connected to

the precolumn Security Guard AQ C18 (4 � 2 mm, Phenomenex,

Aschaffenburg, Germany) which were maintained at a temperature

of 40 �C. The flow rate was kept at 0.3 mL min�1 with eluents

consisting of water (A) and acetonitrile (B) containing 0.1% (v/v)

formic acid, respectively. A multi-step gradient with the following

parameters was applied: 0 min (2% B), 1 min (2% B), 2 min (20% B),

16.5 min (100% B), 27 min (100% B), 27.1 min (2% B), 37 min (2% B).

To ensure a sufficient number of data points over a chromato-

graphic peak, a normal HPLC was preferred as UPLC sacrifices peak

width with the consequence that the number of DDA experiments

would have to be reduced. For peaks with very low retention

factors, a different chromatographic technique would yield better

results. This has, however, not been investigated in this study. The

blank value was generated by a zero-injection to cover the system

blank value. After averaging all spectra over the complete chro-

matographic run of the system blank, ions exceeding an intensity

threshold of 50 cps were set on an exclusion list to avoid continuous

fragmentation of system contaminations throughout the DDA ex-

periments. Note that irrespective of the ionization mode, formic

acid was used as eluent additive to ensure equal retention times

which is indispensable for a direct comparison between both

modes even though the loss of sensitivity in negative mode has to

be accepted.

2.4. Software tools

The instrument control software Analyst® TF (1.7) was used for

data acquisition based on the described LC-MSmethod parameters.

MarkerView™ (1.2.1) was utilized to perform peak finding as well

as alignment of multiple samples while the quantitation package

MultiQuant™ (3.0.2) was applied for subsequent peak integration.

All mentioned software tools are commercially available from Sciex

(Framingham, USA). Other evaluation steps comprising different

algorithms were performed with Matlab (R2015a, The MathWorks

Inc., Natick, USA).

3. Data processing

3.1. Workflow

In the following, the main steps of the data processing ap-

proaches are described. More details and exact parameter settings

can be taken from supplemental table S5. The entire strategy to

process the data sets presented in this paper is composed as

follows:

I. Peak finding

II. Peak alignment

III. Peak integration

IV. Filtering

i. Blank correction

ii. Absolute threshold

iii. Relative threshold

(I) In the first step, all features (peaks) within a predefined

retention time and mass (m/z) window exceeding a given

noise threshold were set on a peak list. The peak finding was

done by an algorithm called Enhance [20]. The considered

time window is limited by the chromatographic restrictions

(e.g. dead time) and the noise threshold was taken from

some different spectra throughout the chromatographic run

in away that it was set slightly higher than the noise [20]. For

samples analyzed in this study, a noise threshold of 100 cps

was generously determined.

(II) After non-target peak finding, the detected peaks repre-

senting the same features from different samples were

merged - based on retention time and mass tolerances - in

the peak alignment whereas no retention time or mass

correction has been implemented.

(III) Subsequent peak integration was performed to preserve

more peak characteristics such as peak area, peak height and

peak width. Software tools well known from target analysis

were implemented to integrate all peaks from the raw data

that were originally picked by the peak finding algorithm.

(IV) The previous step, however, requires further filter criteria to

eliminate false positive findings that were, inter alia, created

by the subsequent integration. It should be mentioned that a

T. Bader et al. / Analytica Chimica Acta 935 (2016) 173e186 175



non-negligible number of false positives is already produced

by the peak finding algorithm which further emphasizes the

importance of these measures.

(i.) All features whose peak area and peak height did not

substantially differ from the blank's ones were elimi-

nated. The blank - in this study - was stipulated to be a

system blank value created by zero-injection. In reality

and based on the analytical request, a more convenient

choice may considerably simplify the non-target

procedure.

(ii.) Furthermore, additional filter criteria which include

minimum peak area (A), minimum peak height (H),

retention time range (R), range of the full width at half

maximum (W) as well as the ratio of peak area and peak

height (A/H) were defined on the basis of standard

substances (see supplemental table S5). We further as-

sume that unknown compounds, which are ascertain-

able by the applied method, show similar behavior.

These criteria are referred to as absolute threshold since

one single injection is sufficient to apply these filters.

Features that did not meet the criteria of these absolute

thresholds were not taken into account.

(iii.) Finally, the relative thresholds were applied to also

consider the variations of the peak characteristics. For

instance, the peak areas of real features in several

technical replicates are subjected to statistical varia-

tions which are not likely to exceed a certain value

(device-dependent) while, on the other hand, false

positive features which are predominantly created by

matrix or noise signals show substantially higher fluc-

tuations. In contrast to real peaks, this circumstance is

almost exclusively attributable to unrepeatable inte-

gration limits detected for such signals. To also address

this issue, several models covering these relative

thresholds were evaluated and compared to each other.

Note that the single steps were fully automated whereas the

complete workflow could be automated as well.

3.2. System stability

It has to be ensured that the system - comprising LC separation

as well as MS detection - permits the comparison over n injections

without discriminating against single ones. Problems such as col-

umn bleed, carryover, major system fluctuations or loss of sensi-

tivity over time (trend among consecutive injections) would

considerably impair this approach. In this study, a number of n¼ 21

technical replicates have been chosen in order to regard features

right down to a recognition rate of less than 5%. One of the models

requires three different injection volumes (here: 50, 75 and 100 mL)

leading to a total number of n ¼ 63 injections. Therefore, the sta-

bility over 63 injections was proven based on 263 standards

(supplemental table S2) at a concentration of 500 ng L�1. This

relatively high concentration level was chosen to cover as many

substances as possible - even low-response candidates such as

parathion-methyl. Splitting the data set according to the three

different injection volumes, it could be shown that more than 95%

of the standards reveal coefficients of variation (CV) of less than 10%

at each of the three injection levels (supplemental figure S1). Even

if regarding all 63 injections chronologically (almost 40 h total

analysis time) in away that the sums of the relative peak areas were

considered, the deviations with respect to the expected value of

N ¼ 263 were always less than 3.5% (supplemental figure S1). The

same data set of 63 injections was processed with a non-target

approach leading to a total number of N ¼ 7337 features. To

check whether or to what extent a trend is to be noticed, the trend

test according to von Neumann [21] was performed. For this pur-

pose, the data set of 63 injections was divided according to the

injection volume resulting in three sub data sets which were

regarded for the trend test. Starting with four replicates, which is

the minimum sample size to be compared to the test value, the

number of considered injections was successively increased until

all n¼ 21 replicates were included. For all three injection levels, the

maximum proportion of features showing a trend, hence possess-

ing a test value higher than the critical limit (for p ¼ 99%) according

to von Neumann, was less than 10%. Moreover, a further data set

comprising 63 zero-injections (system-blank) was consecutively

analyzed which allows to perform the trend test over all n ¼ 63

replicates. Again, starting with four replicates, the critical limit for

all N ¼ 2295 features was successively calculated and compared to

the tabulated values, until all 63 injections were included in the

sample. The maximum number of features revealing a statistically

significant trend for p ¼ 99% was less than 6.5% (supplemental

figure S2). These findings indicate sufficient system stability with

only low susceptibility to the above mentioned problems which

allows the evaluation of different models on the basis of the

repeatability.

3.3. Processing models

The five different data processing models (a) - (e) used for the

comparative evaluation are introduced in more detail. To evaluate

the repeatability, a combinatorial approachwas used to compare all

theoretically possible combinations of a given set of technical

replicates. The general formula to calculate the total number of

combinations Cmax for all models used in this study was derived to

be:

Cmax ¼

�

n
k

�u

with n � k; u � 1 and n; k;u2ℕ (1)

The total number of combinations Cmax is dependent on the

number of technical replicates n, the number of samples k which

are chosen from the set of replicates and the number of different

injection volume levels u (e.g. 50, 75 or 100 mL). This procedure is

the analog to the well-known urn problem where n is the number

of balls, k the number of draws and u the number of urns. The

models and the respective combinatorics are schematically shown

in Fig. 1.

The different characteristics of the models used for the evalua-

tion are summarized in Table 1. Single injections (a), duplicates (b),

triplicates (c), quadruplicates (d) and triplicates at three different

injection levels (e) were considered during the data evaluation. The

fact that just one single replicate is used implies that model (a) does

not consider any relative threshold criteria and hence the variation

of the peak characteristics remain disregarded (workflow without

IV. iii.). For the remaining models, all possible quotients of the

respective parameters (A, H, R, W and A/H) are calculated between

all considered replicates (e.g. for model (c): #1/#2, #1/#3 and #2/

#3). Features with just one quotient out of range were neglected.

The evaluation workflow for model (b) is illustrated in an

animation.

For model (e) one replicate (k ¼ 1) at each injection level (u ¼ 3)

is picked to assemble the subsample. In this case, the three quo-

tients are only calculated for parameters affected by the concen-

tration (hence, the injection volume) which are the peak area A and

the peak height H. In contrast to the other models, the ratios were

calculated by dividing the parameter (A and H) that are multiplied

with the reciprocal volumes leading to the equation (2):
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Qn;k ¼
Xn Vk

Xk Vn
(2)

while Xi either represents the peak area (A) or the peak height (H)

and Vi the injection volume at the respective level. The threshold

values for each Qn,k were derived by assuming that the maximum

deviation of the (n � 1)-th level must not exceed the minimum

deviation of the n-th level. Thus, for each of the three quotients

extreme values were computed and features that did not meet

those criteria excluded from further steps. It should be noted that

the number of replicates n in this particular case represents three

individual injections with different injection volumes (u ¼ 3)

adding to a total number of n$u ¼ 63 runs.

For each single combination of various replicates, the complete

workflow (blank subtraction, absolute and relative thresholding)

was performed using Matlab.

Converting the number of combinations (C) to the number of

remaining replicates (r)

Due to the fact that eachmodel follows another combinatorics, a

direct comparison of the combinations among the several models is

not possible. In contrast to the number of combinations (which

differ between the models, see Table 1) the number of replicates is

common to all which is why the comparison has to be conducted at

this level. However, in reality some features do only partly fulfill the

different threshold criteria, leading to combination values C which

are smaller than Cmax. Consequently, the number of all replicates (n)

is reduced to the number of the remaining replicates r ¼ n � xwith

x being the number of replicates for which the feature did not pass

the thresholds. From the combinatorial perspective, a function

f(r) ¼ C can be derived for model (a) to (d) which maps each

number of remaining injections (r) to the corresponding combi-

nation value (C). The inverse function f�1(C) ¼ r, on the other hand,

allows to map each combination value to the number of remaining

replicates. For Model (b), the animation exemplifies the complete

processing including this conversion step which is explained in

more detail in the supplemental explanation S1. Model (e), how-

ever, demonstrates a special case as, depending on the distribution

of the replicates that do not pass the thresholds to the three in-

jection levels, multiple numbers of combinations are obtained for

the same number of remaining replicates (r). This circumstance is

discussed extensively in the supplemental material (explanation

S1). Nevertheless, to enable the comparison to other models, in

this particular case, the best- and worst-case scenarios for the

remaining number of injections were calculated and taken into

consideration.

3.4. Characteristics derived for the comprehensive evaluation

Compared to target analysis, the general problem in the non-

target approach is that we do not know the ground truth about

how many signals (at which m/z and retention time) are to be ex-

pected. The lack of an appropriate point of reference which should

be achieved makes it difficult to assess common validation char-

acteristics. For instance, based on a non-target approach it is not

possible to conventionally report the false negative rate while

extensive effort would have to be invested to manually search for

false positives. Instead, the strengths and weaknesses of different

processing strategies were evaluated by comparing the repeat-

ability over n technical replicates. To assure that features of interest

were not removed by the defined filtering criteria, a chosen set of

substances was spiked to the samples examined in this work. It

should thus be possible to at least partly evaluate the false negative

rate based on some target compounds. Later, the evaluation of

partially false negative findings using various technical replicates

Fig. 1. Exemplary illustration of the models used in this study; n ¼ number of technical

replicates; (a) single injection (k ¼ 1), (b) duplicates (k ¼ 2), (c) replicate triplicates

(k ¼ 3), (d) replicate quadruplicates (k ¼ 4) and (e) replicates are chosen from three

different injection volumes (u ¼ 3, k ¼ 1); Note: for model (e), the total number of

injections equals n$u.

Table 1

Summary of the different processing models used for comparative evaluation.

Processing models

(a) (b) (c) (d) (e)

Number of considered replicates (k) 1 2 3 4 1

Number of different injection levels (u) 1 1 1 1 3

Injection volumes [mL] 100 100 100 100 50, 75, 100

Blank correction ✓ ✓ ✓ ✓ ✓

Absolute thresholding ✓ ✓ ✓ ✓ ✓

Relative thresholding 7 ✓ ✓ ✓ ✓

Number of quotients for relative thresholding 7 1 3 6 3

Cmax (for n ¼ 21) 21 210 1330 5989 9261
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will be introduced. Note that deisotoping and adduct assignment

was not performed in any of the presented workflows, as these

signals also contribute to the repeatability. Furthermore, the pro-

cessed data were compared against the raw data to ascertain

whether and to what extent improvement of the data quality

appears.

Prior to the comparative evaluation, meaningful characteristics

were defined which allow assessing the data on the basis of few

parameters. The mean rate of recognition as well as the mean

improvement factor proved to be informative values to characterize

the different models of data processing. The derivation of these two

values is explained below.

3.4.1. Repeatability, mean rate of recognition ðRRÞ

In order to evaluate the repeatability, the rate of recognition

(RR), which describes how often one particular feature occurs over

n replicates was defined. After peak alignment, the data are ar-

ranged in a matrix containing m features (rows) and n samples

(columns) while the elements Ai,j represent the respective

response.

D ¼

0

B

B

B

B

@

A1;1 / A1;j / A1;n

« « «

Ai;1 / Ai;j / Ai;n

« « «

Am;1 / Am;j / Am;n

1

C

C

C

C

A

(3)

To assess the feature distribution over n technical replicates, the

rate of recognition (RRi) was calculated for each feature. In a first

step, all Ai,j that did not exceed predefined thresholds were set to

zero. The general formula can therefore be written:

RRi ¼
1

n

X

n

j¼1

sgn
�

Ai;j

�

(4)

Applied to all features, a mean rate of recognition (RR) is

derived:

RR ¼
1

m� z

X

m

i¼1

RRi ¼
1

ðm� zÞ$n

X

m

i¼1

X

n

j¼1

sgn
�

Ai;j

�

(5)

where z represents the number of lines i that only contain zeros

(which may appear if certain filter criteria are applied). To enhance

the comparability between different data sets, the feature distri-

butions are shown as cumulative stairstep graphs.

Ideally, each individual feature would exactly occur n times

(RR ¼ 1), however, this circumstance might significantly differ due

to various difficulties in peak recognition and/or in measurement.

One of the most important parameter affecting the RR is the in-

tensity threshold to distinguish between noise and real peaks.

Setting a low intensity threshold decreases the repeatability as

many noise signals are recognized as peaks (false positives),

whereas using a high intensity threshold produces better repeat-

ability, however, real peaks of interest might be missed (false

negatives). A typical feature distribution over 21 consecutive in-

jections of a water sample is illustrated in Fig. 2 where four

different intensity thresholds were used to process the same data

set. Note that in order to demonstrate the difficulties, only the first

two steps of the entire workflow were performed. The distribution

processed with an intensity threshold of 100 cps clearly reveals the

deviation from the ideal. On the other hand, the gain in repeat-

ability using higher thresholds can clearly be recognized.

This relationship clearly demonstrates the substantial influence

of this parameter on the feature distribution. However, even

though the RR significantly increases (Table 2), the total number of

recognized peaks, on the other hand, is considerably reduced and

might cause the loss of less abundant species.

It seems obvious that this contrary behavior requires a

compromise between the repeatability and the total number of

features recognized. However, the authors believe that the lack of

repeatability e especially for low intensity thresholds e might be

bypassed by improving the data processing methods after the

original peak finding (workflow step III and IV).

3.4.2. Mean improvement factor ðIÞ

Aside from the mean rate of recognitionwhich characterizes the

feature distribution, the general improvement with respect to the

raw data should also be taken into consideration. In order to

accomplish this, the occurrence of the features in n replicates was

regarded before and after data processing. To calculate the mean

improvement factor (I), for each single feature the D recognition

value (¼ times recognized after processing - before processing) was

formed and sorted in descending order (Fig. 3).

Data points above the zero line (Fig. 3 (b), dashed line)

demonstrate features with increasing recognitions throughout the

processing whereas the ones beneath indicate deterioration. Data

points lying on the zero line itself are not subjected to any changes

which predominantly consist of features occurring in all replicates

before as well as after the processing. Instead of regarding the mere

number of features showing improvement or deterioration, the

extent of the changes should be associated as well.

To include this fact, the areas under the curve reveal the number

weighted by the extent of improvement or deterioration (Area(þ)

for improvement, Area(�) for deterioration). The mean improve-

ment factor comprises as follows:

I ¼
jAreað þ Þj � jAreað � Þj

jAreað þ Þj þ jAreað � Þj
(6)

Features contributing to Area(þ), hence peaks which were more

frequently recognized after processing represent partially false

negative findings since the peak finding algorithm at least once

missed a real peak. This offers the opportunity to recognize false

negatives findings on the basis of non-target features as an inter-

esting alternative to the spiked compounds.

4. Results and discussion

4.1. Comprehensive evaluation

For the comprehensive evaluation of the models, four different

samples (-A- to -D-) were used (see chapter 2.2.2). To cover

different matrix compositions, river water and stagnated tap water

(plastic pipe) were chosen in addition to aqueous standard solu-

tions. Each sample was analyzed 21 times with three different in-

jection volumes (50, 75 and 100 mL) hence leading to 63 injections.

For models (a) - (d), only the 21 injections with an injection volume

of 100 mL were regarded whereas model (e) comprises all 63 in-

jections. After running through the models, the output represents a

list containing all features recognized by the algorithm as well as a

counting number within 0, i.e. feature rejected in each single cycle,

and the number of all theoretical combinations Cmax, i.e. feature

accepted in each single cycle, meaning that the peak characteristics

(A, H, W, R and A/H) as well as their relative fluctuations have ful-

filled all specified filter criteria. The integer counting number (C)

can be converted - as has been described - to the number of

remaining injections (r). Further evaluations and comparisons are

based on these converted numbers of remaining injections. Fea-

tures which represent spiked standards (m/z ± 10 ppm, RT ±

0.15 min) were extracted from the result matrix and considered
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separately. The number of spiked standards which are eliminated

by the threshold criteriawas expected to be very low as these filters

have been designed taking into account a large data set of known

standards (data not shown). These standards were selected to be

compatible with ESI as well as RPLC, particularly with regard to

cover awide range of polarity (logPz�1 to 5). Furthermore, the RR

of the spiked standards was estimated to almost reach 100%. In

addition to the numbers obtained by the models, the raw datawere

regarded as well, since features which were not even recognized

once do not contribute to the list used for processing for which

reason the number of features recognized in the raw data has to be

regarded as the maximum possible one. The same evaluations were

performed for all non-target features. The remaining number of

features and the corresponding RR were determined while the

comparison to the unprocessed raw data reveals the mean

improvement factor. The results of the entire evaluation are

tabulated in Table 3.

4.1.1. Discussion (comprehensive evaluation)

The overall recognition of the spiked standards turned out to be

very good since no more than two of the spiked standards were

missed by the peak finding algorithm. A closer look revealed that in

case of stock solution I, Etofibrate (sample -C- and -D-) and Iopa-

midol (sample -D-) were not recognized due to signal suppression

(matrix effects). Regarding stock solution II, Irgarol-descyclopropyl

(Metabolite M1) as well as Desethylterbutylazin were not recorded

even though clear signals were manually determined. The recog-

nition in both cases failed due to background subtraction which

was accomplished by regarding the MS spectra 10 scans before the

actual peak apex. However, on both ion traces, a structural isomer

(Desmetryn and Simazin, respectively) elutes about 10 scans before

the mentioned standards hence leading to elimination of the latter

Fig. 2. Feature distributions as histograms (a) and as cumulative stairstep plots (b) over n ¼ 21 technical replicates of a water sample processed with four different intensity

thresholds (100, 250, 500 and 1000 cps); only peak finding and peak alignment were performed.

Table 2

Influence of the intensity threshold on the total number of features detected and RR (n ¼ 21).

Intensity threshold [cps] Total number of features Mean rate of recognition ðRRÞ

100 11,450 0.467

250 5387 0.760

500 2733 0.882

1000 1501 0.952

Note: Only peak finding and peak alignment were performed.

Fig. 3. Comparison of features before and after processing.
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ones and, consequently, to false negative findings (see

supplemental figure S6).

As the data basis differs between models (a) - (d) (21 injections)

and model (e) (63 injections), different raw data must be taken as a

reference (see Table 3). Considering the different models, it is

conspicuous that almost all standards (>99.6%) were retained,

which underlines the general applicability of all presented models

and thresholds involved. Even for the more complex matrices in

case of sample -C- and -D-, concentrations of 100 ng L�1 were

sufficient to confirm all recorded standards by each model. In most

instances, the health orientation value of 100 ng L�1 as suggested

by the German Federal Environment Agency [18,19] is not impaired

by any of the filter criteria.

Moreover, the mean rate of recognition for the target com-

pounds shows that the appliedmodels have little or no effect on the

repeatability of the method. Also the RRs derived from the raw data

delivers outstandingly good values. The better-than-expected RRs

obtained for the raw data sets suggest that - in general and

particularly for real peaks with sufficient abundance - the peak

finding algorithm works consistently. These findings clearly

demonstrate that features of interest were barely or not removed

by the filters which suggest that the false negative rate, i.e. real

peaks which were eliminated by the filters, is not significantly

affected by the processing strategies.

While the RRs for target compounds were not showing any

weaknesses and thus no need of extensive processing strategies,

this circumstance differs significantly if regarding non-target fea-

tures where, on average, a deterioration of more than 39% (model

(a) - (d)) and more than 49% (model (e)) could be observed when

comparing the raw data sets (target vs. non-target compounds).

These data clearly point out the need for action if processing non-

target data at trace level. The effect of the derived filter criteria

on the total number of features is distinctly identifiable when

comparing the remaining numbers of features with the ones

tabulated for the associated raw data. Note that the numbers of

recognized features for the raw data of model (e) always reveal

higher values that are caused by the 42 additional injections (50

and 75 mL). Taking into account models (a) - (d), on average, 35.1%

Table 3

Comprehensive evaluation of four different data sets.

Sample -A- -B- -C- -D-

Matrix Ultrapure water Ultrapure water River water Stagnated tap water

Concentration [ng L�1] of spiked standards 500 1000 100 100

Stock solution #

# of standards

II I I I

263 32 32 32

a. Target compounds (spiked)

Number of standards

Raw data (aed) 261 32 31 30

Raw data (e) 261 32 31 30

Model (a) 261 32 31 30

Model (b) 261 32 31 30

Model (c) 260 32 31 30

Model (d) 260 32 31 30

Model (e) 261 32 31 30

Mean rate of recognition ðRRÞ

Raw data (aed) 0.996 1.000 0.988 0.998

Raw data (e) 0.993 1.000 0.954 0.965

Model (a) 0.988 1.000 0.986 0.967

Model (b) 0.985 0.985 0.995 0.964

Model (c) 0.987 0.982 0.994 0.961

Model (d) 0.987 0.980 0.994 0.960

Model (e) 0.979e0.984 0.977e0.984 0.975e0.978 0.948e0.962

b. Non-target compounds

Number of features

Raw data (aed) 6672 4773 2372 5088

Raw data (e) 7337 5551 2655 5582

Model (a) 4441 2135 844 2978

Model (b) 4369 1891 815 2899

Model (c) 4298 1841 747 2822

Model (d) 4215 1688 667 2725

Model (e) 4301 1791 743 2774

Mean rate of recognition ðRRÞ

Raw data (aed) 0.637 0.568 0.596 0.592

Raw data (e) 0.517 0.448 0.484 0.471

Model (a) 0.694 0.541 0.533 0.605

Model (b) 0.797 0.671 0.639 0.725

Model (c) 0.840 0.708 0.714 0.775

Model (d) 0.866 0.767 0.792 0.809

Model (e) 0.739e0.812 0.612e0.719 0.581e0.682 0.658e0.757

Mean improvement factor ðIÞ

Model (a) �1.000a �1.000a �1.000a �1.000a

Model (b) 0.668 0.319 0.412 0.598

Model (c) 0.724 0.409 0.583 0.657

Model (d) 0.738 0.470 0.661 0.671

Model (e) 0.661e0.826 0.437e0.759 0.641e0.830 0.636e0.829

a By definition e 100%

�

lim
jAðþÞj/0

I ¼ jAðþÞj�jAð�Þj
jAðþÞjþjAð�Þj ¼ �1

�

.
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and 43.9% of the features were removed from sample -A- and -D-,

respectively while 60.4% and 67.6% of the features failed the spec-

ified threshold criteria if regarding sample -B- and -C-. Since model

(c) and model (e) both comprise three replicates in the subsamples,

we expected the number of features to be in a very similar range.

While the numbers indeed resemble each other, it is surprising

that, except for sample -A-, the remaining numbers obtained with

model (e) are slightly lower than the ones obtained with model (c)

which is much likely due to the lower effective concentration

caused by the smaller injection volumes. It should also be noted

that the number of detected features does not necessarily permit

conclusions regarding the complexity of the sample as it was

deliberately refrained to perform deisotoping and adduct assign-

ment, as these signals also contribute to the repeatability. This fact,

however, increases the number of features recognized but not

inevitably to the same extent between different samples. For

instance, the relatively high number of 6672 features initially

detected in sample -A- (raw data (a)-(d)) impressively illustrates

the increase in the number of features (only 263 substances

spiked). The much higher number may possibly be explained by

isotopes, adducts, dimers, in source fragmentation or multiple

charge states. Furthermore, accompanying substances or contami-

nations in the standard solutions or in the ultrapure water, which

was used to dilute the standards, may also contribute to the higher

number of features. It is therefore not surprising that the number of

features detected in the river water is smaller than the ones in the

aqueous standard solutions which contain much higher concen-

trations and hence increase the probability that such species

exceed a given intensity threshold.

To further assess the different data sets, the mean rate of

recognition RR was taken into consideration. The evaluation of the

non-target compounds is exemplary demonstrated using sample

-A- (Fig. 4), the diagrams of the remaining samples are illustrated in

supplemental figures S7-9. As a first step, the RRwas derived for the

raw data and for each single model. It should be noted that due to

the conversion (C to r) also non-integer numbers for the remaining

injections were obtained, thus leading to a quasi-continuous dis-

tribution in contrast to the discrete ones obtained for the raw data

and model (a). As discussed before, the best- and worst-case sce-

narios were assigned for the evaluation of model (e).

The flatter courses of the cumulative distributions clearly reveal

the improvement compared to the raw data as is also evident from

the RRs. The fact that the rates increase for model (a) to (d) is not

surprising as more replicates per subsample were considered

during the evaluation. The poorer results obtained for model (e),

even if considering the best case scenarios, are much likely attrib-

utable to the three-fold increase in the number of injections and

hence the possibility of generation of false positive findings.

Nevertheless, notable improvements can be identified if comparing

the distribution of model (e) with the raw data. Regarding all

samples, for model (e) mean improvements of the RRs of almost

35% in the worst-case scenario and 55% in the best-case scenario

with respect to the raw data were perceived. Assessing model (b) -

(d), the comparison to the unprocessed raw data clearly points to an

improvement in repeatability. Based on the raw data, a relative

increase in the RRs, averaged over the four sample types, of more

than 18%, 26% and 35% could be demonstrated for model (b), (c) and

(d), respectively. Model (a), on the other hand, only shows minor

improvement for sample -A- and -D- whereas the rates for -B- and

-C- even deteriorate. This effect is much likely attributed to false

positive findings in the raw data which result in apparently better

RRs. Such candidates were sometimes incompletely eliminated

during the absolute thresholding and can therefore, should the

situation arise, even result in lower RRs.

As can be seen, however, the gradual increase in the RRs be-

comes lower the more technical replicates were used. While model

(b) offers - with respect to model (a) - a mean improvement of the

RRs of more than 11%, only 5%, on average, were gained among

model (b) / (c) and (c) / (d), respectively. The high increase

between model (a) and (b) clearly indicates the strength of the

relative threshold criteria (i.e. the fluctuation of the peak charac-

teristics which are regarded in models (b) to (d)) whereas more

replicates increase the RRs to a smaller extent. These results

demonstrate that the initial problems were not primarily caused by

the measurement but rather by the problems in peak recognition.

The comprehensive data processing strategy, however, partially

compensates the appearing difficulties using only few replicates.

The evaluation on the basis of the RR combines both, the elimina-

tion of false positives as well as the correction of features which

were only partly recognized. It remains to be seen whether the

improvement in RR is mainly caused by the first or the second

option. The mean improvement factor, on the other hand, accounts

for the latter ones and is described in the following.

The occurrence of the features in n replicates was regarded

before and after data processing. This comparison reveals the

extent of the improvement or deterioration for the different

models. For sample -A-, the evaluation is depicted in Fig. 5 and

described in more detail below while the evaluation of the

Fig. 4. Cumulative feature distributions obtained for sample -A-, (a) distribution of unprocessed raw data (21 injections, 100 mL) and for models (a)e(d), (b) distribution of un-

processed raw data (63 injections, 50, 75, 100 mL) as well as for model (e); RRs in the legend are depicted after the respective entry.
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remaining ones can be taken from supplemental figures S7-9. The

fact that the intersect increases for model (a) - (d) results from the

combinatorial approach. Once a feature has been recognized, the

subsequent peak integration, in the best case, is always leading to

positive results for all combinations including this particular

replicate. The maximum D recognition value can also be derived

from the combinatorial approach and increases the more replicates

are taken into consideration. While model (a), by definition, never

shows an improvement, maximum D recognition values of about

9.0, 12.8, 14.8 and 42.0 could theoretically be reached using model

(b), (c), (d) and (e), respectively (see supplemental figure S10).

These values calculated from a theoretical approach can also be

found if processing real data (see intersects Fig. 5).

The mean improvement factors - with respect to the raw data -

are summarized in Table 3. Regarding the tabulated factors it is

obvious that for model (b) - (e), irrespective of the sample type, a

clear improvement with respect to the raw data could be achieved.

The evaluationwas performed in away that only features which

have been recognized at least once (raw data) in each selected

subsample were further taken into consideration. It is thus evident

that model (a), comprising only single replicates, will never lead to

an improvement which is why the mean “improvement”, by defi-

nition, will always report - 100%. For model (a), however, the

number of features subjected to deterioration was always less than

15% for all sample types (see supplemental table S6). These are

much likely features which were partly removed by the filter (no

relative threshold) resulting in negative D recognition values. For

model (b) to (e), on the other hand, the Is reach positive values

between 31.9% and 73.8% (83.0% in the best-case scenario) which,

once again, considerably demonstrate the benefits when regarding

multiple replicates (see Table 3). The total numbers of features

showing improvement, deterioration or no change without being

weighted by the extent are tabulated in supplemental table S6

which also comprises the areas used to calculate the Is.

In summary, different aspects have to be considered: while the

recoveries as well as the RRs of all spiked standards clearly show the

outstandingly good coverage and thus no need of action, the picture

changes dramatically if regarding the non-target compounds. The

recognition frequency shows consistently worse values but could

successfully be increased by application of the different processing

models. On the other hand, the major problem of partially false

negative findings becomes apparent only after consideringmultiple

replicates. Against the background that the recovery of spiked

standard almost reaches 100%, it was all the more unexpected that

partially false negative findings occurred to this extent.

Nevertheless, the mean improvement factors clearly illustrated the

advantages if considering multiple replicates. Moreover, the num-

ber of retained features was significantly reduced during the pro-

cessing which simplifies the non-target screening. The relative

threshold criteria, i.e. the fluctuation of the peak characteristics as

well as the consideration of multiple replicates have emerged to be

very powerful when dealing with type I and type II errors. While

the recognition frequencies as well as the improvement factors

increase the more replicates were considered, the benefits must be

balanced against the decrease in sample throughput. Based on

these findings, it is strongly recommended to use at least two, or

better, three technical replicates while further consideration should

be given to the relative threshold criteria. We found that model (c)

reflects an acceptable compromise between the benefits (RR and I)

and the sample throughput.

Note that real sample matrices were spiked with standard so-

lutions at a certain concentration level. However, it may be true

that some compounds were already present in the untreated

samples, thus leading to higher effective concentrations than

tabulated. For this reason, isotopically labeled standards were used

for the final confirmation experiment, which allows to precisely

regard the concentration.

4.2. Final confirmation

A total number of 130 isotopically labeled standards (IS) was

spiked to four different matrices - ultrapure water (-E-), ground-

water (-F-), river water (-G-) and secondary clarifier of a conven-

tional wastewater treatment plant (-H-) - at three concentration

levels - 25, 100 and 500 ng L�1. The manual evaluation at the

highest concentration level revealed that 123 standards could be

detected in ESI positive mode while 56 were recognized in the

negative ionization mode (48 in both modes). The isotopically

labeled standards with their corresponding retention time are

tabulated in supplemental table S4. As expected, the intensities of

the total ion chromatograms increase substantially with matrix

complexity (Fig. 6). These findings correlate with the concentration

of the dissolved organic carbon in the samples. The sample

collected from the secondary clarifier -H- clearly represents the

most complex one for which reason we expected to have the

strongest matrix effects and hence, the greatest difficulties during

peak detection of the isotopically labeled standards.

It was found that many substances (e.g. Fig. 6 b, c) are only

subjected to minor fluctuations and hardly reveal any influence of

the sample matrix. While some of the EICs follow an almost

Fig. 5. Comparison of the feature recognition before and after data processing (D recognition) for (a) models (a)e(d) and (b) model (e); Is in the legend are depicted after the

respective entry.
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identical course over all matrices, on the other hand, some candi-

dates demonstrate problems when dealing with complex matrices.

Either poor selectivity (e.g. Fig. 6d) or strong signal suppression

(e.g. Fig. 6e) complicated the assessment of the obtained data and

thus resulted in a lower number of recognized standards. To finally

confirm the presented models, each matrix at each concentration

level was analyzed six times (50, 75 and four times 100 mL injection

volume) to obtain the minimum required number of injections to

apply each model, leading to a total number of 72 injections for

each ionization mode. The parameters used to process the data

were maintained as stated previously (supplemental table S5). The

obtained results are summarized in Table 4, where the recorded

numbers of standards Ns are tabulated for the different models, in

four different matrices and for three concentration levels. More-

over, part a. comprises data recorded in the positive ionization

mode whereas the results obtained in the negative one can be

found in section b. The complete evaluation is available in the

supplementary material (SM_2.xlsx) where the results are illus-

trated for each substance. The individual entries were created as

follows:

Manual peak finding

A suspect target method was established using the exact mass

(m/z ± 10 ppm) as well as the expected retention time (± 0.15 min)

of each spiked reference standard. The retention time and mass

tolerance was evaluated in a former study revealing that the

maximum deviation of the mass and the retention time over a time

period of 10 months was less than 10 ppm and 0.15 min, respec-

tively (data not shown). After processing the raw data, each single

standard (i.e. each EIC) in each matrix and concentration level was

manually verified. Therefore a signal-to-noise ratio of about three

was considered while only taking into account these standards

exceeding a peak height of 100 cps. At this point it is important to

mention, that other filter criteria (e.g. peak width or fluctuation of

the peak area) were not taken into consideration. The results ob-

tained during this step were later used to calculate the number of

false positives (i.e. substances could manually not be verified while

further processing steps indicate them to be real hits). For the final

confirmation, the number of false positives, inter alia, is an

important factor which previously could not be considered when

comparing the different models as the manual peak verification

would have been too time consuming. The tabulated values are the

sum of all standards detected (under the specified conditions) in

the respective sample and concentration level. In this case, the

weighted numbers over the four conducted 100 mL - injections are

listed (i.e. a standard which was only detected in 3 out of 4 repli-

cates, will be counted as 0.75).

Non-target peak finding

Automated non-target peak finding was performed for all

samples whereas features representing the isotopically labeled

standards were extracted from the result table (all other features

were not considered at this point). The elimination of false posi-

tives, by comparing the obtained data to the manually verified ones

was performed subsequently. The actual number of recognized

standards is tabulated followed by the number of false positives

given in brackets behind. Again, the numbers of the recorded fea-

tures as well as the numbers of false positive findings represent the

weighted numbers calculated from the four 100 mL - injections.

These datawere later used for the correction of other data sets. This

is strictly necessary due to the batch-processing, i.e. feature lists are

created overall various samples. The objective was to illustrate the

data in the way it would have been if only the respective set of

samples were processed.

Fig. 6. (a) Total ion chromatograms (TIC) of the different matrices spiked with 100 ng L�1 of 130 isotopically labeled internal standards (only a single 100 mL - injection is shown) in

positive ionization mode within the evaluated time domain; extracted ion chromatograms (EIC) of Desethylatrazine (b), Mefenamic acid (c), Carbendazim (d) and Valsartan (e),

100 ng L�1 each; the dashed lines indicate the expected retention times.
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Model (x) - manual

The manual verification was performed to indicate the combi-

natorial strength of the models without the use of any filters

meaning that the presence of a feature was the only criteria that

was considered. For this reason, these values should be seen as the

highest achievable recovery with the respective model. The tabu-

lated values are composed as follows: According to the respective

model, the data from the corresponding injections were extracted

from the data set which was manually verified. Again, to only

consider features that would originally have been recorded, the

ones that did not appear on the non-target peak list, for the

particular selection of samples, were eliminated. The sole differ-

ence at this point is that the single occurrence of a certain feature

would already be enough to be maintained (e.g. detected in 1 out of

3) which means that the different replicates extracted from the

non-target data were OR linked which generally leads to a higher

coverage, the more replicates were considered. This is the reason

why the tabulated numbers increase (or at least stay equal) from

model (a) - manual to model (d) - manual. Model (e), however, is

based on other injections (50, 75 and 100 mL) which is why these

values are likely to be smaller.

Model (x) automated

The actual data that were processed using all threshold criteria

(supplemental table S5) are summarized in these entries. In any

case, the numbers are smaller or equal to the ones obtained for

model (x) - manual, because aside from the mere presence, further

thresholds must be satisfied. Instead of taking the exact masses

(calculated ones) of the spiked standards, the accurate masses

(measured ones), which were assigned by the peak finding

algorithm, were used for further processing steps. As supplied

before, the features that have initially not been recorded were

excluded while the comparison with those manually verified

revealed the number of false positives.

4.2.1. Discussion (final confirmation)

The object of the final confirmation was to illustrate - with

respect to the matrix compositions as well as to the concentration -

that the applied models barely eliminate the spiked compounds.

While the overall recovery rate (i.e. with respect to the total

number of standards spiked) is important to assess the applicability

of the method, this was not of central interest at this point. Please

note that in cases where a spiked standard was not even detected

(e.g. due to detection limits or matrix interferences) this cannot be

attributed to weaknesses of the applied models.

Positive ionization mode

The manual evaluation revealed that at the highest concentra-

tion level of 500 ng L�1 at least 121 of 123 spiked substances were

detected. Interestingly, the set point of Nsþ ¼ 123 is reached in the

groundwater matrix -F- as a certain ionic strength obviously favors

the chromatographic separation thus resulting in better peak

shapes (e.g. azithromycin was not detectable in ultrapure water).

The pretreated wastewater -H-, on the other hand, emphasizes the

problem of matrix effects which, in this case, are either attributed

to signal suppression or insufficient selectivity (as stated in Fig. 6)

and consequently result in a lower number of detected standards.

Nevertheless, at a concentration of 100 ng L�1 more than 91% (112

out of 123) of the standards could manually be confirmed. If the

wastewater matrix is disregarded, mean recovery rates of 93%, 97%

Table 4

Final confirmation with isotopically labeled standards (NSþ ¼ 123 in ESIþ and NS� ¼ 56 in ESI-) in four different matrices (ultrapure water, groundwater, river water and

pretreated wastewater) and at three different concentration levels (25, 100 and 500 ng L�1).

Number of standards NSþ recorded by the respective procedure (false positives)

Sample -E- -F- -G- -H-

Matrix Ultrapure water Groundwater River water Pretreated wastewatera

Concentration [ng L�1] 25 100 500 25 100 500 25 100 500 25 100 500

a. ESI positive (NSþ ¼ 123)

Manual peak findingb,c 114 119 122 115 120 123 114 118 122 89 112 121

Non-target peak findingb 95 (0) 114 (0) 121 (0) 99 (0) 116 (0) 121 (0) 93 (1) 115 (0) 120 (0) 67 (6) 104 (2) 118 (0)

Model (a) e manual 96 115 122 99 117 121 92 115 120 67 105 118

Model (a) e automated 93 (0) 111 (0) 121 (0) 98 (0) 114 (0) 121 (0) 91 (0) 115 (0) 120 (0) 66 (6) 104 (1) 117 (0)

Model (b) e manual 97 115 122 104 117 122 95 115 121 70 107 118

Model (b) e automated 92 (0) 111 (0) 121 (0) 99 (0) 114 (0) 121 (0) 93 (0) 115 (0) 121 (0) 63 (4) 101 (1) 116 (0)

Model (c) e manual 101 115 122 104 117 122 97 115 121 74 107 120

Model (c) e automated 92 (0) 111 (0) 121 (0) 96 (0) 114 (0) 121 (0) 92 (1) 115 (0) 121 (0) 60 (3) 99 (1) 116 (0)

Model (d) e manual 101 115 122 104 117 122 100 116 121 75 107 120

Model (d) e automated 91 (0) 111 (0) 121 (0) 96 (0) 114 (0) 121 (0) 93 (1) 114 (0) 121 (0) 59 (2) 99 (1) 116 (0)

Model (e) e manual 92 115 122 99 117 122 93 115 120 69 108 119

Model (e) e automated 75 (2) 106 (0) 119 (0) 86 (0) 112 (0) 117 (0) 81 (0) 111 (0) 119 (0) 55 (4) 94 (1) 106 (0)

b. ESI negative- (NS¡ ¼ 56)

Manual peak findingb,c 28 44 56 22 43 55 20 40 52 16 27 44

Non-target peak findingb 14 (0) 32 (0) 52 (0) 13 (0) 29 (0) 49 (0) 13 (0) 25 (0) 47 (0) 7 (0) 18 (0) 38 (0)

Model (a) e manual 13 31 52 12 30 48 15 26 47 6 18 39

Model (a) e automated 12 (0) 30 (0) 48 (0) 12 (0) 26 (0) 45 (0) 13 (0) 25 (0) 47 (0) 6 (0) 18 (0) 39 (0)

Model (b) e manual 14 33 53 13 30 49 15 27 47 7 18 40

Model (b) e automated 12 (0) 28 (0) 48 (0) 12 (0) 25 (0) 45 (0) 13 (0) 24 (0) 47 (0) 7 (0) 18 (0) 40 (0)

Model (c) e manual 15 34 53 13 31 49 15 28 47 8 19 40

Model (c) e automated 12 (0) 28 (0) 47 (0) 12 (0) 26 (0) 45 (0) 11 (0) 24 (0) 46 (0) 8 (0) 18 (0) 39 (0)

Model (d) e manual 15 35 53 13 33 49 15 28 47 10 19 40

Model (d) e automated 12 (0) 29 (0) 46 (0) 12 (0) 28 (0) 45 (0) 11 (0) 24 (0) 46 (0) 9 (0) 17 (0) 39 (0)

Model (e) e manual 13 32 52 14 30 48 14 27 47 6 18 40

Model (e) e automated 11 (0) 23 (0) 44 (0) 10 (0) 23 (0) 44 (0) 11 (0) 22 (0) 43 (0) 6 (0) 16 (0) 30 (0)

a Collected after the secondary clarifier of a conventional wastewater treatment plant.
b Weighted number over the four 100 mL e injections.
c Only peaks exceeding a height of 100 cps were regarded.
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and 99% were achieved for 25, 100 and 500 ng L�1, respectively.

These numbers are to be regarded as maximum attainable since

each single peak was manually reviewed against the defined re-

quirements. The difference to the total number of spiked standard

is attributed to detection limits as well as matrix effects.

The automated non-target peak finding shows similar trends,

albeit somewhat lower. The relative mean differences to the

manual peak finding, particularly for higher concentrations, are

with about 4% and 2% for 100 and 500 ng L�1, respectively, almost

negligible. For 25 ng L�1, on the other hand, the mean difference of

nearly 16% reveals a significant deviation. These differences are

much likely be explained by the fact that - due to the way the peak

finding algorithm works - no strict correlation between the in-

tensity threshold (algorithm) and the threshold which was manu-

ally set could be derived (see supplemental explanation S2). Based

on these data, the intensity threshold of 100 cps which has

manually been applied seems to be lower than the one used by the

algorithm. This is partly attributed to the background subtraction

used during the peak finding but also due to the lack of compara-

bility between parameter settings. Again, the recovery rates in the

wastewater matrix indicate the strongest matrix effects, for

instance resulting in a recovery rate of about 54% (67 out of 123) at

25 ng L�1. The second problem when processing real data is indi-

cated by the false positive candidates, predominantly occurring in

the most complex matrix and at the lowest concentration level. If

disregarding thewastewatermatrix, on average, the fast majority of

96, 115 and 121 out of 123 spiked standards could automatically be

detected and 25, 100 and 500 ng L�1. These findings demonstrate

the general capability of the method.

When assessing the different models, it is conspicuous that the

numbers of recognized standards do not substantially deviate from

the ones obtained by the peak finding algorithm suggesting that

the peak finding itself is the limiting factor of the whole procedure.

Using an even lower non-target intensity threshold would increase

the number of recognized standards. However, our experience has

shown that lower intensity thresholds produce other problems (e.g.

substantially higher number of false positives) which are therefore

not recommended. An alternative strategy might be the combina-

tion of different peak finding algorithms to pool the individual

strengths and therefore increase the feature coverage before any

filter criteria were applied. This, however, was not within the scope

of this study and has therefore not been investigated further.

One exception represents model (e) which requires three

different injection volumes. As the minimum volume was only 50%

of the normally injected one, it is not surprising to sacrifice sensi-

tivity and hence decreasing the number of standards above the

threshold. The fact that the effective concentration gets halved is

the main reason why the numbers of recorded standards for model

(e), compared to other models, always represent the lowest re-

covery rate. Notwithstanding model (e), the absolute number of

substances (based on the non-target peak finding) filtered by the

models did not exceed eight (see Table 4a, 25 ng L�1, model (d),

pretreated wastewater). The average number of features removed

was less than two leading to a mean recovery rate of more than 98%

(more than 96% if also considering model (e)) with respect to the

number of peaks detected by the peak finding algorithm. The

aforementioned relationships, i.e. better recovery rates the higher

the concentration as well as problematics caused by matrix in-

terferences can also be observed after applying the models. The

mean recovery rate based on the total number of 123, over all

models and matrix types, was higher than 67%, 88% and 96% for

25 ng L�1, 100 ng L�1 and 500 ng L�1, respectively. Considering the

number obtained by the non-target peak finding as a reference,

rates of more than 94%, 97% and 99% would be reached. It is

noteworthy, that it is theoretically possible, that the number of

standards taken from the respective model is higher than the

number of features recognized by the peak finding algorithm (see

Table 4a, 500 ng L�1 river water). This phenomenon occurs in cases

where a real peak was just partially recognized over four replicates

(false negative), however, as a result of the subsequent peak inte-

gration, the feature can be corrected and, due to the combinatorics

(OR linkage), remain as a real peak (not possible for model (a) as

only one injection is regarded). Taking into account the maximum

achievable number of hits for the respective model (model (x)

manual), more than 90% waiving model (e) as well as the waste-

water matrix were retained after applying the different models.

Negative ionization mode

The general statement for the negative ionization mode is very

similar to the above mentioned one. The set point of Ns� ¼ 56 was

reached in ultrapure water at a concentration of 500 ng L�1. In

contrast to the positive ionization mode, the negative one was

generally less sensitive leading to worse recovery rates if regarding

same concentrations and resulting, on average, in a decrease in the

recovery of about 28%. This circumstance was already recognized

during the manual peak finding step, for instance in case of

100 ng L�1 44, 43 and 40 out of 56 standards could manually be

confirmed in ultrapure water (-E-), groundwater (-F-) and river

water (-G-) while only 27 ones could be verified in the pretreated

wastewater (-H-). Disregarding the wastewater matrix, 97% of the

56 standards could on average be confirmed at 500 ng L�1 while

more than three-quarters were recorded at 100 ng L�1. At the

lowest concentration level, however, less than half of the spiked

standards could be detected. Based on the numbers that could

manually be confirmed, the peak finding algorithm reaches mean

recovery rates of 54%, 67% and 90% for 25 ng L�1, 100 ng L�1 and

500 ng L�1, respectively which are significantly lower compared to

the positive mode (82%, 96% and 98%). These results at least

partially stem from the fact that the sensitivity, hence the intensity

in general was lower. The substantially poorer sensitivity in the

negative ionization mode is partly due to the fact that, in order to

assure comparable retention times between the two ionization

modes, formic acid was used as eluent additive in the negative

mode as well. The implementation of different intensity thresholds

for positive and negative ionization mode [2] would lead to lower

discrepancies between both modes. Alternatively, a signal-to-noise

based threshold instead of a fixed intensity threshold should be

preferred.

These findings once more underscore the challenges of the

actual peak finding, but do not represent a restriction with regard

to the evaluation of the models since merely the maximum

achievable number of features is affected. The lowest remaining

number of standards recognized can be identified for model (e) for

the same reasons as already discussed above. Disregarding model

(e), the maximum number of standards removed by the filters was

six, whereas the mean number of features removed was less than

two (based on the non-target peak finding). Considering all models

with respect to the numbers obtained by the non-target peak

finding, a mean recovery rate of more than 91% is reached. The

mean recovery rates of 19%, 42% and 78% for 25 ng L�1, 100 ng L�1

and 500 ng L�1 appear to be apparently low, however, in relation to

the non-target results, rates of 90%, 92% and 94% can be discerned.

The mean recovery rate with respect to the maximum achievable

number of the respective model (model (x) manual) was 89%

whereby the minimum rate was 71%. These findings clearly

demonstrate that the application of the models only lead to a very

limited elimination of the spiked standards. Furthermore, the in-

fluence of the concentration and the sample matrix could be

shown. As expected, most problems occur in complex samples at

low concentration levels leading to a significant reduction of the
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number of recognized standards. This, however, already appears

during peak finding whereas the application of the presented

models does not have a major impact on the standards. The overall

recognitions, with respect to the recognized standards, still lie

within a satisfactory range. Please note that all results were ob-

tained without any correction of the peak integration (which was

optimized in a former study, data not shown). When disregarding

the wastewater matrix, about three-quarters of the spiked stan-

dards could be detected at a concentration level of 100 ng L�1. This

indicates that for several compounds, the health orientation value

of 100 ng L�1 as suggested by the German Federal Environment

Agency [18,19] is difficult to be reached in the negative ionization

mode which is much likely attributed to the fact that formic acid

has been used as eluent additive in the negative mode as well.

5. Conclusions

This study focuses on the comparison of different data evalua-

tion strategies of LC-HRMS data. The assessment is based on a novel

combinatorial approach using different numbers of technical rep-

licates. The repeatability calculated for all features laying bare the

weaknesses in peak finding and thus emphasizes the need of so-

phisticated processing strategies for dealing with false positive and

false negative findings. We found that the use of replicates in

combination with stringent filter criteria clearly led to an enhance

data quality since both the repeatability and the peak recognition

could be considerable improved. Reference standards which were

spiked as a control were barely or not removed by these measures.

For the first time, the problem of false negative findings was

regarded on the basis of unknown features in addition to spiked

reference standards.

On the basis of the presented data, it is strongly recommended

to use at least two, or better, three technical replicates of each

sample. We believe model (c) reflects an acceptable compromise

between the benefits of reducing false positives and correcting

partially false negatives and the drawback of the lower sample

throughput. As most of the challenges are attributed to weaknesses

in peak finding, the combination of different peak finding algo-

rithms could be useful to increase the feature coverage.

Note that these general strategies are transferable to different

data types regardless of the software tools which have been used

for the feature extraction (vendors or open source software pack-

ages). It should, however, be recalled that many peak finding al-

gorithms comprise the subsequent peak integration directly in the

workflow which is why the problem of partially false negative

findings is concealed and can only be identified if processing rep-

licates individually.

Acknowledgements

The authors gratefully acknowledge Heinz Singer (eawag,

Dübendorf, Switzerland) for providing a comprehensive collection

of isotopically labeled standards and Alexander Thieme (GWA,

Luisenthal, Germany) for supplying a stagnant water sample

collected from a plastic pipe. We appreciate the input of Regine

Fischeder, Thomas Lucke, Wolfram Seitz and Lena Stütz

(Zweckverband Landeswasserversorgung) for reading and review-

ing themanuscript and one anonymous reviewer whose comments

helped to greatly improve this article.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://

dx.doi.org/10.1016/j.aca.2016.06.030.

References

[1] M. Krauss, H. Singer, J. Hollender, LC-high resolution MS in environmental

analysis: from target screening to the identification of unknowns, Anal. Bio-
anal. Chem. 397 (2010) 943e951.

[2] P. Gago-Ferrero, et al., Extended suspect and non-target strategies to char-
acterize emerging polar organic contaminants in raw wastewater with LC-

HRMS/MS, Environ. Sci. Technol. 49 (20) (2015) 12333e12341.

[3] C. Hug, et al., Identification of novel micropollutants in wastewater by a
combination of suspect and nontarget screening, Environ. Pollut. 184 (2014)

25e32.
[4] E.L. Schymanski, et al., Strategies to characterize polar organic contamination

in wastewater: exploring the capability of high resolution mass spectrometry,

Environ. Sci. Technol. 48 (3) (2013) 1811e1818.
[5] E. Schymanski, et al., Non-target screening with high-resolution mass spec-

trometry: critical review using a collaborative trial on water analysis, Anal.
Bioanal. Chem. 407 (21) (2015) 6237e6255.

[6] L. Vergeynst, H. Van Langenhove, K. Demeestere, Balancing the false negative
and positive rates in suspect screening with high-resolution orbitrap mass

spectrometry using multivariate statistics, Anal. Chem. 87 (4) (2015)

2170e2177.
[7] E. Tengstrand, et al., A concept study on non-targeted screening for chemical

contaminants in food using liquid chromatographyemass spectrometry in
combination with a metabolomics approach, Anal. Bioanal. Chem. 405 (4)

(2013) 1237e1243.

[8] M. Katajamaa, M. Ore�si�c, Data processing for mass spectrometry-based
metabolomics, J. Chromatogr. A 1158 (1e2) (2007) 318e328.

[9] J. Zhang, et al., Review of peak detection algorithms in liquid-
chromatography-mass spectrometry, Curr. Genomics 10 (6) (2009) 388e401.

[10] J.B. Coble, C.G. Fraga, Comparative evaluation of preprocessing freeware on
chromatography/mass spectrometry data for signature discovery,

J. Chromatogr. A 1358 (2014) 155e164.

[11] L. Vergeynst, et al., Suspect screening and target quantification of multi-class
pharmaceuticals in surface water based on large-volume injection liquid

chromatography and time-of-flight mass spectrometry, Anal. Bioanal. Chem.
406 (11) (2014) 2533e2547.

[12] W. Yu, et al., Improving mass spectrometry peak detection using multiple

peak alignment results, J. Proteome Res. 7 (1) (2008) 123e129.
[13] T. Yu, D.P. Jones, Improving peak detection in high-resolution LC/MS metab-

olomics data using preexisting knowledge and machine learning approach,
Bioinformatics 30 (20) (2014) 2941e2948.

[14] C.A. Smith, et al., XCMS: processing mass spectrometry data for metabolite
profiling using nonlinear peak alignment, matching, and identification, Anal.

Chem. 78 (3) (2006) 779e787.

[15] L. Brodsky, et al., Evaluation of peak picking quality in LC�MS metabolomics
data, Anal. Chem. 82 (22) (2010) 9177e9187.

[16] A. Müller, et al., A new approach to data evaluation in the non-target
screening of organic trace substances in water analysis, Chemosphere 85 (8)

(2011) 1211e1219.

[17] C. Ort, et al., Spatial differences and temporal changes in illicit drug use in
Europe quantified by wastewater analysis, Addiction 109 (8) (2014)

1338e1352.
[18] A. Bergmann, et al., Potential water-related environmental risks of hydraulic

fracturing employed in exploration and exploitation of unconventional nat-

ural gas reservoirs in Germany, Environ. Sci. Eur. 26 (1) (2014) 1e14.
[19] Umweltbundesamt, Bewertung der anwesenheit teil- oder nicht bewertbarer

stoffe im trinkwasser aus gesundheitlicher sicht, Bundesgesundheitsblatt -
Gesundheitsforsch. - Gesundheitsschutz 46 (3) (2003) 249e251.

[20] Sciex, MarkerView™ Software - Reference Manual, 2010.
[21] J. von Neumann, Distribution of the Ratio of the Mean Square Successive

Difference to theVariance, 4, 1941, pp. 367e395.

T. Bader et al. / Analytica Chimica Acta 935 (2016) 173e186186



1 

Supplementary content to: 
 
 
 

General strategies to increase the repeatability in non-target screening by liquid 

chromatography-high resolution mass spectrometry  

Tobias Bader1,2*, Wolfgang Schulz1, Klaus Kümmerer2 and Rudi Winzenbacher1 
1
Laboratory for Operation Control and Research, Zweckverband Landeswasserversorgung, Am 

Spitzigen Berg 1, 89129 Langenau, Germany 
2
Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental 

Chemistry, Leuphana University of Lüneburg, Scharnhorststraße 1/C13, 21335 Lüneburg, Germany 

 
*Corresponding author 
Tel.: +49 7345 9638 2279, E-mail address: Bader.T@lw-online.de 
 
 
 
 
**************************************************************************** 
 

Table of contents 

 

1. Introduction  

2. Materials and methods 

2.1 Chemicals  

Table S1 Stock solution I: Pharmaceutical drugs (N = 32)    3 

Table S2  Stock solution II: Multi-component standard (N = 263)   4-7 

Table S3 Suppliers of chemical standards      8 

Table S4 Stock solution III: Isotope labeled standards (N = 130)   9-10 

2.2 Sample preparation 

2.3 LC-MS sample acquisition 

2.4 Software tools 

3. Data processing 

3.1 Workflow 

Table S5 Parameters for data processing      11-12 

  

mailto:Bader.T@lw-online.de


2 

 

 

3.2 System stability 

Figure S1 Stability tests throughout the entire period of analysis   13 

Figure S2 Trend analysis according to von Neumann    14 

3.3 Processing models 

Explanation S1 Converting the number of combinations (C) 

  into the number of remaining injections (r)    15-18 

which includes: 

Figure S3 Simulated combination values for all possible outlier distributions 16 

Figure S4 Deviations in the remaining injection numbers    17 

Figure S5 Number of combinations (C) as functions of the injection numbers (r) 18 

3.4 Characteristics derived for the comprehensive evaluation 

4. Results and discussion  

4.1 Comprehensive evaluation 

Figure S6 Problem cases using background subtraction    19 

Figure S7 Comprehensive evaluation of sample -B-     20 

Figure S8 Comprehensive evaluation of sample -C-     21 

Figure S9 Comprehensive evaluation of sample -D-    22 

Figure S10 Theoretical calculations to derive the maximum achievable  

  extent of improvement for the respective model    23 

Table S6 Improvement or deterioration with respect to the raw data  24 

4.2. Final confirmation 

Explanation S2 Context between intensity threshold and peak height or peak area  25 

which includes 

Figure S11 Correlation between response and real peak height   25 

5. Conclusions  

6. Acknowledgements  

7. References 

**************************************************************************** 
  



3 

 

 

Table S1 

Stock solution I: Pharmaceutical drugs (N = 32) 

# Name 
Elemental  
composition 

Retention  
time [min] 

1 10,11-Dihydro-10,11-dihydroxy carbamazepine C15H14N2O3 6.0 
2 2-Ethyl-2-phenylmalonamide C11H14N2O2 5.3 
3 Atenolol C14H22N2O3 4.5 
4 Betaxolol C18H29NO3 7.0 
5 Bezafibrate C19H20NO4Cl 10.4 
6 Bisoprolol C18H31NO4 6.4 
7 Carbamazepine C15H12N2O 8.4 
8 Carbamazepine-10,11 epoxide C15H12N2O2 7.2 
9 Dapsone C12H12N2O2S 6.3 
10 Diazepam C16H13N2OCl 10.7 
11 Diclofenac C14H11NO2Cl2 12.0 
12 Etofibrate C18H18NO5Cl 12.3 
13 Fenofibrate C20H21O4Cl 15.9 
14 Fenofibric acid C17H15O4Cl 12.0 
15 Iopamidol C17H22I3N3O8 4.4 
16 Ketoprofen C16H14O3 10.1 
17 Metoprolol C15H25NO3 5.5 
18 Metronidazole C6H9N3O3 4.7 
19 N-Acetyl sulfamethoxazole C12H13N3O4S 6.9 
20 Pentoxifylline C13H18N4O3 6.1 
21 Phenacetin C10H13NO2 7.2 
22 Phenazone C11H12N2O 5.8 
23 Pindolol C14H20N2O2 5.0 
24 Primidone C12H14N2O2 5.8 
25 Propranolol C16H21NO2 6.7 
26 Ronidazole C6H8N4O4 5.0 
27 Sotalol C12H20N2O3S 4.5 
28 Sulfadiazine C10H10N4O2S 5.0 
29 Sulfadimidine C12H14N4O2S 5.8 
30 Sulfamerazine C11H12N4O2S 5.5 
31 Sulfamethoxazole C10H11N3O3S 6.8 
32 Trimethoprim C14H18N4O3 5.0 
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Table S2 

Stock solution II: Multi-component standard (N = 263) 

# Name Elemental  
composition 

Retention  
time [min] 

1 (Benzothiazol-2-ylthio)methylthiocyanat C9H6N2S3 11.9 
2 2-(Methylthio)benzothiazole C8H7NS2 11.5 
3 2,6-Dichlorbenzamid C7H5Cl2NO 5.8 
4 2-Aminobenzothiazole C7H6N2S 4.8 
5 2-Hydroxybenzothiazole C7H5NOS 7.3 
6 4′-Hydroxydiclofenac C14H11Cl2NO3 9.8 
7 5,6-Dimethyl-1H-benzotriazole C8H9N3 7.3 
8 Acetyl-sulfamethoxazole C12H13N3O4S 6.9 
9 Aclonifen C12H9ClN2O3 13.2 
10 Alachlor C14H20ClNO2 12.7 
11 Amantadine C10H17N 5.0 
12 Ametryn C9H17N5S 8.1 
13 Amidosulfuron C9H15N5O7S2 9.3 
14 Amisulpride C17H27N3O4S 5.1 
15 Amisulpride N-Oxide C17H27N3O5S 5.2 
16 Aspartame C14H18N2O5 5.2 
17 Atenolol C14H22N2O3 4.5 
18 Atraton C9H17N5O 6.2 
19 Atrazine C8H14ClN5 9.6 
20 Atrazine-2-hydroxy C8H15N5O 5.0 
21 Azinphos-methyl C10H12N3O3PS2 11.2 
22 Azoxystrobin C22H17N3O5 11.7 
23 Benalaxyl-M C20H23NO3 13.4 
24 Benazolin C9H6ClNO3S 8.0 
25 Bensulfuron-methyl C16H18N4O7S 10.4 
26 Bentazon C10H12N2O3S 9.3 
27 Benzothiazole-6-carboxylic acid C8H5NO2S  6.1 
28 Benzotriazole C6H5N3 5.5 
29 Betaxolol C18H29NO3 7.0 
30 Bezafibrate C19H20ClNO4 10.3 
31 Bisoprolol C18H31NO4 6.4 
32 Boscalid C18H12Cl2N2O 11.9 
33 Bromacil C9H13BrN2O2 8.0 
34 Caffeine C8H10N4O2 5.0 
35 Candesartan C24H20N6O3 9.2 
36 Carbamazepine C15H12N2O 8.4 
37 Carbamazepine 10,11-epoxide C15H12N2O2 7.2 
38 Carbendazim C9H9N3O2 4.8 
39 Carbetamide C12H16N2O3 7.8 
40 Carbofuran C12H15NO3 9.1 
41 Chloramben C7H5Cl2NO2 7.1 
42 Chloramphenicol C11H12Cl2N2O5 7.1 
43 Chlorfenvinphos C12H14Cl3O4P 13.2 
44 Chloridazon C10H8ClN3O 6.4 
45 Chloridazon-methyl-desphenyl C5H6ClN3O 4.6 
46 Chlorotoluron C10H13ClN2O 9.3 
47 Chloroxuron C15H15ClN2O2 11.4 
48 Chlorpyrifos C9H11Cl3NO3PS 15.8 
49 Chlortetracycline C22H23ClN2O8 5.5 
50 Chlorthalonil R611965 C8H4Cl3NO3 5.4 
51 Clarithromycin C38H69NO13 8.4 
52 Clenbuterol C12H18Cl2N2O 5.6 
53 Clomazone C12H14ClNO2 10.7 
54 Clopyralid C6H3Cl2NO2 5.3 
55 Clothianidin C6H8ClN5O2S 6.2 
56 Codeine C18H21NO3 4.7 
57 Crotamiton C13H17NO 10.6 
58 Cyanazine C9H13ClN6 8.4 
59 Cyproconazole C15H18ClN3O 11.1 
60 Cyprodinil C14H15N3 10.6 
61 Dapsone C12H12N2O2S 6.3 
62 DEET C12H17NO 9.7 
63 Deisopropylatrazine C5H8ClN5 5.5 
64 Desethylatrazine C6H10ClN5 6.5 
65 Desethylterbutylazin C7H12ClN5 8.5 
66 Desmetryn C8H15N5S 7.0 
67 Diatrizoic acid C11H9I3N2O4 4.3 
68 Diazepam C16H13ClN2O 10.6 
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# Name Elemental  
composition 

Retention  
time [min] 

69 Diazinon C12H21N2O3PS 14.0 
70 Dichlorvos C4H7Cl2O4P 8.4 
71 Diclofenac C14H11Cl2NO2 12.0 
72 Difenoconazole C19H17Cl2N3O3 13.4 
73 Diflubenzuron C14H9ClF2N2O2 12.3 
74 Diflufenican C19H11F5N2O2 14.5 
75 Dihydrocodeine C18H23NO3 4.6 
76 Dimefuron C15H19ClN4O3 10.6 
77 Dimethachlor C13H18ClNO2 10.5 
78 Dimethachlor CGA 102935 C12H13NO5 5.5 
79 Dimethachlor CGA 354742 C13H19NO5S 6.0 
80 Dimethachlor CGA 369873 C10H13NO4S 5.1 
81 Dimethachlor CGA 373464 C12H15NO6S 5.3 
82 Dimethachlor CGA 50266 C13H17NO4 6.8 
83 Dimethachlor SYN 528702 C15H21NO5S 6.8 
84 Dimethachlor SYN 530561 C13H17NO5 6.0 
85 Dimethenamid C12H18ClNO2S 11.5 
86 Dimethenamid M23 C12H17NO4S 7.5 
87 Dimethenamid M27 C12H19NO5S2 6.5 
88 Dimethenamid-P M31 C14H21NO5S2 7.4 
89 Dimethoate C5H12NO3PS2 6.7 
90 Dimoxystrobin C19H22N2O3 12.8 
91 Dimoxystrobin 505M08 (BF 505-7) C19H20N2O5 9.3 
92 Dimoxystrobin 505M09 (BF 505-8) C19H20N2O5 9.7 
93 Diuron C9H10Cl2N2O 9.8 
94 Doxycycline C22H24N2O8 6.2 
95 Epoxiconazole C17H13ClFN3O 11.8 
96 Eprosartan C23H24N2O4S 6.5 
97 Erythromycin C37H67NO13 7.3 
98 Ethidimuron C7H12N4O3S2 6.3 
99 Ethofumesate C13H18O5S 12.2 
100 Etofibrate C18H18ClNO5 12.2 
101 Fenhexamid C14H17Cl2NO2 11.9 
102 Fenofibrate C20H21ClO4 15.8 
103 Fenoxaprop C16H12ClNO5 11.9 
104 Fenoxycarb C17H19NO4 12.6 
105 Fenpropidin C19H31N 8.9 
106 Fenpropimorph C20H33NO 9.0 
107 Fenuron C9H12N2O 6.4 
108 Flamprop C16H13ClFNO3 10.4 
109 Flazasulfuron C13H12F3N5O5S 10.4 
110 Florasulam C12H8F3N5O3S 9.0 
111 Fluazifop C15H12F3NO4 11.1 
112 Flufenacet C14H13F4N3O2S 12.8 
113 Flufenacet-FOE 5043 C11H14FNO4S 6.1 
114 Fluopicolide C14H8Cl3F3N2O 12.2 
115 Fluroxypyr C7H5Cl2FN2O3 8.1 
116 Flurtamone C18H14F3NO2 11.2 
117 Flusilazole C16H15F2N3Si 12.2 
118 Foramsulfuron C17H20N6O7S 8.0 
119 Gabapentin C9H17NO2 4.7 
120 Gabapentin-lactam C9H15NO 7.2 
121 Haloxyfop C15H11ClF3NO4 12.4 
122 Hexazinone C12H20N4O2 7.7 
123 Imidacloprid C9H10ClN5O2 6.5 
124 Indometacin C19H16ClNO4 12.0 
125 Iodosulfuron-methyl C14H14IN5O6S 10.6 
126 Iohexol C19H26I3N3O9 4.3 
127 Iomeprol C17H22I3N3O8 4.4 
128 Iopamidol C17H22I3N3O8 3.7 
129 Irbesartan C25H28N6O 8.8 
130 Irbesartan_446 C25H30N6O2 9.7 
131 Irgarol C11H19N5S 9.8 
132 Irgarol-descyclopropyl C8H15N5S 7.1 
133 iso-Chloridazon C10H8ClN3O 8.3 
134 Isoproturon C12H18N2O 9.7 
135 Ketoprofen C16H14O3 10.1 
136 Kresoxim-methyl C18H19NO4 13.4 
137 Lamotrigine C9H7Cl2N5 5.4 
138 Lamotrigine N2-Oxide C9H7Cl2N5O 5.6 
139 Linuron C9H10Cl2N2O2 11.3 
140 Losartan C22H23ClN6O 9.1 
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# Name Elemental  
composition 

Retention  
time [min] 

141 Malathion C10H19O6PS2 12.5 
142 Mesosulfuron-methyl C17H21N5O9S2 9.5 
143 Metalaxyl C15H21NO4 9.8 
144 Metalaxyl-M CGA 108906 C14H17NO6 6.4 
145 Metalaxyl-M CGA 62826/NOA 409045 (R-form) C14H19NO4 8.1 
146 Metamitron C10H10N4O 6.1 
147 Metazachlor C14H16ClN3O 10.4 
148 Metazachlor BH 479-11 C15H19N3O2S 6.9 
149 Metazachlor BH 479-12 C14H13N3O5 5.3 
150 Metazachlor BH 479-4 C14H15N3O3 6.2 
151 Metazachlor BH 479-8 C14H17N3O4S 5.9 
152 Metazachlor BH 479-9 C16H19N3O4S 6.5 
153 Methabenzthiazuron C10H11N3OS 9.1 
154 Methidathion C6H11N2O4PS3 11.2 
155 Methylphenidat C14H19NO2 5.6 
156 Metobromuron C9H11BrN2O2 10.1 
157 Metolachlor C15H22ClNO2 12.7 
158 Metolachlor CGA 354743 / CGA 380168 (S-form) C15H23NO5S 7.2 
159 Metolachlor CGA 51202 / CGA 351916 (S-form) C15H21NO4 9.2 
160 Metoprolol C15H25NO3 5.5 
161 Metoprolol acid C14H21NO4 4.8 
162 Metosulam C14H13Cl2N5O4S 9.6 
163 Metoxuron C10H13ClN2O2 7.7 
164 Metribuzin C8H14N4OS 8.6 
165 Metronidazole C6H9N3O3 4.7 
166 Metsulfuron-methyl C14H15N5O6S 8.8 
167 Mevinphos C7H13O6P 6.3 
168 Monolinuron C9H11ClN2O2 9.8 
169 Monuron C9H11ClN2O 8.2 
170 N-Acetyl-4-aminoantipyrine C13H15N3O2 5.1 
171 Nadolol C17H27NO4 4.8 
172 Napropamide C17H21NO2 12.2 
173 Naproxen C14H14O3 10.2 
174 N-Formyl-4-aminoantipyrine C12H13N3O2 5.1 
175 Nicosulfuron C15H18N6O6S 7.7 
176 Olmesartan C24H26N6O3 6.6 
177 Oxadixyl C14H18N2O4 8.1 
178 Oxazepam C15H11ClN2O2 8.8 
179 Oxytetracycline C22H24N2O9 5.1 
180 Parathion C10H14NO5PS 13.6 
181 Parathion-methyl C8H10NO5PS 11.9 
182 Pendimethalin C13H19N3O4 15.8 
183 Pentoxifylline C13H18N4O3 6.1 
184 Pethoxamid C16H22ClNO2 12.6 
185 Phenacetin C10H13NO2 7.2 
186 Phenazone C11H12N2O 5.8 
187 Phenylethylmalonamide C11H14N2O2 5.3 
188 Phosalone C12H15ClNO4PS2 14.3 
189 Phoxim C12H15N2O3PS 14.3 
190 Picloram C6H3Cl3N2O2 5.9 
191 Picolinafen C19H12F4N2O2 15.1 
192 Picoxystrobin C18H16F3NO4 13.5 
193 Pindolol C14H20N2O2 5.0 
194 Pirimicarb C11H18N4O2 5.9 
195 Primidone C12H14N2O2 5.8 
196 Primisulfuron-methyl C15H12F4N4O7S 11.9 
197 Prochloraz C15H16Cl3N3O2 11.0 
198 Prometon C10H19N5O 7.0 
199 Propazine C9H16ClN5 10.9 
200 Propazine-2-hydroxy C9H17N5O 5.4 
201 Propiconazole C15H17Cl2N3O2 12.8 
202 Propyphenazone C14H18N2O 9.1 
203 Prosulfocarb C14H21NOS 15.0 
204 Prosulfuron C15H16F3N5O4S 11.2 
205 Quinmerac C11H8ClNO2 6.6 
206 Quinmerac BH 518-2 C11H6ClNO4 5.8 
207 Quinoxyfen C15H8Cl2FNO 14.8 
208 Rimsulfuron C14H17N5O7S2 9.1 
209 Ritalinic acid C13H17NO2 5.1 
210 Ronidazole C6H8N4O4 4.9 
211 Roxithromycin C41H76N2O15 8.5 
212 Sebuthylazine C9H16ClN5 10.7 
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# Name Elemental  
composition 

Retention  
time [min] 

213 Sebuthylazine-desethyl C7H12ClN5 7.6 
214 Simazine C7H12ClN5 8.3 
215 S-Metolachlor CGA 357704 C14H17NO5 7.1 
216 S-Metolachlor CGA 368208 C11H15NO4S 5.7 
217 S-Metolachlor CGA 50267 C12H17NO2 8.6 
218 S-Metolachlor CGA 50720 C11H13NO3 6.5 
219 S-Metolachlor  CGA 37735 C11H15NO2 6.8 
220 S-Metolachlor NOA 413173 C14H19NO6S 6.5 
221 Sotalol C12H20N2O3S 4.5 
222 Spiroxamine C18H35NO2 9.1 
223 Sulfadiazine C10H10N4O2S 5.0 
224 Sulfadimethoxine C12H14N4O4S 7.6 
225 Sulfadimidine C12H14N4O2S 5.8 
226 Sulfadoxine C12H14N4O4S 6.7 
227 Sulfamerazine C11H12N4O2S 5.4 
228 Sulfamethoxazole C10H11N3O3S 6.7 
229 Sulfathiazole C9H9N3O2S2 5.1 
230 Sulpirid C15H23N3O4S 4.6 
231 Sulpiride N-Oxide C15H23N3O5S 4.6 
232 Tebuconazole C16H22ClN3O 12.1 
233 Tebutam C15H23NO 12.7 
234 Telmisartan C33H30N4O2 8.3 
235 Terbuthylazine C9H16ClN5 11.2 
236 Terbuthylazine 1 SYN 545666 C8H14N4O2 5.3 
237 Terbuthylazine-desethyl-2-hydroxy C7H13N5O 4.6 
238 Terbutryn C10H19N5S 9.3 
239 Terbutylazine 2 CGA 324007 C7H12N4O2 4.9 
240 Tetracycline C22H24N2O8 5.2 
241 Thiacloprid C10H9ClN4S 7.5 
242 Thiacloprid sulfonic acid, M30; BCS-AB54351 C10H13ClN4O5S 4.9 
243 Thiamethoxam C8H10ClN5O3S 5.7 

244 Thifensulfuron-methyl (O-desmethyl-
thifensulfuronmethyl, IN-L9226) C12H13N5O6S2 8.5 

245 Tolyltriazole C7H7N3 6.4 
246 Topramezone  C16H17N3O5S 6.1 
247 Tramadol C16H25NO2 5.6 
248 Tramadol N-Oxide C16H25NO3 5.7 
249 trans-10,11-Dihydro-10,11-dihydroxy Carbamazepine C15H14N2O3 6.0 
250 Triadimenol C14H18ClN3O2 10.8 
251 Triallate C10H16Cl3NOS 16.4 
252 Triasulfuron C14H16ClN5O5S 9.1 
253 Triclopyr C7H4Cl3NO3 10.2 
254 Trifloxystrobin C20H19F3N2O4 14.7 
255 Trifloxystrobin CGA 321113 C19H17F3N2O4 12.8 
256 Trifloxystrobin NOA 413161 C19H15F3N2O6 10.1 
257 Triflusulfuron-methyl C17H19F3N6O6S 11.9 
258 Trimethoprim C14H18N4O3 5.0 
259 Tritosulfuron C13H9F6N5O4S 11.6 
260 Tritosulfuron BH 635-4 (635M01) C10H10F3N5O4S 5.8 
261 Tritosulfuron BH 635-5 C5H5F3N4O 6.9 
262 Valsartan C24H29N5O3 10.7 
263 Valsartan acid C14H10N4O2 7.3 
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Table S3 

Suppliers of chemical standards 
# Company Location 
1 Alfa Aesar Karlsruhe, Germany 
2 BASF Ludwigshafen, Germany 
3 Bayer Leverkusen, Germany 
4 BIOZOL Diagnostica Eching, Germany 
5 Campro Scientific Berlin, Germany 
6 CHEMOS Regenstauf, Germany 
7 ChiroBlock Bitterfeld-Wolfen, Germany 
8 Dr. Ehrenstorfer Augsburg, Germany 
9 European Directorate for the Quality of Medicines Strasbourg, France 
10 LGC Standards Wesel, Germany 
11 Molekula Munich, Germany 
12 Neochema Bodenheim, Germany 
13 Sigma-Aldrich Steinheim am Albuch, Germany 
14 Syngenta Basel, Switzerland 
15 Toronto Research Chemicals Toronto, Canada 
16 United States Pharmacopeia Rockville, USA 
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Table S4 

Stock solution III: Isotopically labeled standards (N = 130),  
analyzed in both ESI modes (NESI+ = 123, NESI- = 56) 

# Name 
Elemental  
composition 

Retention  
time [min] 

1 2,4-D D3 (-) C8H3
2H3Cl2O3 9.7 

2 2,6-Dichlorobenzamide-3,4,5 D3 (+) C7H2
2H3Cl2NO 5.8 

3 5-Methylbenzotriazole D6 C7H2H6N3 6.5 
4 Acetyl-sulfamethoxazole D5 C12H8

2H5N3O4S 7.0 
5 Alachlor D13 (+) C14H7

2H13ClNO2 12.8 
6 Amisulpride D5 C17H22

2H5N3O4S 5.1 
7 Atazanavir D5 C38H47

2H5N6O7 10.2 
8 Atenolol acid D5 C14H16

2H5NO4 4.8 
9 Atenolol D7 (+) C14H15

2H7N2O3 4.5 
10 Atomoxetine D3 (+) C17H18

2H3NO 7.7 
11 Atorvastatin D5 C33H30

2H5FN2O5 11.8 
12 Atrazine D5 (+) C8H9

2H5ClN5 9.7 
13 Atrazine-2-hydroxy D5 C8H10

2H5N5O 4.9 
14 Atrazine-desisopropyl D5 (+) C5H3

2H5ClN5 5.5 
15 Azithromycin D3 (+) C38H69

2H3N2O12 5.8 
16 Azoxystrobin D4 (+) C22H13

2H4N3O5 11.8 
17 Bentazon D6 C10H6

2H6N2O3S 9.4 
18 Benzotriazole D4 C6H2H4N3 5.5 
19 Bezafibrate D4 C19H16

2H4ClNO4 10.4 
20 Bicalutamide D4 C18H10

2H4F4N2O4S 11.0 
21 Caffeine D9 (+) C8H2H9N4O2 5.0 
22 Candesartan D5 C24H15

2H5N6O3 9.3 
23 Carbamazepine D8 (+) C15H4

2H8N2O 8.4 
24 Carbamazepine-10,11-epoxide C13,D2 (+) C14

13CH10
2H2N2O2 7.2 

25 Carbendazim D4 (+) C9H5
2H4N3O2 4.8 

26 Cetirizine D8 C21H17
2H8ClN2O3 8.3 

27 Chloridazon D5 C10H3
2H5ClN3O 6.4 

28 Chloridazon-methyl-desphenyl D3 C5H3
2H3ClN3O 4.5 

29 Chlorotoluron D6 (+) C10H7
2H6ClN2O 9.3 

30 Chlorpyrifos D10 (+) C9H2H10Cl3NO3PS 15.9 
31 Chlorpyrifos-methyl D6 (+) C7H2H6Cl3NO3PS 14.4 
32 Citalopram D6 (+) C20H15

2H6FN2O 7.3 
33 Clarithromycin-N-methyl D3 (+) C38H66

2H3NO13 8.4 
34 Climbazole D4 C15H13

2H4ClN2O2 8.4 
35 Clofibric acid D4 (-) C10H7

2H4ClO3  10.2 
36 Clopidogrel carboxylic acid D4 (+) C15H10

2H4ClNO2S 6.1 
37 Clothianidin D3 C6H5

2H3ClN5O2S 6.3 
38 Clotrimazole D5 (+) C22H12

2H5ClN2 8.7 
39 Clozapine D8 (+) C18H11

2H8ClN4 6.5 
40 Codeine 13C,D3 (+) C17

13CH18
2H3NO3  4.7 

41 Cyclophosphamide D4 (+) C7H11
2H4Cl2N2O2P 7.0 

42 Cyprodinil D5 (+) C14
2H5H10N3 10.7 

43 Darunavir D9 C27H28
2H9N3O7S 10.4 

44 Desethylatrazine 15N3 (+) C6H10ClN2
15N3 6.5 

45 Desphenyl Chloridazon 15N2 (+) C4H4ClN15N2O 2.9 
46 Diazepam D5 (+) C16H8

2H5N2OCl  10.7 
47 Diazinon D10 (+) C12H11

2H10N2O3PS 14.1 
48 Dichlorprop D6 (-) C9H2

2H6Cl2O3  10.7 
49 Diclofenac D4 C14H7

2H4Cl2NO2 12.1 
50 Diflufenican D3 C19H8

2H3F5N2O2 14.7 
51 Dimethenamid D3 (+) C12H15

2H3ClNO2S 11.7 
52 Dimethoate D6 (+) C5H6

2H6NO3PS2 6.7 
53 Diuron D6 C9H4

2H6Cl2N2O 9.8 
54 Emtricitabine 13C,15N2 (+) C7

13CH10FN15N2O3S 4.5 
55 Epoxiconazole D4 (+) C17H9

2H4ClFN3O 11.9 
56 Eprosartan D3 C23H21

2H3N2O4S 6.6 
57 Erythromycin 13C2 (+) C35

13C2H67NO13 7.4 
58 Fenofibrate D6 (+) C20H15

2H6ClO4 15.9 
59 Fipronil 13C2,15N2 C10

13C2H4Cl2F6N2
15N2OS 13.4 

60 Fluconazole D4 C13H8
2H4F2N6O 5.9 

61 Fluoxetine D5 (+) C17H13
2H5F3NO 8.4 

62 Furosemid D5 (-) C12H6
2H5ClN2O5S 8.3 

63 Gabapentin D4 C9H13
2H4NO2 4.7 

64 Hydrochlorothiazide 13C,D2 C6
13CH6

2H2ClN3O4S2 5.1 
65 Ibuprofen D3 (+) C13H15

2H3O2  12.4 
66 Imidacloprid D4 C9H6

2H4ClN5O2 6.5 
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# Name Elemental  
composition 

Retention  
time [min] 

67 Indomethacin D4 C19H12
2H4ClNO4 12.1 

68 Irbesartan D3 C25H25
2H3N6O 8.8 

69 Irgarol D9 (+) C11H10
2H9N5S 9.8 

70 Isoproturon D6 (+) C12H12
2H6N2O  9.7 

71 Lamotrigine 13C3,D3 (+) C6
13C3H4

2H3Cl2N5 5.4 
72 Levetiracetam D3 (+) C8H11

2H3N2O2 4.8 
73 Lidocaine D10 (+) C14H12

2H10N2O 5.3 
74 Linuron D6 C9H4

2H6Cl2N2O2 11.4 
75 MCPA D3 (-) C9H6

2H3ClO3 9.8 
76 Mecoprop D6 (-) C10H5

2H6ClO3 10.6 
77 Mefenamic acid D3 C15H12

2H3NO2 13.2 
78 Mesotrione D3 C14H10

2H3NO7S 8.8 
79 Metalaxyl D6 (+) C15H15

2H6NO4 9.8 
80 Methiocarb D3 (+) C11H12

2H3NO2S 11.2 
81 Methylprednisolone D3 (+) C22H27

2H3O5 8.4 
82 Metolachlor D6 (+) C15H16

2H6ClNO2 12.8 
83 Metolachlor-ESA D11 C15H12

2H11NO5S 7.2 
84 Metoprolol D7 (+) C15H18

2H7NO3 5.6 
85 Metronidazole D4 (+) C6H5

2H4N3O3 4.7 
86 Metsulfuron-methyl D3 C14H12

2H3N5O6S 8.8 
87 Morphine D3 (+) C17H16

2H3NO3 4.3 
88 N,N-Diethyl-3-methylbenzamide D10 (+) C12H7

2H10NO 9.8 
89 N,O-Didesmethyl venlafaxine D3 (+) C15H20

2H3NO2 5.1 
90 N4-Acetyl-sulfathiazole D4 C11H7

2H4N3O3S2 5.4 
91 Naproxen D3 (+) C14H11

2H3O3 10.3 
92 Nelfinavir D3 C32H42

2H3N3O4S 8.9 
93 Nicosulfuron D6 C15H12

2H6N6O6S 7.8 
94 Octhilinone D17 (+) C11H2

2H17NOS 11.5 
95 O-Desmethylvenlafaxine D6 (+) C16H19

2H6NO2 5.2 
96 Oxazepam D5 C15H6

2H5ClN2O2 8.8 
97 Oxcarbazepine D4 (+) C15H8

2H4N2O2 7.5 
98 Paracetamol D4 (+) C8H5

2H4NO2  4.7 
99 Phenazone D3 (+) C11H9

2H3N2O  5.8 
100 Pirimicarb D6 (+) C11H12

2H6N4O2 5.9 
101 Pravastatin D3 (-) C23H33

2H3O7  8.1 
102 Primidone D5 (+) C12H9

2H5N2O2  5.8 
103 Prochloraz D7 (+) C15H9

2H7Cl3N3O2 11.0 
104 Propamocarb free base D7 (+) C9H13

2H7N2O2  4.6 
105 Propazine D6 (+) C9H10

2H6ClN5 11.0 
106 Propiconazole D5 (+) C15H12

2H5Cl2N3O2  13.0 
107 Propranolol D7 (+) C16H14

2H7NO2 6.7 
108 Pyrimethanil D5 (+) C12H8

2H5N3 9.1 
109 Ranitidine D6 C13H16

2H6N4O3S 4.5 
110 Ritalinic acid D10 (+) C13H7

2H10NO2 5.2 
111 Ritonavir D6 (+) C37H42

2H6N6O5S2 12.4 
112 Simazine D5 (+) C7H7

2H5ClN5 8.3 
113 Sotalol D6 C12H14

2H6N2O3S 4.5 
114 Sulcotrione D3 C14H10

2H3ClO5S 9.0 
115 Sulfadiazine D4 C10H6

2H4N4O2S 5.1 
116 Sulfadimethoxine D4 C12H10

2H4N4O4S 7.7 
117 Sulfamethazine 13C6 C6

13C6H14N4O2S 5.9 
118 Sulfamethoxazole D4 C10H7

2H4N3O3S 6.8 
119 Sulfapyridine D4 C11H7

2H4N3O2S 5.3 
120 Sulfathiazole D4 C9H5

2H4N3O2S2 5.1 
121 Tebuconazole D6 (+) C16H16

2H6ClN3O 12.2 
122 Terbuthylazine D5 (+) C9H11

2H5ClN5 11.3 
123 Terbutryn D5 (+) C10H14

2H5N5S  9.4 
124 Thiamethoxam D3 (+) C8H7

2H3ClN5O3S 5.7 
125 Tramadol D6 (+) C16H19

2H6NO2 5.6 
126 Trimethoprim D9 (+) C14H9

2H9N4O3  4.9 
127 Valsartan 13C5,15N C19

13C5H29N4
15NO3 10.8 

128 Valsartan acid D4 C14H6
2H4N4O2 7.3 

129 Venlafaxine D6 (+) C17H21
2H6NO2 6.3 

130 Verapamil D6 (+) C27H32
2H6N2O4 8.1 

(+): Compound only detectable in ESI positive mode  
(-): Compound only detectable in ESI negative mode  
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Table S5. Parameters for data processing 
Software package Parameter Value 

MarkerViewTM  
(1.2.1) 

  
Peak finding  
  
Minimum retention time 2 min 
Maximum retention time 19 min 
Subtraction offset 10 scans 
Subtraction multiple factor 1.3 
Noise threshold 100 cps 
Minimum spectral peak width 10 ppm 
Minimum RT peak width 3 scans 
Assign charge states enabled 
  
Peak alignment  
  
Retention time tolerance 0.15 min 
Mass tolerance 20 ppm 
Intensity threshold 100 cps 
  

MultiQuantTM  
(3.0.2) 

  
Peak integration  
  
Integration algorithm MQ4 
Gaussian smooth width 1.0 points 
Mass tolerance EIC ±10 ppm 
Retention time half window 9 sec 
Report largest peak disabled 
Min. peak width 6 points 
Min peak height 100 cps 
Noise percentage 99.9% 
Baseline sub. window 0.3 min 
Peak splitting 2 points 
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Table S5. Parameters for data processing (continued) 
Software package Parameter Value 
   
 Filtering  
   

MATLAB  
(R2015a) 

Blank correction; all models  
  𝑓𝐴= Peak AreaSamplePeak AreaBlank  *) [ 5 , ∞ [   
  
  
Absolute threshold; all models  
  
Peak area (A) [ 350 , ∞ [  cts 
Peak height (H) [ 100 , ∞ [  cps 
Retention time (R) [ 2.0 , 19.0 ] min 
Peak width at 50% (W) [ 3.5 , 12.0 ] sec 
Ratio of peak area/peak height (A/H) [ 3.5 , 12.0 ] sec 
  
  
Relative threshold; model (b, c, d)  
  

Ratio peak area (
𝐴𝑖𝐴𝑗) [ 2

3
 , 3

2
 ]  

Ratio peak height (
𝐻𝑖𝐻𝑗) [ 2

3
 , 3

2
 ]  

Ratio retention time (
𝑅𝑖𝑅𝑗) [ 99

100
 , 100

99
 ]  

Ratio peak width at 50% (
𝑊𝑖𝑊𝑗) [ 2

3
 , 3

2
 ]  

Ratio peak area/peak height (
𝐴/𝐻𝑖𝐴/𝐻𝑗) [ 2

3
 , 3

2
 ]  

  
Relative threshold Qn,k using different  

injection levels; model (e) only 
Here: Level 1 = 50 µL, Level 2 = 75 µL and  

Level 3 = 100 µL 

 

 

Q1,2= Area1∙Volume2Area2∙Volume1 **) 

 
[ 9

14
 ; 3

2
 ]  Q1,3= Area1∙Volume3Area3∙Volume1 **) 

 
[ 2

3
 ; 10

7
 ]  Q2,3= Area2∙Volume3Area3∙Volume2 **) [ 20

27
 ; 4

3
 ]  

*). The same factor fA is also applied to proof whether the peak height differs fa-times 
**).The same Qn,k are applied to proof whether the peak height is within the tolerance 
  



13 

 

 
 
(a) 

 
(b) 

 
 

Figure S1. Stability tests throughout the entire period of analysis; 
(a) coefficient of variation (CV) as a function of the quantile; CVs were calculated from 263 standards 
(Table S2) at three different injection volumes (50, 75 and 100 µL) from a measurement series of 63 
replicates (hence, 21 injections at each injection level), the dashed line (---) represents the 95%-
quantile; (b) sum of the relative peak area of all 263 standards against the consecutive number of 
injections with alternating injection volumes (50, 75, 100, 50, …), the relative peak areas are based on 
the mean value of the respective standard at a given injection volume; the dashed line (---) indicates 
the expected value of N = 263. 

  



14 

0.0 0.2 0.4 0.6 0.8 1.0

63

56

49

42

35

28

21

14

7

proportion of features 

nu
m

be
r o

f 
re

pl
ic

at
es

 u
se

d 
fo

r 
tr

en
d 

an
al

ys
is

,  
(■

 =
 s

ig
ni

fi
ca

nt
 tr

en
d 

fo
r 

α 
= 

1 
%

) 

0.0 0.2 0.4 0.6 0.8 1.0

21

14

7

proprortion of features N
um

be
r 

of
 re

pl
ic

at
es

 u
se

d 
fo

r 
tr

en
d 

an
al

ys
is

,  …
 

0.0 0.2 0.4 0.6 0.8 1.0

21

14

7

proprortion of features N
um

be
r 

of
 re

pl
ic

at
es

 u
se

d 
fo

r 
tr

en
d 

an
al

ys
is

,  …
 

0.0 0.2 0.4 0.6 0.8 1.0

21

14

7

proportion of features N
um

be
r 

of
 re

pl
ic

at
es

 u
se

d 
fo

r 
tr

en
d 

an
al

ys
is

,  …
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure S2. Trend analysis according to von Neumann; 
(a) dataset of 63 zero-injections (system blank, Nfeature = 2295) over a total analysis time of more than 
37 h, dataset of sample -A- (Nfeature = 7337) at (b) 50 µL, (c) 75 µL and (d) 100 µL injection volume 
over a total analysis time of almost 40 h; the ordinate shows the number of replicates that were chosen 
to form the sample while on the abscissa the proportion of features showing a statistically significant 
trend (■ = percentage of features with test values higher than the critical limit for p = 99%) is 
illustrated; 

Note: The approximation function 𝐶𝐿 = 2 − 2 ∙ 𝑧1−𝛼√ 𝑛−2𝑛2−1 was used to estimate the critical limit (CL) 

for n > 60 (negligible deviations for n > 50 between estimated and tabulated values, maximal 

deviation was less than 0.6%) 

  

(a) (b) 

(c) 

(d) 
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Explanation S1. Converting the number of combinations (C) into the number of  
remaining injections (r) 
 
Assuming a particular feature would occur in all n technical replicates and, in addition, also passing 
through all of the specified thresholds, the algorithm would provide the number of all theoretically 
possible combinations Cmax. Conversely, knowing that a feature has reached Cmax, it can be concluded 
that it occurred exactly n times. However, some features do only partly fulfill the threshold criteria, 
hence leading to a value smaller than Cmax. However, in reality some features do only partly fulfill the 
different threshold criteria, leading to combination values C which are smaller than Cmax. A frequent 
example where this situation arises represents features whose intensities lie very close to the threshold. 
In some cases the actual intensity is slightly above, in other cases slightly beyond the specified 
threshold. For this reason, only combinations which include samples with features above the threshold 
will contribute to C. Consequently, the number of all replicates (n) is reduced to the number of the 
remaining replicates (r = n - x) with x being the number of replicates that did not pass the thresholds. 
From the combinatorial perspective, a function f(r) = C can be derived for model (a) to (d) which 
maps each number of remaining injections (r) to the corresponding combination value (C). The 
inverse function f 

-1
(C) = r, on the other hand, would allow to map each combination value to the 

number of remaining replicates. The derivation of the inverse function, however, becomes complicated 
for higher-degree polynomial functions which is why the function f -1(C) = r was numerically solved.  

As a first step, the (nk)-functions were written in their polynomial forms which were numerically 

solved using “Root of nonlinear function” (Matlab) for all integer C numbers (𝐶 ∈ ℕ) in the codomain 
of interest. This allows mapping each number of combinations (C) back to the number of remaining 
injections (r) without the formation of the actual inverse function (within the domain of definition of 
these functions, each C-value can be assigned to one unique r-value). Note that the number of 
achievable combinations (count cases that fulfill the filters) must be positive integer numbers (𝐶 ∈ ℕ) 
while the number of remaining injections - after conversion - can also accept non-integer values 
(𝑟 ∈ ℝ+).  
Model (e), however, demonstrates a special case as, depending on the distribution of the replicates that 
do not pass the thresholds to the three injection levels, multiple numbers of combinations are obtained 
for the same number of remaining replicates (r). By way of example, the dataset in this study consists 
of 63 injections (21 at each level). Assuming features beyond the tolerance in 18 injections it seems 
evident, that the case where the outliers are uniformly distributed over three injection levels (hence six 
injections per level) results in a higher number of combinations as if the outliers exclusively occur at 
one level. Taking into account the outlier distribution, the general formula to calculate the number of 
possible combinations is composed as follows: 
 𝐶 = (𝑛 − 𝑥)(𝑛 − 𝑦)(𝑛 − 𝑧) 
 
with x, y and z being the number of outliers (i.e. features that do not pass the threshold criteria) at the 
respective injection level. The remaining number of injections r can be expressed by  𝑟 = 3𝑛 − (𝑥 + 𝑦 + 𝑧) and after transformation of 𝐶(𝑛) to 𝐶(𝑟) the equation describes the number of 
achievable combinations for different outlier distributions.  
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First of all, the combinations C were calculated for all feasible constellations of x, y and z before the 
following limit cases were derived:  

(I) x = y = z 

(II) x = y; z = x - 1 

(III) y = z = x - 1 

(IV) y = z = 0 

(V) y = (n - 1); z = 0 

(VI) y = z = (n - 1) 

 

As shown in Figure S3, the different functions derived from (I) to (VI) describe the extreme values 
(black) while the possible combinations for all outlier distributions (grey) are within these limits.  

 

Figure S3. Simulated combination values for all possible outlier distributions 

 
To take but one example, 20 outliers at injection level 3 (z = 20) would result in a remaining number 
of r = 63 - (0 + 0 + 20) = 43 injections and in a combination value of C = 21∙21∙(21 - 20) = 441. A 
more uniform distribution of the 20 outliers such as x = 6, y = 7 and z = 7 would also lead to a 
remaining number of replicates r = 63 - (6 + 7 + 7) = 43 but to a combination value of  
C = (21 - 6)∙(21 - 7) ∙(21 - 7) = 2940. As evident, the distribution of the injections that fail the 
threshold criteria to the three injection level has a high impact on the achievable combination value. 
Conversely, having one combination value C, multiple constellations of x, y and z and therefore r are 
possible.  
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After processing the data using model (e), the algorithm delivers the combination values for each 
single feature but not the distribution of the outliers to the three levels. Consequently, a clear 
assignment of the remaining injections (r) to the obtained combination value (C) is no longer possible. 
Considering the extreme values, hence the best- and worst-case scenarios, at least a possible range of 
the r-values can be localized. The deviation between both scenarios can be taken from Figure S4 
which comprises all possible constellations. The maximum deviation of about 20 replicates is reached 
for 43 remaining injections (x=43.00, y= 22.83). As can be seen, for higher values, on the other hand, 
the deviations become very low and thus leading to substantially smaller differences.  
 
 
 (a)      (b) 

 

Figure S4. Deviations in the remaining injection numbers; 
Deviation between the best- and worst-case scenario caused by conversion from the reached 
combinations (C) back to the remaining number of injections (r), (a) shows the possible deviations 
based on the theory whereas (b) illustrates the results obtained from a real data set (sample -A-), Note: 

In case of (b), the density of the point (shading) also shows the distribution 
 
 
In overall terms, the deviations between both scenarios could be very small if most features possess 
high combination values and hence high r-values. For instance, the evaluation of sample -A- (see main 
part) is depicted in Figure S4 (b) where the distribution of the r-values is indicated by the point density 
(shading) which reaches the highest values for very high r-values (times recognized >50). In these 
cases, the differences between both extreme cases remain very low with the result that the calculated 
mean values could be closer than expected.   
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All equations used in this study are plotted in Figure S5 and the exact equations which were derived 
from the combinational approach are shown below. 

 

Figure S5. Number of combinations (C) as functions of the injection numbers (r); (a) single replicates, 
(b) replicates duplicates, (c) replicates triplicates, (d) replicates quadruplicates and (e) replicates 
triplicates at three different injection levels;  
Note: In case of (e) 21 times three injection volumes (here: 50, 75 and 100 µL) were evaluated adding 

to a total number of 63 injections. 
 𝐶𝑎(𝑛) = 𝑛 𝑓𝑜𝑟 1 ≤ 𝑛 ≤ 21 

   𝐶𝑏(𝑛) = 12 𝑛2 − 12 𝑛 
𝑓𝑜𝑟 2 ≤ 𝑛 ≤ 21 

   𝐶𝑐(𝑛) = 16 𝑛3 − 12 𝑛2 + 13 𝑛 
𝑓𝑜𝑟 3 ≤ 𝑛 ≤ 21 

   𝐶𝑑(𝑛) = 124 𝑛4 − 14 𝑛3 + 1124 𝑛2 − 14 𝑛 
𝑓𝑜𝑟 4 ≤ 𝑛 ≤ 21 

   𝐶𝑒,𝑤𝑜𝑟𝑠𝑡(𝑛) = 127 𝑛3 
𝑓𝑜𝑟 3 ≤ 𝑛 ≤ 63 

   𝐶𝑒,𝑏𝑒𝑠𝑡(𝑛) = {441𝑛 − 1852221𝑛 − 462𝑛 − 2                     𝑓𝑜𝑟 43 ≤ 𝑛 ≤ 63 𝑓𝑜𝑟 23 ≤ 𝑛 < 43 𝑓𝑜𝑟 3 ≤ 𝑛 < 23 
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 (a)        (b) 

    

Figure S6. Problem cases using background subtraction; 
background subtraction (10 scans offset, grey highlighted) is leading to false negative results for the later eluting 
isomers; (a) Simazine (C7H12ClN5; RT ≈ 8.25), Desethylterbutylazin (C7H12ClN5; RT ≈ 8.45); (b) Desmetryn 
(C8H15N5S; RT ≈ 6.95), Irgarol-descyclopropyl (C8H15N5S; RT ≈ 7.15); 
Note: The background subtraction is accomplished by subtraction of the MS spectrum 10 scans before (grey points) 

the peak apex which was multiplied by a certain subtraction multiple factor (here: 1.3)  
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 (a)       (b) 

 
 (c)       (d) 

 
  

Figure S7. Comprehensive evaluation of sample 
-B- (ultrapure water + 1000 ng L-1 of stock 
solution I) 
(a) Cumulative feature distribution of the raw 
data and model (a)-(d), 21 injections, 100 µL 
each 

(b) Cumulative feature distribution of the raw 
data and model (e), 63 injection (50, 75, 100 µL) 

Note: The mean rate of recognitions are depicted 

in the legend behind the respective entry 

(c) ∆ recognition values plotted in descending 
order for all features, model (a) - (d) with respect 
to the raw data, 21 injections, 100 µL each 

(d) ∆ recognition values plotted in descending 
order for all features, model (e) with respect to 
the raw data, 63 injection (50, 75, 100 µL) 

Note: The mean improvement factors are 

depicted in the legend behind the respective entry 

Note: For model (e) the best- and worst-case 

scenarios were taken into consideration 
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 (a)       (b) 

 
 (c)       (d) 

  

Figure S8. Comprehensive evaluation of sample 
-C- (River water + 100 ng L-1 of stock solution I) 
(a) Cumulative feature distribution of the raw 
data and model (a)-(d), 21 injections, 100 µL 
each 

(b) Cumulative feature distribution of the raw 
data and model (e), 63 injection (50, 75, 100 µL) 

Note: The mean rate of recognitions are depicted 

in the legend behind the respective entry 

(c) ∆ recognition values plotted in descending 
order for all features, model (a) - (d) with respect 
to the raw data, 21 injections, 100 µL each 

(d) ∆ recognition values plotted in descending 
order for all features, model (e) with respect to 
the raw data, 63 injection (50, 75, 100 µL) 

Note: The mean improvement factors are 

depicted in the legend behind the respective entry 

Note: For model (e) the best- and worst-case 

scenarios were taken into consideration 

 

 



22 

 
 (a)       (b) 

 
 (c)       (d) 

  

Figure S9. Comprehensive evaluation of sample 
-D- (Stagnated tap water + 100 ng L-1 of stock 
solution I) 
(a) Cumulative feature distribution of the raw 
data and model (a)-(d), 21 injections, 100 µL 
each 

(b) Cumulative feature distribution of the raw 
data and model (e), 63 injection (50, 75, 100 µL) 

Note: The mean rate of recognitions are depicted 

in the legend behind the respective entry 

(c) ∆ recognition values plotted in descending 
order for all features, model (a) - (d) with respect 
to the raw data, 21 injections, 100 µL each 

(d) ∆ recognition values plotted in descending 
order for all features, model (e) with respect to 
the raw data, 63 injection (50, 75, 100 µL) 

Note: The mean improvement factors are 

depicted in the legend behind the respective entry 

Note: For model (e) the best- and worst-case 

scenarios were taken into consideration 
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 (a)      (b)  

 
 (c)      (d) 

  

Figure S10. Theoretical calculations to derive the 
maximum achievable extent of improvement for 
the respective model 
(a) x-y-scatterplot for model (a) to (d) showing 
the maximum achievable number that could 
theoretically be obtained by the respective model 
(combinatorial approach) 

(b) x-y-scatterplot for model (e) showing the 
maximum achievable number that could 
theoretically be obtained, the best- and worst-
case scenario was simulated 

(c) Maximum achievable improvement with 
respect to the raw data for model (a) to (d) 

(d) Maximum achievable improvement with 
respect to the raw data for model (e) ), the best- 
and worst-case scenario was simulated 

Note: The maximum improvement was simulated 

for cases where, for example, a feature was only 

recognized once, although a true peak was 

apparent in each replicate (false negative). 

Therefore, each combination containing the 

specific replicate would result in a positive hit 



24 

 

Table S6. Improvement or deterioration with respect to the raw data (normal and weighted with the extent) 
 Number of features (relative part)  Weighted number of features 

 ∑  improvement no change deterioration  Area (+) Area (-) I̅ 
Sample -A-          
Model (a) 4441  0 (0) 4148 (0.934) 293 (0.066)  0 1578 -1.000 
Model (b) 4369  1838 (0.421) 1816 (0.416) 715 (0.164)  8949 1783 0.668 
Model (c) 4298  1771 (0.412) 1811 (0.421) 716 (0.167)  12054 1933 0.724 
Model (d) 4215  1716 (0.407) 1785 (0.423) 714 (0.169)  13279 2001 0.738 
Model (e)-best 4301  2248 (0.523) 864 (0.201) 1189 (0.276)  38263 7817 0.661 
Model (e)-worst 4301  2340 (0.544) 862 (0.2) 1099 (0.256)  55529 5303 0.826 
          
Sample -B-          
Model (a) 2135  0 (0) 1884 (0.882) 251 (0.118)  0 1296 -1.000 
Model (b) 1891  836 (0.442) 583 (0.308) 472 (0.25)  3487 1800 0.319 
Model (c) 1841  797 (0.433) 583 (0.317) 461 (0.25)  4629 1941 0.409 
Model (d) 1688  724 (0.429) 531 (0.315) 433 (0.257)  5010 1805 0.470 
Model (e)-best 1791  996 (0.556) 239 (0.133) 556 (0.31)  14787 5793 0.437 
Model (e)-worst 1791  1095 (0.611) 225 (0.126) 471 (0.263)  24439 3341 0.759 
          
Sample -C-          
Model (a) 844  0 (0) 733 (0.868) 111 (0.132)  0 661 -1.000 
Model (b) 815  411 (0.504) 212 (0.26) 192 (0.236)  1669 695 0.412 
Model (c) 747  379 (0.507) 203 (0.272) 165 (0.221)  2164 570 0.583 
Model (d) 667  342 (0.513) 168 (0.252) 157 (0.235)  2324 475 0.661 
Model (e)-best 743  494 (0.665) 52 (0.07) 197 (0.265)  7559 1653 0.641 
Model (e)-worst 743  543 (0.731) 49 (0.066) 151 (0.203)  11731 1088 0.830 
          
Sample -D-          
Model (a) 2978  0 (0) 2567 (0.862) 411 (0.138)  0 1624 -1.000 
Model (b) 2899  1470 (0.507) 839 (0.289) 590 (0.204)  6794 1706 0.598 
Model (c) 2822  1413 (0.501) 835 (0.296) 574 (0.203)  9071 1880 0.657 
Model (d) 2725  1341 (0.492) 801 (0.294) 583 (0.214)  9926 1952 0.671 
Model (e)-best 2774  1747 (0.63) 255 (0.092) 772 (0.278)  30134 6694 0.636 
Model (e)-worst 2774  1856 (0.669) 245 (0.088) 673 (0.243)  44870 4208 0.829 
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Explanation S2. Context between intensity threshold and peak height or peak area 
 
 
Unfortunately, the exact way of how the peak finding algorithm works is not known (corporate secret), 
therefore leading to uncertainties if comparing manually processed data with data obtained from the 
algorithm. One fundamental parameter in all evaluations is the intensity threshold that determines 
which signals are processed (signal > threshold) and which ones remain disregarded  
(signal ≤ threshold). The intensity threshold possesses the dimension counts per second (cps) whereas 
the generated response shows another one. While we could show that in general a good correlation 
between the reported response and the real peak area and peak height exist (Figure S11), we have been 
struggling to find the exact relationship which is indispensable to elucidate the connection between the 
intensity threshold and the peak area or peak height. Once having found a possible peak location, the 
algorithm sums the spectra from the starting to the ending scan (i.e. across the LC peak) and then 
generates the response from the spectral peak area. This coincides with the fact that the peak area 
shows a slightly better correlation with the response. However, due to the fact that the limits (i.e. 
starting and ending scans) are automatically set by the algorithm, it is not possible to verify these 
calculated response values. For this reason it is not possible to directly compare the generated 
responses with the intensity threshold and moreover to exactly compare results to manually verified 
ones. 
 
 
 (a)      (b) 

 

Figure S11. Correlation between response and real peak area (a) and peak height (b)  
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ABSTRACT: The behavior of micropollutants in water
treatment is an important aspect in terms of water quality.
Nontarget screening by liquid chromatography coupled to
high-resolution mass spectrometry (LC-HRMS) offers the
opportunity to comprehensively assess water treatment
processes by comparing the signal heights of all detectable
compounds before and after treatment. Without preselection of
known target compounds, all accessible information is used to
describe changes across processes and thus serves as a measure
for the treatment efficiency. In this study, we introduce a novel
LC-HRMS data processing strategy for the reliable classi-
fication of signals based on the observed fold changes. An
approach for filtering detected features was developed and, after
parameter adjustment, validated for its recall and precision. As proof of concept, the fate of 411 target compounds in a 0.1 μg/L
standard mix was tracked throughout the data processing stages, where 406 targets were successfully recognized and retained
during filtering. Potential pitfalls in signal classification were addressed. We found the recursive peak integration to be a key point
for the reliable classification of signal changes across a process. For evaluating the repeatability, a combinatorial approach was
conducted to verify the consistency of the final outcome using technical replicates of influent and effluent samples taken from an
ozonation process during drinking water treatment. The results showed sufficient repeatability and thus emphasized the
applicability of nontarget screening for the assessment of water treatment processes. The developed data processing strategies
may be transferred to other research fields where sample comparisons are conducted.

A variety of tens of thousands of organic substances are in
daily use and manufactured, consumed, and disposed of in

households or industry. Many of them, such as pharmaceuticals,
pesticides, personal care products, and industrial chemicals,
among others, have the potential to enter the aquatic
environment as micropollutants.1−4 Various targeted, as well
as untargeted, monitoring studies revealed the presence of
micropollutants in wastewater,5−7 surface water,8,9 and drinking
water.10−13

Different treatment processes, for example, based on
oxidation with ozone and/or adsorption onto activated carbon,
for both wastewater and drinking water treatment have been
developed to improve the removal of micropollutants.14−17 To
assess the performance of these treatment processes, removal
efficiencies of known target compounds are generally quantified
by liquid chromatography tandem mass spectrometry (LC-
MS2). By such approaches, however, the complete evaluation of
a process is based on a small subset of trace substances.18,19

Assuming many transformation products (TPs) to be unknown
yet, this group is particularly underrepresented by common
strategies.20 This restriction exposes the weakness of targeted

approaches and emphasizes the demand for new strategies
which reveal a more comprehensive view of a treatment
process.
Recent advances in high-resolution mass spectrometry

(HRMS) coupled to liquid chromatography (LC) have initiated
new possibilities for the detection of micropollutants at
environmentally relevant concentrations in complex matri-
ces.21,22 Nontarget screening based on LC-HRMS becomes
increasingly important as the information on all detectable
compounds, comprising unknowns, is considered.23−25 Many
studies using nontarget screening were aimed at finding and
identifying unknown or unexpected compounds, mostly
transformation products.26−30 Typically hundreds to thousands
of chromatographic peaks (also called features) are detectable
in each sample, making manual peak review and correction no
longer a reasonable option. Instead, sophisticated processing
strategies are needed to automatically process the wealth of

Received: July 31, 2017
Accepted: November 22, 2017
Published: November 22, 2017

Article

pubs.acs.org/acCite This: Anal. Chem. 2017, 89, 13219−13226

© 2017 American Chemical Society 13219 DOI: 10.1021/acs.analchem.7b03037
Anal. Chem. 2017, 89, 13219−13226



data, while keeping false positive and false negative findings to a
minimum.31−34

The LC-HRMS data can also be used for the assessment of
water treatment processes.35 Even if most of the detected
signals remain unknown, it is possible to track these features
through treatment processes. The efficiency of the treatment
can be evaluated by comparing the heights of the detected
signals in the influent and effluent of the process, whereas care
must be taken to ensure that matrix effects do not distort the
relations. Thus, nontarget screening provides a more holistic
picture of the entire process with less bias caused by
preselection of known substances. However, nontarget screen-
ing does initially not provide reliable figures on quantitative
concentrations (regulatory compliance).
Only few studies were published using HRMS as an

evaluation tool to assess treatment processes. Merel et al.
investigated wastewater samples treated with UV or UV/H2O2

in pilot scale treatment.36 Nürenberg et al. classified features to
assess the denitrification/nitrification step during biological
wastewater treatment.37 Parry et al. compared targeted and
nontargeted approaches to evaluate the wastewater treatment
by the advanced oxidation reactor.38 Bader et al. assessed the
fourth treatment step using granulated activated carbon after
the biological wastewater treatment.39 Heuett applied nontarget
screening to investigate changes in the feature pattern across
the process of drinking water treatment.40 However, none of
these studies addressed the reliability of the results which is a
critical point in each untargeted workflow41 and might affect
the assessment of processes.
Therefore, the main goal of this work was to develop a

strategy for assessing water treatment processes based on LC-
HRMS data and verify the consistency of the final outcome.
First, we developed a workflow for the reliable processing of
LC-HRMS data, which was evaluated for its recall and
precision.42 Second, a concept for the assessment of water
treatment processes based on the classification of (un)known
signals was introduced. Potential pitfalls regarding the fold
change (i.e., quotient of effluent and influent peak heights)
calculation for signals close to the intensity threshold were
discussed and an algorithm to overcome these difficulties was
presented. Last, a combinatorial approach based on the
comparison of multiple replicates was conducted to evaluate
the repeatability of the complete workflow.

■ METHODS

Sampling. A grab sample taken from the River Danube at
River Kilometer Index 2568 (Leipheim, Germany) was
analyzed and served as training data for optimizing the
extracted ion chromatogram (EIC) filtering. The test data set
consisted of four grab samples taken from different stages of the
drinking water treatment (Waterworks Langenau, Germany).
The influent represented river water which was directly
abstracted (no bank filtration) from the River Danube.
Additional samples were taken from the effluents of ozonation
(O3), multilayer filtration (MLF) and activated carbon filtration
(ACF). As further criterion for evaluating the workflow, a
multicomponent standard (ultrapure water), comprising 411
target compounds (Supporting Information (SI), Tables S-1
and S-2) at 0.1 μg/L, was considered throughout the different
stages of data processing. The targets belong to various
substance classes, such as pesticides, pharmaceuticals, industrial
chemicals and personal care products, and cover a broad mass
(m/z 100−838) and polarity range (log D (pH 3) ≈ −1.5−5.0,

pH 3 because of acidified eluents). For assessing the
repeatability of the developed strategy, the ozonation process
in drinking water treatment was considered. The influent
consisted of pretreated river water after flocculation and
sedimentation which will hereinafter be referred to as river
water. The effluent was taken after the process of ozonation.
Both the influent and effluent samples were analyzed in nine
technical replicates (repeated measurements of the same
sample). To avoid discriminating against certain substances,
no sample preparation was performed. The glassware used was
treated for 4 h at 450 °C in a fusing oven (FE 230, Rohde,
Germany) to prevent contamination of single samples.

Sample Acquisition. The LC-HRMS acquisition method is
described in Table S-3. Briefly, samples were analyzed in
triplicates using reversed phase separation (Zorbax Eclipse Plus
C18, 2.1 × 150 mm, 3.5 μm, Agilent) coupled to a quadrupole-
time-of-flight mass analyzer (TripleTOF 5600, Sciex). Ions
were generated by positive electrospray ionization and
monitored within m/z 100 and 1200. For quality assurance,
13 isotope-labeled internal standards (Table S-4), well
distributed across the considered retention time range, were
used. Samples and internal standards were coinjected using 95
and 5 μL, respectively. To obtain similar ion abundances for the
internal standards (IS), different concentrations were used to
prepare the spike solution. For blank correction, 95 μL of
ultrapure water was coinjected with 5 μL of internal standards.

Software. MarkerView (1.2.1) was used for peak finding
and peak alignment across different samples and replicates. The
quantitation package MultiQuant (2.1.2 + Research Features,
January 24, 2017) was utilized for subsequent peak integration
of all detected features using two integration algorithms (MQ4
and Summation). Both software tools are available from Sciex
(Framingham, USA). Further processing steps were accom-
plished by in-house scripts executed by Matlab (R2016b, The
MathWorks, Inc., Natick, USA).

Data Processing Workflow. The entire workflow was
composed as follows: (1) peak finding, (2) peak alignment, (3)
peak integration, and (4) EIC filtering. For peak finding and
alignment, the specific parameters were optimized to keep the
number of false negatives to a minimum (Table S-5). This step,
however, results in an increasing number of false positives
which were reduced by the EIC filtering after integration of
each feature using two fundamentally different algorithms. For
both algorithms, various peak characteristics, such as peak
height, peak width or retention time, were exported and used to
create the filters (Table S-6). Also, relationships within the data
obtained by one algorithm (e.g., difference between centroid
and apex retention time) as well as between the data obtained
by the two algorithms (e.g., relative changes in peak heights)
were considered. Each filter consists of a minimum, a maximum
and a variation argument. For the latter, samples were analyzed
in triplicates41 to regard the (relative) standard deviation,
(R)SD. Peaks satisfying all filters were subjected to the blank
correction, where a fold change (sample to blank) of five must
be exceeded. A “componentization” step was conducted to
group isotopologues, adducts and dimers (Table S-6).33 The
single steps of the entire workflow were merged in a Matlab
script, which allows a semiautomated way of data processing
including import and export data from/to vendor software via
*.txt files. The processing strategy can be adapted to other
instrument setups.

Derive Filter Settings from Training Data. For the
assessment of water treatment processes, the reliability of the
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data needs to be high. False positives/negatives hamper the
evaluation by distorting the actual data and might lead to
erroneous conclusions. To counter these problems, we
developed an effective EIC filtering strategy to distinguish
between true peaks and noise. A triplicate injection of a river
water sample was used for the generation of training data. At
this point, no blank correction was performed, as real
chromatographic peaks also occur in the blank. Across the
triplicates, 2893 features were recognized in at least one
replicate. Each EIC was manually reviewed and categorized into
the three groups Peaks, No Peaks, and Exclude. EICs exceeding
the empiric intensity threshold of 200 cps and a signal-to-noise
ratio (S/N) of about three were grouped into the category
Peaks. EICs that did not exceed this S/N were assigned to No
Peaks. Candidates with sufficient S/N but peak heights below
the intensity threshold, as well as candidates which could not
unambiguously assigned to Peaks/No Peaks were excluded from
the data set in order to validate the filtering approach (true/
false decision necessary). Likewise, implausible courses (e.g.,
strong variations, absence in some replicates) were assigned to
Exclude and not considered any further. After manual review,
the data arrays were split into Peaks and No Peaks. For each of
the parameters, the distribution of the Peaks and No Peaks
groups was taken into consideration. The absolute parameter as
well as the fluctuation across the replicates was considered. For
parameters subjected to a one-sided distribution (e.g., peak
height), the 0.1% quantile was used as a lower threshold or the
99.9% quantile as an upper threshold. In case of two-sided
distributions (e.g., peak width), the 0.05% and 99.95% quantiles
were used. The derivation of the filter settings for the peak
width is illustrated in Figure 1. The settings for the remaining
filters were derived in the same way and are summarized in
Table S-6. Some values are already determined by previous
workflow steps and were therefore not derived from the
training data.
Assessment of Water Treatment Processes. Since most

of the peaks in nontarget screening remain unknown, the
process performance needs to be based on signal heights rather
than on concentrations. Changes in signal heights are
theoretically mirrored by changes in concentrations, whereas
matrix effects in electrospray ionization (in particular ion
suppression) may affect this relation. Whether or to what extent
these effects might impair the assessment depends on the
degree of matrix change throughout the treatment process. In
case of major changes of the sample matrix, the results should
be interpreted with caution.43 Recovery rates of spiked internal
standards can serve as a rough estimate for the occurrence/
extent of matrix effects, but accurate and precise correction
methodsas is usual in target analysisare future need.
To track features through the treatment process, the fold

change (fc) between the effluent and influent sample was
considered. For reasons of simplicity, the calculated fcs were
classified to five distinct categories (Table 1). A signal decrease
of more than 80% (fc <0.2) was defined as complete
elimination. The interval for the respective counterpart (e.g.,
elimination−formation) was defined using its multiplicative
inverse and thus led to fair classification irrespective of the
direction being considered. The formation of a compound was
consequently assumed for fc >5. The fc interval for the category
consistency was derived from the stability of the internal
standards by considering the maximum value of the 5-fold
standard deviation.

It should be noted that in addition to micropollutants, the
signals of all detectable compounds (e.g., of natural origin) are
considered for the assessment. Moreover, one component
might generate multiple signals during the mass spectrometric
detection. Some of those signals (e.g., isotopologues, adducts)
can be grouped and assigned to one compound,33 whereas
others (e.g., in-source fragmentation) cannot easily be
corrected. Redundancies in data interpretation are thus difficult
to circumvent and hamper the numeric process assessment.

Repeatability of Classification. For evaluation of the
repeatability of the signal classification, the ozonation process
during drinking water treatment was considered. Both the
process influent (river water) and effluent (ozonation effluent)
were analyzed in nine technical replicates (n = 9). The
presented data processing strategy requires the use of triplicates
(k = 3). A combinatorial approach was conducted for the
pairwise comparison of all possible combinations of triplicates
out of n technical replicates. For estimating the repeatability of
the complete workflowincluding the fc categorizationtwo

Figure 1. Distribution of (a) the peak widths (full width at half-
maximum, fwhm) and (b) the standard deviations (SDs) of the peak
widths across a triplicate for all Peaks and No Peaks. The bin widths
were determined by the “auto” algorithm (histogram, Matlab). The
derived filter settings (minimum = 0.045 min, maximum = 0.250 min,
SD = 0.060 min) are depicted by the dashed lines.

Table 1. Peak Categorization Based on Defined Fold
Changes in Peak Heights between Process Effluent and
Influent

category fca interval

(E) elimination 0.00 ≤ fc <0.20

(D) decrease 0.20 ≤ fc <0.50

(C) consistency 0.50 ≤ fc ≤2.00

(I) increase 2.00 < fc ≤5.00

(F) formation 5.00 < fc ≤ ∞

aFold change fc = peak heightEffluent/peak heightInfluent
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aspects were taken into consideration: (a) The repeatability of
technical replicates within one sample, meaning influent and
effluent were composed of the same sample but different
replicates. Considering this purely theoretical “process”, each
feature should be assigned to the category consistency (assuming
the technical replicates to be identical). The pairwise
comparison of triplicates out of n technical replicates of the
same sample (Figure 2a) leads to a total number of

−( )( )nk n k
k

1

2
“processes” to be considered (here 840). This

evaluation was performed with the river water (I) and the
effluent after ozonation (II) and served as a plausibility check.
(b) The repeatability of technical replicates between two
samples, meaning influent and effluent were composed of
different samples (III). Considering this real process (ozona-
tion), it was expected that changes caused by treatment were
reflected by the number of features assigned to the five different
categories (Table 1). The pairwise comparison of triplicates out
of n technical replicates of the process influent and effluent

(Figure 2b) results in ( )nk
2
processes to be considered (here

7056).

■ RESULTS AND DISCUSSION

The first part describes the validation of the EIC filtering
approach. The second part deals with data processing for the
assessment of treatment processes. Specifically, we address the
threshold problematic and present a recursive approach to
overcome related problems. Finally, we evaluate the repeat-
ability of the strategy using a combinatorial approach to
demonstrate the general applicability.

Validation of EIC Filtering. The performance of the EIC
filtering approach was assessed for its recall (i.e., true positive
rate) and precision. The data obtained from peak finding and
alignment was considered as a ground truth since the aim was
to validate the EIC filtering step of the entire workflow. Four
samples taken from the serial processes of the drinking water
treatment served as a test data set. As with the training data,
each feature was manually reviewed and categorized in Peaks,
No Peak, or Exclude. After running through the nontargeted
workflow including the derived EIC filtering criteria (except for
the blank correction), the produced results (i.e., feature
retained/rejected) were compared with the manual classifica-
tion (i.e., Peaks/No Peaks) for determining common validation
metrics. The summary of the validation for both the training
and test data is listed in Table 2.
The good performance of the EIC filtering is underlined by

values for precision and recall above 98% and 96%, respectively.
The low numbers of false negative (fn) findings were mostly
caused by integration problems of double peaks with
insufficient chromatographic separation. Note that fn in this
case refers to true peaks recognized by peak finding and
alignment but rejected during the filtering approach. The false
positive rate was always below 5%. Similar studies on
wastewater reported higher proportions of fn and fp, which
may be explained by stronger matrix interferences.37,38

In a second step, the performance of the EIC filtering was
assessed based on 411 target compounds. A 0.1 μg/L
multicomponent standard (ultrapure water) was injected in
triplicates (9.5 pg on column). The complete workflow was
applied to the data set and targets were treated as unknown
signals. The data set comprising 5435 features (recognized in at
least one replicate) was searched against the target list (exact

Figure 2. Pairwise comparison of triplicates (k = 3) out of n = 9
technical replicates (a) within same samples (theoretical process I and
II) and (b) between different samples (real process of ozonation III).

Table 2. Validation of the EIC Filtering, Number of Features (without Blank Correction)

training data test data

parameter river water river water effluent O3 effluent MLF effluent ACF

ground truth (manual decision)

peaks 1376 1672 1502 1405 1317

no peaks 889 1225 1373 1452 1570

excluded 628 436 458 476 446

validation

true positive (tp) 1366 1648 1493 1397 1294

true negative (tn) 851 1172 1317 1404 1517

false positive (fp) 38 53 56 48 53

false negative (fn) 10 24 9 8 23

precisiona 0.993 0.986 0.994 0.994 0.983

recallb 0.973 0.969 0.964 0.967 0.961

FPRc 0.043 0.043 0.041 0.033 0.034

aPrecision = tp/(tp + fp). bRecall = tp/(tp + fn). cFalse positive rate FPR = fp/(fp + tn).
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mass and expected retention time). Out of 411 compounds,
408 were successfully detected (at least in one replicate) in the
peaks table after alignment. The three missing components all
showed insufficient chromatographic separation with other
compounds from the mix (Figure S-1). This underlines the
importance of adequate separation methods which are difficult
to optimize for such multimethods.37 After applying the filters
to the data, still 406 out of 408 possible components were
retained. One was lost due to low signal height below the
threshold, the second due to integration problems of a double
peak. The recovery of more than 99.5% (406/408) emphasizes
that the possibility of losing real peaks is deemed to be low.
Considering the complete workflow, eight more standards were
(correctly) removed due to the blank correction (fold change
of sample to blank <5).
Threshold Problematic. In comparative sample evaluation,

there are also cases where one peak (either influent or effluent)
falls below the intensity threshold that need to be processed to
determine the fold changes. In the following, this aspect is
discussed for signals with decreasing peak heights over a
treatment process. Generally, two different viewpoints exist.
Peak heights below the intensity threshold can either be
assumed to be zero (optimistic view) or be replaced by the
intensity threshold itself (pessimistic view). Regardless of which
view is considered to be the better option, inaccurate estimates
will occur. Two features selected from the test data set
emphasize possible misinterpretations that would occur if the
optimistic (Figure S-2a) or the pessimistic view (Figure S-2b)
was applied. Regarding the classification system, the optimistic
view likely leads to overestimation of the groups elimination/
formation, whereas the pessimistic one will generally favor the
group consistency. The uncertainty problematic of the peak
classification is depicted in Figure 3.

The threshold of 200 cps and the categories E, D, and C are
used for the discussion. Assuming an influent peak height of
300 cps and an effluent peak height below the threshold, the
signal could theoretically be assigned to all three categories: C
(e.g., 200/300, pessimistic), D (e.g., 120/300), or E (e.g., 0/
300, optimistic). The correct choice remains unknown and the
arbitrary assignment leads to blurred boundaries which might

result in misinterpretations of the factual circumstances. After
exceeding the influent peak height of 1000 cps, the classification
is no longer affected by the threshold since the uncertainty
region completely falls within category E. Thus, in this case
only features with peak heights above 1000 cps (in influent or
effluent) can be unambiguously assigned to the defined groups.
However, more than 75% of all features from the training and
test data sets (after EIC filtering) fall within the region between
the threshold and the “no influence peak height” of 1000 cps
(Figure S-3). Instead of discarding large parts of the data for the
assessment of a process, we developed a recursive approach for
more reliable assignment of features within the uncertainty
region.

Recursive Approach for Classification. Two algorithms
were applied for the peak integration for two different reasons:
First, multiple valuable filtering criteria could be derived to
effectively reduce false positives. Second, the so-called
Summation algorithm forces EIC integration irrespective of
absence/presence of a chromatographic peak. We found this
aspect to be helpful for a reliable sample comparison based on
fcs. For one feature, the integration by the Summation
algorithm is shown for the process influent and effluent (Figure
4). The algorithm first detects the apex within the defined

summation window. The data point with minimum abundance
within the summation window is used to estimate the
horizontal baseline. Finally, the end points of the summation
range are adjusted to local minima (if any). The actual height is
the intensity difference between the apex and the baseline
estimate. The heights reported by this algorithm were
recursively retrieved for fc calculations involving signals that
were initially rejected (e.g., below the intensity threshold). This
recursive step, however, was only applied to features which
were confirmed by the EIC filtering in one sample (influent or
effluent) but rejected in the other. In such cases, the data
obtained by the Summation algorithm was retrieved for the
rejected triplicate, which did not satisfy the filter settings. If the
SD of the summation peak heights across this triplicate was
higher than half the intensity threshold, the fluctuation criterion
(RSD < 0.5, Table S-6) needed to be fulfilled. For SDs below
half the intensity threshold or RSDs below 0.5, the summation
peak height was used for the fc calculations. Otherwise, the
feature was rejected due to the high fluctuation which would
lead to inconclusive classification.

Figure 3. Uncertainty of the peak categorization based on the influent
peak height (abscissa) and the intensity threshold used (here 200 cps).
The predefined intervals for the groups elimination (E), decrease (D),
and consistency (C) are indicated by the dashed lines. The gray area
highlights the uncertainty region.

Figure 4. EICs of a feature in a. the influent (river water) and b. the
effluent (ACF effluent) sample of a treatment process integrated by
the Summation algorithm. The data point with minimum abundance
within the summation window is displayed as a square and the peak
height is indicated by an arrow.
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The recursive approach allows a more reliable classification
of signal changes without skewing the results by arbitrary
assumptions concerning signals below the threshold. The
influent peak height (204 cps) shown in Figure 4 is only slightly
above the threshold and thus falls within the uncertainty region
for the classification. Considering the determined height (here
to be seen as noise) in the effluent sample (7 cps), the signal
can be assigned to the group E (7/204 < 0.20). For
chromatograms with high noise fluctuation, the height
determined by the Summation algorithm can be quite high
and may in some instances lead to wrong classification.
Especially if the noise level between influent and effluent
sample changes drastically, such influences are conceivable.
For the blank correction, the same recursive strategy

involving the Summation algorithm was applied. The blanks
were not subjected to the EIC filtering approach but rather
compared to signals which met all derived criteria. Features
were rejected if neither the influent nor the effluent satisfied the
fc criteria relative to the blank (fc >5). The blank correction
was less prone to errors using this approach.
Evaluating the Repeatability. The aim was to evaluate

the reliability of the presented data processing strategy. The
similarity of the results (i.e., classification of features) was
assessed on the basis of multiple technical replicates (see
Methods section). As a proof of concept, we used the
ozonation process during drinking water treatment. As a first
step, the system stability across the batch was evaluated by
reviewing the spiked IS (Figure S-4). Problems such as loss of
sensitivity over time (here >14 h runtime) would impair the
feature classification and thus result in poor repeatability. The
good system stability was indicated by peak height RSDs always
below 10%. Furthermore, the impact of matrix effects on the
signal classification can be estimated by comparing IS peak
heights between the different matrices. The pairwise compar-
ison of triplicates from the influent and effluent sample resulted
in IS fcs ranging between 0.88 and 1.17 (Figure S-5), which
clearly fell within the interval of the category C. Thus, all 13 IS
would always be assigned to C (without blank correction). We
therefore assumed that sensitivity changes or matrix effectsin
this casehad negligible influence on the feature classification.
In the next step, the combinatorial approach was conducted

to compare all possible combinations of technical replicates
within (840) and between (7056) the two samples. For each
single comparison of triplicates (e.g., replicates 1, 2, and 3
compared with nos. 4, 5, and 6), the number of features
assigned to the five categories were reported. However, for
evaluation of the repeatability, each single feature had to be
considered as the sums of all features assigned to certain
categories could be repeatable while the individual composi-
tions of the sums were not. Thus, in addition to the mere
number of features assigned to a category, we also reviewed
how many features were always (i.e., in all possible
comparisons) assigned to this category. The two different
perspectives considered during data processing are schemati-
cally depicted in Figure S-6.
After data evaluation, two different types of features were

distinguished: Features unambiguously assigned to one
category and features ambiguously assigned to multiple
categories. The manual inspection of the latter revealed that
problems were mainly caused by three different reasons:
(1) Signals were in vicinity of the intensity threshold or the

blank threshold. With some signals slightly above/below the
threshold, these features were sometimes rejected during EIC

filtering while other combinations of replicates passed the
filtering approach. To overcome these problems, the processing
(during this evaluation) was repeated for signals classified to
multiple categories using less stringent criteria in a second step.
The minimum values for the peak height and area were reduced
by 50%, the factor for blank correction reduced to 3. All other
filtering criteria (e.g., RSDs) were not modified.
(2) The calculated fc was in vicinity of the upper or lower

limit of the fc interval used for classification. Across all
combinations, some were slightly above or below this limit
resulting in ambiguous assignment of the feature into two
adjacent categories (e.g., elimination and decrease). The
classification algorithm was therefore adapted to handle such
cases. Features for which the number of all possible
comparisons (840 or 7056) was reached by counting two
adjacent categories were unambiguously assigned to the
category comprising the larger number of comparisons.
(3) Real peaks showed implausible signal courses across the

batch (strong fluctuations, trends). These features reflect real
differences within replicates of the same sample (unexplained
circumstances) and are not caused by data processing. A
reasonable correction of such profiles is not possible.
Representative examples of peak profiles illustrating these

problem cases are summarized in Figure S-7.
The results of the data evaluation with respect to the

repeatability are summarized in Figure 5.

The lacking ground truth (i.e., true feature classification not
known) in nontarget analysis requires alternative approaches
for plausibility checks of generated results. Here, the within
sample comparisons (Figure 5, I and II) were conducted to
illustrate that differences between technical replicates (the-
oretical process) hardly exist. As was to be expected, features
were almost exclusively assigned to C and only few outliers
were classified to the remaining categories (75th percentile was
zero for E, D, I, and F). The higher uncertainties observed for
the effluent samples (II) may be explained by lower feature
intensities. Regarding category C, the low fluctuation of the
assigned number of features throughout all comparisons is
indicated by the length of the boxplots. While this suggests a

Figure 5. Boxplots of the number of features assigned to the categories
elimination (E), decrease (D), consistency (C), increase (I), or
formation (F) across all possible comparisons within one sample (river
water, I and ozonation effluent, II) and between two samples (real
process of ozonation, III). Outliers shown as pluses, diamonds indicate
the number of features which were unambiguously assigned to the
respective category. For more details, see Figure S-8.
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high repeatability, there is a certain offset between features
unambiguously assigned to C and the distribution of all
individual comparisons. The majority of these differences was
caused by implausible signal courses (discussed above) or
interfering peaks (either insufficient chromatographic or mass
spectrometric separation). Notably, most of the ambiguously
assigned features were detected in retention time regions where
the total ion chromatograms (of influent and effluent) suggest
high probability of interferences (Figure S-9). Optimization of
the chromatographic separation might improve this situation.
Considering the ozonation (Figure 5, III), strong changes

between influent and effluent sample became apparent. Again,
the narrow distribution of the number of features assigned to
the respective categories points to good repeatability. The
differences between those distributions and the number of
features unambiguously assigned to one category can be
explained by the same reasons as stated above. The treatment
efficiency of the ozonation is indicated by the large proportion
of features assigned to E and D. Considering the median values
across all conducted comparisons, 55% of all signals were
assigned to E, 26% to D, 9% to C, 5% to I, and 5% to F.
However, it was expected that more transformation products
(features assigned to F) were formed during the ozonation.
Even though the entire window of detectable components is
strongly extended using nontarget screening for the assessment
of processes, there are still many compounds which cannot be
captured by the acquisition method used. Each single step, that
is, separation, ionization, detection, as well as data processing,
requires certain criteria which narrow down the diversity of the
substances being considered.44 Previous research on ozonation
with nontarget screening reported similar relative numbers
subjected to elimination, whereas more formation has been
detected for the ozonation of wastewater.30 A more
comprehensive interpretation of the results was not within
the scope of this study.
In addition to existing validation strategies for untargeted

methods (e.g., refs 37 and 45), this combinatorial approach
might help to better evaluate the reliability of the final outcome.

■ CONCLUSION

In this study, a data processing strategy for the assessment of
water treatment processes was developed. The validation of the
workflow suggests that false positive/negative findings have
negligible influence on the results.
A concept for process assessment based on signal changes

across the treatment was introduced. The use of isotope-labeled
internal standards is strongly recommended to estimate the
influence of matrix effects, which have to be seen with particular
caution. The recursive data processing allowed a more reliable
estimate of fold changes. We further recommend applying the
same recursive integration for a less error prone blank
correction. The main limitations of the signal classification
represent (i) redundancies in data interpretation as one
component might generate multiple features (e.g., in-source
fragmentation) and (ii) implausible signal courses across the
measured batch. Further efforts are necessary to keep the
influence of the mentioned problems to a minimum.
The evaluation of the entire processing strategy by using a

combinatorial approach indicates sufficient repeatability. We,
therefore, conclude that nontarget screening using LC-HRMS
in combination with appropriate data processing of sample
triplicates provides a more holistic picture of changes
throughout processes and can thus reduce existing knowledge

gaps. Monitoring of water treatment processes or optimization
of different operating conditions are, inter alia, fields of
application, which could benefit from this more comprehensive
view.
The processing strategies andmore importantlythe

combinatorial validation concept may be easily transferred to
other research fields. In a figurative sense, the term process
should be seen as abstract expression for a two-sample
comparison.
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Table S-1. List of 411 target compounds 
# Name Formula CAS Number 

1 1-(2-Chlorophenyl)-3-
phenylurea C13H11ClN2O  2989-99-3 

2 1-(3,4-Dichlorophenyl)-3-
methylurea C8H8Cl2N2O 3567-62-2 

3 1-(3,4-Dichlorophenyl)urea C7H6Cl2N2O 2327-02-8 

4 1,1-Dimethyl-3-phenylurea C9H12N2O 101-42-8 

5 1,2,3-Benzotriazole C6H5N3 95-14-7 

6 1-Hydroxyisoquinoline C9H7NO 491-30-5 

7 1-Methylisoquinoline C10H9N 1721-93-3  

8 2-(Methylthio)benzothiazole C8H7NS2 615-22-5 

9 2,4-Dimethylquinoline C11H11N 1198-37-4 

10 2,5-Dichloroaniline C6H5Cl2N 95-82-9 

11 2,6-Dichlorbenzamid C7H5Cl2NO 2008-58-4 

12 2-Aminobenzothiazole C7H6N2S 136-95-8  

13 2-Hydroxybenzothiazole C7H5NOS 934-34-9  

14 2-Methoxyphenyl isocyanate C8H7NO2  700-87-8 

15 2-Methyl-8-quinolinol C10H9NO 826-81-3 

16 2-Methylphenyl isocyanate  C8H7NO 614-68-6 

17 3-(2-Chloro-6-methylphenyl)-
1,1-dimethylurea C10H13ClN2O 15441-90-4  

18 3-(Trifluoromethyl)aniline C7H6F3N 98-16-8 

19 3-Hydroxycarbofuran C12H15NO4 16655-82-6 

20 4-Acetamidoantipyrine C13H15N3O2 83-15-8 

21 4-Chloro-o-toluidine C7H8ClN 95-69-2 

22 4'-Hydroxydiclofenac C14H11Cl2NO3 64118-84-9 

23 4-Isopropylaniline C9H13N 99-88-7  

24 5,6-Dimethyl-1H-benzotriazole C8H9N3 4184-79-6 

25 5'-Chloro-2'-methylacetanilide C9H10ClNO  5900-55-0  

26 5-Methyl-1H-benzotriazole C7H7N3 136-85-6 

27 8-Hydroxyquinoline C9H7NO 148-24-3 

28 Acebutolol C18H28N2O4 37517-30-9 

29 Acephate C4H10NO3PS 30560-19-1 

30 Acetaminophen C8H9NO2 103-90-2 

31 Acetamiprid C10H11ClN4 135410-20-7 

32 Acetylsulfamethoxazole C12H13N3O4S 21312-10-7  

33 Aclonifen C12H9ClN2O3 74070-46-5 

34 Acridine C13H9N 260-94-6 

35 Alachlor C14H20ClNO2 15972-60-8 

36 Aldicarb-sulfoxide C7H14N2O3S 1646-87-3 

37 Alprenolol C15H23NO2 13655-52-2 

38 Amantadine C10H17N 768-94-5 

39 Ametryn C9H17N5S 834-12-8 

40 Amidosulfuron C9H15N5O7S2 120923-37-7  

# Name Formula CAS Number 

41 Aminocarb C11H16N2O2 2032-59-9 

42 Amisulprid C17H27N3O4S 71675-85-9 

43 Amisulpride N-Oxide C17H27N3O5S 71676-01-2 

44 Aspartame C14H18N2O5 22839-47-0 

45 Asulam C8H10N2O4S 3337-71-1 

46 Atenolol C14H22N2O3 29122-68-7 

47 Atraton C9H17N5O 1610-17-9 

48 Atrazine C8H14ClN5 1912-24-9 

49 Atrazine-2-hydroxy C8H15N5O 2163-68-0 

50 Azamethiphos C9H10ClN2O5PS 35575-96-3 

51 Azinphos-ethyl C12H16N3O3PS2 2642-71-9 

52 Azoxystrobin C22H17N3O5 131860-33-8 

53 Benalaxyl-M C20H23NO3 98243-83-5 

54 Benazolin C9H6ClNO3S 3813-05-6 

55 Bensulfuron-methyl C16H18N4O7S 83055-99-6 

56 Bentazon C10H12N2O3S 25057-89-0 

57 Benzocaine C9H11NO2 94-09-7 

58 Benzothiazole-6- 
carboxylic acid C8H5NO2S 3622-35-3  

59 Betaxolol C18H29NO3 63659-18-7 

60 Bezafibrate C19H20ClNO4 41859-67-0 

61 Bisoprolol C18H31NO4 66722-44-9 

62 Bisoprolol_M1  C15H23NO5 109791-19-7 

63 Bisoprolol_M3 C13H19NO4 72570-70-8 

64 Bisoprolol_M4 C15H25NO4 109791-18-6 

65 Bitertanol C20H23N3O2 55179-31-2 

66 Boscalid C18H12Cl2N2O 188425-85-6 

67 Bromacil C9H13BrN2O2 314-40-9 

68 Bromophos-ethyl C10H12BrCl2O3PS 4824-78-6 

69 Bromuconazole C13H12BrCl2N3O 116255-48-2 

70 Bupirimate C13H24N4O3S 41483-43-6 

71 Caffeine C8H10N4O2 58-08-2 

72 Candesartan C24H20N6O3 139481-59-7 

73 Carbamazepine C15H12N2O 298-46-4 

74 Carbamazepine 10,11-epoxide C15H12N2O2 36507-30-9  

75 Carbanilide  C13H12N2O 102-07-8 

76 Carbaryl C12H11NO2 63-25-2 

77 Carbendazim C9H9N3O2 10605-21-7 

78 Carbetamide C12H16N2O3 16118-49-3 

79 Carbofuran C12H15NO3 1563-66-2 

80 Chloramben C7H5Cl2NO2 133-90-4 
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# Name Formula CAS Number 

81 Chlorbromuron C9H10BrClN2O2 13360-45-7 

82 Chlordimeform C10H13ClN2 6164-98-3 

83 Chlorfenvinphos C12H14Cl3O4P 470-90-6 

84 Chloridazon C10H8ClN3O 1698-60-8 

85 Chloridazon-methyl-desphenyl C5H6ClN3O 17254-80-7 

86 Chloroxuron C15H15ClN2O2 1982-47-4 

87 Chlorpyrifos C9H11Cl3NO3PS 2921-88-2 

88 Chlorthalonil R611965 C8H4Cl3NO3 142733-37-7 

89 Chlortoluron C10H13ClN2O 15545-48-9 

90 
Chlortoluron benzoic acid 
(CGA 15140) C10H11ClN2O3 59587-01-8 

91 Clarithromycin C38H69NO13 81103-11-9 

92 Clenbuterol C12H18Cl2N2O 37148-27-9 

93 Clindamycin C18H33ClN2O5S 18323-44-9 

94 Clodinafop-propargyl C17H13ClFNO4 105512-06-9  

95 Clomazone C12H14ClNO2 81777-89-1 

96 Clothianidin C6H8ClN5O2S 210880-92-5 

97 Codeine C18H21NO3 76-57-3 

98 Crotamiton C13H17NO 483-63-6 

99 Cyanazine C9H13ClN6 21725-46-2 

100 Cybutryne C11H19N5S 28159-98-0 

101 Cyproconazole C15H18ClN3O 94361-06-5 

102 Cyprodinil C14H15N3 121552-61-2 

103 Dapsone C12H12N2O2S 80-08-0 

104 Deisopropylatrazine C5H8ClN5 1007-28-9 

105 Desethylatrazine C6H10ClN5 6190-65-4 

106 Desethylterbutylazine C7H12ClN5 30125-63-4 

107 Diatrizoate C11H9I3N2O4 737-31-5 

108 Diazepam C16H13ClN2O 439-14-5 

109 Diazinon C12H21N2O3PS 333-41-5 

110 Dichlofenthion C10H13Cl2O3PS 97-17-6 

111 Dichlorvos C4H7Cl2O4P 62-73-7 

112 Diclofenac C14H11Cl2NO2 15307-86-5 

113 Dicrotophos C8H16NO5P 141-66-2 

114 Didesmethylisoproturon C10H14N2O 56046-17-4 

115 Diethofencarb C14H21NO4 87130-20-9 

116 Difenoconazole C19H17Cl2N3O3 119446-68-3 

117 Difenoxuron C16H18N2O3 14214-32-5 

118 Diflubenzuron C14H9ClF2N2O2 35367-38-5 

119 Diflufenican C19H11F5N2O2 83164-33-4 

120 Dihydrocodeine C18H23NO3 125-28-0 

121 Dimefuron C15H19ClN4O3 34205-21-5 

122 Dimethachlor C13H18ClNO2 50563-36-5 

# Name Formula CAS Number 

123 Dimethachlor CGA 102935 C12H13NO5 
1) 

124 Dimethachlor CGA 354742 C13H19NO5S 1) 

125 Dimethachlor CGA 369873 C10H13NO4S 1) 

126 Dimethachlor CGA 373464 C12H15NO6S 1196157-87-5 

127 Dimethachlor CGA 50266 C13H17NO4 1086384-49-7 

128 Dimethachlor SYN 528702 C15H21NO5S 1228182-52-2  

129 Dimethachlor SYN 530561 C13H17NO5 1138220-18-4 

130 Dimethenamid C12H18ClNO2S 87674-68-8 

131 Dimethenamid M23 C12H17NO4S 380412-59-9 

132 Dimethenamid M27 C12H19NO5S2 205939-58-8 

133 Dimethenamid-P M31 C14H21NO5S2 
1) 

134 Dimethoate C5H12NO3PS2 60-51-5 

135 Dimethomorph C21H22ClNO4 113210-97-2 

136 Dimoxystrobin C19H22N2O3 149961-52-4 

137 
Dimoxystrobin 505M08  
(BF 505-7) C19H20N2O5 

1) 

138 
Dimoxystrobin 505M09  
(BF 505-8) C19H20N2O5 

1) 

139 Diniconazole C15H17Cl2N3O 83657-24-3 

140 Diphenylamine C12H11N 122-39-4 

141 Disulfoton-sulfone C8H19O4PS3 2497-06-5 

142 Disulfoton-sulfoxide C8H19O3PS3 2497-07-6 

143 Ditalimfos C12H14NO4PS 5131-24-8 

144 Diuron C9H10Cl2N2O 330-54-1 

145 Doxycycline C22H24N2O8 564-25-0 

146 Epoxiconazole C17H13ClFN3O 135319-73-2 

147 Eprosartan C23H24N2O4S 133040-01-4 

148 Erythromycin C37H67NO13 114-07-8 

149 Estrone C18H22O2 53-16-7 

150 Ethenzamide C9H11NO2 938-73-8 

151 Ethidimuron C7H12N4O3S2 30043-49-3 

152 Ethion C9H22O4P2S4 563-12-2 

153 Ethirimol C11H19N3O 23947-60-6 

154 Ethofumesate C13H18O5S 26225-79-6 

155 Ethoprophos C8H19O2PS2 13194-48-4 

156 Etofibrate C18H18ClNO5 31637-97-5 

157 Fenamiphos sulfone C13H22NO5PS 31972-44-8 

158 Fenarimol C17H12Cl2N2O 60168-88-9 

159 Fenazaquin C20H22N2O 120928-09-8 

160 Fenbuconazole C19H17ClN4 114369-43-6 

161 Fenhexamid C14H17Cl2NO2 126833-17-8 

162 Fenitrothion C9H12NO5PS 122-14-5 

163 Fenobucarb C12H17NO2 3766-81-2 

164 Fenofibrate C20H21ClO4 49562-28-9 
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# Name Formula CAS Number 

165 Fenoxaprop C16H12ClNO5 95617-09-7 

166 Fenoxycarb C17H19NO4 72490-01-8 

167 Fenpropidin C19H31N 67306-00-7 

168 Fenpropimorph C20H33NO 67564-91-4 

169 Fenpyroximate C24H27N3O4 111812-58-9 

170 Fenthion C10H15O3PS2 55-38-9 

171 Fipronil C12H4Cl2F6N4OS 120068-37-3 

172 Flamprop C16H13ClFNO3 58667-63-3 

173 Flazasulfuron C13H12F3N5O5S 104040-78-0 

174 Flecainide C17H20F6N2O3 54143-55-4 

175 Florasulam C12H8F3N5O3S 145701-23-1 

176 Fluazifop C15H12F3NO4 69335-91-7 

177 Fluazinam C13H4Cl2F6N4O4 79622-59-6 

178 Flufenacet C14H13F4N3O2S 142459-58-3 

179 Flufenacet ESA C11H14FNO4S 201668-32-8 

180 Flufenoxuron C21H11ClF6N2O3 101463-69-8 

181 Fluometuron C10H11F3N2O 2164-17-2 

182 Fluopicolide C14H8Cl3F3N2O 239110-15-7 

183 Fluquinconazole C16H8Cl2FN5O 136426-54-5 

184 Fluroxypyr C7H5Cl2FN2O3 69377-81-7 

185 Flurtamone C18H14F3NO2 96525-23-4 

186 Flusilazole C16H15F2N3Si 85509-19-9 

187 Foramsulfuron C17H20N6O7S 173159-57-4 

188 Gabapentin C9H17NO2 60142-96-3 

189 Gabapentin-Lactam C9H15NO 64744-50-9 

190 Haloxyfop C15H11ClF3NO4 69806-34-4 

191 Heptenophos C9H12ClO4P 23560-59-0 

192 Hexa(methoxymethyl)melamine C15H30N6O6 3089-11-0 

193 Hexaconazole C14H17Cl2N3O 79983-71-4 

194 Hexazinone C12H20N4O2 51235-04-2 

195 Hexythiazox C17H21ClN2O2S 78587-05-0 

196 Ifosfamide C7H15Cl2N2O2P 3778-73-2 

197 Imazalil C14H14Cl2N2O 35554-44-0 

198 Imazapyr C13H15N3O3 81334-34-1 

199 Imazaquin C17H17N3O3 81335-37-7 

200 Imidaclopride C9H10ClN5O2 138261-41-3 

201 Indomethacin C19H16ClNO4 53-86-1 

202 Indoxacarb C22H17ClF3N3O7 173584-44-6 

203 Iodofenphos C8H8Cl2IO3PS 18181-70-9 

204 Iodosulfuron-methyl C14H14IN5O6S 185119-76-0 

205 Iohexol C19H26I3N3O9 66108-95-0 

206 Iomeprol C17H22I3N3O8 78649-41-9 

# Name Formula CAS Number 

207 Iopromide C18H24I3N3O8 73334-07-3 

208 Iprodione C13H13Cl2N3O3 36734-19-7 

209 Iprovalicarb C18H28N2O3 140923-17-7 

210 Irbesartan C25H28N6O 138402-11-6 

211 Irbesartan_446 C25H30N6O2 
1) 

212 Isoprocarb C11H15NO2 2631-40-5 

213 Isoproturon C12H18N2O 34123-59-6 

214 Ketoprofen C16H14O3 22071-15-4 

215 Ketotifen C19H19NOS 34580-14-8 

216 Kresoxim (BF 490-1) C17H17NO4 137169-29-0 

217 Kresoxim-methyl C18H19NO4 143390-89-0 

218 Lamotrigine N2-Oxide C9H7Cl2N5O 136565-76-9 

219 Linuron C9H10Cl2N2O2 330-55-2 

220 Losartan C22H23ClN6O 114798-26-4 

221 Malaoxon C10H19O7PS 1634-78-2 

222 Malathion C10H19O6PS2 121-75-5 

223 Mecarbam C10H20NO5PS2 2595-54-2 

224 Mefenpyr-diethyl C16H18Cl2N2O4 135590-91-9 

225 Mepanipyrim C14H13N3 110235-47-7 

226 Mephosfolan C8H16NO3PS2 950-10-7 

227 Mepronil C17H19NO2 55814-41-0  

228 Mesosulfuron-methyl C17H21N5O9S2 208465-21-8 

229 Mestranol C21H26O2 72-33-3 

230 Metalaxyl C15H21NO4 57837-19-1 

231 Metalaxyl-M CGA 108906 C14H17NO6 104390-56-9 

232 Metalaxyl-M CGA 62826 C14H19NO4 75596-99-5 

233 Metamitron C10H10N4O 41394-05-2 

234 Metamitron-desamino C10H9N3O 36993-94-9 

235 Metazachlor C14H16ClN3O 67129-08-2 

236 Metazachlor BH 479-11 C15H19N3O2S 1) 

237 Metazachlor BH 479-12 C14H13N3O5 
1) 

238 Metazachlor BH 479-4 C14H15N3O3 1231244-60-2 

239 Metazachlor BH 479-8 C14H17N3O4S 172960-62-2 

240 Metazachlor BH 479-9 C16H19N3O4S 1) 

241 Metconazole C17H22ClN3O 125116-23-6 

242 Methabenzthiazuron C10H11N3OS 18691-97-9 

243 Methidathion C6H11N2O4PS3 950-37-8 

244 Methiocarb C11H15NO2S 2032-65-7 

245 Methiocarb sulfoxide C11H15NO3S 2635-10-1 

246 Methiocarb-sulfone C11H15NO4S 2179-25-1 

247 Methoxyfenozide C22H28N2O3 161050-58-4 

248 Methylphenidate C14H19NO2 113-45-1 
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# Name Formula CAS Number 

249 Metobromuron C9H11BrN2O2 3060-89-7 

250 Metolachlor C15H22ClNO2 51218-45-2 

251 Metolachlor CGA 354743 C15H23NO5S 171118-09-5 

252 Metolachlor CGA 357704 C14H17NO5 1217465-10-5 

253 Metolachlor CGA 37735 C11H15NO2 97055-05-5 

254 Metolachlor CGA 50267 C12H17NO2 82508-03-0 

255 Metolachlor CGA 50720 C11H13NO3 152019-74-4 

256 Metolachlor CGA 51202 C15H21NO4 152019-73-3 

257 Metolachlor NOA 413173 C14H19NO6S 1) 

258 Metolcarb  C9H11NO2 1129-41-5 

259 Metoprolol C15H25NO3 51384-51-1 

260 Metoprolol acid C14H21NO4 56392-14-4 

261 Metosulam C14H13Cl2N5O4S 139528-85-1 

262 Metoxuron C10H13ClN2O2 19937-59-8 

263 Metribuzin C8H14N4OS 21087-64-9 

264 Metronidazole C6H9N3O3 443-48-1 

265 Metsulfuron-methyl C14H15N5O6S 74223-64-6 

266 Metyrapone C14H14N2O 54-36-4 

267 Monalide C13H18ClNO 7287-36-7 

268 Monocrotophos C7H14NO5P 6923-22-4 

269 Monodemethylisoproturon  C11H16N2O 34123-57-4 

270 Monolinuron C9H11ClN2O2 1746-81-2 

271 Monuron C9H11ClN2O 150-68-5 

272 Myclobutanil C15H17ClN4 88671-89-0 

273 N,N-Diethyltoluamide C12H17NO 134-62-3 

274 N,N-Dimethylaniline C8H11N  121-69-7 

275 Naphazoline C14H14N2 835-31-4 

276 Napropamide C17H21NO2 15299-99-7 

277 Naproxen C14H14O3 22204-53-1 

278 N-Ethylaniline C8H11N 103-69-5 

279 N-Formyl-4-aminoantipyrin C12H13N3O2 1672-58-8 

280 Nicosulfuron C15H18N6O6S 111991-09-4 

281 N-Methyl-2-pyrrolidone C5H9NO 872-50-4 

282 N-Methylbenzene-sulfonamide C7H9NO2S  5183-78-8 

283 Norethisterone acetate C22H28O3 51-98-9 

284 Norflurazon C12H9ClF3N3O 27314-13-2 

285 Nuarimol C17H12ClFN2O 63284-71-9 

286 Olmesartan C24H26N6O3 144689-24-7 

287 Omethoate C5H12NO4PS 1113-02-6 

288 Oseltamivir C16H28N2O4 196618-13-0 

289 Oxadixyl C14H18N2O4 77732-09-3 

290 Oxasulfuron C17H18N4O6S 144651-06-9 

# Name Formula CAS Number 

291 Oxazepam C15H11ClN2O2 604-75-1 

292 Oxydemeton-methyl   C6H15O5PS2 301-12-2 

293 Oxytetracycline C22H24N2O9 2058-46-0 

294 Paraoxon C10H14NO6P 311-45-5 

295 Paraoxon-methyl C8H10NO6P 950-35-6 

296 Parathion C10H14NO5PS 56-38-2 

297 Parathion-methyl C8H10NO5PS 298-00-0 

298 Penconazole C13H15Cl2N3 66246-88-6 

299 Pencycuron C19H21ClN2O 66063-05-6 

300 Pendimethalin C13H19N3O4 40487-42-1 

301 Pentoxifylline C13H18N4O3 6493-05-6 

302 Pethoxamid C16H22ClNO2 106700-29-2 

303 
Pethoxamid sulphonic acid 
(MET-42) C16H23NO5S 1329805-71-1 

304 Phenacetin C10H13NO2 62-44-2 

305 Phenanthridinon C13H9NO 1015-89-0 

306 Phenazone C11H12N2O 60-80-0 

307 Phenmedipham C16H16N2O4 13684-63-4 

308 Phenthoate C12H17O4PS2 2597-03-7 

309 Phenylalanine C9H11NO2 150-30-1 

310 Phenylethylmalonamide C11H14N2O2 7206-76-0 

311 Phosalone C12H15ClNO4PS2 2310-17-0 

312 Phosphamidon C10H19ClNO5P 13171-21-6 

313 Phoxim C12H15N2O3PS 14816-18-3 

314 Picloram C6H3Cl3N2O2 1918-02-1 

315 Picolinafen C19H12F4N2O2 137641-05-5 

316 Picoxystrobin C18H16F3NO4 117428-22-5 

317 Pilocarpine C11H16N2O2 92-13-7 

318 Pindolol C14H20N2O2 13523-86-9 

319 Piperophos C14H28NO3PS2 24151-93-7 

320 Pirimicarb C11H18N4O2 23103-98-2 

321 Pirimiphos-ethyl C13H24N3O3PS 23505-41-1 

322 Pirimiphos-methyl C11H20N3O3PS 29232-93-7  

323 Pregabalin C8H17NO2 148553-50-8 

324 Prilocaine C13H20N2O 721-50-6 

325 Primidone C12H14N2O2 125-33-7 

326 Primisulfuron-methyl C15H12F4N4O7S 86209-51-0 

327 Prochloraz C15H16Cl3N3O2 67747-09-5 

328 Procymidone C13H11Cl2NO2 32809-16-8  

329 Profenofos C11H15BrClO3PS 41198-08-7 

330 Promecarb C12H17NO2 2631-37-0 

331 Prometon C10H19N5O 1610-18-0  

332 Propamocarb C9H20N2O2 24579-73-5 
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# Name Formula CAS Number 

333 Propaquizafop C22H22ClN3O5 111479-05-1 

334 Propazine C9H16ClN5 139-40-2 

335 Propazine-2-hydroxy C9H17N5O 7374-53-0 

336 Propetamphos C10H20NO4PS 31218-83-4 

337 Propiconazole C15H17Cl2N3O2 60207-90-1 

338 Propoxur C11H15NO3 114-26-1 

339 Propranolol C16H21NO2 13013-17-7 

340 Propyphenazone C14H18N2O 479-92-5 

341 Prosulfocarb C14H21NOS 52888-80-9 

342 Prosulfuron C15H16F3N5O4S 94125-34-5 

343 Pyridaben C19H25ClN2OS 96489-71-3 

344 Pyridate  C19H23ClN2O2S 55512-33-9 

345 Pyrifenox C14H12Cl2N2O 88283-41-4 

346 Pyriproxyfen C20H19NO3 95737-68-1 

347 Pyroquilon C11H11NO 57369-32-1 

348 Quinmerac C11H8ClNO2 90717-03-6 

349 Quinmerac BH 518-2 C11H6ClNO4 90717-07-0 

350 Quinoline C9H7N 91-22-5 

351 Quinoxyfen C15H8Cl2FNO 124495-18-7 

352 Rimsulfuron C14H17N5O7S2 122931-48-0 

353 Ritalinic acid  C13H17NO2 19395-41-6 

354 Ronidazol C6H8N4O4 7681-76-7 

355 Roxithromycin C41H76N2O15 80214-83-1 

356 Schradan C8H24N4O3P2 152-16-9 

357 Sebuthylazine C9H16ClN5 7286-69-3 

358 Sebuthylazine-desethyl C7H12ClN5 37019-18-4 

359 Simazine C7H12ClN5 122-34-9 

360 Simazine-2-hydroxy C7H13N5O 2599-11-3 

361 Simeton C8H15N5O1 673-04-1 

362 Simetryn C8H15N5S 1014-70-6 

363 Sitagliptin C16H15F6N5O 486460-32-6 

364 
S-Metolachlor Metabolite CGA 
368208 C11H15NO4S 1173021-76-5  

365 Sotalol C12H20N2O3S 3930-20-9 

366 Spiroxamine C18H35NO2 118134-30-8 

367 Sulfadiazine C10H10N4O2S 68-35-9 

368 Sulfadimidine C12H14N4O2S 57-68-1 

369 Sulfamerazine C11H12N4O2S 127-79-7 

370 Sulfamethoxazole C10H11N3O3S 723-46-6 

371 Sulfathiazole C9H9N3O2S2 72-14-0 

372 Sulpirid C15H23N3O4S 15676-16-1 

373 Sulpiride N-Oxide C15H23N3O5S 1) 

374 Swep C8H7Cl2NO2 1918-18-9 

# Name Formula CAS Number 

375 TCMTB C9H6N2S3 21564-17-0 

376 Tebuconazol C16H22ClN3O 107534-96-3 

377 Tebufenpyrad C18H24ClN3O 119168-77-3 

378 Tebutam C15H23NO 35256-85-0 

379 Telmisartan C33H30N4O2 144701-48-4 

380 
Terbuthylazin-desethyl-2-
hydroxy  C7H13N5O 66753-06-8 

381 Terbuthylazine C9H16ClN5 5915-41-3 

382 Terbutryn C10H19N5S 886-50-0 

383 Terbutylazin 1 SYN 545666  C8H14N4O2 
1) 

384 Terbutylazin 2 CGA 324007 C7H12N4O2 309923-18-0 

385 Tetraconazole C13H11Cl2F4N3O 112281-77-3 

386 Tetramethylurea  C5H12N2O  632-22-4 

387 Thiacloprid C10H9ClN4S 111988-49-9 

388 Thiamethoxam C8H10ClN5O3S 153719-23-4 

389 Thifensulfuron-methyl C12H13N5O6S2 79277-27-3 

390 Tolfenamic acid C14H12ClNO2 13710-19-5 

391 Topramezone C16H17N3O5S 210631-68-8 

392 Tramadol C16H25NO2 27203-92-5 

393 Tramadol N-Oxide C16H25NO3 147441-56-3 

394 
trans-10,11-Dihydro-10,11-
dihydroxy Carbamazepine C15H14N2O3 58955-93-4 

395 Triadimenol C14H18ClN3O2 89482-17-7 

396 Triallate C10H16Cl3NOS 2303-17-5 

397 Triasulfuron C14H16ClN5O5S 82097-50-5 

398 Triazophos C12H16N3O3PS 24017-47-8  

399 Triethyl phosphate C6H15O4P 78-40-0 

400 Trifloxistrobin CGA 321113  C19H17F3N2O4 252913-85-2 

401 Trifloxistrobin NOA 413161  C19H15F3N2O6 
1) 

402 Trifloxystrobin C20H19F3N2O4 141517-21-7 

403 Triflusulfuron-methyl C17H19F3N6O6S 126535-15-7 

404 Trimethoprim C14H18N4O3 738-70-5 

405 Tritosulfuron C13H9F6N5O4S 142469-14-5 

406 Tritosulfuron BH 635-4  C10H10F3N5O4S 1) 

407 Tritosulfuron BH 635-5 C5H5F3N4O 5311-05-7 

408 Valsartan C24H29N5O3 137862-53-4 

409 Valsartan acid C14H10N4O2 164265-78-5 

410 Warfarin C19H16O4 81-81-2 

411 Xanthone C13H8O2 90-47-1 
1): For substances with missing CAS number, the smiles code is given in Table S-2 
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Table S-2. Smiles code for target compounds with missing CAS numbers 

#1) Name Formula Smiles code 

123 Dimethachlor  
CGA 102935 C12H13NO5 Cc1cccc(c1N(CC(=O)O)C(=O)C(=O)O)C 

124 Dimethachlor  
CGA 354742 C13H19NO5S Cc1cccc(c1N(CCOC)C(=O)CS(=O)(=O)O)C 

125 Dimethachlor  
CGA 369873 C10H13NO4S Cc1cccc(c1NC(=O)CS(=O)(=O)O)C 

133 Dimethenamid-P 
M31 C14H21NO5S2 Cc1csc(c1N(C(C)COC)C(=O)CS(=O)CC(=O)O)C 

137 Dimoxystrobin 
505M08 (BF 505-7) C19H20N2O5 

Cc1ccc(c(c1)OCc2ccccc2/C(=N\OC)/C(=O)NC) 
C(=O)O 

138 Dimoxystrobin 
505M09 (BF 505-8) C19H20N2O5 CNC(=O)C(=N\OC)\c1ccccc1COc1cc(ccc1C)C(O)=O 

211 Irbesartan_446 C25H30N6O2 
CCCCC(=O)NC1(CCCC1)C(=O) 
NCc2ccc(cc2)c3ccccc3c4[nH]nnn4 

236 Metazachlor  
BH 479-11 C15H19N3O2S Cc1cccc(C)c1N(Cn1cccn1)C(=O)CS(C)=O 

237 Metazachlor  
BH 479-12 C14H13N3O5 Cc1cccc(C(O)=O)c1N(Cn1cccn1)C(=O)C(O)=O 

240 Metazachlor  
BH 479-9 C16H19N3O4S Cc1cccc(C)c1N(Cn1cccn1)C(=O)CS(=O)CC(O)=O 

257 Metolachlor  
NOA 413173 C14H19NO6S CCc1cccc(c1N(C(C)C(=O)O)C(=O)CS(=O)(=O)O)C 

373 Sulpiride N-Oxide C15H23N3O5S CC[N+]1(CCCC1CNC(=O)C2=C 
(C=CC(=C2)S(=O)(=O)N)OC)[O-] 

383 Terbutylazin  
1 SYN 545666  C8H14N4O2 CC(C)(C)Nc1[nH]c(=O)n(c(=O)n1)C 

401 Trifloxystrobin  
NOA 413161  C19H15F3N2O6 

CO\N=C(\C(O)=O)c1ccccc1CO\N=C 
(/C(O)=O)c1cccc(c1)C(F)(F)F 

406 Tritosulfuron  
BH 635-4  C10H10F3N5O4S NC(=O)NC(=N)NC(=O)NS(=O)(=O)c1ccccc1C(F)(F)F 

1): Numbers taken from Table S-1 

Table of contents 



S-8 
 

 

Table S-3. LC-MS acquisition method 
Name  
LC System LC20 series Shimadzu 
LC column Zorbax Eclipse Plus C18 (2.1 x 150 mm, 3.5 µm) Agilent 
Mobile phase A Ultrapure water + 0.1 % v/v formic acid 
Mobile phase B Acetonitrile + 0.1 % v/v formic acid 
Gradient (%B) 0 min (2%), 1 min (2%), 2 min (20%), 16.5 min (100%), 27 

min (100%), 27.1 min (2%), 37 min (2%) 
Flow rate 0.3 mL/min 
Temperature 40 °C 
Sample injection volume 95 µL 
Internal standard injection volume 5 µL 
MS System TripleTOFTM 5600 (Sciex) 
Ion source DuoSpray Ion Source 
Mass range  m/z 100 - 1200 
Survey scan accumulation time 250 ms 
Cycle time  ca. 1.1 sec1) 
Ion Source Gas 1 35 psi 
Ion Source Gas 2 45 psi 
Curtain Gas 40 psi 
Source Temperature 550 °C 
IonSpray Voltage Floating 5500 V 
Declustering Potential 60 V 
Collision Energy 10 eV (for MS mode) 
1): In addition to MS, also MS² experiments have been performed (data dependent acquisition as well as data 
independent acquisition - SWATHTM). The results of the study, however, are only based on the LC-MS data (survey 
scan). MS² acquisition was conducted to receive realistic cycle times comparable to approaches used in reality (where 
MS² is of great interest) 
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Table S-4. List of isotope-labeled standards (IS) 

Name Formula Retention time 
[min] 

Concentration1)  
[µg L-1] 

Benzotriazole D4 C6 H N3 
2H4 5.5 10.0 

Chloridazon D5 C10 H3 Cl N3 O 2H5 6.4 0.20 
Propazine D6 C9 H10 Cl N5 

2H6 10.7 0.20 
Diuron D6 C9 H4 Cl2 N2 O 2H6 9.6 0.60 
Lidocaine D10 C14 H12 N2 O 2H10 5.3 0.10 
Sotalol D6 C12 H14 N2 O3 S 2H6 4.5 0.40 
Hydrochlorothiazide 13C, D2 C6 H6 Cl N3 O4 S2 

13C 2H2 5.1 40.0 
Diazinon D10 C12 H11 N2 O3 P S 2H10 13.7 0.10 
Sulfadimethoxine D6 C12 H8 N4 O4 S 2H6 7.5 0.40 
Azoxystrobin D4 C22 H13 N3 O5 

2H4 11.5 0.10 
Irbesartan D4 C25 H24 N6 O 2H4 8.7 0.40 
Bicalutamide D4 C18 H10 F4 N2 O4 S 2H4 10.7 0.50 
Darunavir D9 C27 H28 N3 O7 S 2H9 10.2 20.0 
1): Due to varying ionization efficiency, different concentrations were used to receive similar signal abundances  
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Table S-5. Parameters for data processing (workflow LW_V2.0) 
Software package Parameter Value 

MarkerViewTM  
(1.2.1) 

  
Peak finding  
Minimum retention time 3.5 min 
Maximum retention time 19.0 min 
Subtraction offset 6 scans 
Subtraction multiple factor 1.3 
Noise threshold 25 cps 
Minimum spectral peak width 20 ppm 
Minimum RT peak width 3 scans 
Assign charge states Enabled 
  
Peak alignment  
Retention time tolerance 0.15 min 
Mass tolerance 20 ppm 
Intensity threshold 100 cps 
  

MultiQuantTM 2.1.2  
+ Research Feature 
Software (Jan 2017) 

  
Peak integration by MQ4 algorithm  
Gaussian Smooth Width 1.0 points 
RT Half Window 9 sec 
Update Expected RT No 
Report Largest Peak No 
Min. Peak Width 6 points 
Min. Peak Height 100 
Noise Percentage 90.0% 
Baseline Sub. Window 0.3 min 
Peak Splitting  2 
  
Peak integration by Summation (SUM) algorithm  
Gaussian Smooth Width  1.0 points 
Summation Window 15 sec 
Noise% for Baseline -11) 
Recentering 3.0 
Adjust Endpoints to Local Minima Yes 

Parameters for peak finding and peak alignment were optimized in a former study (data not shown). 
1): Option which is exclusively available in the research version of MultiQuantTM, the data point with the smallest 
intensity within the summation window is used to fit the horizontal baseline of the peak 
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Table S-6. Optimized parameters for EIC filtering (workflow LW_V2.0) 
Software package Parameter Value 
  min max RSD1) SD1) 

Matlab R2016b  
 

     
MQ4 algorithm     
(1) Expected RT2) [min] 3.5 19 - - 
(2) Peak Area [cts] 700 Inf 0.50 - 
(3) Peak Height [cps] 200 Inf 0.45 - 
(4) Centroid RT3) [min] 3.5 19 - 0.07 
(5) Peak Width (FWHM) [min] 0.045 0.250 - 0.06 
(6) Baseline Delta4) [ ] 0 0.35 - 0.25 
(7) Apex RT5) [min] 3.5 19 - 0.08 
(8) ∆ (Expected RT, Centroid RT) [min] -0.15 0.15 - 0.08 
(9) ∆ (Expected RT, Apex RT) [min] -0.15 0.15 - 0.08 
(10) ∆ (Centroid RT, Apex RT) [min] -0.04 0.04 - 0.05 
     
Summation (SUM) algorithm     
(11) Expected RT2) [min] 3.5 19 - - 
(12) Peak Area [cts] 700 Inf 0.60 - 
(13) Peak Height [cps] 200 Inf 0.50 - 
(14) Centroid RT3) [min] 3.5 19 - 0.07 
(15) Peak Width (FWHM) [min] 0.050 0.250 - 0.06 
(16) Apex RT5) [min] 3.5 19 - 0.07 
(17) ∆(Expected RT, Centroid RT) [min] -0.15 0.15 - 0.07 
(18) ∆(Expected RT, Apex RT) [min] -0.15 0.15 - 0.07 
(19) ∆(Centroid RT, Apex RT) [min] -0.04 0.04  0.06 
     
Between both algorithms     
(20) ∆(Centroid RT MQ4, SUM) [min] -0.06 0.06 - 0.05 
(21) ∆(Apex RT MQ4, SUM) [min] -0.10 0.10 - 0.07 
(22) ∆(Peak Width MQ4, SUM) [min] -0.09 0.09 - 0.07 
(23) ∆rel(Peak Height MQ4, SUM)6) [ ] -0.30 0.55 - 0.40 

1): Both the RSD and the SD are calculated across the triplicates; note: RSD is dimensionless
  

2): Expected RT: initially set retention time value for a feature prior to integration (taken from peak alignment) 
3): Centroid RT: intensity weighted average retention time across a chromatographic peak (analogous to centroid mass) 
4): Baseline Delta: height difference of the baseline (at start and end of the peak) to the actual peak height 
5): Apex RT: retention time value reported for the most abundant data point across a chromatographic peak 
6): ∆rel = (Peak Height (MQ4) - Peak Height (SUM)) / mean(Peak Height (MQ4), Peak Height (SUM)) 
bold printed: parameters were defined and not derived from the training data set; either empiric (e.g. peak height) or 
already determined by other settings (e.g. +/- 0.15 min taken from peak alignment) 
Note: due to inadequate noise estimation in the MultiQuant software, the signal-to-noise ratio was not considered as a 
useful filter. 
Componentization was conducted within 0.15 min and 20 ppm tolerances for the following species: 1st and 2nd isotope, 
[M+Na]+, [M+K]+, [M+NH4]

+, [M+CH3CN+H]+, [2M+H]+, [2M+Na]+, [2M+K]+, [2M+NH4]
+. 
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Figure S-1. Problem cases occurring during peak alignment. The smaller peak was not listed in the final 
peak list as the retention time tolerance during peak alignment (indicated by blue lines +/- of detected apex) 
includes the apex of the smaller peak. a. Aminocarb (2nd) and Pilocarpine (both C11H16N2O2), b. N,N-

Dimethylaniline (1st) and N-Ethylaniline (both C8H11N), c. Simazine-2-hydroxy (2nd) and Terbuthylazine-

desethyl-2-hydroxy (both C7H13N5O), bold printed compounds were missed due to peak alignment. 
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Figure S-2. Examples which emphasize possible misinterpretations that would occur if the fc calculations 
were conducted using a. the optimistic or b. the pessimistic view. Extracted ion chromatograms (EIC) of the 
influent (black) and effluent (grey) sample of a treatment process. The intensity threshold is indicated by the 
dashed lines. 
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Figure S-3. Cumulative intensity distribution of the training data and the test data (sample 1-4). The “no 
influence peak height” of 1000 cps is depicted by the red line. 
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Figure S-4. Stability of 13 isotope-labeled standards 
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Figure S-4. Stability of 13 isotope- 
labeled standards in ultrapure water 
(▲), river water (■) and ozonation 
effluent (●) over 24 consecutive 
injections. The relative peak height 
is based on the respective median. 
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Figure S-5. Boxplots of the fold changes (fc) for the spiked isotope-labeled standards (IS) determined for all 
pairwise comparisons of triplicates (here: 7056 comparisons for each standard) between the influent (river 
water) and effluent sample (ozonation effluent) of the process. The intervals for the group consistency (C) 
are indicated by the dashed lines, the minimum (fcmin = 0.88) and maximum (fcmax = 1.17) value of the fold 
changes across all IS are emphasized by the grey rectangle. Boxes: 25th and 75th percentiles (q1 and q3), max 
whisker length: 1.5 (q3-q1), blue line: median value, red plus: outlier. 
Note that the blank correction was omitted (IS also spiked to blanks) in order to illustrate the system stability 
and the low impact of matrix effects on the classification. 
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Figure S-6. Data processing strategy for assessing the repeatability of the process comparisons. For each 
process comparison, each feature was assigned to one respective class (elimination E, decrease D, 
consistency C, increase I, formation F) which is indicated by the binary numbers. Blue: sum of all features 
assigned to the respective category across all comparisons. The distributions of the feature numbers assigned 
to one certain class (here shown for F) were depicted by the boxplots (Figure 5 in main article). Green: For 
each single feature, the number of process comparisons (here 7056) were tracked during data processing. 
Features which were always (across all possible comparison) assigned to one category were counted and 
additionally considered for the evaluation (green diamond).  
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Figure S-7. Selected peak profiles from the ninefold injections of river water (■) and ozonation effluent (●) 
to illustrate the classification problems using the combinatorial approach. Red dashed line: intensity 
threshold (200 cps), green dotted line: threshold for blank correction (5 times the blank height). 
- Signals unambiguously assigned (in all 7056 comparisons) to:  
(a) elimination 
(b) increase 
(c) consistency  
 

- Signals ambiguously (but correctable) assigned to multiple categories due to:  
(d) some influent replicates below / above intensity threshold → feature assigned to elimination / rejection 
(e) some effluent replicates below / above the blank threshold → feature assigned to formation / rejection  
(f) fold change (fc) between sample triplicates of influent and effluent slightly below / above the 0.2 fc limit 
      → feature assigned to elimination / decrease 
 

- Signals ambiguously (and not correctable) assigned to multiple categories due to: 
(g, h) implausible intensity profiles of real peaks; some triplicates fulfill all filter criteria and are thus not 
          always rejected → feature assigned to multiple categories 
(i) trend of peak height during analysis, some triplicates (e.g. Influent #1 #2 #3) fulfill the filtering criteria  
    whereas others (e.g. #1 #2 #9) do not → feature assigned to multiple categories. 

Table of contents 

unambiguously

assigned

ambiguously

assigned –
correctable

ambiguously

assigned –
not correctable

(a)

(b)

(c)

(d) (g)

(h)

(i)

(e)

(f)



S-19 
 

 

 

 

 

Figure S-8. Boxplots of feature numbers assigned to: E elimination, D decrease, C consistency, I: increase 
or F formation. The first and second line shows the within sample comparisons (840 comparisons). The third 
line shows the between sample comparisons of the real process of ozonation (7056 comparisons). Boxes: 25th 
and 75th percentiles (q1 and q3), max whisker length: 1.5 (q3-q1), blue line: median value, red plus: outlier, 
green diamond: features unambiguously assigned to this group.  
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Figure S-9. m/z-RT-scatterplot (primary axis) of all features which are ambiguously assigned to multiple 
categories and superimposed line plots (secondary axis) of the total ion chromatograms (TIC) of river water 
and effluent of ozonation. 
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Chapter 3

Application of Non-Target Analysis with
LC-HRMS for the Monitoring of Raw and

Potable Water: Strategy and Results

Tobias Bader,1,2 Wolfgang Schulz,*,1 Thomas Lucke,1 Wolfram Seitz,1
and Rudi Winzenbacher1

1Zweckverband Landeswasserversorgung, Laboratory for Operation
Control and Research, Am Spitzigen Berg 1, 89129 Langenau, Germany
2Sustainable Chemistry and Material Resources, Institute of Sustainable
and Environmental Chemistry, Leuphana University of Lüneburg,

Scharnhorststraße 1/C13, 21335 Lüneburg, Germany
*E-mail: Schulz.w@lw-online.de.

This contribution focuses on the application of non-target
screening by liquid chromatography-high resolution mass
spectrometry (LC-HRMS) as a tool in routine water analysis.
From the perspective of water suppliers, comprehensive
monitoring strategies are required to ensure good water quality.
We will illustrate the strengths of the non-target approaches
based on three chosen case studies. In principal, the non-target
analysis enables monitoring approaches which also cover
unknown or unexpected contaminants. The archive function of
HRMS data comprises various benefits such as retrospective
screening and also allows determining concentrations in a
semi-quantitative way. Temporal prioritization in combination
with multivariate statistics emerged as helpful strategy for
the detection of new contaminants. This is exemplified for
the identification of a spill event in river water. The spatial
sampling information, on the other hand, allows the localization
of possible sources of contamination. Prioritization based
on the analytical request reduces thousands of signals to few
interesting candidates which increases the success rate during
the identification. By such measures, it was possible to prove
that a groundwater contamination is caused by an industrial
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waste water treatment plant. For the evaluation of processes for
water treatment, identification and quantification of individual
contaminants is not always of major interest. However,
sophisticated strategies are needed to compare the purification
efficiency of new technologies to already established ones.
Here we evaluated the effectiveness of the fourth treatment step
based on activated carbon filtration in waste water treatment
plants.

Introduction

The monitoring of drinking water to ensure consistently good quality requires
analytical techniques which allow collecting all parameters of interest. The recent
developments in high resolution mass spectrometry (HRMS) have initiated new
possibilities for the analysis of trace substances without prior knowledge (1).
This allows detecting contaminants which were not expected or even known
before. Comprising high selectivity and sensitivity, the LC-HRMS opens up a
new dimension for the monitoring of complex water samples (2–5).

However, the identification of unknown contaminants is very time-consuming
and, in most cases, requires further analytical techniques (e.g. nuclear magnetic
resonance) in order to fully elucidate the chemical structure (6, 7). For several
thousands of chromatographic peaks within the data sets, such approaches are
practically impossible and thus strategies for prioritization are necessary (8–10).
If identification is not of major interest, the non-target analysis is still a very
valuable tool as it allows comparing different samples (11, 12). Especially for
the evaluation of technical processes (i.e. ozonation during water treatment), the
non-target analysis offers the possibility of assessing the effectiveness without
knowing the identity of the substances which are eliminated or newly formed
during a particular process.

In this chapter, we will introduce different approaches for prioritization.
Specifically, we addressed three case studies:

• Spill detection in river water (temporal prioritization)
• Localization of sources of contaminations (spatial prioritization)
• Assessing the effectiveness of technical processes (process-related

prioritization)

Materials and Methods

Sample Preparation

The sample preparationwas kept at aminimum to avoid discriminating against
certain substances or substance classes. Samples containing suspended matter
were centrifuged for 5 min at 5000 rpm prior to analysis. More details about the
sample preparation are listed individually for the different case studies (section
background and objective).
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LC-MS Sample Acquisition

The samples were analyzed with a Shimadzu (Kyoto, Japan) LC20 series
HPLC system coupled to the Sciex (Framingham, USA) QTOF/MS TripleTOFTM
5600 equipped with a DuoSprayTM Ion Source. In two separate runs using the
same chromatography, positive and negative electrospray ionization was used for
the generation of ions. After a survey scan (m/z 100 - 1200), a maximum number
of 12 data dependent acquisition (DDA) experiments was performed within one
single cycle. The acquisition of the MS² spectra within a mass range of m/z 30 -
1200 was accomplished with a collision energy ramped from 25 to 55 eV.

An Agilent (Santa Clara, USA) Zorbax Eclipse Plus C18 (2.1 x 150 mm,
3.5 µm) column was connected to a Phenomenex (Aschaffenburg, Germany)
precolumn Security Guard AQ C18 (4 x 2 mm). During the runs, both columns
were maintained at a temperature of 40 °C. The flow rate was kept at 300
µL min-1 with a water (A) and acetonitrile (B) gradient containing 0.1% (v/v)
formic acid, respectively. A direct injection of 100 µL of each sample was
accomplished without any preconcentration (such as solid phase extraction). A
blank value was generated by a zero-injection (i.e. injection of 0 µL) in order to
cover contaminations caused by the system itself. Detected contaminations were
excluded from DDA throughout the complete chromatographic run.

Software Tools

Peak finding and alignment were performed with MarkerViewTM (1.2.1).
The quantitation package MultiQuantTM (3.0.2) was used for subsequent
peak integration. Both software tools are commercially available from Sciex.
Componentization was accomplished by a self-written script in Matlab (R2015a,
MathWorks, USA), where further filtering steps were included.

Data Processing

The complete workflow including the main steps of the data processing is
depicted in Figure 1. The sampling was designed based on the objective of the
respective study. All samples were analyzed using the same LC-HRMS method.
In the first steps, a peak finding algorithm extracts all peaks exceeding a given
noise threshold (device and sample specific) from the raw data. Such peaks which
are characterized by their mass-to-charge ratio, retention time and intensity are
referred to as features.

The results are set on so called peak lists. During the peak alignment, the
same features from different samples are merged - based on mass and retention
time tolerances (here: 10 ppm and 0.15 min). The peaks table is the result of
the merged peak lists and represents a matrix where the detected features (m/z,
RT) represent the variables (lines) while the objects (columns) are the different
samples. The matrix entry is the response of a certain feature in the respective
sample.
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Figure 1. Workflow of the data preprocessing and filtering of features for a
specific objective.

To reduce the problematics of false positive and false negative findings, a
subsequent peak integration step (recursive) was used to preserve more peak
characteristics (area, height, width and retention time) which can easily be used
for further filtering steps. These allow reducing false positives (i.e. the peak
finding algorithm annotated a background / matrix signal as a peak) while the
recursive integration of sample replicates allows for correcting partially false
negative findings (i.e. the peak finding algorithm missed a real peak of interest
in some of the replicates) (13). The first filtering step is the blank correction
where all features whose peak area and peak height does not significantly differ
from the blank’s ones are eliminated. The exact parameters which are used for
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the filtering steps can be taken from Table 1. During the absolute thresholding
further criteria must be satisfied. Each feature has to exceed a certain peak area
and peak height. Based on the used chromatography, retention times within 2
- 19 min were extracted (log P -1 to 5). Furthermore, a certain range for the
peak width at full width at half maximum (FWHM) was defined. All filter criteria
were optimized using more than 200 different reference standards at different
concentration levels (data not shown).

Each sample was analyzed in duplicate or in triplicate, which allows assessing
the fluctuation of a certain peak characteristic. The LC-HRMS system has proven
to be very stable, which is why the fluctuation of the peak characteristics can be
applied as a further filter criteria (relative threshold). This was accomplished by
forming the quotients for characteristic (peak area, peak height, peak width and
the retention time) between the technical replicates. If the calculated quotient is
out of range, meaning that the fluctuation cannot be explained by measurement
uncertainty, the corresponding features are rejected.

Table 1. Parameter for Filtering of the Features

The final matrix contains all features and samples but only intensity values
different from zero for those features which have met all filtering criteria (blank
correction, absolute and relative thresholding).

Before the data set is used for further analysis, the so called componentization
was performed. During this step, isotopes, adducts, dimers and common in-source-
fragments (such as loss of H2O or CO2) are assigned to a potential [M+H]+ or
[M-H]- ion. However, the different ion species are not removed from the existing
matrix but rather annotated and also used for further steps. All dataset which are
described in this chapter have been processed with the workflow as mentioned
above.
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Results and Discussion

The application possibilities of non-target screening in “real-world-examples”
are illustrated using three different case studies. These examples where chosen to
cover a wide range of prioritization strategies. A summary of the case studies is
illustrated in Figure 2 and described in more detail below.

Figure 2. Overview of case studies described in this chapter.

Case Study 1 - Non-Target Analysis for the Monitoring of Water Resources

In this specific case study, river water was directly used (without bank
filtration) for the production of potable water. Many contamination sources (e.g.
agriculture, household, industry) may influence the river water and may therefore
affect the quality of the drinking water. In this example, we illustrate a spill
detection in the river water which was discovered by means of non-target analysis.

Case Study 2 - Non-Target Analysis as a Forensic Tool in Water Analysis

A groundwater contamination was already observed after target analysis.
However, different sources of contamination were theoretically possible. Two
municipal and one industrial waste water treatment plant (WWTP) were suspected
to be responsible for the contamination of the groundwater site. The aim of
this approach was to show that the industrial WWTP has a major impact on the
groundwater sample.
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Case Study 3 - Non-Target Analysis To Assess Technical Processes

Continuous modernization of water treatment technologies requires analytical
tools in order to assess their performance and to compare them with already
established technologies. Most conventional trace analytical techniques do not
allow detecting unknown compounds such as transformation products (TPs).
For the evaluation of technical processes, however, TPs are of major interest.
In this example we illustrate the use of non-target analysis to assess activated
carbon filtration as a fourth treatment step, i.e. an additional step after biological
treatment, and compare it to the conventional treatment of waste water.

Case Study 1 - Non-Target Analysis for the Monitoring of Water Resources

Background and Objective

Routine monitoring of raw and potable water is essential to verify the quality
and to control the water treatment processes in the waterworks. In addition to
targeted programs, non-target analysis is a valuable tool to also cover unknown
or unexpected compounds. This case study focuses on a waterworks where river
water (#1) is directly used (without bank filtration) for the production of potable
water (#2) as is exemplified in Figure 3. Contaminations in the river water
might affect the quality of the drinking water. This circumstance emphasizes the
importance of monitoring programs.

On each day of the year 2014, a 24-h composite sample was taken from the
river water as well as from the potable water. In a first step, only one random
sample per week was analyzed, while the other samples were stored as retention
samples and only analyzed if the first data evaluation revealed any abnormalities.

Especially unforeseeable spill events, i.e. substances occurring in high
concentrations within a short period of time, may possibly represent challenges
for the water purification process. The aim of this study was to detect such spill
events and proof whether the quality of the potable water has been affected.

Filtering Processed Data for Spill Detection

After processing, the resulting data set was screened for spill events. To
accomplish this, features whose maximum intensities were much higher than their
80% quantile were extracted from the existing data set.

A prior period of 25 calendar weeks was defined to get more robust statistics.
The extracted features were afterwards ranked in a way that highest intensities
and lowest frequencies will result in the highest scoring. One of the best scores
was obtained for the feature with m/z 337.213 at 5.4 min. After recognizing a
possible spill in calendar week 33 (Figure 4a), all daily taken retention samples
were analyzed at each day of August 2014 (Figure 4b).
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Figure 3. Schematic illustration of the sampling sites, daily retention samples
from the river water sample (#1) and the potable water sample (#2) were taken

and one sample randomly analyzed per week.

Figure 4. Time series of an unknown compound (m/z 337.213 at 5.4 min) in the
river water; time profile for a. the year 2014 (one sample at each calendar week)

and b. August 2014 (one sample per day).
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The profile of the daily samples shows that the spill event covers a period
of about four days (Aug 9th to Aug 12th). The maximum intensity was reached
on August 11th. However, the potable water did not show any signal for this
compound. Even in calendar week 20, where higher signal intensities where
observed, the signal was absent after the treatment steps. This leads to the
conclusion that the substance has been removed / transformed (below the limit of
detection) during the water treatment in the waterworks.

Identification

Using the accurate mass, the isotope pattern and the product ion spectrum,
the vendor software was used to calculate the elemental composition. The best
score in the MS as well as in the MS² was obtained for C18H28N2O4. For the
identification, different databases were searched against the generated formula.
The Drugbank (14) database suggested the beta blocker acebutolol as a possible
candidate. The acquired MS² spectrum showed a perfect match with the literature
spectrum documented in MassBank (15) which has prompted to purchase a
reference standard. Finally, the proposed candidate was identified and also
quantified in the river water samples. In August 2014, a maximum concentration
of about 60 ng L-1 was reached. Regarding the complete spill event in August,
the cumulative load of acebutolol was about 1 kg. The highest concentration in
the year 2014 was about 100 ng L-1 and could be detected in calendar week 20
(see Figure 4a).

Figure 5. Similarity search with principal component analysis and discriminant
analysis (PCA-DA); a. Scores plot after grouping blanks (circles), river samples
from August 9th to August 12th (Group 1, triangles) and the remaining river

samples from August (Group 2, diamonds); b. Loadings plot with discriminating
features highlighted in the lower left corner.
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Searching for other features that follow a similar profile was the next logical
step. It is likely that other compounds may show a similar time profile and
hence may be in conjunction with the detected spill event. For similarity-search
within huge data sets, multivariate statistics such as cluster analysis or principal
component analysis represent helpful tools as it is possible to rapidly structure big
matrices and retrieve the information of interest. In this particular study, we have
implemented a combination of principal component analysis and discriminant
analysis (PCA-DA) to find features with similar time profiles to acebutolol.
Knowing that spill event occurred between August 9th and Aug 12th, the groups
for the DA were defined. One group comprises the dates of the spill detection,
the other group all remaining samples taken in August (except Aug 9th - 12th). A
third group covering two zero-injections was defined. The scores and loadings
plot of the PCA-DA approach are illustrated in Figure 5.

As is evident, the two groups were nicely separated by the PCA-DA approach.
The variables, hence features, which are responsible for the separation are
scattered in the loadings plots (Figure 5b). Features which are highly responsible
for the separation of Group 1 and Group 2 are located in the lower left corner
(quadrant III). As expected, acebutolol (highlighted 337.2/5.4) has a high impact
on the separation of group 1 and 2. The monoisotopic mass as well as the isotope
of a second feature also possess a high load (highlighted 557.3/6.6). The accurate
mass of m/z 557.255 was detected at a retention time of 6.6 min. The profile of
acebutolol and the unknown feature are plotted in Figure 6.

Figure 6. Superimposed time series profiles of acebutolol (black diamonds,
primary axis) and the unknown feature (m/z 557.255 at 6.6, grey triangles,

secondary axis) in August 2014.

The time profiles show a good fit which underlines the success of the
similarity search by PCA-DA. Interestingly the unknown feature did not occur
in calendar week 20, where high loads for acebutolol could be observed (see
Figure 4a). The unknown compound was searched against most common spectral
libraries. In-silico fragmentation using Metfrag (16) could only explain one
fragment ion and did not provide any further information. The identification
remained at level 5 (17) as it was not even possible to assign a unique elemental
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composition. This example shows how difficult any further steps are, if no MS²
information is available in public databases. It should be noted that the accurate
fragment masses and expertise knowledge on fragmentation rules might advance
on the tentative identification.

Case Study Conclusion

The spill detection in the river water emphasizes the need for broader
screening techniques. Non-target screening for the monitoring of raw and
processed water represents a very powerful monitoring tool which also allows
for the detection of unknown contaminations. Besides acebutolol, another spill
caused by the vasoactive drug buflomedil was detected in the past. These spill
events might indicate an impact of the pharmaceutical industry on the river water.
In future studies, the exact locations of the discharge should be detected.

These examples, however, only show the results for contaminants that could
be fully identified. The identification of the remaining list of “interesting” courses
represents a main challenge in the future and will not always lead to a successful
identification. From the water supplier’s perspective, features passing through the
process of water treatment are of major interest. This prioritization significantly
reduces the list of candidates. However, special focus should also be given to
transformation products which were formed during the treatment steps (e.g.
ozonation). Again, the time profiles and the application of multivariate statistics
offer a valuable tool to correlate the formation of transformation products with
occurrence of certain contaminants in the river water.

Case Study 2 - Non-Target Analysis as a Forensic Tool in Water Analysis

Background and Objective

During routine target monitoring programs, findings of elevated levels
for various chemicals clearly indicated the anthropogenic contamination of a
groundwater sample. Besides municipal WWTPs, also the chemical industry is
located near the groundwater monitoring well. It has been suggested, that the
industrial WWTP might (also) be responsible for the detected contamination. A
schematic map of the sampling sites is given in Figure 7. Two municipal (#1
- 2) and an industrial (#3) WWTP discharge into the nearby river (#4). The
contamination in the groundwater (#5) might be explained by infiltration of the
river water.

The aim of this particular study was to prove that the industrial WWTP is
(also) responsible for the contamination of the groundwater. In other words, is it
possible to find contaminants which can exclusively be attributed to the industrial
WWTP?
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Figure 7. Schematic illustration of the sampling sites. Two municipal WWTPs
(#1 and #2) as well as an industrial WWTP (#3) discharge into the river (#4). Via

bank filtration, the river water infiltrates into the groundwater (#5).

Prioritization of Processed Data

Grab samples were taken from all locations (#1 - #5) and analyzed by LC-
HRMS. As a first step, a suspect-target list (covering 3200 substances) was queried
with the objective to find such “source-specific” contaminants which would allow
to show the industrial impact on the groundwater well. However, none of the
detected substances was specific for the industrial WWTP (i.e. did not occur in the
two municipal WWTPs) while also been detected in the groundwater monitoring
well (#5). As a consequence, it was not possible to answer the analytical request
based on a suspect-screening approach. The same data set has then been used
for processing based on a non-target approach. After peak finding and alignment,
between 4300 and 6700 peaks were detected in each single sample. By additional
filter criteria (as has been described), the numbers were reduced to about 50% and
after componentization between 1400 and 2400 peaks remained.

For further prioritization of candidates of interest, filter criteria based on the
analytical request were designed. This has been accomplished by simply applying
logical connections between the different samples (12). Only features which
were present in the industrial WWTP (#3), the river water (#4), the contaminated
groundwater (#5) but not in the two municipal WWTPs (#1 - 2) were extracted
from the data set. By this measure, the thousands of peaks could be reduced to
54 candidates that might help answering the initial question. In the last step,

60
Drewes and Letzel; Assessing Transformation Products of Chemicals by Non-Target and Suspect Screening  Strategies and ...

ACS Symposium Series; American Chemical Society: Washington, DC, 2016. 



the identification of some promising candidates was the objective as robust and
reliable results were needed for further actions.

Identification of Contaminants

All samples were acquired using data dependent acquisition. For 33 (out of
54) precursor ions, the DDA approach has automatically generated useable MS²
spectra. The accurate masses of the 33 features were uploaded to the platform
FOR-IDENT (18) which represents a compilation of water relevant chemicals. In
the next step, all possible candidates which matched the mass of a feature (+/- 10
ppm) were linked to the corresponding acquired MS² spectrum. All MS² spectra
were automatically exported from the vendor software and via FOR-IDENT
automatically sent to the in-silico-fragmentation tool Metfrag (16). Seven out of
33 candidates were ranked with high Metfrag scores.

One compound was finally identified and quantified using a reference
standard (level 1) (17). Three out of seven compounds were tentatively identified
(level 2a) by comparing theMS² spectra with literature spectra found inMassBank
(15) and/or mzCloud (19). The three remaining candidates represent level 2b
identifications, i.e. structural evidence based onMS² information, but no literature
information available/found. Six out of seven hits representing industrial
chemicals as well as transformation products. Four of these contaminants are
listed in Table 2. The two remaining candidates are most likely hydroxylated
forms of triphenylphosphine oxid (TPPO) but could not be confirmed by literature
spectra (level 2b). For the final proof of the proposed substances, the reference
standards have to be purchased. However, the occurrence of several substances
from similar substance classes increases the confidence of the results. In addition
to those substances, the pharmaceutical Praziquantel (the seventh hit) was also
identified at level 2a.

The extracted ion chromatograms of the four phosphorous contaminants
are illustrated in Figure 8. The signal intensity in the industrial WWTP was set
to 100% the one in the groundwater is relatively plotted based on the WWTP.
The signal in the groundwater sample lies within 2% for diphenylphosphine
oxide (DPPO) and 380% for diphenylphosphinic acid (DPPA). Please note that
these grab samples only represent a snapshot of the entire picture, meaning that
sampling on another day may possible lead to other concentrations especially in
the industrial WWTP and therefore changes the relative differences. Nevertheless,
these finding clearly indicate the input of the pollutants into the groundwater.

Except phenylphosphinic acid (PPA), all pollutants were already described in
the literature (20). The contamination with TPPO is much likely related to the
Wittig reaction (21) where it is formed as a byproduct (22). It is notable that the
concentration of TPPO in the contaminated groundwater sample was higher than 5
µg L-1. The other phosphorous compounds listed represent very likely degradation
products as has already been described for DPPO and DPPA (20).

As might be expected, PPA and DPPA could also be detected in the negative
ionization mode. None of these contaminants were detected in the municipal
WWTPs.
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Table 2. Substances (Tentatively) Identified in the Industrial WWTP and
in the Groundwater

Case Study Conclusion

Based on the analytical request, thousands of peaks could be reduced to less
than 60 specific peaks, i.e. these signals were not recognized in the municipal
WWTPs but occurred in the industrial one, the river water as well as in the
groundwater. The in-silico fragmentation was very helpful to rank the candidate
structures and fastened the whole procedure as only the high scoring structures
were compared with spectral libraries. It was possible to tentatively identify six
out of 54 while TPPO could be fully identified and quantified.
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By using a non-target approach, the initial question could successfully be
answered: The industrial WWTP has an impact on the regarded groundwater site
which could be shown by source-specific contaminants such as PPA, DPPA, DPPO
and TPPO. The contamination caused by TPPO could be fully identified and also
quantified by LC-HRMS.

Figure 8. Extracted ion chromatograms for PPA (a.), DPPA (b.), DPPO (c.)
and TPPO (d.) in the industrial WWTP (black trace) and in the contaminated
groundwater sample (grey trace). In case of TPPO, a 5 µg L-1 standard is shown

by a dashed line.

Whether or not the suspect-screening approach will be successful depends
on the list which is used for screening. Our list comprising more than 3200
components did not reveal source-specific contaminants. The non-target
approach, on the other hand, does not require any prior information and was
therefore expedient (though more complex) for this particular request.
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Case Study 3 - Non-Target Analysis To Assess Technical Processes

Background and Objective

This study was aimed at assessing the purification efficiency of the fourth
treatment step of a waste water treatment plant (WWTP) in comparison to the
conventional waste water treatment. Therefore, one sample was taken after the
secondary clarifier (#1) before the stream was divided into the two branches,
meaning that both processes were driven with the same influent (Figure 9).
The left branch represents the conventional waste water treatment the right one
comprises the activated carbon filter. Samples were taken after the bio filters
of the two different processes (#2 and #3). The samples in this study were 24
h-composite samples filtered by a 0.45 µm membrane filter.

Figure 9. Sampling points for the comparison of conventional waste water
treatment (biological treatment, left branch, #1 #2) and treatment with a fourth

purification step using activated carbon filtration (right branch, #1 #3).
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Comparative Evaluation

After data processing (see section data processing) the obtained feature lists
were compared to investigate the difference between the conventional waste water
treatment and the additional filtering step using granulated activation carbon
(GAC) filtration. It was expected that the additional filtering step is an added
value with regard to the cleaning performance.

By comparing the two process branches, the adsorption efficiency of the GAC
filtration should be considered. The comparison of sample #1 and #2 covers the
way of the conventional treatment. For the treatment including the adsorption step,
sample #1 and #3 were compared. For assessment of the efficiency, the influent
and effluent samples of the respective branch were used for classification of the
detected features. The groups were defined as follows:

• Elimination: only detected in influent
• Formation: only detected in effluent
• Common: detected in influent and effluent

At this point, only a summary inspection of all features was conducted. The
identification or even quantification of individual candidates was not within the
scope of the case study.

This categorization was conducted for both individual process branches. The
results are summarized in Figure 10. Comparing the 6602 features in the influent
sample (#1) with the two different effluents, the proportion of common features,
i.e. features detected in both the influent and effluent samples can be derived. For
the conventional treatment, 4952 features were common, the fourth treatment step
only revealed 4264 common features. The higher purification performance using
GAC filtration can already be assumed by comparing the number of features in the
two effluent samples (#2 and #3). For the conventional treatment 6183 features
were detected, while the detected 5308 features using the advance purification
represents a reduction of more than 14%. Furthermore, the number of eliminated
features is about 42% higher (1650 vs. 2338) if using GAC filtration. On the other
hand, the conventional treatment reveals about 15% more newly formed features
(1044 vs. 1231). To sum up, the additional treatment step including GAC filtration
increases the percentage of elimination and decreases the amount of newly formed
compounds.

However, this simplified approach does not consider changes in the relative
intensities of the common features, regardless of how high they might be. To also
take this aspect into account, a closer look was taken at the features detected in
both influent and effluent samples (Figure 10, detailed view). By comparing the
relative changes of the signal intensities, the common features were divided into
different groups. Features subjected to elimination (i.e. features with decreasing
intensities throughout the process) were divided into three sub classes:

• Elimination of less than 20%
• Elimination between 20% and less than 60%
• Elimination of at least 60%
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Features with higher signal intensities in the effluent sample were categorized
in two different groups:

• Increase of up to 20%
• Increase of more than 20%

Figure 10. Comparison of the waste water treatment with (black bars) and
without (grey bars) granulated activated carbon (GAC) filtration.
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The distribution of features assigned to the different categories is illustrated in
the detailed view of Figure 10. As is evident, the proportion of features eliminated
by at least 60% are about three times higher if comparing the fourth treatment
step with the conventional one (480 vs. 1473). The positive effect of the GAC
step seems to be significant. Moreover, the fraction of features with increasing
intensities troughout the process is more than 75% higher for the conventional
treatment without the GAC filtration (814 + 676 vs. 386 + 459).

Matrix effects were expected to only have minor influence on the results as the
complex influent sample was the same for both process branches. The comparative
evaluation is less prone to misinterpretations as both processes are subjected to
similar matrices.

Please note that especially for such evaluations the reliability of the complete
workflow (see section data processing) needs to be very high to avoid skewing
of results. High percentages of randomly occurring false positive and negative
findings highly hamper the assessment and therefore have to be kept at minimum.
To get an impression of the significance of the results, single features were
selected on a random basis and manually reviewed. This step reveals only few
false positive and false negative (i.e. real peak filtered during the processing)
findings. Furthermore, the complete assessment was done for three individual
sample series each in positive and negative ionization mode (only one series with
positive ionization is shown here). The results across the three sampling series
were largely consistent suggesting that randomly occurring errors are clearly
underrepresented.

Case Study Conclusion

The additional benefit of the fourth treatment step could be shown by
comparing samples using a non-target approach. The simple comparison of
influent and effluent samples clearly indicated a lower rate of newly formed
features and at the same time a higher elimination for the additional filtering step.
A closer look at the common features also revealed a better rate of elimination
compared to conventional treatment.

The process evaluation without the primary objective of identifying features
reduces the efforts. However, the process comparison can also be seen as a
prioritization tool, as for example only transformation products (i.e. newly
formed compounds) are of interest.

The applied strategies are transferable to other technical processes such as
ozonation. Contrary to most common techniques, the non-target analysis uses
all detectable substances for the process comparison. This represents a major
benefit for the assessment of processes as other approaches might have difficulties
with regard to newly formed compounds. Assuming that a large amount of
transformation products is not known yet, non-target screening allows a very
extensive evaluation of new technologies and treatment steps.
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Summary and Conclusion
The three case studies clearly show the strengths of non-target analysis for

wide-ranging different applications. Prioritization is a key factor, as - in most
cases - few signals already allow to answer the analytical request. Multivariate
statistics are helpful to extract these candidates from the wealth of data.

The LC-HRMS opens up a new dimension for the monitoring of water
resources. Covering unknown and unexpected compounds, non-target screening
provides a more complete picture of the fate of trace organic contaminants in the
aquatic environment but also during the different processes of water treatment.
Fast processing tools for data handling, just-in-time analysis and well thought
prioritization tools will support such complex approaches in the future and might
allow an almost simultaneous derivation of measures.

In most instances, the subsequent approach is to localize the source of the
contamination which would allow the derivation of countermeasures for the water
protection. Especially short arising spill events in rivers covering only a few days
represent a main challenge for the identification of possible polluters. A denser
sampling network should be established to narrow down the possible territory.

For the comparison and evaluation of the effectiveness of new technologies
in water treatment, non-target approaches will be important in the near future. As
the final identification of unknown compounds is challenging and requires, in most
cases, further analytical techniques, approaches where the identification is not of
major interest do only have a very limited number of drawbacks. However, if
regarding processes based on the number of features, special attention should be
given to the repeatability of the results. Therefore, extensive method development
and sophisticated data processing workflows are indispensable to obtain reliable
results.
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