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Abstract

Over the last two decades, online advertising has become one of the most im-
portant dimension of corporate communications. Nowadays, companies pro-
mote their products and services through multiple online marketing channels,
for example newsletters, display and video advertising, and most notably, search
engine advertising. In this context, statistical models developed in research and
practice can be used to measure the effectiveness of advertising activities. The
results from these kinds of analyses can, for instance, be used to attribute mar-
keting success (sales, registration, etc.) to individual advertising activities and,
thus, to support budget planning for future advertising campaigns. In recent
years, a new form of advertising on the Internet has emerged: real-time adver-
tising. Among others, it allows companies to identify potential customers and
target them with respect to their interests. In this way, real-time advertising can
increase advertising effectiveness and it could, at the same time, improve user
experience. With the emerge of this new form of advertising, statistical models
have become even more important because they are now being increasingly used
to predict online user behavior.

The articles included in this dissertation analyze user-level clickstream data gen-
erated during multi-channel advertising campaigns (including TV advertising)
and during real-time auctions. The goal of the analyses conducted here is to bet-
ter understand advertising effects and to support decision-making in this con-
text. Most of the analyses are based on Bayesian models. These models allow for
a very flexible structure, which enables researchers to model, for instance, het-
erogeneity across different types of users or non-linear parameters such as users’
reaction times and exponential decay of advertising effects. In addition, these
models allow for the inclusion of prior knowledge of parameter distributions,
and, therefore, they are well suited for iterative analyses based on clickstream
data.

Bayesian models can be evaluated in different ways. Instead of only relying
on statistical metrics, the articles included in this dissertation aim to estimate
the economic value of these models based on their predictive performance. Al-
though this measure can only approximate their true economic value, this ap-
proach can be used to compare and evaluate different models and to illustrate
the impact of predictive analyses for companies in the context of big data.

This dissertation contributes to both information systems research and market-
ing research and has many managerial implications. First, a process is devel-
oped to determine optimal sample sizes representing the best balance between
computational costs and predictive accuracy in e-commerce in particular and big
data contexts in general. In practice, this process can be used to reduce infras-
tructure and computational costs. Second, the articles included here describe
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models that can be used to measure the impact of television ads on users’ on-
line shopping behavior. The models can provide insights concerning the effec-
tiveness of individual television ads, the interactions between different advertis-
ing channels and the difference in user behavior of TV-induced customers and
their non-TV-induced counterparts. Thereby, the models could support decision-
making with respect to future advertising campaigns and targeting. Third, the
articles describe several possibilities to extend and improve decision support
systems currently used in e-commerce and marketing. These improvements en-
able practitioners to predict users’ interests for arbitrary products and services
by using corresponding websites as dependent variables. This approach can be
used to improve the effectiveness of real-time advertising campaigns, especially
those intended to raise brand awareness among customers.

In addition to these contributions, the articles describe possibilities for future re-
search projects at the intersection of information systems and marketing. These
kinds of projects could aim to develop methods to take advantage of new possi-
bilities resulting from technological progress, to increase profits from advertising
campaigns and selling ad inventories, to provide deeper insights concerning the
effectiveness of multi-channel advertising campaigns, and to improve targeting
of individual consumers by considering their interests and privacy concerns.
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1 Introduction

In the last 25 years, the Internet has transformed the lives of billions of peo-
ple. It has lead to innovations such as search engines, online shops, or social
networks and will most likely generate further innovations and new business
models. Nowadays, a majority of Internet users expects news pages, social net-
works, and search engines, among other services, to be free of charge (Ritzer and
Jurgenson, 2010). For this reason, the majority of free services on the Internet is
ad-funded. User interactions in online advertising generate data that is in focus
of this dissertation.

Advertisers can use this data to analyze the effectiveness of their advertising ac-
tivities (Montgomery et al., 2004). In multi-channel advertising, where different
online and offline channels are used to advertise products or services, the results
of this kind of analysis can be used to support decision-making. This includes,
for instance, the allocation of future budgets across individual advertising chan-
nels, such as search engine advertising, e-mail advertising, or display advertising
(Anderl et al., 2016). With the emerge of real-time advertising1 as a new form of
trading ad slots on the Internet, statistical models have become even more im-
portant because they can now be used to predict individual users’ interests and
purchase intentions and thereby to account for heterogeneous user reactions to
advertisements (Bleier and Eisenbeiss, 2015a; Funk and Nabout, 2016).

The articles included in this cumulative dissertation present possible ways to ad-
dress the challenges combined with these kinds of analyses and present ways to
make use of the massive amount of data that is generated during multi-channel
advertising campaigns in general and in real-time advertising in particular. They
contribute to information systems (IS) and marketing research by developing
and evaluating methods that can be used to reduce the amount of data in e-
commerce contexts, to measure the effect of TV advertising on online behavior,
and to predict user behavior based on real-time advertising data.

The introduction of this dissertation is structured as follows: First, the purpose
and the goals of this dissertation are described. Second, a brief overview of
related fields of research is provided and their connection to IS is explained.
Third, the methods used in the articles are described. Fourth, the main contribu-
tions are summarized and the strengths and weaknesses of each article are eval-
uated. Finally, the introduction concludes by discussing possibilities for further
research.

1Real-time advertising is also known as programmatic advertising, real-time bidding, or data
driven display advertising.



2 1 Introduction

1.1 Purpose and Goals

This section describes three challenges that can be addressed using the methods
and tools developed in the articles included in this cumulative dissertation.

1.1.1 Reducing the Amount of Data in E-Commerce Contexts

Due to the increasing use of ad blockers (Statista, 2016b) and the resulting losses
in revenue, there is a need for a more accurate match between ad content and
user. Statistical analyses can be used to achieve this goal by, for instance, predict-
ing users’ target groups or conversion probabilities at the level of the individual
user. Such analyses rely on data that is readily available in online advertising,
particularly in real-time advertising. Processing and storing all of the available
data in real-time advertising in particular and in online advertising in general is,
on the other hand, associated with significant costs. In addition to considerable
investments in infrastructure, these costs also include significant computational
effort, particularly when Bayesian models are used in conjunction with MCMC
methods (Wilkinson, 2005). The trade-off between the benefits associated with
predictive analyses and the infrastructural costs raises the question of how much
data is required to make useful predictions concerning individual users (Crone
and Finlay, 2012), which is the first challenge addressed in the articles included
in this dissertation. The goal is to develop a method to determine a minimum
amount of data required to make accurate predictions about future user behav-
ior. This kind of method can also be beneficial for companies because it would
allow them to limit data collection and thereby to respond to the growing con-
cerns by users with regard to extensive tracking activities (Acquisti et al., 2015).

1.1.2 Insights Concerning Multi-Channel Advertising Effects

Particularly in conjunction with multi-channel advertising data, the purpose of
statistical models is not limited to prediction (Agarwal and Dhar, 2014). In this
context, data generated by user interactions with different advertising media can
be used to analyze how individual advertising activities affect user decisions
(Naik and Peters, 2009). These kind of analyses make use of statistical models
and can be utilized to evaluate the relative contribution of different advertising
activities to marketing success, which is important for future allocations of the
advertising budget across channels (Anderl et al., 2016). Since it is relatively dif-
ficult to measure user contacts with offline advertising (Gal-Or et al., 2006; Kitts
et al., 2010) such as radio or television ads, these kinds of models are usually
limited to online channels. However, offline advertising is still the major method
to promote products and services for many companies (Statista, 2016a). There-
fore, effective ways to consider the impact of offline ads on online user behavior
could help advertisers to improve their advertising campaigns across offline and
online channels (Joo et al., 2014), which is the second challenge addressed in this
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dissertation. The goal is to close this gap by considering TV advertising cam-
paigns at a user individual level to provide insights concerning offline-online
advertising effects and to improve the cross-channel advertising effectiveness.

1.1.3 Prediction of User Behavior

These days, real-time advertising is the most rapidly growing form of advertis-
ing on the Internet with a share of approximately 31% in the US in 2015 (Statista,
2016c). This number shows the importance for advertisers and website owners
(i.e., the publishers) to engage in real-time advertising. From the perspective
of publishers, this kind of advertising allows for both a reduction of transac-
tion costs and an increase in revenues due to higher utilization (Balseiro et al.,
2014). For advertisers, the advantage of this new form of advertising lies in the
possibility to show ads only to users who are interested in the advertised prod-
ucts (Pandey et al., 2011), and, thereby, to optimize profits from display adver-
tising campaigns (Wu et al., 2015). The increasing use of ad blockers (Statista,
2016b), however, suggests that real-time advertising still lacks effective methods
and tools to target users with appropriate ads (Goldfarb and Tucker, 2011b). In
particular, methods are needed to target users early in the sales funnel when
only little information on their interests is available. Addressing this challenge
is the third major goal of this dissertation.

1.2 Theoretical Background

This section briefly describes the theoretical basis of the articles included here
and discusses how it relates to the academic discourse of IS.

1.2.1 Modeling User Behavior on the Internet

Designing and evaluating tools to provide the right kind and amount of infor-
mation to users such as managers or consumers at the right time has a long tra-
dition in IS (Agarwal and Dhar, 2014). In this sense, using data to provide con-
sumers with information that fits their individual requirements can be regarded
as a distinct dimension of IS research, which can provide novel insights concern-
ing unresolved marketing problems. The direction in IS research proposed by
Agarwal and Dhar (2014) is pursued in the articles included in this dissertation.

The models presented here are used to understand and predict user behavior
on the Internet to, for instance, provide them with information on products or
services of their interest (Montgomery et al., 2004). The models are based on the
work of Chatterjee et al. (2003) who developed a user journey2 model consisting

2In this dissertation, the terms “user journey” and “customer journey” are used interchange-
ably and describe the sequence of contacts (or touch points) of a given user (or customer) with
ads or websites.
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of variables that represent long-term and short-term advertising effects3. Their
model is based on clickstream data generated in the context of display adver-
tising campaigns. They conducted, among others, a hierarchical logistic regres-
sion to account for heterogeneity across users. In addition, the model accounts
for wear-in and wear-out effects by including quadratic terms of several covari-
ates. Their results allowed for extracting the impact of individual advertising
activities on users’ click probabilities.

These kinds of analyses can explain the effectiveness of different advertising ac-
tivities in terms of clicks. However, their economic usefulness is limited because
click probability is not directly correlated with conversion probability (Lee et al.,
2012; Manchanda et al., 2006; Pandey et al., 2011). Therefore, recent studies of-
ten aim to explain conversion rates (Chen and Berkhin, 2011; Zhang et al., 2014).
The model developed by Xu et al. (2014), for instance, can be used to predict
conversion probabilities by considering decaying advertising effects over time.
In real-time advertising, such models can be used to optimize bids for ad slots
(Adikari and Dutta, 2015; Lee et al., 2013), to select the right advertising material
for the right user at the right time (Perlich et al., 2012), and to properly distribute
advertisers’ budgets over time (Lu et al., 2015; Yuan et al., 2013). Using real-time
advertising for branding campaigns, where conversions and clicks are not of pri-
mary interest, is more difficult because methods that can be used to determine
users’ potential interests in certain products can hardly be found.

In general, the effects of different advertising activities are interdependent (An-
derl et al., 2016; Batra and Keller, 2016; Chatterjee, 2010; Kireyev et al., 2015;
Piercy, 2012; Yang and Ghose, 2010). For this reason, advertising channels
should not be analyzed separately, but have to be seen in the context of other
channels. In other words, analyses need to consider cross-channel effects. These
effects have, for instance, been observed between the search engine advertising
channel and the organic search channel (Yang and Ghose, 2010) or between dis-
play ads and organic search conversions (Kireyev et al., 2015). Cross-channel
effects are, however, not limited to online advertising (Dinner et al., 2014; Duan
and Zhang, 2014; Joo et al., 2014; Yang and Ghose, 2010). Liaukonyte et al.
(2015) showed that offline data of TV ads can be used to explain customers’ on-
line search and shopping behavior. Therefore, it might, for instance, make sense
to combine a TV advertising campaign with a complementary search engine ad-
vertising campaign instead of treating these advertising activities separately (Joo
et al., 2014).

3In this dissertation, the term “effects” (or “impact”) is often used to describe user reactions
to ads. It must not be misunderstood as a causal influence of ads on user behavior, since the
analyses presented here cannot be used to identify whether ads make users behave in a certain
way or just attract a certain type of users who are characterized by different patterns of behavior
than other users.
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1.2.2 Predictive Analytics and Value of Data

An important principle of IS research is the generation of (economic) value
through data. In this context, statistical methods and tools are more likely to
be examined with respect to their potential to generate business value from
(big) data, than from a statistical or algorithmic perspective (Agarwal and Dhar,
2014). Predictive analytics, an exemplary direction in IS research, follows this
principle by using historical data to make predictions that are likely to be of
economic value (Shmueli and Koppius, 2011). For instance, companies can use
predictive analytics to reduce warehousing or maintenance costs, or to prevent
churn (Waller and Fawcett, 2013). From a scientific perspective, predictive mod-
eling aims, for instance, to uncover new causal mechanisms, to generate new
hypotheses, or to develop new operationalizations of constructs (Shmueli and
Koppius, 2011).

Statistical models proposed in the IS and marketing literature are often evalu-
ated by reporting measures that indicate how much variance in the data can be
explained by the model (Chatterjee et al., 2003; Li and Kannan, 2014; Liaukonyte
et al., 2015). These methods are suitable, for example, to compare different ver-
sions of nested models (Gelman et al., 2014, p. 178). However, when sample
sizes become very large, the practical relevance of evaluations that only rely on
the significance of model parameters, for instance, decreases (Kruschke, 2010;
Lin et al., 2013). By contrast, metrics concerning the predictive performance of
models are practically meaningful because they can be associated with economic
value (Drummond and Holte, 2000; Shmueli and Koppius, 2011). The evaluation
method used in this dissertation is based on assigning costs to false predictions
and profits to true predictions. Thereby, the economic value of the application
of a statistical model can be determined (Domingos, 1999; Elkan, 2001; Nottorf
and Funk, 2013).

Due to the potential benefits of predictive analytics, the collection of as much
information as possible is often assumed to be very beneficial for many com-
panies (Beath et al., 2012). However, handling the massive amount of data that
companies are confronted with can lead to high computational costs. As dis-
cussed above, it is often not clear how much data is required to make accurate
predictions (Crone and Finlay, 2012). Learning curve sampling has been used
to determine the amount of data required to appropriately support decision-
making. This method is based on the observation that an increase in sample size
reduces uncertainty in the parameter estimates of a learned model (Meek et al.,
2002). Based on this method, the articles presented in Chapter 3 and 4 present a
framework to determine the required amount of data in the context of real-time
advertising.
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1.3 Methods

The articles presented here make use of primarily three different methodological
tools that are discussed in this section. When it comes to modeling, the articles
consistently make use of user-level data that is transformed into user journeys
(Section 1.3.1). These models are created based on a Bayesian approach and
estimated using MCMC methods (Section 1.3.2). An excursus on how to create
an MCMC sampler to estimate Bayesian models is described in Section 1.3.3. In
this dissertation, the evaluation of these models is mostly based on predictions
and their valuation from the advertisers’ perspective (Section 1.3.4).

1.3.1 Advertising Effectiveness Models Based on Clickstream
Data

This dissertation develops and evaluates different variations of the model for
measuring advertising effects introduced by Chatterjee et al. (2003). It is based
on user-level data and has primarily two advantages over other models used for
this purpose: First, it is a very flexible model that can easily be extended by
additional variables and hierarchy levels. Second, since it is based on a logistic
regression, it can be used to calculate probabilities for certain user behaviors
(click, registration, conversion). These two aspects make the model well suited
to be used in the context of real-time advertising and multi-channel attribution
modeling (Shao and Li, 2011).

In its original form, the model proposed by Chatterjee et al. (2003) was used to
estimate the users’ probability to click on banner ads. Within the scope of this
dissertation, the model is extended to predict conversions and product interests.
This change of purpose is feasible, because clicks on banner ads do not directly
correspond to economical benefit. Conversions, instead, are directly associated
with companies’ revenues and, therefore, can make analyses economically more
meaningful (Manchanda et al., 2006). Other models proposed in the literature to
analyze consumer behavior on the Internet are either not flexible enough (e.g.,
Anderl et al., 2016) or cannot be used to calculate probabilities for future user
behavior on an individual basis (Joo et al., 2014; Liaukonyte et al., 2015) and
have, therefore, not been used for analysis in this dissertation.

The model proposed by Chatterjee et al. (2003) is based on clickstream data that
refers to data generated by individual users while surfing the web (Hui et al.,
2009). All data sets used within this dissertation are generated in this manner.
They have been recorded by advertising agencies and provided for research pur-
poses. These companies recorded every user action on different online shops
including user identifications, timestamps, and advertising channels consumers
have used to open the respective website. Recorded actions include clicks on in-
ternal links, user registrations and purchases. These data sets have been used to
test the process to find the minimum sample size in predictive analytics (Chap-
ters 3 and 4) and to estimate the effect of TV ads on online behavior of users
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(Chapters 5 and 6). One data set involves bid requests from a time period of
four days received from a big ad exchange. Each bid request includes a user
identification, a time stamp and the URL of the website from where it was trig-
gered. The data set has been used to build a model for predicting user interests
(Chapter 7).

To analyze this kind of clickstream data, it can be transformed into user journeys.
In contrast to the raw data, the user journeys used here contain information
concerning previous user activity (Braun and Moe, 2013; Chatterjee et al., 2003;
Poel and Buckinx, 2005). These include, for instance, the time between two
sessions, the time since the last conversion, and the number of previous contacts
with certain advertising channels. These variables allow, for example, to estimate
the long-term effects of different advertising activities.

1.3.2 Bayesian Methods

All articles except the one presented in Chapter 2 use statistical methods to an-
alyze the data. More specifically, the methods are used to understand the im-
pact of advertising exposure on decision making at the level of the individual
user. The statistical models developed here involve more than one hierarchi-
cal level, regularization, or non-linear parameters. Frequentist methods such as
maximum likelihood estimation are often not suitable to estimate these kinds
of models. Instead, the use of Bayesian models in combination with Markov
Chain Monte Carlo (MCMC) methods allows for nearly unbounded complex-
ity including, for instance, heterogeneity across unit-level parameters and non-
normal parameter distributions (Allenby and Rossi, 2006; Kruschke, 2010). With
the availability of affordable computational power, these methods have become
increasingly popular in marketing research (Bucklin and Sismeiro, 2009; Chat-
terjee et al., 2003; Manchanda et al., 2006; Rossi et al., 2006; Xu et al., 2014). In
the context of user journey analyses, Bayesian methods are feasible because they
can be used, for instance, to estimate the decay rates of advertising effects (Sec-
tion 1.3.3), non-linear transformations of user journey variables (Section 5.4.1),
or cluster-level parameters (Section 5.4.3).

Apart from the possibility to estimate models of high complexity, Bayesian mod-
els have another advantage over frequentist methods: They enable researchers
to include prior beliefs about reality and to update this belief as new data is con-
sidered for analysis (Kruschke, 2010; Gelman et al., 2014, p. 34 ff.). The model
presented in Section 7.3.2, for instance, follows this principle by iteratively up-
dating knowledge concerning the correlation of the users’ clickstreams and in-
terests as new data is available. Depending on the degree of prior certainty, prior
belief either has a weak (small degree of certainty) or strong (high degree of cer-
tainty) influence on the results of Bayesian parameter estimation (i.e., posterior
distributions), which, thus, does not only rely on data, but also on prior knowl-
edge obtained from previous analyses or the literature (Gelman et al., 2014, p.
35). In this sense, Bayesian data analysis enables cumulative scientific progress
(Kruschke, 2010).
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Bayesian estimations result in parameter distributions (Kruschke, 2010). For
simple models, these posterior distributions can be calculated analytically or be
approximated using, for instance, variational Bayesian methods. More complex
models require MCMC methods that allow for a high flexibility in model cre-
ation (Gelman et al., 2014, p. 259 ff.). These methods are based on random num-
ber generators that are used to draw samples from posterior parameter distribu-
tions. Since these methods are frequently used in the articles presented in this
dissertation, this introduction deserves more detailed information on Bayesian
model creation and estimation. For this purpose, the next section describes a
non-standard Bayesian model that can be used to estimate decaying advertising
effects and shows how to estimate it using MCMC sampling.

1.3.3 Exemplary Creation and Estimation of a Bayesian Model

Although a variety of software packages to estimate Bayesian models exists, it
is often required to implement specific MCMC samplers, for instance, to paral-
lelize involved sampling steps or to implement non-linear extensions that are not
covered by available software packages. For this reason, this section describes
the creation and estimation of a logistic model that allows for determining expo-
nentially decaying advertising effects. The knowledge of channel-specific decay
parameters may be useful for attributing advertising success to individual online
channels and for planning multi-channel marketing campaigns.

The model presented here extends the model proposed by Chatterjee et al. (2003)
by using decay parameters to transform the design matrix X. It is described with
Equation 1.1:

p(conv)jk =
1

1 + exp(−X̃jkβ)
(1.1)

In this equation, p(conv)jk represents the probability that user j converts in
his/her kth session. The design matrix X can be transformed according to Equa-
tion 1.2, where Xjk represents the kth observation of user j at time tk (k > 1). The
parameter αl represents the unknown decay constant of the advertising effect of
channel l.

X̃jkl = Xjkl +
k−1

∑
m=1

exp {−(tk − tm)αl}Xjml (1.2)

Using this equation, Table 1.1 shows the exemplary transformation of Xjkl (sec-
ond and third column) into X̃jkl (fourth and fifth column).

To create a sampling algorithm that can be used to estimate the model param-
eters α and β, first, a general procedure on how to create a Gibbs sampler is
described.
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t Xjk1 Xjk2 X̃jk1 X̃jk2
t1 1 0 1 0
t2 0 1 exp {−(t2 − t1)α1} 1
t3 1 0 1 + exp {−(t3 − t1)α1} exp {−(t3 − t2)α2}
t4 1 0 1 + exp {−(t4 − t1)α1}+ exp {−(t4 − t3)α1} exp {−(t4 − t2)α2}

Table 1.1: Transformation of covariates for user j at time tk.

General Procedure

First, the probabilistic graphical model that relates to the (research) question
is created. An appropriate method to draw these models is plate notation. The
graphical model includes acyclic dependencies between parameters and the mul-
tiplicities of the parameters’ distributions. Although it is a useful tool to get a
common understanding of the model, the graphical model is not a prerequisite
to create the Gibbs sampler (Murphy, 2012, p. 321 ff.). Second, the joint poste-
rior density of the parameters is derived. It consists of the product of likelihood
and prior distributions, according to Bayes rule p(M|D) = p(D|M)p(M)/p(D).
Considering multiplicity, which is represented by plates in the graphical model,
is crucial in this step (Gelman et al., 2014, p. 288). Third, the marginal distribu-
tions for each parameter θ are calculated, ignoring normalizing terms. All fac-
tors not including parameter θ can be removed from the equation because they
are constant with respect to parameter θ. Fourth, the conditional parameter dis-
tributions from the previous step have to be transformed into a common density
(e.g., normal or gamma distribution) in order to sample from them directly, if
possible (Gelman et al., 2014, pp. 289-290). If no closed form can be found, the
parameters can be estimated using a Metropolis step. Fifth, in each sampling
iteration, samples are drawn from the conditional distributions calculated in the
previous step and used for the subsequent sampling iteration. Higher order pa-
rameters are sampled only once per iteration whereas group level parameters
can be sampled in parallel due to their conditional independence (Gelman et al.,
2014, p. 289).

Creating the Probabilistic Graphical Model

To set up a Gibbs sampler that allows for sampling from the empirical distribu-
tion of α and β, the approach proposed by Albert and Chib (1993) is followed
and the graphical model is created in accordance with the first step described
in the general procedure (Figure 1.1). The parameters λi and zi are introduced
by Albert and Chib (1993). These variables are used in the Gibbs sampler to
draw samples from a mixture of truncated normal distributions to approximate
the logistic distribution. The graphical model shows the dependencies of the
parameters and their multiplicities. The parameter N refers to the total number
of touch points. The index i replaces the index jk, i.e., touch point k of user j, for
convenience.
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zi λi

yi

N

X̃iα

β

Figure 1.1: Probabilistic graphical model of a logistic regression
with transformation of covariates using parameter α.

Deriving the Joint Posterior Distribution and Defining Prior Distributions

The joint posterior distribution of the model p(α, β, λi, zi, X̃i, yi) can be derived
from the graphical model presented in Figure 1.1 by applying the chain rule for
conditional distributions.

p(α, β, λi, zi, X̃i, yi) = p(α)p(β)∏
i

p(λi)p(zi|β, λi, X̃i, yi)p(X̃i|α) (1.3)

Based on Equation 1.3, the marginal posterior densities of the involved parame-
ters can be calculated. Since it is not possible to sample from the logistic proba-
bility density function directly, Albert and Chib (1993) approximate it by intro-
ducing a latent variable zi which is distributed following a mixture of truncated
normal distributions following Equation 1.4:

p(zi|β, λi, X̃i, yi) =

{
N0,∞(X̃iβ, λ−1

i ) if yi = 1
N−∞,0(X̃iβ, λ−1

i ) else
(1.4)

To approximate the logistic distribution, the precision parameters λi are sampled
from a Gamma distribution with λi ∼ Γ(ν/2, ν/2) with ν ≈ 8 (Albert and Chib,
1993; Gelman et al., 2014, pp. 293-294). The likelihood of the latent variable zi
(neglecting the truncation) is given in Equation 1.5. The truncation can be done
by inverse sampling, which is not going to be described in further detail here.

zi ∝ λ
1
2
i exp

{
−λi

2
(X̃iβ− zi)

2
}

(1.5)

The prior distributions of λi and β are given in Equations 1.6 and 1.7.

p(β) ∝ exp(−1
2

βTΩβ) (1.6)

p(λi) ∝ λ
ν
2−1
i exp(−ν

2
λi) (1.7)
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In Equation 1.6, the parameter Ω represents the prior precision matrix for the
parameters β.

Calculating Marginal Posterior Distributions

Given the equations described above, the marginal posterior distributions can be
calculated. According to Equation 1.3, the parameters β are distributed follow-
ing

p(β|·) ∝ p(β)∏
i

p(zi|β, λi, X̃i, yi). (1.8)

Inserting priors and likelihood from Equations 1.5, 1.6, and 1.7 and eliminating
index i by applying matrix notation yields

p(β|·) ∝ exp
{
−1

2
βTΩβ− 1

2
[X̃β− z]TΛ[X̃β− z]

}
. (1.9)

To sample from the marginal distribution, Equation 1.9 needs to be transformed
to a closed-form distribution. This is done by completing the squares in the
exponent of Equation 1.9. The exponent, denoted ω for convenience, is given by

ω = −1
2

{
βTΩβ + βT(X̃TΛX̃)β− 2X̃βΛz + zTΛz

}
. (1.10)

All factors of p(β|·) that do not include β can be integrated out, as they are
constant with respect to β:

ω = −1
2

{
βT(X̃TΛX̃ + Ω)β− 2X̃βΛz

}
(1.11)

This exponent can be transformed into the exponent of a multivariate nor-
mal distribution of the form −1/2(µ− β)TΘ(µ− β) = −1/2(µTΘµ− 2µTΘβ +
βTΘβ) with precision matrix Θ and mean µ. By comparing the summands,
the precision matrix and means of the multivariate normal distribution (β ∼
Normal(µ, Θ)) can be derived as follows:

Θ = X̃TΛX̃ + Ω (1.12)
µ = Θ−1X̃Λz (1.13)

In analogy to the process described for β, the precision parameters λi can be
sampled as described with Equation 1.14:
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p(λi|·) ∝ p(λi)p(zi|β, λi, X̃i, yi)

∝ λ
ν
2−1
i λ

1
2 exp(−ν

2
λi) exp

{
−1

2
λi(X̃iβ− zi)

2
}

∝ λ
ν
2+

1
2−1

i exp
{
−1

2
(νλi + λi(X̃iβ− zi)

2)

}
∝ λ

ν
2+

1
2−1

i exp
{
−(ν

2
+

1
2
(X̃iβ− zi)

2)λi

}
(1.14)

Equation 1.14 has the form of a Γ distribution with shape 1
2(ν + 1) and scale

2(ν + (X̃iβ− zi)
2)−1. Consequently, the parameters λi can be sampled directly

from this distribution in each iteration of the Gibbs sampler (Albert and Chib,
1993).

Metropolis Step to Sample from Decay Constants

To sample from the decay constants α used to transform X into X̃, a Metropolis
step is needed because there is no closed form of the related marginal distribu-
tion (Gelman et al., 2014, p. 281 f.). The Metropolis step consists of three parts:
First, a new decay constant α∗l is sampled from a proper jumping distribution
(Gelman et al., 2014, p. 278). For example, the following jumping distribution
could be assumed to sample α∗l :

α∗l ∼ Normal(αl, σ2) (1.15)

In this equation, α∗l represents the proposed value for the decay parameter of
referral channel l, while αl refers to the decay parameter from the previous it-
eration. Second, the design matrix X needs to be transformed using Equation
1.2 and α∗l . This step needs to be done for each user and referral channel l
and, therefore, it is well suited to be parallelized. Third, the ratio of probabil-
ities for α∗l and αl is calculated. Since the jumping distribution is symmetric,
i.e., p(αl|α∗l ) = p(α∗l |αl), this ratio does not depend on the jumping distribution
(Gelman et al., 2014, p. 278 f.):

rl =
exp

{
−[X̃∗β− z]TΛ[X̃∗β− z]

}
exp

{
−[X̃β− z]TΛ[X̃β− z]

} (1.16)

In this equation, X̃∗ represents the transformed design matrix where covariate l
is exchanged by transforming it using α∗l . All other covariates are transformed
using α from the previous sampling iteration. The new value α∗l is accepted with
probability pacc

l following:

pacc
l = min {1, rl} (1.17)
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For proper mixing of chains, the parameter σ2 of the jumping distribution (Equa-
tion 1.15) can be tuned prior to the actual analysis to achieve a desired accep-
tance rate (Gelman et al., 2014, p. 279 ff.).

Due to the approximation of the logistic distribution with a mixture of truncated
normals, the values of β have to be divided by 0.634 after the estimation has
finished (Albert and Chib, 1993). The sampling algorithm described here has
been implemented and tested using simulated data.

Implementation

Drawing posterior samples from a Gibbs sampler is relatively easy, since most
statistical software packages support drawing from simple distributions such as
the ones used here. However, these implementations might not necessarily be
the most efficient ones to obtain posterior distributions (Gelman et al., 2014, p.
280, 296). In addition to more efficient methods to draw samples from poste-
rior distributions, for example Hamiltonian Monte Carlo estimation (Gelman et
al., 2014, p. 300 ff.), MCMC algorithms can often be parallelized to speed up
computation times (Da Silva, 2010; Wilkinson, 2005). A simple form of paral-
lelization is deploying multiple instances of a Gibbs sampler on different CPU
kernels which results in multiple MCMC chains. This kind of parallelization
is often implemented by common software packages used to estimate Bayesian
models (Gelman et al., 2014, p. 307; Plummer, 2003). Parallelizing different sam-
pling steps within one iteration, however, is only possible for steps that involve
independently drawn distributions or independent transformations of variables.
In the Gibbs sampler described here, these steps include the transformation of
each user journey using α, i.e., X̃i = f (Xi, ti, α), or sampling the individual λi.
These steps could, for instance, be parallelized on GPU cores (Da Silva, 2010).
Due to the increasing interest in Bayesian methods, further research that aims to
develop efficient implementations that take advantage of widely available multi-
core hardware (such as GPUs) would be useful in this context.

1.3.4 Valuation of Data

In the literature, several ways to assess and compare statistical models have been
proposed (Gelman et al., 2014, p. 165 ff.). In this dissertation, the predictive
performance of models is the most important measure for evaluation because
predictions can be used in the context of decision support systems, particularly
in real-time advertising. Higher predictive accuracies enable advertisers to make
better decisions. Therefore, the model evaluation conducted here includes the
area under the receiver operator characteristic (AUC) or misclassification errors.
These metrics, however, cannot be used to assess the utility of predictions, i.e.,
the actual economic value that is associated with the data or, to be more precise,
the model that was trained using this data. This is particularly true for data
sets with highly imbalanced numbers of occurrences of different outcomes in
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multinomial classifications and different costs associated with false predictions
(Domingos, 1999).

For this reason, the articles included in this dissertation evaluate models based
on cost/benefit considerations in the following way: First, a k × k cost matrix
C = (cij) is defined that includes the marginal profits and costs of correct and
incorrect classifications. The entries ci ̸=j represent the marginal costs for falsely
labeling an instance of class j with label i, while the diagonal entries ci=j repre-
sent the marginal profits (i.e., negative costs) for correctly labeling an instance
of class j with label i. Second, for classifications based on probabilities (as in
the case of logistic regressions), k threshold probabilities pT

i , representing the
minimum probability for labeling an unknown instance with label i, need to be
determined so that they maximize the utility U(pT) = −∑ij cij · aij(pT

i ). The
variable aij(pT

i ) represents an entry of the k× k confusion matrix that is gener-
ated by testing the classifier on a holdout set. Each entry aij(pT

i ) holds the num-
ber of instances of class j classified with i (using pT

i ). The optimal values of the
threshold probabilities can, for instance, be determined by simulated annealing
(Murphy, 2012, p. 869 f.).

This kind of model evaluation is a helpful method that can be used in practice
to chose between different classifiers and to assess the profitability of applying
a classifier (Domingos, 1999; Drummond and Holte, 2000). As demonstrated in
Chapter 7, the evaluation could be conducted using cross-validation to increase
its robustness. In practice, it may, however, be difficult to determine the costs
for false predictions and the profits for true predictions, particularly in real-
time advertising because of the varying costs for ad impressions (Chawla, 2005).
Therefore, the approach presented here can only be used to approximate the
costs and profits of predictive analytics in this context.

1.4 Discussion

This dissertation consists of six interrelated articles. This section summarizes
their contributions and managerial implications and discusses how they are
linked with each other. In addition, it evaluates each article’s strengths and
weaknesses. The articles follow a pragmatic approach of IS research that fo-
cuses, for instance, on developing new arguments, or uncovering new relation-
ships and patterns of user behavior (Avison and Malaurent, 2014). This perspec-
tive allows researchers to address new challenges in the industry and to adopt
new methods developed by other disciplines (Agarwal and Dhar, 2014). In con-
trast to more traditional directions in IS research, which is very much concerned
with theory, this recent direction emphasizes the primacy of data and methods.
The articles included here follow this direction by discussing several current
challenges in online advertising and developing methods and tools to address
them.
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1.4.1 Contributions and Implications

As indicated by their ranking by VHB-Jourqual, the three conference papers
presented in Chapter 3 (Stange and Funk, 2015), Chapter 5 (Stange, 2015), and
Chapter 7 (Stange and Funk, 2016b) represent the most relevant contributions of
this dissertation. In addition, the article presented in Chapter 2 has been pub-
lished in Business & Information Systems Engineering. Although it is unranked
according to VHB-Jourqual V3, the book chapter presented in Chapter 4 was
reviewed in a double blind review process. The study presented as a working
paper in Chapter 6 has been presented on the European Marketing Agency Con-
ference 2016 in Oslo and on the Marketing Science Conference 2016 in Shanghai.
The major contributions and implications and the methodical basis of the articles
included in this dissertation are illustrated in Figure 1.2.

Motivation and
managerial 
implications

Methodical basis

Scientific 
contributions

User journey models based on RTA data 
and multi-channel advertising data 

(Chp. 3 through 7)

Finding optimal sample 
sizes for predictive 
analytics based on 

valuation of classifiers 
(Chp. 3, 4)

Increasing profits from advertising campaigns and 
improving user experience 

(Chp. 2, 5, 6, 7)

Understanding cross-
channel advertising 

effectiveness 
(Chp. 5, 6)

Maximizing benefits 
from predictions 

based on RTA data 
(Chp. 3, 4, 7)

Making data 
management more 

efficient and addressing 
privacy concerns

(Chp. 2, 3, 4)

Bayesian modeling in 
conjunction with 
MCMC methods 
(Chp. 3, 5, 6, 7)

Figure 1.2: Methodical basis, contributions and implications, and
connections between the articles.

This figure also implies the relationship among the articles: First, Chapter 2
identifies research gaps in the context of real-time advertising regarding data
management (addressed in Chapters 3 and 4) and decision support (addressed
in Chapters 5, and 6, and 7). Second, an extended version of the model de-
veloped in Chapter 3 is presented in Chapter 4. Third, Chapter 5 proposes a
model to measure the impact of TV ads on the users’ conversion probability and
this model is extended in Chapter 6. Fourth, the model developed in Chapter 7
could serve as an extension of the models developed in Chapter 5 and 6. Table
1.2 summarizes the contributions and implications of the articles presented in
the following chapters.
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Table 1.2: Contributions, managerial implications, and ranking of journal by VHB Jourqual V3

Title Scientific contribution Managerial implications Journal

Real-Time
Advertising
(Chp. 2)

The study (1) outlines research possibilities for
IS scholars; it (2) presents a BPMN diagram
to illustrate the process of real-time advertising
and involved actors.

The article provides an overview of challenges
for practitioners using real-time advertising
for exposing users to ads.

BISE
(ranking: B)

How Much
Tracking Is
Necessary?
(Chp. 3)

The article (1) proposes a process to determine
a minimum sample size in e-commerce con-
texts based on learning curve sampling; (2) six
different Bayesian analyses are conducted that
show the saturation of predictive accuracy in
user journey analyses; (3) more complex mod-
els require more data to outperform simpler
models.

The study shows (1) that advertisers only
need to store a small fraction of the avail-
able data produced by user interaction; (2)
the method can be used in practice to reduce
infrastructure costs and computational costs
generated by storing data in an unsystematic
manner.

ECIS 2015
(ranking: B)

How Big Does
Big Data Need
to Be? (Chp. 4)

The chapter provides (1) an extension of Stange
and Funk (2015) by considering the costs for in-
cluding additional data records into the anal-
ysis; it (2) shows that benefits obtained from
predictive analyses decrease as more and more
samples are considered; it (3) generalizes the
idea of Stange and Funk (2015).

The chapter provides a process model that (1)
can be used to determine the optimal sample
size in a predictive analytics application; it (2)
encourages a critical discussion on data col-
lection and storage in different industries.

Book
chapter, IGI
Global (no
ranking)
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Table 1.2: Scientific contributions, managerial implications, and ranking of journals according to VHB Jourqual V3

Title Scientific contribution Managerial implications Journal

The Impact of
TV Ads on the
Individual
User’s
Purchasing
Behavior (Chp.
5)

The article (1) provides a Bayesian non-linear
extension of the model proposed by Chatterjee
et al. (2003); it (2) describes a model that can
be used to estimate the time-dependent short-
term TV effects on conversion probability; it (3)
presents a hierarchical Bayesian model used to
estimate cross-channel advertising effects.

Advertisers can use the method (1) to gain
insights into offline-online advertising effects
and (2) to improve predictions, e.g., in real-
time advertising; the model (3) can sup-
port managers during planning of advertising
campaigns in terms of the allocation of bud-
gets to individual online and offline channels.

ICIS 2015
(ranking: A)

The Reduced
Customer
Revenue of
TV-Induced
Online
Shoppers (Chp.
6)

The results suggest that customers who open
a shop’s website in response to TV ads exhibit
(1) lower conversion probabilities, (2) smaller
shopping baskets, and, consequently, are char-
acterized by (3) lower customer revenue than
other customers.

Advertisers (1) can use the modeling ap-
proach to analyze the short-term advertising
effect of multiple TV ads during a campaign;
they are (2) advised to consider reduced con-
version probabilities and customer revenues,
for instance, when calculating the return on
investment of TV advertising campaigns.

Working
paper (no
ranking)

Predicting
Online User
Behavior Based
on Real-Time
Advertising
Data (Chp. 7)

The article (1) provides a framework to extend
and improve existing decision support systems
employed in e-commerce and marketing; it (2)
provides a method to measure the impact of
bid request data based on the valuation of the
analysis; it (3) encourages scholars to focus on
this type of big data.

The method developed here (1) enables prac-
titioners to make predictions about users’
interests for arbitrary products or services
by using corresponding websites as depen-
dent variables; it (2) can be used in deci-
sion support systems to increase profits from
(awareness-oriented) cross-channel advertis-
ing campaigns.

ECIS 2016
(ranking: B)
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1.4.2 Evaluation of the Contributions

The purpose of this section is to reconsider the contributions, implications and
limitations of the articles included in this dissertation.

Research Opportunities in the Context of RTA

The article presented in Chapter 2 (Stange and Funk, 2014) provides a short
overview of possibilities for further research in the context of real-time adver-
tising from the point of view of IS and, thereby, presents a contextual frame-
work for this dissertation. It contains a business process diagram that provides
a systematic overview of the real-time advertising process and involved actors.
This article is not a systematic literature review, instead it proposes three distinct
further directions of IS research. More specifically, it is argues that IS research
could contribute to data management, decision support, and users’ perception
of this new type of advertising.

Learning Curve Sampling in User Journey Analyses

The method proposed in Chapter 3 (Stange and Funk, 2015) can be used to de-
termine the minimum sample size required to make accurate predictions about
future user behavior in the context of multi-channel advertising. The article pro-
vides strong evidence for the saturation of predictive accuracy based on two
different data sets and three different Bayesian models. Results suggest that e-
commerce companies only need to consider a very small fraction of their data to
optimize profits from predictive analyses. There are only few theoretical studies
dealing with this issue, probably because data costs are often of minor concern
in studies dealing with predictions in the context of big data. In addition, com-
panies’ actual requirements to make data management more efficient has yet to
be addressed by the literature. To identify further managerial implications, qual-
itative research to examine companies’ perspectives on the trade-off between in-
frastructural costs and benefits from predictive analytics in greater detail would
be required. However, as the article intends to be a starting point to strengthen
practitioners’ and researchers’ awareness for possibilities to reduce computa-
tional costs in the context of big data analyses, these drawbacks become less
significant. The article suggests that extensive tracking activities by companies,
which many customers are increasingly concerned about (Acquisti et al., 2015),
are not necessarily economically feasible. Thus, applying the proposed methods
may also help to regain customer trust and satisfaction (Bleier and Eisenbeiss,
2015b; Malhotra et al., 2004).

The book chapter (Stange and Funk, 2016a) included in Chapter 4 extends the
model proposed in Chapter 3 by considering the marginal costs for data storage
and collection to determine the maximum utility for predictive analytics. In con-
trast to Stange and Funk (2015), the book chapter applies regularized maximum
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likelihood estimation and, thus, does not contain a random slope model. In con-
trast to the article presented in Chapter 3, the book chapter uses 10-fold cross-
validation to calculate the area under the curve metric. Due to their similarity,
the paper has the same weaknesses as the paper presented in Chapter 3. Al-
though the process model developed here could be beneficial for arbitrary uses
of predictive analytics, its applicability is only tested using e-commerce data. To
provide evidence for its general applicability, further research that applies the
process to predictive big data analytics outside of the e-commerce field would
be needed.

The Impact of TV Ads on Online Customer Behavior

Stange (2015) presents a novel approach to measure the effect of television ad-
vertising on online customer behavior. In contrast to related work investigating
the effect of TV ads on online behavior at an aggregated level, the model devel-
oped here allows for estimating this effect at the level of the individual user. For
this reason, the model can be used to better understand customer behavior in
e-commerce with respect to offline advertising. At the same time, the model can
improve predictions, for instance, in the context of real-time advertising. While
it offers a new method, the article also has three drawbacks: First, the structure
of this article is not as clear as it could be. The first step of the analysis describes
a non-linear extension of the user journey model proposed by Chatterjee et al.
(2003). The increase in predictive accuracy of this extension was compared with
one of the inclusion of the TV effects (Table 5.6) to test which approach is the
more effective means to improve predictive accuracy. This comparison would
certainly deserve further attention (maybe in a separate paper). The major goal
of the article, however, is the analysis of TV ad effects on online behavior. This
analysis would have deserved a more detailed discussion, for instance, with re-
gard to the interpretation of the results obtained from the Bayesian model. Due
to the first part of the analysis and the space limitations, this extended discus-
sion was not possible in the original article. Second, inconsistencies in the data
set used here were found during data preparation for the article presented in
Chapter 6. These inconsistencies are discussed in greater detail in Section 5.8.
While they do not limit the major methodological contributions of the article,
these issues were investigated and the approach was tested again using a cor-
rected sample. However, it was decided to include the unchanged version of the
article in Chapter 5 to preserve its originality. Nevertheless, several footnotes
were added in Chapter 5 to indicate drawbacks related to these inconsistencies.
Third, during the investigation of these inconsistencies, strong correlations of
effects that originate from the time of the day and effects that are related to TV
ads (aired at a certain time of the day) were found. These correlations make the
identification of TV advertising effects more difficult and, at the same time, ex-
plain why the inconsistencies in the data set were not noticed in the first place.
This issue is discussed in greater detail in Section 5.8.1. In addition, an alterna-
tive modeling that is more robust with respect to these kinds of correlations is
discussed in Section 5.8.2.
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The study presented in Chapter 6 extends the method proposed in Chapter 5 to
measure the difference between customers that open the online shop in response
to TV ads and those that found their way to the online shop by other means with
respect to conversion probabilities, shopping baskets, repeat purchase behavior,
and a 90-day revenue per customer. The analysis is based on calculating the
probability that a given visit is a direct response to a TV ad. The results sug-
gest that customers who open the website in response to TV ads are less likely
to convert and are characterized by smaller shopping baskets. Advertisers are
advised to anticipate this difference, for instance, by granting discounts to cus-
tomers who are likely to have watched a certain TV ad recently. In its current
form as a working paper, the article could be improved by applying hierarchical
models to account for heterogeneity across individual customers. In addition,
its theoretical foundation could be extended. Due to the relatively short time pe-
riod covered by the data (4 months), the study cannot reveal insights concerning
long-term customer behavior. For instance, it would have been be very interest-
ing to compare customer lifetime values of consumers who tend to respond to
TV ads and those who do not. Thus, for future research, it is recommended to
increase the time period of data collection.

Using RTA Data to Predict User Behavior

The article presented in Chapter 7 (Stange and Funk, 2016b) provides a method
to predict user behavior based on real-time advertising data using an iterative
Bayesian multinomial logistic regression with regularization. The article directly
addresses challenges related to decision support that are outlined in Chapter 2.
In addition to introducing a new method, this article contributes to the literature
by discussing the practical implementation of the model as an extension to ex-
isting decision support systems. These systems could consider the results from
the model as an additional piece of information to select ads and calculate bids.
The iterative Bayesian model described here could be easily modified to meet
companies’ requirements and extended by hierarchical layers (e.g., using spa-
tial, geographical, or demographic data). As the article involves a valuation of
the analysis considering different benefit/cost ratios, it also addresses one of the
research possibilities outlined in Stange and Funk (2015). The Bayesian analysis
proposed here is, however, computationally demanding and, therefore, might be
impractical in some real-life situations. The suggestion that it could be useful in
cross-channel advertising scenarios might need additional discussions and fur-
ther evidence. In addition, the study does not provide a comparison to other
models used in real-time advertising or proposed by the literature. Instead, it
has a rather exploratory character and is more practically motivated rather than
theoretically. According to Agarwal and Dhar (2014), however, such studies are
one means of IS research to uncover new patterns of knowledge and, thus, to
help develop new theories.
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1.5 Conclusion

The articles included in this dissertation propose methods that can be used to
support decision-making in e-commerce contexts. More specifically, the articles
address three important dimensions of this process: managing data, explaining
advertising effects, and predicting user behavior.

The first important dimension addressed in this dissertation is management of
big data in e-commerce. Users are increasingly aware of tracking activities and
not willing to disclose private information on the Internet (Acquisti et al., 2015).
This shift toward data privacy and regulation could potentially hurt advertisers
and publishers (Goldfarb and Tucker, 2011a). The articles included here con-
tribute to this debate by showing that only a small fraction of the data currently
generated by user activity is needed to make accurate predictions about future
user behavior. In light of the current situation and this finding, companies are
well advised to reconsider the usefulness of extensive tracking activities in order
to regain the trust of users, and, also to lower infrastructural costs. Further re-
search involving different data sets could be helpful to advance this discussion.

Regarding the second dimension, explaining advertising effects, the models pro-
posed in this dissertation can be used by e-commerce companies to attribute
marketing success to individual advertising channels. To assess to what extent
different online and offline advertising channels contribute to users’ purchasing
probability, the models can, however, be only a first step. To apply them in a
commercial context, more research would be necessary to transform the esti-
mated parameters into a managerially more meaningful form with due regard
to possible saturation effects and scalability constraints of different advertising
activities (Funk and Nabout, 2016).

Concerning the third dimension, predicting user behavior, the methods pro-
posed here can serve as extensions of bidding agents employed by advertisers
and their service providers in the context of real-time advertising. This rapidly
growing form of advertising could be used to target individual users by pre-
dicting their specific interests. Applying the appropriate methods and tools for
targeting, advertisers can increase their profits due to more effective campaigns.
In light of general market dynamics and evolving business models, researchers
should continue to improve models and decision support systems used in this
context, for instance by including novel data from different sources such as de-
vices used, previously visited websites, geographical information, information
on offline advertising, or information on the viewability of ads.

In summary, the intersection of IS and marketing involves many opportunities
for further research, some of which are discussed in greater detail in the articles
included here. Apart from theoretical contributions, this research can provide
practical methods and tools for advertisers and their service providers that have
the potential to improve decision support systems in e-commerce, and, thereby
to increase companies’ profits and, at the same time, customer trust and satis-
faction.
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2.1 Data-Driven Online Advertising

Over the last two decades, online advertising has become one of the most im-
portant elements of corporate communications. Whereas static banner ads dom-
inated initially, search advertising (Varian, 2007) now encompasses the largest
part of global online advertising spending. In recent years, a new form of on-
line advertising, real-time advertising1 (RTA), has been increasingly used. RTA
is based on auctions in which individual advertising spaces are sold within a
few milliseconds after calling a website. Advertisers or their media agencies
participate in these auctions. RTA was first established in the U.S. and is now
represented in the German market, with a market share of approximately 10 %
(BVDW, 2013). RTA will progressively replace the traditional forms of purchas-
ing online advertising space, which nowadays is being sold in large quotas and
at predetermined prices that are mediated by marketers and media agencies.
Thus, from the perspective of publishers, RTA allows both a reduction of trans-
action costs and an increase in revenues due to higher utilization. Advertisers
can target ads based on the product affinity of user groups, which allows for the
optimization of advertising campaigns in a short period of time (Ghosh et al.,
2009). In the context of RTA, information systems research can contribute to a
number of research topics due to its interdisciplinary orientation. For example,
research topics include the automated decision support within the auction pro-
cess, management of the large quantities of data, perceptions of RTA by various
actors, and development of sustainable digital business models. The present ar-
ticle describes RTA from the perspective of stakeholders and outlines selected
research questions.

2.2 Actors and the RTA Process

In addition to Internet users, publishers and advertisers, additional technology
service providers are involved in the RTA process (Figure 2.1). These service
providers include supply-side platforms (SSPs) that are commissioned by the
publishers to offer advertising space in the market places. These market places
are known as ad exchanges. The advertising spaces are auctioned on behalf

1In practice, the terms “real-time bidding”, “programmatic buying”, and “data-driven display
advertising” are used synonymously with RTA.
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of the advertisers by demand-side platforms (DSPs). Other actors include data
management platforms (DMPs), which offer individual user profiles and interest
data to support decisions in the auctions that are handled by the DSPs.

The RTA process starts when a website that contains RTA ads is displayed in
the browser (Figure 2.1, Browser). The returned HTML code causes the browser
to send an HTTP request to the SSP; the request is similar to the classic banner
display advertising. The SSP (Figure 2.1, SSP) recognizes the size and position
of the advertising space and adds additional information to prepare for the auc-
tion (e.g., minimum price, allowed and excluded forms of advertising content,
the environments characterization). While the browser waits for an answer, the
SSP sends the data to the ad exchange to trigger an auction (Figure 2.1, Ad
Exchange).

Figure 2.1: The business process model of RTA and examples for
the involved actors.

The ad exchange does not forward the request to all of the connected DSPs.
Rather, the participating DSPs are selected based on the information that is con-
tained in the request and on findings from previous auctions. This method of
selection reduces the data volume that needs to be transferred and processed
by the different actors. Afterwards, the ad exchange forwards the information
about the advertising space to the selected DSPs in the form of a bid request.
The bid request is usually formatted in JavaScript Object Notation and includes
information about the user, context, and advertising space (Figure 2.2).
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BISE – CATCHWORD

Fig. 1 The business process model of RTA and examples for the involved actors

User information
Request ID id: "Mv\2005\n\345\177"
Encoded IP address of the user ip: "\314j\310"
Operating system and device user_agent: "Mozilla/5.0 (Windows; U; Windows NT 5.1;

en-US) AppleWebKit/534.13"
User ID google_user_id: "CAESvb-4SLDjMqsY9"
Time zone of the user timezone_offset: -300
Cookie age cookie_age_seconds: 7685804
Origin of the user region: "US-MA"; city: "Boston"

Context information
URL of the website url: http://www.example.com/
Language of the website detected_language: "en"
Detected website content and weights detected_vertical {

id: 22
weight: 0.67789277 }

Ad slot specification
Ad slot ID id: 1;
Dimensions width: 300; height: 250
Unallowed content excluded_attribute: 7
Floor price matching_ad_data {

adgroup_id: 3254984134
minimum_cpm_micros:2000

}
Visibility of the ad slot slot_visibility: BELOW_THE_FOLD

Fig. 2 Example of a bid request (Google 2014)
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Figure 2.2: Example of a bid request (Google, 2014).

Within approximately 20 milliseconds, the DSPs must decide on the advertiser
and campaign for which to place a bid (Figure 2.1, DSPs). To make this decision,
all of the available data about the current user can be considered. When a user
is visiting the website for the first time, the available information is limited to
the bid request. Later, the user can be detected by cookie matching. This allows
the cookies of the SSP/ad exchange to be linked to the user IDs of the advertiser.
The users activities (e.g., ad contacts, website visits, and purchasing activity)
can be stored in a customer journey and used for automated decisions during
the bidding process. Additionally, DSPs can use third-party data (e.g., socio-
demographic characteristics, user interests) that are offered by DMPs to support
the decisions within the auction process.

Regarding auction participation, the DSPs send a bid response within a pre-
determined time interval. The response contains the bid, advertisement URL,
target web page, and content information of the advertising material. The ad
exchange selects the highest bidder and forwards the advertising media to the
SSP, which then forwards the media to the waiting browser.

Because second-price auctions are used in RTA, the URL of the ad contains the
paid price in an encrypted form that can be decrypted by the DSP when the
banner is loaded from the ad server. Ad servers are commonly used for user
activity tracking and provide extensive tracking capabilities. On the side of the
DSPs, these data can be added to the customer journey and later used to support
decisions in the auction process.

In practice, different variants of the illustrated RTA process can be found. For
example, Facebook operates its own ad exchange, where only advertising spaces
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from Facebook are traded. Hence, the differentiation among publisher, SSP, and
ad exchange is absent.

2.3 Research Topics and Contributions of IS Research

In the following paragraphs, specific IS research topics are presented. Because of
the wide array of topics, a systematic assessment of RTA-related research topics
is not within the scope of this article.

2.3.1 Decision Support

In RTA, all of the involved actors make numerous decisions. For example, actors
must decide which areas of a website – and under what conditions and with
which intermediaries – should be offered to a specific selection of advertisers
(Balseiro et al., 2014). IS research can contribute to the dynamic selection of
suppliers, i.e., the intermediaries and the technical infrastructure (Probst and
Buhl, 2012).

Previous research primarily focused on the bidding process with its millions of
individual auctions. In addition to budget constraints, campaign periods, and
the maximum frequency of impressions per user and bid request, the customer
journey is used to determine the price a DSP should bid. Statistical models
(Nottorf, 2014) enable companies to predict user behavior (e.g., the probability
of a purchase). Essentially, conditional probabilities in the following form are
derived: “The impression of an RTA display ad at the present time for user
X with profile attributes Y and customer journey Z increases the probability
of a purchase within a given time interval by A%”. With the help of these
conditional probabilities, the economic assessment of the potential RTA ad and
the calculation of the maximum bid are possible (Perlich et al., 2012). Today, it
is common practice, however, that bids are based on the available budget rather
than being determined by the user or context. This is especially true for branding
campaigns, where the measurement of success is more difficult to calculate than
in performance-oriented campaigns.

Research in this context offers several methodologically sophisticated questions
that are highly relevant in practice. For example, how can decision-making
consider user-specific and context-specific factors? How can heterogeneity in
user behavior be modeled? What interactions between RTA and other marketing
channels in the customer journey can be measured? What are the dynamics of
user behavior, and how do these dynamics impact the predictive power of the
models?
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2.3.2 Data Management

RTA produces large amounts of data. For example, Googles DoubleClick Ad
Exchange processes tens of thousands of bid requests per second and forwards
them to the connected DSPs. For the DSPs, this process results in data volumes
that exceed one TByte in a few days, which quickly leads to data volumes in the
order of PBytes. If DSPs and advertisers keep these data for later analysis, they
face high costs of data storage and processing. Various research questions can
address the ratio of the cost of data collection, storage, and processing to the
benefit of data analyses, and research can consider how this ratio is used in RTA
in terms of the value of the data (Nottorf and Funk, 2013). This involves ques-
tions regarding the optimal amount of data needed per user and whether an ag-
gregation of user leads to a reduction in the amount of data. In practical terms,
there is the question of whether the handling of data is economically sensible in
terms of decisions that need to be made within the auctions. For these decisions,
there is the question of how to sample from the data prior to the analysis (i.e.,
model estimation). This is important because statistical methods can be com-
putationally intensive (e.g., simulation-based approaches to model estimation);
thus, in addition to the cost of data storage, the cost of the computing capacity
must be considered when estimating the total costs of data management. The
answer to these questions depends on many factors, such as the dynamics of
user behavior, seasonal effects and competition.

In todays practices, systematic decisions about which data will be collected,
stored, and processed are rare. Instead, all of the available data are collected
but primarily remain unanalyzed; thus, RTA is a prime example of Big Data.
Research in IS can estimate the economic value of the data and develop pro-
cesses that can be used to manage the data. These contributions are especially
important in the context of the increasing use of cloud services.

2.3.3 User Perceptions

Online advertising is an essential financing strategy of many websites, whereas
user fees are not always enforceable because of users Internet experience and
competition. RTA allows to analyze user behavior and target users individu-
ally. With regard to banner advertising in general and, thus, RTA in particular,
Goldfarb and Tucker (2011) have shown that the personalization of advertising
messages has a positive effect on sales. In the U.S., this study has also shown
that privacy concerns of users are connected with obtrusive, personalized ads.
This aspect of advertising has not been well studied, and there may be long-
term or negative effects. Therefore, sensitive and transparent handling of user-
specific profiles is advisable, particularly in Europe. The study of user behavior
(e.g., cookie acceptance, use of ad blockers, acceptance of fingerprinting) and
users willingness to disclose personal data represents an exciting IS research
field (Carrascal et al., 2013). With regard to emerging legal restrictions, there is
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uncertainty about whether current business models of RTA actors will remain
over time and about what changes are necessary and sustainable.

2.4 Implications

The auction principle of RTA will become more prominent in marketing in com-
ing years. Existing business models will continue to evolve, and at the same time,
new business models will be developed. Changes in data protection legislation
in Europe and changes in user behavior, as well as the growing convergence of
media channels, are expected to play an important role in this context. Further-
more, the quality of available advertising space is expected to continue to im-
prove, which means that RTA can also be used for branding campaigns. DMPs
will become increasingly important because automated decisions rely on high-
quality data. In the era of online video stores and streaming services, the use of
RTA as personalized advertising will likely increase in the classic online arena
and even in radio and television. Several companies (e.g., http://wywy.com)
already rely on this trend. The RTA process also shows certain parallels to the
products in financial markets. However, whether other forms of selling media
will evolve in RTA, such as in analogy of financial futures, depends on the de-
velopment of appropriate business models (Veit et al., 2014).

In summary, RTA offers an exciting, interdisciplinary field for IS research due to
its high degree of practical relevance and is characterized by a range of economic,
methodological, technical, and social issues.
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Abstract

Extracting value from big data is one of todays business challenges. In online marketing,
for instance, advertisers use high volume clickstream data to increase the efficiency of
their campaigns. To prevent collecting, storing, and processing of irrelevant data, it is
crucial to determine how much data to analyze to achieve acceptable model performance.
We propose a general procedure that employs the learning curve sampling method to
determine the optimal sample size with respect to cost/benefit considerations. Applied
in two case studies, we model the users’ click behavior based on clickstream data and
offline channel data. We observe saturation effects of the predictive accuracy when the
sample size is increased and, thus, demonstrate that advertisers only have to analyze
a very small subset of the full dataset to obtain an acceptable predictive accuracy and
to optimize profits from advertising activities. In both case studies we observe that a
random intercept logistic model outperforms a non-hierarchical model in terms of predic-
tive accuracy. Given the high infrastructure costs and the users’ growing awareness for
tracking activities, our results have managerial implications for companies in the online
marketing field.

3.1 Introduction

Online advertising produces large data sets. For instance, consider the amount
of data that is produced in a real-time advertising (RTA) setting for a specific
advertiser (Stange and Funk, 2014): On a publishers website, each touch point
for each user generates a bid request to all potential advertisers. Assume 10,000
auctions per second on an ad exchange, such as AppNexus, and approximately
500 bytes per auction generates 400 Gbytes per day of data for an advertiser.
Advertisers that collect and store these types of messages from several ad ex-
changes for future analyses rapidly acquire Tbytes or Pbytes of data, which are
associated with significant costs. Considering these costs, advertisers should
carefully assess payoffs from related analyses. Another challenge in online mar-
keting is the velocity and variability of data due to variable consumer behavior,
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competitive dynamics and varying customer requirements. To provide better
insight into the implication of these factors, we consider the following RTA set-
ting: Demand-side platforms place bids on behalf of their customers (i.e., agen-
cies and advertisers) as a response to incoming bid requests (Lee et al., 2013).
Their bids must consider the customers campaign goals and budget and the
success probability (i.e., click or conversion) of the individual user. This task
requires the collection of information about the user, e.g., the user journey or
demographic data. The data are used to predict a click or conversion probability
based on classifiers (e.g., the logistic regression model). However, multiple exter-
nal and internal factors enable users to change their behaviors over time (Bucklin
and Sismeiro, 2003). In addition, campaign goals and budget constraints may
change over time. Thus, a well-performing model may no longer be appropriate
for predicting future user decisions. Frequent model updates based on new data
are required, which is related to the cost of data collection, data storage and data
preparation.

The models that have been proposed to describe user behavior under the in-
fluence of online advertising increasingly employ Bayesian data analysis and
Markov Chain Monte Carlo (MCMC) estimation techniques (Bucklin and Sis-
meiro, 2009; Chatterjee et al., 2003; Nottorf and Funk, 2013). Although Bayesian
data analysis supports high flexibility in model building, it is computationally
demanding (Lee et al., 2012). The need for a speed up of these methods is
demonstrated by researches who investigate opportunities to parallelize the un-
derlying algorithms (Da Silva, 2010; Wilkinson, 2005). Despite existing cloud
offerings, the computational power required to estimate these models requires
significant costs (Deelman et al., 2008). Thus, there is a trade-off between the pre-
dictive accuracy of a model and the related computational cost of the parameter
estimation.

In this paper, we propose a process to minimize computational costs by mini-
mizing the amount of data required for the analysis. This process helps to deter-
mine the optimal sample size for a data analysis using the learning curve sam-
pling method. The proposed process is a general process that can be applied
to many types of data analysis in classification and regression problems. In this
manner, we contribute not only to the field of online marketing and privacy
on the Internet, but also provide a guideline for practitioners and researches in
other areas of predictive analytics based on big data. Using two case studies, we
apply this process to the user journey analysis of two German online retailers
and demonstrate that the optimal sample size is far less than the total amount
of available data. Thus, data collection, storing and processing efforts and costs
can be significantly reduced.

The paper is structured as follows: First, we review related studies of the learn-
ing curve sampling method, model performance and clickstream data analysis.
Second, we describe the general approach to determining the optimal sample
size, which consists of four different steps. Last, we apply this approach to our
empirical data sets, discuss our results and derive managerial implications.
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3.2 Related Studies

Our study is based on two research topics: The first topic is the learning curve
sampling method, which represents the observation that the predictive accuracy
of a model increases as a function of the amount of processed data (Meek et
al., 2002). The second topic is clickstream data analysis, which is frequently
employed in online marketing research to model and predict user decisions on
the Internet.

3.2.1 Learning Curve

Model performance as a function of sample size is a frequently discussed topic
in publications of the medical or sociology fields (Brutti et al., 2009; Sahu and
Smith, 2006; Santis, 2007). The costs associated with data collection in these
fields are relatively high compared with the costs associated with data collection
in the online marketing field. However, articles about the effect of sample size
on the predictive power of models in the online advertising domain are not
available. A general approach for obtaining an appropriate sample size is the
learning curve sampling method. This method is driven by the observation that
an increase in the sample size reduces the uncertainty in the parameter estimates
of the learned model (Gu et al., 2001; Meek et al., 2002). Meek et al. (2002)
formalized this approach by introducing a stopping criterion, which is based
on the following two assumptions: First, the computational effort increases as a
function of sample size, which is related to cost. Second, reduced uncertainty in
the parameter estimates is related to benefit. Thus, by increasing the sample size
and iteratively evaluating model performance, an optimum in the utility can be
obtained. In this study, we employ this sampling method to obtain the optimal
sample sizes in clickstream data analyses.

A common method for measuring the predictive accuracy is to integrate the
receiver operator characteristic (ROC) curve to obtain the area under the curve
(AUC; Bradley, 1997). The AUC represents the probability that a randomly
chosen unknown object is correctly classified. In our case, we employ different
logistic regression models, which we use to determine the posterior predictive
densities of conversion probabilities for unknown users. We show that the AUC
converges to a maximum value when the sample size is increased.

Numerous methods for measuring model quality exist. One of these methods
focuses on the length of the highest density interval (HDI) of the estimated
parameters (Joseph et al., 1995). This average length criterion (ALC) converges
to a minimum value when the sample size is increased, as shown for simulated
data (Wang and Gelfand, 2002). In our paper, we show that this case is also valid
for clickstream data.

No published studies of online marketing employ the learning curve sampling
method to determine the minimum sample size required to appropriately com-
pute a model. The clickstream data literature neither provides an analytical
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comparison of the sample size and the predictive accuracy nor an indication
how many user journeys they used and why. We use the learning curve sam-
pling method to determine an optimal sample size that represents the best bal-
ance between computational costs and predictive accuracy and thereby identify
the concrete number of needed user journeys. In addition, the paper contributes
to the big data research field due to the general applicability of the proposed
process described in Section 3.3.

Bayesian models and MCMC methods provide high flexibility in model build-
ing and estimation. The strength of these models is the ability to sample from
a variety of distributions in combination with a hierarchical model structure.
In the context of customer journey analysis they are feasible, because they al-
low it to determine variables such as decay rates from marketing activities and
parameters for non-linear transformations of customer journey variables. On
the other hand, they are computationally demanding. Some authors propose
a different approach to minimize the computational cost related to these meth-
ods. They parallelize the computation on multiple processor cores (Da Silva,
2010; Henriksen et al., 2012; Jacob et al., 2011) to reduce computation times for
a given amount of data. This method requires a deep understanding of the spe-
cific sampling algorithm and parallel programming languages, such as CUDA
C. The process proposed in this paper, however, does not depend on a specific
algorithm or method, but is generally applicable to arbitrary model structures.

3.2.2 Analysis of Clickstream Data

Clickstream data consists of data records produced by user interactions on the
Internet. Each time a user is exposed to a display ad or searches for a brand-
related keyword, an interaction is recorded that represents one entry in the click-
stream data. Clickstream data are also referred to as user journey or customer
journey data.

As part of the website usage mining discipline, investigations in clickstream data
over the past ten years can be categorized into website usage and navigation, on-
line shopping behavior and advertising on the Internet (Bucklin and Sismeiro,
2009). We focus on the latter. Chatterjee et al. (2003) developed a model to pre-
dict a users individual click proneness based on clickstream data. In their study,
a random effects logit model was employed to predict a consumers response to
banner advertisement. They concluded that a model that includes heterogene-
ity terms across sessions and users best describes the click behavior. Using this
model, Nottorf and Funk (2013) show that advertisers can significantly reduce
advertising costs if the advertisement is only exposed to users with the highest
click probabilities. We use this approach to calculate the costs of the predic-
tion. This finding has also been demonstrated by other authors using different
methods, such as hypothesis tests (Klapdor, 2013) or higher-level Markov chains
(Anderl et al., 2014).
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Many authors point out the importance of cross channel marketing (e.g., Anderl
et al., 2014; Klapdor, 2013). However, cross channel marketing is not limited to
online channels. As shown by Joo et al. (2014), offline data from TV advertising
spots can be used to predict users’ online behavior. They find that the more
brand-related TV spots are broadcasted, the more users search for these brands
using search engines. Thus, the inclusion of offline data in user journey models,
can result in significant improvements of the models’ performance. However,
modeling offline advertising effects is not as straight forward as modeling online
advertising effects, since it is hardly possible to determine if a user in fact was
exposed to the offline advertisement. In the first case study of this paper, we
use TV spot data as an additional independent variable, which has not yet been
done in published literature.

The studies about clickstream data often present descriptive statistics of the used
samples. However, none of them provides a systematic comparison of different
sample sizes and the resulting predictive accuracy. Thus, we contribute to this
research field by providing the needed amount of user journeys.

3.3 Estimation of the Optimal Sample Size

We propose a four-step process to determine the optimal sample size. In this
paper, we focus on the highlighted steps in Figure 3.1: (1) Select the initial sam-
ple size and sampling strategy, (2) determine the learning curve and predictive
accuracy using the estimated parameters, (3) determine the cost of collecting,
storing, and processing data, and (4) select the optimal sample size for repeated
analysis.
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Data Collection Costs 

Cost/Benefit 
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Figure 3.1: Levers in model building and estimation.

Beginning with a set of data, we select the sample size and sampling strategy.
First, for a scenario of rare events, such as clicks or conversions in the online
marketing context (Cho, 2003), the choice of sampling strategy is crucial for the
estimation of the parameter values (King and Zeng, 2001). Stratified sampling
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is an appropriate method for estimating the parameters of the logit model (Falk
et al., 2004). However, the total amount of collected data is higher for stratified
sampling compared with a simple random sample. For example, in RTA, the
amount of bid requests is greater than the amount of related clicks or conver-
sions by orders of magnitude. However, there is no indication of a future click
or conversion in the absence of a prediction mechanism. Thus, all bid requests
should be stored and the stratification should be subsequently applied.

Second, the model parameters of interest are estimated. To evaluate the obtained
parameters, the researcher can select between multiple methods to measure the
power of the model and its estimated parameters. Although measures such as
the ALC provide preliminary insights into the convergence of the parameters
(Wang and Gelfand, 2002), these measures do not reveal information about the
predictive accuracy of the model. Instead, the estimated parameters should be
used to perform an out-of-sample test, which gives insights in the predictive
accuracy and reduces the risk for over-fitting. According to previous learning
curve studies (Gu et al., 2001; Meek et al., 2002), we know that the estimations
for the parameters converge if additional data are considered. This also applies
to the confusion matrices obtained from the out-of-sample tests, which can be
used to calculate desired indicators to express the model performance, such
as the accuracy, precision or the AUC. A confusion matrix is a 2 × 2 matrix
that contains the number of true positive predictions, true negative predictions,
false positive predictions and false negative predictions. The convergence of the
parameter estimates thereby also determines the maximal utility for different
sample sizes and the optimal sample size for a given modeling scenario, which
we demonstrate in the next chapter.

Third, based on the results of the estimates from each sample size, the benefits
of the prediction are estimated. These benefits can be evaluated by the element-
wise multiplication of the cost matrix and the confusion matrix. Like the con-
fusion matrix, the cost matrix is a 2× 2 matrix that contains the costs for false
predictions and the (negative) costs for true predictions, such as the costs for an
advertisement or a lost contribution margin. In addition, the cost of data col-
lection, data storage and data processing should be determined. For example,
if in-house servers are provided for these purposes, the costs can be estimated
based on the prices and the maintenance costs for these systems. If cloud ser-
vices such as Amazon S3 are used, the costs are equivalent to the monthly fees
for the services and are easier to identify (refer to Amazon, 2014 for exemplary
calculations). Compared with online marketing, the cost of data collection may
be higher in other fields. As a result, the dependency of the optimal sample
size on the data collection costs has been substantially investigated (Brutti et al.,
2009; Cohen, 1998).

Last, based on the results from steps 1 to 3, the optimal sample size is selected
for the model estimation, i.e., the sample size for which the utility function is
maximized. This optimal sample size is obtained when an additional set of
data records does not increase the benefit for predictions on the validation set
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to an amount greater than the associated additional costs of data collecting and
storage and computation time, as previously described.

Once the model is deployed and decisions are rendered based on its predictions,
the data collection and storage procedures can be adjusted based on the results
from step 1 to 4. If the risk of change in the data-generating mechanisms, such
as unexpected changes in user behavior, is observed, the predictive accuracy
of the deployed model should be monitored to rapidly address these changes.
If necessary, the model should be estimated a second time to obtain updated
parameters for prediction. If the model requires a complete revision, e.g., due
to significantly modified external influences, steps 1 to 4 should be repeated to
determine an updated optimal sample size.

3.4 Prediction of Conversion Probabilities

RTA enables advertisers to limit the exposure of ads to users who show a par-
ticular tendency to click on an ad (Perlich et al., 2012). As a prerequisite, these
companies need to know the individual click and/or conversion probabilities.
Our case studies demonstrate how these individual conversion probabilities are
determined. We use user journey data from two German online retailers to esti-
mate the model parameters and predict conversion probabilities Pr(Conv = 1).
In an RTA setting, our model can be used by a bidding agent. In a simple sce-
nario, the bidding agent should only place a bid if the predicted probability for
a conversion is higher than a previously determined threshold probability pthres.
Thus, the number of ineffective impressions and the marketing costs can be re-
duced. In this setting, we apply our previously described procedure to two data
sets and three different Bayesian models.

3.4.1 Data Description and Preparation

We use two data sets from two different German online retailers, which we may
not disclose here. Both data sets contain user tracking data from a period of
one month (December 2013 and March 2013). Most prices of both retailers range
from 10 to 100 EUR. The first data set is influenced by the Christmas-trade,
which results in shorter user journeys due to spontaneous gift purchases.

Both retailers record each touch point for every user. A touch point may be
an interaction on the retailers’ websites or an interaction with an advertising
channel, such as an organic search, search engine advertising (SEA) or banner
advertising. For each touch point, the retailers record the user-id, the time stamp,
and the type of interaction. The latter can be a click, an onsite activity or a
conversion. The data set from the first case study also includes TV advertising
spot data. From the TV data set we only use the time stamp to determine how
many TV spots have been shown on television within the last 30 minutes before
an interaction.
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To clarify how the term user journey is used in this paper, consider the following
example of a user journey: first, assume that a user clicks on an search engine
ad (SEA). Second, after less than one hour, the user clicks a display ad. Third,
after 6 hours, the user returns to the web site by clicking a display ad. Fourth
and fifth, still in the current session, the user searches a specific product and
returns trough the SEA channel and purchases the product. Last, after 2 hours,
the user is exposed to additional display ads. In the next section, we describe
how to translate this user journey into a design matrix (Table 3.1).

From the available subsets (80 and 30 million touch points for the first and sec-
ond case study, respectively), we focus on user journeys with more than two in-
teractions. We divide our subset into two parts of equal size to obtain a training
set and a holdout sample. We decide not to use the stratified sampling strategy
because the ratio of conversions is relatively high in our data sets (approximately
0.5%), which is sufficient for receiving robust estimations.

3.4.2 Model Description

Based on previous studies (e.g., Chatterjee et al., 2003), we know that the in-
dividual conversion probability is influenced by the user’s intrinsic conversion
proneness and the effects from within sessions and across sessions for each chan-
nel. Thus, in our model, each user’s design matrix can be subdivided into three
parts. First, the intercept terms I are used as covariates to estimate the users’ in-
trinsic conversion proneness per channel. Second, to estimate delayed effects of
the individual channels, we model the cumulated previous interactions within
the sessions, which are denoted as X, and across sessions, which are denoted as
Y. Third, we introduce the respective session number SN, the number of onsite
contacts within the session OCWS and in previous sessions OCPS, the number
of conversions in previous sessions CPS and the intersession time IST as ad-
ditional control variables, which resemble models from previous studies (e.g.,
Chatterjee et al., 2003). According to this notation, the user journey from the
previous example would be modeled as demonstrated in Table 3.1.

Inter. no. I0 ISEA IBan XSEA XBan YSEA YBan CPS IST SN Conv
1 1 1 0 0 0 0 0 0 0 h 1 0
2 1 0 1 1 0 0 0 0 0 h 1 0
3 1 0 1 0 0 1 1 0 6 h 2 0
4 1 1 0 0 1 1 1 0 6 h 2 0
5 1 1 0 1 1 1 1 0 6 h 2 1
6 1 0 1 0 0 3 2 1 2 h 3 0

Table 3.1: Example of a user journey design matrix Di. We leave
out some of the described covariates, such as the onsite contacts

within and across sessions, for convenience.

In addition to this notation, the number of TV Spots within the 30 minutes
before the current interaction is denoted as TV. We transform the intersession
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time in hours and the amount of onsite contacts to the logarithmic scale due to
the high variance of these values within the data. Equation 1 and 2 show the
jth interaction of the ith user, which is represented as one row (Di)j of the users
design matrix Di. Refer to the left hand side of Table 3.2 for the of the subscripts
for I, X and Y. The additional covariates used in the design matrix are listed on
the right hand side of Table 3.2.

First case study:(Di)j = {I0, ISEO, ID, IA, IBan, ISEA, IEM, IR,
XSEO, XR, XA, XSEA, XEM,
YSEO, YD, YA, YBan, YSEA, YC, YEM, YR,
SN, IST, OCWS, OCPS, CPS, TV} (3.1)

Second case study: (Di)j = {I0, ISEO, ISEA, IBan, IPS, IA, IEM,
XSEO, XSEA, XBan, XPS, XEM,
YSEO, YSEA, YPS, YEM,
SN, IST, OCWS, OCPS} (3.2)

Index Channel Index Additional Variables
SEA Search engine advertisement OCWS Onsite contacts within the curr. session
SEO Organic search OCPS Sum of onsite contacts in prev. sessions
R Referral from another website SN Session Number
A Affiliate marketing IST Time between two sessions
Ban Display advertisement CPS Number of conversions in prev. sessions
D Direct type-in
C Cooperation link
PS Price search engine
EM Email advertisement

Table 3.2: Indices and corresponding covariates used in the design
matrices.

Every user is expected to exhibit a different proneness for conversions and clicks
on ads, such as email ads, banner ads or search engine ads. As it was shown
by Chatterjee et al. (2003) a model with random intercept and random slopes
best fits the users’ behavior. However, to predict future behavior of (unknown)
users, it is sensible to create user clusters prior to model estimation and apply
the same clustering method to new users to predict their conversion probabil-
ities. In both case studies we use the time of the day, i.e., morning/afternoon
and evening/night, to build up the two clusters C1 and C2. These clusters are
feasible, because in both data sets the conversion rates during the day differ
from the conversion rates at night, which implies different intercept terms for
customers who visit the shops at different times of the day. For both case stud-
ies, we use three different Bayesian models for analysis: a simple logit model,
a random intercept model and a random intercept/slope model. The models
are presented in equations 3.3 through 3.5. In the following, m denotes the mth

cluster (m ∈ {1, 2}) and n denotes the nth interaction within the cluster. We use
the non-hierarchical logit model from the R package BayesLogit (Windle et al.,
2014) as shown in Equation 3.3. It allows only one set of β values. Therefore, the
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simple logit model is only feasible for a data set with little heterogeneity across
users.

Convmn ∼ Bernoulli(θmn)

logit(θmn) = Xmnβ (3.3)

For the random intercept model we use the function MCMChlogit from the R
package MCMCpack (Martin et al., 2011). The model is shown in Equation 3.4.

Convmn ∼ Bernoulli(θmn)

logit(θmn) = Xmnβ + I0bm (3.4)

In this equation, bm is a scalar value. It accounts for the different conversion
rates for customers during the day and by night. For the random slope model
we use the function rhierMnlRwMixture from the R package rpud (Yau, 2015),
which is the parallelized version of the algorithm from the R package bayesm
(Rossi and McCulloch, 2010). We simplify the model here for convenience to
obtain the model shown in Equation 3.5.

Convmn ∼ Bernoulli(θmn)

logit(θmn) = Xmnβm

βm = β + δm. (3.5)

A random slope model is feasible in the context of user journey analyses, be-
cause it accounts for individual marketing channel effects βm for each cluster.
For instance, the impact of TV advertisement on the conversion rate could differ
between during the day and at night. In Equation 3.5, δm is a vector with the
same length as β including the cluster specific intercept δI0

m . For all three models
we use vague priors around 0 for the the parameters β and for the cluster param-
eters bm and δm. Please refer to the above mentioned R packages for additional
information about the MCMC samplers.

3.4.3 Results

To show the convergence of the predictive accuracy, we execute 6 analyses in-
cluding 1,000, 2,000, 4,000, 8,000, 16,000 and 32,000 user journeys for each com-
bination of model and case study, resulting in 36 analyses in total. The computa-
tion times of the individual analyses are presented in Table 3.3. The computation
times of the random slope model are short in comparison with the random in-
tercept model due to the GPU parallelization from the rpud package (Yau, 2015).

The results from the first case study are presented in Table 3.4. We report the
results based on 32,000 user journeys for the simple logit model and the random
intercept model. The results from the computation based on the other sample
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Sample Size in 1,000 1 2 4 8 16 32 1 2 4 8 16 32
Simple Logit 14 28 56 108 214 446 11 22 44 87 173 348

Random Intercept 31 70 142 259 593 1,066 41 81 161 323 649 1,303
Random Slope 23 36 66 129 245 478 22 38 68 138 282 557

Table 3.3: Computation times in seconds for the first (left) and the
second case study (right). The computation was performed on an

Intel i7 4820K processor and a GeForce 770 GPU.

sizes and the random slope model are not reported due to space limitations1.
However, the convergence of the variables is demonstrated in Figure 3.2 by ex-
ample. We do not discuss the individual results in full detail here, but want to
outline some of the major findings. We demonstrate that the impact from TV
Spots results in a non-zero value for βTV . However, we do not observe signifi-
cant effects of TV spots in this case study. This topic should get more attention
in future studies.
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Figure 3.2: Density plots for β I0 and βOCPS from the simple logit
model from the first case study. The HDI lengths decrease with the

increase of the sample size.

The effects from within the sessions (βX(·)) show that users who use several
channels within one session are less likely to convert. The same is valid for
the majority of the cross session effects. In summary, the more often a user
visits the shop through different channels the less likely is the conversion. The
negative impact from the intersession time β IST indicates that the probability for
a conversion decreases with the increase of time between the current and the
next session. We suppose that these negative effects result from the relatively
high amount of spontaneous customers with a short journey, which could be an
effect of the Christmas-time. The highest positive effects result from the number
of onsite contacts from within and across sessions. This finding is intuitive,
meaning the more product pages a user visits within and across sessions, the
more likely is the conversion. The values for b1 and b2, which can be interpreted
as the probability offset for the two clusters C1 and C2, show that the tendency to
purchase a product in the morning and afternoon is higher than in the evening
and at night.

1Upon request we are pleased to provide the full result list.
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Parameter 2.5% 50% 97.5% 2.5% 50% 97.5%
β I0 -5.03 -3.80 -2.54 -3.86 -3.51 -3.19
β ISEO 0.40 0.67 1.02 0.42 0.75 1.11
β ID 1.52 1.77 2.06 1.45 1.77 2.10
β IA 1.41 1.63 1.99 1.33 1.65 2.00
β IBan -0.82 -0.40 0.17 -0.80 -0.30 0.18
β ISEA 0.71 0.94 1.29 0.69 0.99 1.32
β IEM 1.29 1.54 1.89 1.26 1.58 1.93
β IR 0.45 0.75 1.14 0.43 0.77 1.13
βXSEO -0.64 -0.51 -0.42 -0.59 -0.46 -0.34
βXR -0.21 -0.09 0.05 -0.24 -0.10 0.04
βXA -0.04 0.01 0.05 -0.04 0.01 0.06
βXSEA -0.47 -0.39 -0.33 -0.46 -0.39 -0.32
βXEM -0.18 -0.07 0.04 -0.21 -0.09 0.04
βYSEO -0.22 -0.12 -0.05 -0.23 -0.12 -0.03
βYD -0.38 -0.28 -0.20 -0.38 -0.25 -0.14
βYA -0.29 -0.21 -0.12 -0.32 -0.19 -0.08
βYBan -0.25 -0.04 0.13 -0.25 -0.03 0.16
βYSEA -0.15 -0.08 -0.02 -0.14 -0.06 0.01
βYC -0.17 0.07 0.30 -0.13 0.12 0.34
βYEM -0.17 -0.07 0.01 -0.17 -0.06 0.05
βYR -0.73 -0.54 -0.42 -0.80 -0.51 -0.27
βSN -0.47 -0.36 -0.27 -0.49 -0.37 -0.26
β IST -0.10 -0.08 -0.06 -0.10 -0.08 -0.05
βOCWS 0.34 0.39 0.44 0.32 0.37 0.43
βOCPS 0.36 0.46 0.52 0.35 0.43 0.51
βCPS -0.60 -0.30 0.00 -0.58 -0.29 -0.02
βTV -0.02 0.02 0.08 -0.01 0.04 0.09
b1 -1.11 0.19 1.38 - - -
b2 -1.47 -0.14 1.02 - - -

Table 3.4: Results of the random intercept model (left) and the
simple logit model (right) from the first case study (Sample Size =

32,000). Significant values are printed in boldface.

All the HDI lengths for the individual β values converge with the increase of
the sample size. This underlines the convergence of the predictive accuracy as
demonstrated in the next section. We present the convergence of two variables
in Figure 3.2.

The results from the second case study are presented in Table 3.5. They are
mainly consistent with the results from the first case study in terms of the ef-
fects of the individual channels and the additional variables, such as the ses-
sion number and the number of onsite activities across sessions and the cluster
variables b1 and b2. In contrast to the first case study, the intercept terms β I(·)
are mainly negative, except the affiliate channel. In summary, customers do not
often converge spontaneously, but frequently use the information from search
engines and third party websites to make their choices. The positive onsite vari-
ables βOCWS and βOCPS show the importance of the onsite session length for the
purchase decision.
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Parameter 2.5% 50% 97.5% 2.5% 50% 97.5%
β I0 -4.55 -4.05 -3.54 -4.46 -4.05 -3.69
β ISEO -0.50 -0.33 -0.14 -0.54 -0.18 0.22
β ISEA -0.72 -0.54 -0.34 -0.76 -0.41 0.00
β IBan -1.54 -1.14 -0.67 -1.87 -1.23 -0.57
β IPS -0.30 -0.15 0.10 -0.41 0.01 0.44
β IA 0.22 0.49 0.73 0.16 0.62 1.09
β IEM -0.48 -0.33 -0.14 -0.50 -0.09 0.35
βXSEO -0.18 -0.16 -0.12 -0.31 -0.20 -0.11
βXSEA -0.15 -0.11 -0.05 -0.19 -0.12 -0.05
βXBan -0.01 0.13 0.34 -0.08 0.17 0.36
βXPS 0.01 0.06 0.14 -0.01 0.07 0.14
βXEM -0.10 -0.02 0.03 -0.17 -0.07 0.01
βYSEO -0.15 -0.11 -0.07 -0.19 -0.10 -0.03
βYSEA -0.29 -0.23 -0.14 -0.19 -0.11 -0.03
βYPS -0.23 -0.13 -0.07 -0.16 -0.04 0.06
βYEM -0.35 -0.16 0.07 -0.39 -0.23 -0.11
βSN -0.25 -0.18 -0.13 -0.31 -0.20 -0.10
β IST -0.03 -0.01 0.01 -0.03 -0.01 0.02
βOCWS 0.31 0.37 0.39 0.31 0.37 0.44
βOCPS 0.48 0.55 0.60 0.46 0.54 0.62
b1 -0.35 0.10 0.55 - - -
b2 -0.56 -0.11 0.33 - - -

Table 3.5: Results of the random intercept model (left) and the
simple logit model (right) from the second case study (Sample Size

= 32,000). Significant values are printed in boldface.

Like in the first case study, we observe convergence of the β values with in-
creasing sample size. The density plots for β I0 and βOCPS are shown in Figure
3.3.
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Figure 3.3: Density plots of β I0 and βOCPS from the simple logit
model from the second case study. As in the first case study, the

HDI lengths decrease with the increase of the sample size.

3.4.4 Prediction and Benefits

Following the proposed process, we run four out-of-sample tests for each sample
size and model. We use the parameter estimates to predict the conversions of
each individual user from the holdout sample. We sample from the posterior
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distribution and use the logit link function to obtain values for Pr(Conv = 1) for
each user at each interaction from the holdout sample.

For dichotomous data with rare events, the predicted probabilities should not
be misunderstood as true probabilities because the probabilities are typically
underestimated (King and Zeng, 2001). Therefore, we introduce a threshold
value for the posterior probability pthres, for which the prediction is 0 for all in-
teractions below this value and 1 for all interactions equal to or above this value.
For each sample size and model, we iteratively increase the threshold value from
0 to 1 and compare the predicted outputs with the actual user decisions. In this
manner, we obtain the confusion matrix for each iteration. These matrices are
used to draw the ROC and calculate the AUC.

The left hand side of Figure 3.4 shows the AUC for each sample size for the first
case study. Since we split off the holdout sample into four equally sized sets,
we are able to report the standard deviations of the AUCs, which is an indicator
for the variance in the predictive accuracy. The random intercept model outper-
forms the simple logit model for all sample sizes (neglecting the standard devi-
ation), because it accounts for the different conversion rates over the day. The
random slope model shows lower AUC values than the other models, except
for 32,000 user journeys. This shows that a more complex model needs more
data to achieve a desired predictive accuracy. We expect, that if even more data
would be used for the estimation, the random slope model would outperform
the random intercept model, like observed by Chatterjee et al. (2003). The analy-
ses based on sample sizes of > 8,000 result in AUC values that are close to each
other. This result is consistent with previous studies (e.g., Meek et al., 2002), i.e.,
the predictive accuracy converges when the sampling size is increased.

To calculate the costs of the prediction, we assume typical costs for impressions
in the RTA industry. The benefits are given by the difference between the costs
that incur by applying the model and the maximum costs, i.e., all interactions are
classified as positive and the ad is always shown (pthres = 0). For true positive
predictions, we define a benefit of 0.15-0.01 EUR (i.e., the contribution margin
for a click minus the cost of the impression). For incorrect negative predictions,
we assume a loss of 0.15 EUR (the lost contribution margin) and for incorrect
positive predictions, we assume a cost of 0.01 EUR for exposing the advertise-
ment without success and we assign no cost to true negatives. We calculate
the costs of the prediction for each threshold value pthres. The threshold values
that determine the minimum costs are relatively low (pthres ≈ 0.05), because of
the low conversion rate and the relatively high ratio of the contribution margin
(CM) and the cost (C) for an impression. The minimum costs, the benefit per
decision and the threshold value are highly dependent on this ratio. When the
ratio increases, the threshold value converges to zero, i.e., all interactions will be
predicted as positive. Therefore, the classifier is only useful in a certain range
of CM/C. If the ratio is higher than the maximum value from this range, the
classifier will always predict a conversion, and if it is lower, the classifier will
never predict a conversion. The ratio of 15/1 lies within the allowed range for
both of our case studies.
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Figure 3.4: Results from the first case study: Area under the curve
and the maximum benefit per 1,000 decisions of the simple logit
model (blue), random intercept model (red) and the random slope

model (green). Note the logarithmic scale on the abscissa.

For convenience, we report the benefit per 1,000 decisions. The right hand side of
Figure 3.4 shows the maximum benefit per 1,000 decisions for different sample
sizes and models for the first case study. The associated maximum benefits vary
significantly with sample size. The benefits based on sample sizes of 16,000 and
32,000 user journeys are close to each other because the predictive accuracies of
the obtained models are nearly equal. If the advertiser uses the random intercept
model with a threshold value of pthres = 0.05, the desired economic benefit is
achieved at 16,000 user journeys. This is a very small amount in comparison to
the complete set of several millions of user journeys.

The results of the predictions for the second case study are presented in Figure
3.5. The AUCs of all three models show convergence when the sample size is
increased. The best AUC is already achieved at 8,000 user journeys. Conse-
quently the benefit per 1,000 decisions do not further grow, as the sample size is
increased. However, the standard deviations of the maximum benefit per 1,000
decisions is higher as compared to the first case study, which is due to the de-
fined ratio of CM/C. A higher ratio in the second case study would result in a
higher benefit per 1,000 decisions.

Despite the mentioned limitations, the results show that the models are valuable
in a real-life RTA setting: If a bidding agent only responds to bid requests for
which the click probability of the current user is greater than the determined
threshold value, the costs of ineffective impressions can be reduced and new
customers can be attracted effectively.

In both case studies, the random intercept model is superior over the other mod-
els, which matches to our observation that the conversion rates at night and dur-
ing the day are different (left hand side of Figure 3.4 and 3.5). Overall, the ran-
dom slope model performs worst (except 32,000 users, first case study). This
implies that the effect of the individual marketing channels, such as display ad-
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Figure 3.5: Results from the second case study: Area under the
curve and maximum benefit per 1,000 decisions of the simple logit
model (blue), random intercept model (red) and the random slope

model (green).

vertisement or TV spots, does not differ significantly between during the day
and at night for either case study.

3.5 Concluding Remarks

3.5.1 Limitations

Although our results distinctly reveal the expected saturation effects, the study
contains some limitations. First, we only apply the procedure to a specific set
of variables. We expect that more complex models, which include additional
covariates or non-linear transformations of covariates, will require additional
data for model estimation. This expectation may be important because previous
studies (Chatterjee, 2008; Yang and Ghose, 2010) have indicated that unclicked
ads should also be considered in clickstream modeling. However, the models
used here for demonstration purposes ignore unclicked impressions and, thus,
the potential enduring effects of ad exposure if no click-through is achieved.
Second, the model may require frequent updating based on new data. This up-
dating may result in additional costs with respect to collecting, storing, and an-
alyzing data and may also negatively influence the predictive accuracy. Thus, as
the variability increases, the fraction of data used for model estimation will have
to increase to achieve optimal results. The more stable is the user behavior, the
smaller will be the fraction of data required to estimate the model and the higher
the gain from our approach. Third, we only apply simple random sampling in
either case study. Applying stratified sampling could result in even smaller sam-
ple sizes to obtain appropriate results. However, this sampling strategy needs a
correction of the estimates after the calculation (Falk et al., 2004), which requires
knowledge about the total number of conversions in the population. Finally, the
choice of the ratio of the contribution margin and the costs per impression is set
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by the authors based on typical costs in the industry. However, the threshold
value pthres is highly dependent on this ratio. If the ratio increases, the costs
for incorrect negative predictions are much higher than the costs for incorrect
positive predictions and, thus, the advertiser should always bid for the impres-
sion. On the other hand, if the ratio decreases, the advertiser should eventually
never bid, because the costs for the bids become higher than the benefit from the
generated conversions. We propose a deeper investigation of this fact for further
research.

3.5.2 Conclusion and Outlook

In this paper, we propose a general procedure to determine the optimal sample
size in a data analysis, which is applicable to an extensive range of scenarios.
In two case studies of German online retailers, we apply this general procedure
to user journey data using a non-hierarchical, a random intercept and a random
slope logit model and determine the optimal sample size. We obtain this min-
imal value by including less than 1% of our subsets of user journeys. This is
considerably less than the total amount of available data at most online market-
ing companies. Given the cost of collecting, storing and analyzing the data, an
increase in the sample size is not economically beneficial. Although the notion
that only a subset of data is required to provide adequate predictions is rather in
line with common intuition, we determine how much data is actually needed in
an online marketing context; this finding contributes to comparable future anal-
yses in research and practice. In the context of the growing user awareness for
tracking activities, our findings can be a driver for rethinking the collection of
user specific data towards leaner user journey analyses. In the beginning of this
paper, we suggested that Pbytes of data could easily be collected in a short pe-
riod of time in an RTA setting. Storing a vast amount of data can be expensive.
For instance, storing 1 Pbyte of data on an Amazon S3 server currently costs
approximately 100,000 EURO/month (Amazon, 2014). Our results show that
only a relatively small amount of data is required to provide statistically signif-
icant and useful parameters for prediction. Thus, storage costs can be reduced
significantly by applying our proposed approach.

To summarize, our research not only contributes to the process of model esti-
mation but also shows that advertisers do not have to collect all data that is
produced from user interaction with their advertising campaigns and websites.
Moreover, our process serves as an additional opportunity for decision makers
from many industries to reduce the cost of infrastructure for data analysis.
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1–15.

4.1 Introduction

Today, collecting and storing of as many data as possible is common practice in
many companies (Auschitzky et al., 2014; Beath et al., 2012). One of the pur-
poses is the generation reports, which may contain descriptive statistics about
customer acquisition, sales or the supply chain. Although such reports enable
managers to make decisions based on past performance data, their ability to
predict future company needs is limited. In contrast, predictive analytics use
historical data and apply methods from machine learning and data mining to
derive predictions about the future (Waller and Fawcett, 2013). For instance,
predictive analytics can be used to prevent potential malfunctions in production
or to predict future sales to determine the needed number of products in stock.
Due to the potential benefits of predictive analytics, the collection of as many
data as possible is supposed to be very beneficial for many companies. How-
ever, on the other hand, storage of these mass data is combined with significant
costs (Stange and Funk, 2014). These may be infrastructure costs or monthly
fees for the use of cloud services, such as Amazon S3. A question that arises
from this discrepancy is: “How much data do we actually need to make the best
predictions about the future?”

To reduce costs of collecting and storing data that is not relevant, it is crucial to
first define which predictions are required, i.e., to determine, which analytical
questions are to be answered. Afterwards – to prevent storing irrelevant data –
the amount of data that is needed to obtain useful predictive results can be de-
termined. In this chapter, we extend a generally applicable framework (Stange
and Funk, 2015) to determine this amount, i.e., to find the minimum amount
of data that is needed to obtain optimal predictive results. The process can be
used to maximize the benefits of predictive analytics with respect to the costs for
data collection and storage. Due to the scalability of cloud services, companies
that use such services can benefit from the proposed process in particular. We
apply the process to a data set from the online marketing field and observe con-
vergence of the predictive accuracy when the sample size is increased. Thereby,
we show that – compared to the available amount of data – only a very small
sample is needed to achieve a desired predictive accuracy.
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4.2 Related Work

Sample size determination is a topic that has often been examined in medical or
sociological science (e.g., Brutti et al., 2009; Sahu and Smith, 2006; Santis, 2007),
since, in these fields, samples are often expensive in comparison to big data
environments. Additionally, the available methods to determine the needed
sample size often focus on a specific task, such as to find the needed number
of participants of a survey. Therefore, these methods do not seem appropriate
for a generally applicable framework in predictive analytics with its variety of
machine learning and data mining techniques.

In contrast to the available methods that calculate the needed sample size a
priori, the proposed process is based on the evaluation of the predictive accuracy
and the calculation of the economic value of the classifier.

The predictive accuracy of classifiers with dichotomous outcomes can be calcu-
lated by integrating the receiver operator characteristic (ROC) curve. The ob-
tained value is called the area under the curve (AUC, Bradley, 1997), which rep-
resents the probability that a data record with unknown class is classified cor-
rectly. In our case study, we employ two logistic regression models with elastic
net regularization (Friedman et al., 2010) to estimate the model parameters that
we use to predict the dependent variable on the holdout sample. Based on these
predictions, we show that increasing the sample size results in convergence the
AUC. Other types of dependent variables, such as multinomial outcomes, re-
quire other measures, such as the misclassification error.

The so-called learning curve sampling method (Meek et al., 2002) is an approach
for obtaining the relation between sample size and predictive accuracy. This
generally applicable sampling approach is based on the observation that an in-
crease in the sample size reduces the uncertainty in the parameter estimates of
the learned model (Gu et al., 2001; Meek et al., 2002; Stange and Funk, 2015).
This observation has been formalized by Meek et al. (2002) who find the opti-
mal sample size by continuously increasing the sample size while observing the
predictive accuracy. The optimal sample size is found when additional samples
do not further increase the predictive accuracy by a predefined value of ϵ > 0.

However, the predictive performance of a classifier does not provide informa-
tion about its economic value. How the economic value can be obtained has
been shown by Nottorf and Funk (2013b). Based on a clickstream data set from
a German retailer for electronic devices, they build a user journey model in order
to predict future user behavior. In particular, they predict the users’ conversion
probability based on their user journey. To measure the economic value of the
applied model, they multiply the number of true and false predictions by the
benefits and costs that can be assigned to these forecasts. Thus, they show that it
is beneficial for an advertiser to apply the proposed model in real-time advertis-
ing, where a bidding agent decides whether a given user should be exposed to a
display ad or not. Based on this approach and the finding of Meek et al. (2002),
Stange and Funk (2015) develop a framework to determine the optimal sample
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size for a data analysis and apply it to two case studies. The idea behind this
framework is to train a model with increasing sample sizes and to monitor the
resulting predictive accuracy. As soon as a critical sample size is reached, the
predictive accuracy of the model does not further increase. Since additional data
records are related to additional computational costs, increasing the sample size
to train the model is not recommended when the critical sample size is reached.
Based on their approach, this chapter provides a business process model and an
algorithm for a more structured view of this framework. In addition, we calcu-
late the costs for additional data records and thereby show that the benefits of
an analysis decrease when the sample size is further increased.

Although we focus on dichotomous classification in this chapter, the presented
process is not limited to this kind of classification. The economic value of classi-
fiers with multinomial outcomes can be obtained by applying the same methods
as for the binomial case.

4.3 The Optimal Sample Size

Before the proposed process can be applied, it is crucial to thoroughly define
the questions that ought to be answered by the analysis. It is clear that these
questions highly influence the actually needed amount of data. In this chapter,
however, we suppose that the purpose of the analysis has already been defined
and do not further discuss this issue.

Figure 4.1 provides the business process model of the proposed framework,
which is explained step by step in this section. The process is split up into data
collection and data analysis, which are both represented by a single lane in the
process diagram. The data collection step can be an arbitrary automatic mecha-
nism that systematically collects data. The succeeding filtering and storing step
persists the generated data.

How much data is required depends on the following: First, the model updating
frequency determines how often the analysis needs to be repeated based on new
data to obtain “fresh” results. Second, the sampling strategy influences the filter
settings in the data collection step. For instance, if stratified sampling is chosen,
only “interesting” data is stored. Third, the model complexity influences which
types of data need to be stored and which can be omitted.

These three steps result in a set of requirements for the filtering mechanism,
which are indicated by the dashed arrows that end in the filter object in Figure
4.1.



58 4 How Big Does Big Data Need To Be?

Figure 4.1: Finding the optimal sample size.

The sub-process beginning with the increase of the sample size and ending with
the determination of the economic value can be transferred into an algorithm
(Algorithm 1) to find the optimal sample size. This optimal sample size Nopt is
obtained when the additional benefits ∆B related to the increase of the sample
size by m samples do not outweigh the additional costs ∆C for the related data
storage and analysis.

Algorithm 1 Determination of optimal sample size Nopt

1: C, B, ∆C, ∆B, Cold ← 0
2: N = N0
3: H ← getSample(NH)
4: while ∆B ≥ ∆C do
5: S← getSample(N, m)
6: Cold ← C
7: P← estimateAndPredict(S, H)
8: C← calculateCosts(S)
9: ∆C = C− Cold

10: Bold ← B
11: B← calculateBenefits(P, H)
12: ∆B = B− Bold
13: N = length(S)
14: end while
15: Nopt ← length(S)
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In Algorithm 1, the function getSample(N, m) returns a sample S of size N + m,
estimateAndPredict(S, H) estimates the parameters based on the training sam-
ple S and returns the predictions P based on the holdout sample H with sam-
ple size NH, calculateCosts(S) returns the costs C that are related with storing,
preparing and analyzing the sample S, and calculateBenefits(P, H) returns the
benefits B that are related to the application of the classifier. N0 is the initial
sample size. Although Algorithm 1 is rather intuitive, its containing functions
can be very complex. We focus on the individual functions in greater detail.

• getSample(N[, m]): The selection of the new sample is depending on the
sample size increment and the sampling strategy. In addition, it should
be decided whether the complete data is re-sampled or a sample of size
m is added to the previous sample. In addition, the number of additional
samples m may vary between two succeeding iterations. In our case study,
for instance, we exponentially increase the number m of the additional data
records in each iteration.

• estimateAndPredict(S, H): The parameters of the given model are esti-
mated based on the sample S. Various machine learning methods are
available that enable classifying new data. Cross-validation can be used
to avoid over-fitting. The holdout sample H is used to evaluate the classi-
fier, i.e., predictions are made for each data record from the holdout sam-
ple H. For each data record from the holdout sample the function returns
the probability that the data record belongs to a certain class.

• calculateCosts(S, P): The costs of the analysis are given by the costs for
data collection, storage and computational efforts. These costs grow with
the amount of data, because faster CPUs and larger storages are needed.
In general, it might be difficult to determine these costs exactly.

• calculateBenefits(P, H): The benefits that result from data analyses grow
with the amount of available data, because the applied algorithm has more
data to learn from. The benefits that result from a data analysis can be
calculated as follows: First, the costs for false predictions have to be de-
termined (e.g., an undetected downtime in production, a competitor who
is about to leave the company). Second, the benefits (or saved costs) for
true predictions have to be determined (e.g., the detection of a malfunction
of a tablet press in advance, the prevention of churn). Third, these values
have to be multiplied by the number of true positive, true negative, false
positive, and false negative predictions (based on the probabilities P) of the
classifier to obtain the benefits from the prediction.

The while-loop in Algorithm 1 stops, when the additional benefits ∆B are smaller
than the additional costs ∆C. After the model has been deployed to predict new
data, Nopt can be used to modify the filter settings of the data collection step.
This results in a smaller amount of collected data and thus in reduced costs.

Once the model has been deployed into the productive environment, monitor-
ing the predictive accuracy is required to quickly address changes in the data
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generation process, such as changed user behavior or the go-live of a new pro-
duction line. If significant changes are observed, the complete process should be
re-executed. Consequently, the data collection mechanism needs to be adjusted
so that enough data is available to re-execute the process.

4.4 Case Study

The case study selected for this paper belongs to the real-time advertising field.
In this field of online advertising, every second thousands of records are gener-
ated that can be used to analyze and predict user behavior.

We use two different models to predict the users’ purchasing behavior based
on web tracking data and show the convergence of the predictive accuracy with
increasing sample size.

The section is structured as follows: First, we provide a brief overview over the
real-time advertising field. Second, we describe the tracking data as the basis
for the proposed models. Third, we describe the modeling approach before we
present the results from the analysis.

4.4.1 Real-Time Advertising

In real-time advertising (RTA) free advertising spaces on publisher websites are
sold through auctions. In the moment a user visits a website using this form
of advertising an auction is issued and so-called bid requests are broadcast to
all potential bidders (the advertisers). Storing these messages from multiple ad
exchanges quickly results in Tbytes or Pbytes of data, which can be associated
with significant costs (Stange and Funk, 2014).

On the other hand, RTA enables advertisers to optimize their campaigns, by
only targeting users who show a particular tendency to click on an ad (Perlich
et al., 2012). As a prerequisite, these companies need to know the individual
click and/or conversion probabilities. Our case study demonstrates how these
individual conversion probabilities can be determined. This information can be
used to optimize marketing campaigns and to increase economic benefit (Nottorf
and Funk, 2013a). However, considering the costs for collection and storage,
advertisers should carefully assess payoffs from related analyses (Stange and
Funk, 2014).

4.4.2 Data Description

We use the data set from a German online retailer as it has been used by Stange
and Funk (2015). The data set contains user tracking data (approx. 60 million
records) from one month (December 2013) and, thus, includes seasonal effects,
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which results in shorter user journeys due to spontaneous gift purchases. Ap-
proximately 90% of the overall data is related to user behavior on the retailers
website. The remaining 10% contain information about the advertising channels
used to access the website. We only focus on user journeys with more than four
interactions to reduce noise in our signal. Thereby, we remove 651,991 user jour-
neys and finally obtain 280,459 user journeys that we split into a training set of
180,459 journeys and a holdout set of 100,000 user journeys. The average user
journey length is 7.45.

The data set contains every interaction with the retailers website for every user.
An interaction is meant to be the contact of a user with a certain advertising
channel, such as a search engine advertising (SEA) or a newsletter. Each data
record also contains the type of the interaction which can be a click (e.g. on a
newsletter or a banner ad) or a conversion, i.e., the purchase of a product.

In addition to the online tracking data, the data set contains TV advertising
data. This enables us to model the spillover effects from offline advertising to
the online purchasing behavior.

4.4.3 Model Description

The set of touch points for each user is converted into their user journey accord-
ing to Stange and Funk (2015). Each entry in the user journey contains informa-
tion about the type of the current interaction and the number of previous touch
points for each advertising channel within the current web session and across
previous sessions (Chatterjee et al., 2003).

The classifiers presented in this section are based on the logistic regression
model. We compare two models M1 and M2: Model M1 is only based on
online tracking data, model M2 additionally involves TV advertising data. In
the following, we explain the independent variables. The dependent variable for
each touch point is a binary variable which is 1 if the user purchases a product,
and 0 otherwise.

We adopt the modeling approach from previous studies (Nottorf and Funk,
2013a; Stange and Funk, 2015). The conversion probability is depending on
the advertising channel through which the current touch point has been estab-
lished as well as short term advertising effects from the current session (last 60
minutes) and from previous sessions. In our model the design matrix D consists
of three parts First, the intercept terms I can be interpreted as a measure for
the baseline probability for a conversion after using a certain channel to interact
with the retailers website. Second, we include the number of previous inter-
actions with the online shop within one session, denoted as X, the number of
interactions in previous sessions, denoted as Y. Third, we introduce additional
control variables, i.e., the number of the current session SN, the number of pur-
chases in previous sessions CPS and the time between two sessions IST (Stange
and Funk, 2015). The second model M2 additionally contains variables that are
set to 1 if a certain TV spot Sp has been broadcast on a certain TV station St
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within the last 30 minutes before the touch point, and 0 otherwise. This mod-
eling approach can be used to measure the spillover effect of TV advertising on
the online customer journey.

Equation 4.1 and 4.2 show the jth interaction of the ith user, which is represented
as one row (Di)j of the users design matrix Di. Refer to the left hand side of Table
4.1 for possible values for C, i.e., the subscripts for I, X and Y. The additional
covariates used in the design matrix are listed on the right hand side of Table
4.1.

M1 : (Di)j = {IC, XC, YC, SN, IST, CPS}ij (4.1)

M2 : (Di)j = {IC, XC, YC, SN, IST, CPS, TVSp
St }ij (4.2)

Advertising channels (C) Index Additional control variables
Search engine advertisement SN Session Number
Organic search IST Time between two sessions
Referral from another website CPS Number of conversions in previous session
Affiliate marketing TVSp

St Spot Sp was aired on Station St
Display advertisement
Direct type-in
Cooperation link
Price search engine
Email advertisement

Table 4.1: Advertising channels and additional control variables
used to model the design matrix as stated in Equation 4.1 and 4.2

(Stange and Funk, 2015).

We use the elastic net regularized logistic regression of the R package glmnet
(Friedman et al., 2010) as classification method with α = 0.5. This method
is feasible, because it automatically selects important parameters by shrinking
unimportant parameters towards 0. Hence, in the context of finding the optimal
sample size, this method also determines which types of data can be deleted
while maintaining high predictive accuracy.

4.4.4 Results

To determine the optimal sample size, we execute 9 analyses including N = 500,
1,000, 2,000, 4,000, 8,000, 16,000, 32,000, 64,000, 128,000 user journeys for both
models.

The elastic net model selects different numbers of features for both models. We
report the number of features selected for each sample size in Table 4.2. The
model M2 contains more variables due to the inclusion of TV advertising effects.
Therefore, the number of selected features is higher compared to model M1.

Using the results from the elastic net regression, we run five out-of-sample tests
(N1,...,5

H = 10,000) for each sample size and model. For each observation from the



4.4 Case Study 63

Sample Size M1min M2min M1sd M2sd
500 13 7 10 6

1,000 21 42 10 13
2,000 27 23 12 11
4,000 22 21 14 11
8,000 23 24 14 12

16,000 21 32 14 21
32,000 19 26 15 14
64,000 22 34 15 17

128,000 21 49 15 18

Table 4.2: Different sample sizes and number of selected features
for M1 and M2. The index min denotes the number of features
that results in the highest AUC value. The index sd represents the
lowest number of features that result in an AUC that lies within the

standard error of the maximum AUC value.

holdout sample we predict the conversion probabilities P. Based on the actual
values of the target variables from the holdout sample and the probabilities P,
we are able to measure the AUC for each sample size and model, which are
presented in 4.2. The variance in the predictive accuracy is indicated by the
error bars in the plot. The simpler model M1 outperforms the model including
offline advertising data M2 at lower sample N < 8,000. For greater sample
sizes, model M2 shows higher predictive accuracies. This indicates that model
complexity and required sample sizes are positively correlated.
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Figure 4.2: Area under the curve for both models and different
sample sizes. The predictive accuracy converges with increasing

sample sizes.

Although the AUC can be used to as a measure for the predictive performance
of the classifier, it cannot be used to estimate the economic value of the classifier.
The predictions have to be weighted with the costs for true and false predictions.
We assume the economic values of the models M1 and M2 by applying the two
different cost matrices given in Table 4.3.



64 4 How Big Does Big Data Need To Be?

Type Description CM1 (EUR) CM2 (EUR)
TP Ad impression costs minus contribution margin -0.14 -0.19
TN No loss 0.00 0.00
FP Ad impression costs 0.01 0.01
FN Lost contribution margin 0.15 0.20

Table 4.3: Two different cost matrices (CM1 and CM2) for true pos-
itive predictions (TP), true negative predictions (TN), false positive

predictions (FP) and false negative predictions (FN).

By multiplying the costs for true and false predictions with the number of true
and false predictions, we obtain the overall costs of the classifiers. To calculate
the benefits of the classifier, its costs Cmin have to be compared to the costs (Cmax)
of a trivial classifier that would always predict a conversion. The benefit of the
advanced classifier is given by the costs of a trivial classifier minus the costs of
a advanced classifier (Cmax − Cmin).

To include infrastructure costs we assume 0.0001 EUR for collecting and storing a
single user journey. The difference between the benefit of the advanced classifier
and the infrastructure costs CI for collection and storage of the training sample
divided by the number of data records NH in the holdout sample results in the
effective benefits per decision (Equation 4.3).

B =
Cmax − Cmin − CI

NH
(4.3)

Figure 4.3 shows the benefits per decision for both models and cost matrices. The
difference in the two diagrams results from the different ratios of contribution
margin and costs for an impression in CM1 and CM2. This shows that the
benefits of a classifier are highly dependent on this ratio.

0.00150

0.00175

0.00200

0.00225

0.00250

1000 4000 16000 64000
Sample Size

M
ea

n 
B

en
ef

it 
pe

r 
D

ec
is

io
n

Model

M1

M2

0.0009

0.0012

0.0015

0.0018

1000 4000 16000 64000
Sample Size

M
ea

n 
B

en
ef

it 
pe

r 
D

ec
is

io
n

Model

M1

M2

Figure 4.3: Mean benefits per decision for both models and dif-
ferent sample sizes and different benefit costs ratios (in EUR). Left

hand side ratio: 15/1; Right hand side ratio: 20/1.

Figure 4.3 shows that the maximum benefit is obtained at N = 16,000 user jour-
neys for both ratios. If the sample size is further increased, the costs ∆C for addi-
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tional samples become greater than the related benefits ∆B. Thus, the while-loop
in Algorithm 1 would stop at 16,000 samples in this scenario.

4.5 Conclusion

In this chapter, we extend the framework proposed by Stange and Funk (2015)
to determine the optimal sample size in a predictive analytics application, which
can be applied in a broad range of scenarios. We apply the developed process to
a case study and show that a maximum benefit is obtained with a sample size
of 16,000 user journeys, which is far less than typically available user journeys
in the online marketing field. Thus, companies in this field should consider to
reduce the amount of data in order to save costs from collecting and storing
unnecessary data. For instance, the proposed process can be very beneficial in
the area of real-time advertising where thousands of bid requests per second
are sent to advertisers. Only a very small fraction of this data would be re-
quired to predict user behavior accurately. Due to the users’ growing privacy
concerns, applying the proposed process could also have a positive effect on the
companies’ image. Although we only apply our process to data from the online
marketing field, it can be used by other companies generating and collecting big
data for predictive analytics, for instance for demand planning, replenishment
or predictive maintenance.

Although we show that the application of the process can be beneficial, our
study includes some limitations: First, we neither investigate the need for model
updates nor discuss the sampling strategy. Frequent model updates require col-
lecting and storing new data, which leads to additional costs, especially when
third party data is used. We use random sampling for our analyses. However,
even fewer data might be required, if we decided to use stratified sampling. Sec-
ond, the costs for true and false predictions as well as the costs per user journey
are set by the authors according to typical costs from the industry. However, as
Figure 4.3 shows, the benefit of a classifier is highly dependent on these values.
In general, these values might not be constant over time and might also vary be-
tween different users. Hence, the results from the case study can only be seen as
an approximation and a starting point for more advanced analyses. Third, user
journey creation requires the complete set of touch points of a user. Hence, to
predict the outcome (conversion or no conversion) for future touch points, his-
torical data is needed – data that has to be collected and stored. Consequently,
in addition to the needed amount of data for the training sample, data for the
prediction of future user behavior has to be stored as well, which is combined
with additional costs.

In summary, the proposed process can be beneficial for companies collecting
and storing data in an unsystematic manner and often do not even use a small
fraction of the overall available data (Stange and Funk, 2015). The process can be
a starting point for further investigations in this field and for discussions among
researchers and practitioners who face a dramatically growing amount of data
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without knowing exactly how much data they have to keep to obtain appropriate
results from analyses.
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Abstract

The importance of a well-balanced cross-channel marketing strategy has increased over
the past few years. The synergies caused by the interdependencies of different online
channels, such as e-mail advertising, search engine and banner advertising, have also
drawn the attention of many researchers. However, relatively little is known about the
impact of offline marketing, such as TV advertising, on online user behavior. In this
article, a model commonly used in clickstream analysis is extended by adding several
TV advertising variables. Based on this model, a hierarchical Bayesian logistic model
is developed to estimate the cross-channel effects of both offline and online channel con-
tacts. By applying this model to a case study, it is shown which online channels are most
supported by television ads. The findings of this paper have managerial implications for
practitioners in the field, in particular because of the increasing use of a so-called “second
screen” while watching TV.

5.1 Introduction

Data sets produced in online marketing make it possible to analyze advertising
effects on the individual user’s level (Bucklin and Sismeiro, 2009). Based on such
analyses, marketing budgets can be attributed to individual online channels,
such as affiliate marketing, search engine advertising (SEA) or e-mail advertising
(Shao and Li, 2011). In practice, however, rather simple heuristics are typically
used to determine the marketing success of the individual advertising channels
(Dalessandro and Perlich, 2012). Thus, such simple methods do not necessarily
measure the actual effects of the channels. Consequently, analytical solutions
for advertisers are becoming increasingly popular, in particular in the emerging
field of real-time advertising, where the probability for a “conversion” or “click”
can be used to determine the size of the bid for a given advertising slot (Stange
and Funk, 2014). To estimate the probability for a conversion or a click, many
publications use clickstream data, which is usually then transformed into user
journeys (Bucklin and Sismeiro, 2009; Chatterjee et al., 2003; Nottorf, 2014). The
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results of user journey analyses can be used to apportion the marketing budget
across the channels and to predict the user behavior of future user contacts.

However, when it comes to the interaction of offline marketing campaigns and
online user behavior, very few analytical approaches are available. The problem
is clear: It is almost impossible to track whether a user visiting a website has
been watching a television ad or listening to radio ads in the past hour, day or
week. This makes it difficult to apply analytical methods and to attribute the
conversions that are achieved online to offline ads.

Nowadays, an increasing number of customers use more than one media device
at a time (Courtois and D’heer, 2012). For instance, many users surf on the
Internet using their tablet or smart phone while watching TV. This use of a so-
called “second screen” presents new opportunities for marketers, whose aim it is
to reach their customers in a complementary way to maximize marketing effects.
Thus, a detailed analysis of a combined online and offline marketing strategy is
extremely desirable for many advertisers.

The central research question of this study is how television advertising affects
the online purchasing behavior of customers. More specifically, the study inves-
tigates how the time dependency of television advertising effects can be modeled
and how these time dependent television advertising effects can be included in a
commonly used clickstream model to reveal cross-media advertising effects. The
study contributes to IS research by providing insights into users’ tendency to use
different information sources to make decisions in e-commerce contexts. In ad-
dition, it encourages IS researchers to focus on this dynamic research field at
the intersection of IS and marketing, and for instance, investigate users’ multi-
device usage or develop strategic decision support systems and real-time bid-
ding agents using probabilistic models (Stange and Funk, 2014) such as the one
presented in this study. In addition, they can develop new business models for
marketing agencies and other service providers in the field (Veit et al., 2014).
These models are important for companies, because they often focus only on
either online or offline decision support services (Joo et al., 2014).

The modeling approach presented in this paper is structured as follows: First,
the clickstream model introduced by Chatterjee et al. (2003) is extended by in-
troducing non-linearity terms to model saturation effects. These changes allow
for a more detailed answer to the research questions. Second, a model to es-
timate the time dependency of the TV advertising effects is developed. Third,
a hierarchical Bayesian logistic regression model is developed to estimate the
interdependencies of online and offline channels. Applied to a case study, it
is shown that these measures decrease the residual deviance of the fit and in-
crease the predictive accuracy in comparison to the original model. The analysis
shows different effects for each TV station and advertised product and delivers
the interdependencies of the individual online channels and the TV advertising
effects.

The remainder of this paper is structured as follows: First, relevant work on
clickstream data analysis in the literature is summarized and different approaches
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for the analysis of offline-online advertising effects are presented. Second, the
data set of the case study and the applied modeling process are described. Third,
the results of the analyses are presented in detail. Finally, the findings are sum-
marized and their managerial implications are outlined.

5.2 Related Work

This article uses the achievements of two research streams. For the case study
presented in this paper, models from previous clickstream analyses are used and
combined with modeling approaches from studies dealing with the effects of TV
advertising.

5.2.1 Clickstream and Cross-Channel Advertising

Clickstream data consists of data records produced when users interact with an
advertiser on the Internet (Bucklin and Sismeiro, 2003). This kind of contact
might be a click on a display ad, a search request, or any activity on the ad-
vertiser’s website. The complete set of contacts of a user with the marketing
channels of an advertiser is referred to as their user journey.

More than a decade ago, Chatterjee et al. (2003) developed a model to pre-
dict a user’s individual click proneness based on clickstream data. They de-
rived their model from several theoretical considerations about the effect of dis-
play advertisement and used several models to explain the dependent variable
Pr(Click = 1|UserJourney), i.e., the probability for a click given the user’s cur-
rent contact and the previous contacts. They show that a logistic model with
heterogeneity terms across users and user sessions best describes user behavior
and discuss how the results from the logistic regression can be interpreted as the
different effects of marketing activities (Cho, 2003; Lee et al., 2012; Nottorf, 2014;
Richardson et al., 2007). The resulting knowledge about the effect of the indi-
vidual channels is valuable for distributing the appropriate amount of money
across the marketing channels, i.e., for the budget allocation.

The clickstream modeling approach by Chatterjee et al. (2003) is based on count-
ing the channel contacts within and across user sessions. This procedure as-
sumes a linear relationship between the marketing effect and the logit of the
click probability. To account for the short-term and long-term effects of the con-
tacts of the customer with the advertiser, such as display views, Chatterjee et al.
(2003) introduce two sets of variables containing the total number of contacts in
the current session and in earlier sessions. To account for wear-in effects (the
customer growing more and more aware of the product) and wear-out effects
(customer awareness becoming saturated and decreasing with the time), they
introduce the quadratic form of some channel variables. However, they do not
observe significant effects. In this paper, the channel contacts are modeled as
non-linear, i.e., instead of counting the channel variables, a function f (x) = xγ
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for each covariate is introduced and the exponents γ(·) are estimated in a sepa-
rate step before conducting the main hierarchical analysis. It is shown that the
predictive accuracy can be increased significantly by adding this step.

Ever since the work of Chatterjee et al. (2003), this topic has drawn the interest
of many other researchers, not least because often, in actual practice, rather sim-
plistic heuristics are used to determine the budget for each channel (Anderl et
al., 2014; Jordan et al., 2011; Kitts et al., 2010). An important finding from many
studies using different methods is that effects of marketing activities are inter-
dependent (Anderl et al., 2014; Chatterjee, 2010; Ghose and Yang, 2009; Klapdor,
2013; Nottorf, 2014; Piercy, 2012). That is to say, marketing channels cannot be
analyzed separately, but have to be seen in the context of other channels. For
this reason, analyses should not only focus on individual channel effects but also
on cross-channel effects. This has been done by Ghose and Yang (2009) for the
search engine advertising channel and the organic search channel, but to the best
of the author’s knowledge no published study has investigated the complete set
of interdependencies across all advertising channels yet.

However, cross-channel marketing is not limited to online channels (Dinner et
al., 2014; Kitts et al., 2010; Olbrich and Schultz, 2014). Joo et al. (2014) show that
offline data from TV advertising spots can be used to predict customers’ online
search behavior. The more brand-related TV spots are broadcast, the more users
tend to search for these brands. However, modeling offline advertising effects
on the individual user’s level is not as simple as modeling online advertising
contacts, since it is almost impossible to determine if a user, in fact, was exposed
to the offline advertisement. However, in this study, a new approach to include
the offline variables into the user journey is provided. This approach has not
been taken in the literature before.

This paper contributes to the field of clickstream analysis in two ways. First, it
presents a new way to model and estimate non-linearity parameters and demon-
strates how to include TV advertising data in user journeys. Second, it shows
how to use a hierarchical Bayesian logistic model to determine cross-channel
effects for all marketing channels for a given user journey data set.

5.2.2 Effect of TV Advertising on Online Behavior

In principle, there are two possible approaches to measuring the effectiveness
of TV advertising on online user behavior. First, the so-called advertising stock
for a product can be calculated as a function of the frequency of the spots and
their reaches. This advertising stock can be used as a measure of the long-term
(awareness) effects of TV advertising (Lodish et al., 1995). Second, the direct,
performance-oriented impact of a spot can be measured by observing the uplift
of page impressions and conversions in the few minutes after the broadcasting of
the spot (Lewis and Reiley, 2013; Zigmond and Stipp, 2010). This study focuses
on the latter.
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As stated above, the main difficulty in measuring the effect of TV advertising on
online behavior is the lack of an indication if a user actually was exposed to the
advertisement or not. A way to gain this information is described by Kitts et al.
(2010) who propose displaying discount codes during TV spots, codes which
can be entered online to receive a discount. Conversions that result from this
technique can easily be attributed to TV advertising. However, most campaigns
have not followed this approach.

The simultaneous use of two devices, e.g., television or a mobile device, has been
the subject of increasing interest over the past five years. A recent survey showed
that approximately 30% of television consumers use a mobile device at some
point during the day (Bolten, 2014). This number indicates that the phenomenon
of second-screen use is a significant new opportunity for advertisers to optimize
their cross-channel budget allocation and to increase profit due to marketing
campaigns.

Today, the analysis of television advertising effects on online user behavior is
often driven by very simple heuristics. For instance, website traffic is observed
in the minutes before and after a spot is broadcast on TV. The uplift in user traffic
resulting from the spot, i.e., the difference of the number of page impressions,
can then be assigned to the impact of TV advertising. It is readily apparent
that this heuristic can only approximate true TV impact, because it ignores any
other effects that might cause the uplift at that moment, effects which cannot
be neglected, particularly by bigger online shops. A more sophisticated method
is to observe website traffic over longer periods of time, including periods with
and without TV advertising broadcasts. The resulting website traffic can be
decomposed using a time-series analysis to obtain the periodic effects (i.e., daily
and weekly traffic patterns) and the trend effects indicating the long-term effects
from TV advertising and the residual effects indicating the short term effects,
which can be attributed to TV advertising.

Investigations of TV advertising on online user behavior are not frequent in the
literature. However, there are some researchers who analyze the impact of TV
ads on an aggregated level. Lewis and Reiley (2013) and Zigmond and Stipp
(2010) analyzed the effect of TV ads during the Super Bowl and the opening
show of the Olympic Games, respectively. They see a significant increase in
terms of in page impressions and conversions for advertised brands in the min-
utes after the TV spot. The diagram representing the uplift of visits and conver-
sions after the spot has roughly the form of a Γ distribution, which is relatively
intuitive: In the first few seconds after the spot, only a few users use their second
screen to search for the product, but after a few minutes a maximum is reached.
Afterwards, the direct effect of the advertisement decreases. The limitation that a
significant uplift can only be observed for spots with a very high reach is clearly
evident here, and the application of this approach to smaller reaches is limited.

A more analytical approach is used by Joo et al. (2014), who measured the ef-
fect of TV spots on online search behavior. In contrast to the studies discussed
in the previous paragraphs, they also accounted for long-term effects using ex-
ponential decay to explain the advertising stock. They observed an increase of
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brand search requests after a TV advertising broadcast. Liaukonyte et al. (2015)
measured the impact of TV ads on the purchasing behavior of customers on
an aggregated level. They find that the TV advertising effects vary from spot
to spot. However, in contrast to their analysis, this paper focuses on the con-
version probability on the level of the individual users and also includes other
marketing channels such as display and e-mail advertising. This appears to be
the first study that analyzes the cross-channel effects of television advertising on
the level of the individual user.

5.3 Data Description and User Journey Modeling

In this paper, a data set from a German retailer who operates both online and
offline stores is used. The available data set contains approximately 60 million
records. Each record included in the raw data represents an instance of a user
contacting the website and most of these instances (approximately 90%) are gen-
erated by user activity on the retailer’s website. These activities include, but are
not limited to, viewing product pages, or shipping or payment information, or
purchasing of products. The advertising channel that customers used to reach
the retailer’s website is identified in the first record generated for each session
in the data set (10% of the complete data set). This channel may be a display
banner, a link in an e-mail, a search engine ad, a social media ad, or an affiliate
ad. Additional advertising channels are organic search requests, price engine
search requests, direct type-ins of the shop URL in the browser, and direct re-
ferrals from another website. The case study period includes the 24 days before
Christmas Eve, 2013. This period is most likely characterized by many instances
of spontaneous gift shopping. The sample was chosen, because a relatively high
spillover effect from TV ads to the online user behavior is expected during that
time. The clickstream data and the TV advertising data were collected by two
different service providers and provided by the retailer. More information about
the experimental setting cannot be given due to non-disclosure agreements.

Using this data and closely following Chatterjee et al. (2003), user journeys are
built. These consist of three different types of channel variables and additional
control variables. First, the intercept terms I(·) ∈ {0, 1} indicate the type of the
current contact. For instance ISM = 1 indicates, that the current contact is caused
by a click on a social media ad. Second, the session variables J(·) ∈ N0 indicate
the previous number of channel contacts within the current user session. User
activity after one hour of no activity defines a new user session (Chatterjee et al.,
2003). For example JSEA = 2 indicates that the user has clicked twice on a search
engine ad within the current session. Third, the variables K(·) ∈N0 indicate the
number of contacts with certain channels in previous user sessions. For instance,
KOS = 5 indicates that a user has searched five times for the product or brand
in previous user sessions. The additional control variables are the number of
previous conversions within the current session (CWS) and in previous sessions
(CAS), the session number (SN), the inter-session time (IST), the time of the day
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terms (t, t2, t3 and t4) and an indicator whether the contact has occurred on a
weekend or not (WE ∈ {0, 1}). The variance of the inter-session time is reduced
by calculating the logarithm of the time between two sessions (Chatterjee et al.,
2003). The dependent variable for each contact indicates a conversion (Conv = 1)
or no conversion (Conv = 0). An example of a user journey is shown in Table
5.1 (Stange and Funk, 2015).

Contact No. I0 ISEA ID JSEA JD KSEA KD CAS IST SN Conv
1 1 1 0 0 0 0 0 0 0 h 1 0
2 1 0 1 1 0 0 0 0 0 h 1 0
3 1 0 1 0 0 1 1 0 6 h 2 0
4 1 1 0 0 1 1 1 0 6 h 2 0
5 1 1 0 1 1 1 1 0 6 h 2 1
6 1 0 1 0 0 3 2 1 2 h 3 0

Table 5.1: User journey example.

The set of variables for the jth contact of the ith user is given by the jth entry of
the design matrix Xi for user i as stated in Equation 5.1. An overview of the
indices and variable types is given in Table 5.2.

Xij = {I0, IOS, ITI , IA, ID, ISEA, ISM, IEM, IPS, JTI , JA, JD, JSEA, JSM,
JEM, JPS, JR, KOS, KTI , KA, KD, KSEA, KSM, KEM, KPS, KR, SN,
IST, CWS, CAS, t, t2, t3, t4, WE}ij (5.1)

Index Meaning Variable Meaning
A Affiliate marketing CWS Number of conversions in current session
D Display advertising CAS Number of conversions across sessions
EM E-mail advertising IST Time between two sessions
OS Organic search O f f BL Offline Brand Spot Nr. L
TI Direct type-in O f f PK Offline Product Spot Nr. K
PS Price search OnBM Online Brand Spot Nr. M
R Direct referral SN Session Number
SEA, SA Search-engine advertising t Hour of the Day
SM Social media advertising TVS TV Station S
- - WE Weekend (Yes/No)

Table 5.2: Overview of variables and indices.

To extend the clickstream model of Chatterjee et al. (2003), the impact of the
TV advertisement is modeled by additional variables TVK

S that hold the time (in
minutes) since the last spot of a certain type K was broadcast on a given TV
station S. Only spots that have been run in the ten hours previous to the contact
are included, since short-term effects from spots ran even earlier are unlikely
(Zigmond and Stipp, 2010). Individual TV stations are distinguished, as are
individual spots (Liaukonyte et al., 2015). In addition, TV ads are categorized
into brand-related spots (B) and product-related spots (P) as well as offline-
related spots (O f f ) and online-related spots (On). Spot placement or the reaches
of the spot cannot be modeled, because this information is unavailable. This
is discussed in detail in the limitation section. The design matrix for the TV
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effect Yi holds the TV variables for each contact j of user i as stated in Equation
5.2. As an example, the variable TVOnB1

6 holds the time difference in minutes
between the time of the contact and the time of the previous broadcast of the
online-related brand-related spot #1 on station #6.

Yij = {TVOnB1
2 , TVOnB1

4 , TVOnB1
6 , TVOnB1

11 , TVO f f P1
5 , TVO f f P1

7 , TVO f f P1
8 ,

TVO f f B1
1 , TVO f f B1

2 , TVO f f B1
3 , TVO f f B1

4 , TVO f f B1
5 , TVO f f B1

6 , TVO f f B1
9 ,

TVO f f B1
10 , TVO f f B1

11 , TVOnB2
1 , TVOnB2

2 , TVOnB2
3 , TVOnB2

5 , TVOnB2
11 }ij (5.2)

Table 5.3 presents the descriptive statistics of the transformed user journey data
sample. These numbers suggest the relative frequency of the channel contacts.
All user journeys including only one onsite contact and those longer than 50
contacts were removed from the data set to exclude click robots or other Internet
fraud. The statistic is based on a random sample of 3,314,920 advertising channel
contacts by 898,796 users. The total number of conversions in this set is 138,437.

Parameter µ σ max. Parameter µ σ max.
IOS 0.464 0.499 1.000 IST 3.797 3.966 11.000
ITI 0.219 0.414 1.000 CWS 0.005 0.073 8.000
IA 0.080 0.271 1.000 CAS 0.094 0.367 23.000
ID 0.037 0.189 1.000 WE 0.293 0.455 1.000
ISEA 0.068 0.252 1.000 TVOnB1

2 35.792 86.364 599.000
ISM 0.004 0.060 1.000 TVOnB1

4 42.331 95.597 599.000
IEM 0.080 0.272 1.000 TVOnB1

6 41.818 86.259 599.000
IPS 0.008 0.087 1.000 TVOnB1

11 31.971 71.381 599.000
JTI 0.047 0.282 30.000 TVO f f P1

5 85.018 125.020 599.000
JA 0.111 0.772 46.000 TVO f f P1

7 61.819 133.435 599.000
JD 0.018 0.213 22.000 TVO f f P1

8 64.053 140.807 599.000
JSEA 0.052 0.398 31.000 TVO f f B1

1 101.830 147.150 599.000
JSM 0.003 0.111 29.000 TVO f f B1

2 88.921 138.856 599.000
JEM 0.049 0.380 27.000 TVO f f B1

3 90.356 142.837 599.000
JPS 0.007 0.151 20.000 TVO f f B1

4 56.931 130.628 599.000
JR 0.011 0.150 21.000 TVO f f B1

5 79.487 135.967 599.000
KOS 0.822 2.464 49.000 TVO f f B1

6 56.879 128.091 599.000
KTI 0.982 3.184 49.000 TVO f f B1

9 49.614 116.594 599.000
KA 0.225 1.327 47.000 TVO f f B1

10 59.392 138.278 599.000
KD 0.097 0.646 37.000 TVO f f B1

11 95.170 136.942 599.000
KSEA 0.171 1.238 47.000 TVOnB2

1 63.755 129.567 599.000
KSM 0.018 0.320 41.000 TVOnB2

2 80.297 121.517 599.000
KEM 0.265 1.408 48.000 TVOnB2

3 42.329 101.559 599.000
KPS 0.011 0.192 24.000 TVOnB2

5 61.446 109.081 599.000
KR 0.099 0.790 44.000 TVOnB2

11 81.003 129.876 599.000
SN 2.991 3.976 49.000 - - - -

Table 5.3: Descriptive statistics of the complete sample of user jour-
neys.
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The average user journey length in this data set is rather small, which might be
due to it representing the Christmas period. The number and lengths of the user
journeys are presented in Table 5.4.

Length 1-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50
# Users 765,980 90,872 22,595 9,305 4,663 2,363 1,296 780 544 398

Table 5.4: User journey lengths.

5.4 Analysis Process

The analysis of the user journey data conducted in this study consists of three
steps: First, a model for the estimation of non-linearity terms is developed. This
step is important, because it allows for a comparison in terms of predictive ac-
curacy between the effects of different model extensions presented in this pa-
per. Second, as it has been observed by Lewis and Reiley (2013), TV effects are
modeled as Γ distributed over time to estimate the parameters k and θ of the Γ
distribution Γ(k, θ). Finally, the results of the first and second steps are used to
estimate the β parameters by applying a hierarchical logistic regression model.
These parameters represent the valence and size of the effects resulting from on-
line channel contacts and TV advertising. The following sections describe each
step in greater detail. The results are discussed in the next chapter.

5.4.1 Modeling Non-Linearity

The first step of the analysis is to estimate the non-linearity of the covariates
from the design matrix (Equation 5.1). This step is, of course, not a prerequisite
to model the impact of TV ads on user journeys. It puts, however, the gain
in predictive accuracy for each of the extensions into perspective. Based on
the simple multivariate logistic regression model, a Bayesian model is built up
using JAGS (Plummer, 2003) following Equation 5.3. The TV covariates are not
included in this step to reduce computation times and model complexity.

Convij ∼ Bernoulli(Prij)

Prij = ϕ(X̂ijβX)

X̂ij = {I0, . . . , IPS, (JA)
γJA , . . . (JR)

γJR , . . . , (CAS)γCAS}ij

γ ∼ Multivariate Normal(µγ, Ωγ)

βX ∼ Multivariate Normal(µβX , ΩβX) (5.3)

In this equation, the only difference to the non-hierarchical multivariate logistic
regression model is the substitution of Xij with X̂ij, in which each covariate
of the design matrix is raised to the γth

(·) power, except for the intercept terms

and the time of day variables t, t2, t3, t4, and WE. The vector γ has the same
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length as Xij \ {I(·), t, t2, t3, t4, WE}, denoted as q. The term ϕ(w) is the sigmoid
function given by ϕ(w) = 1/(1 + e−w), which returns a value between 0 and 1
for a given w. This value is interpreted as the probability Pr for a conversion. In
combination with the R package runjags (Denwood, 2015), the software package
JAGS (Plummer, 2003) is used to obtain the exponents γ(·) as well as the βX
parameters. The parameters µβX and ΩβX are the multivariate normal priors
for βX. The µβX is a vector of length p, i.e., the length of the row vector Xij,
with all entries equal to 0. The prior precision matrix ΩβX is a p × p union
matrix multiplied by 0.1. The prior µγ is a vector of length q with all entries
equal to 1. The prior precision matrix Ωγ is a q× q union matrix multiplied by
2.5 and, thus, it is acting as a strong prior around 1. In this first analysis, the
main interest is the estimation of the γ parameters. They are used in the third
step, the hierarchical logistic model, in which the complete set of β parameters
is obtained, i.e., β = {βX, βY}.

5.4.2 Modeling TV Effects

In the second step, a model to estimate the time dependency of the TV adver-
tising effect is developed. There are several ways to model this effect. In this
paper, two different approaches are presented. First, the TV variable is set to
1 if a spot was broadcast in the last T minutes prior to the online user contact.
This approach is easy to implement, but it has also two disadvantages: First, it
is very unlikely that the impact of a TV spot in the first few seconds after the
broadcast is identical with the impact after 5 minutes, especially if the goal is to
explain conversions. Second, the effect instantly collapses after T minutes, which
seems very unrealistic. The second approach proposed here is more realistic, as
it takes into account the probability that a customer uses her or his second screen
to search for the advertised product grows in the first few minutes after the TV
spot has been broadcast. Additionally, it is also considered that the direct impact
of a TV spot on the purchasing behavior decreases after a while. This modeling
approach is feasible, because, according to previous studies, the uplift of page
views after a TV spot has been broadcast looks similar to a Γ distribution (Lewis
and Reiley, 2013). For this reason, it is proposed to model the TV advertising
effect as Γ distributed over time. The Γ distribution can be parameterized by a
shape parameter k and a scale parameter θ. The goals of this step is to estimate
these values and to obtain the time dependency of the TV effects.

To estimate the parameters, the results from the first modeling step are used to
reduce the number of degrees of freedom of the Bayesian model and to reduce
computation time. Thus, the βX values are not estimated in this step. Instead,
zij = X̂ij β̄X is calculated for each contact. The term β̄X represents the median
estimate of a simple logistic regression. The Bayesian model is presented in
Equation 5.4.
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Convij ∼ Bernoulli(Prij)

Prij = ϕ(zij + ŶijβY)

Ŷij = {Γ(TVOnB1
2 , k, θ), . . . , Γ(TVOnB2

11 , k, θ)}ij

k, θ ∼ Uniform(0.01, 10)
βY ∼ Multivariate Normal(µY, ΩY) (5.4)

In this equation, Γ(TV(·)
S , k, θ) returns the value of the Γ distribution at point

x = TV(·)
S with shape parameter k and scale parameter θ. The Γ parameters are

sampled from a relatively narrow uniform distribution, because the short term
effect of TV advertising is expected to have a maximum in the range between 1
to 60 minutes after the broadcast1.

5.4.3 Modeling Cross-Channel Effects

The goal of the third modeling step is to estimate a complete set of β parameters
for each contact type. The contact type is represented by the intercept terms
I(·) from the design matrix X. The obtained results can be interpreted as cross-
channel effects. For instance, the effects of previous contacts with certain chan-
nels on conversions that result from search engine requests are represented by
βOS, i.e., the β parameters for the organic search channel. To achieve this goal,
each contact has to be assigned to one of 9 groups representing different contact
types. Note that there are only 8 different intercept terms in the design matrix
X. The ninth group is related to direct referrals from other websites. A contact
of this type is indicated by all other intercept terms being equal to 0, except I0.

The modeling approach is driven by several considerations. First, it is known
from previous studies that the individual marketing channels influence each
other in different ways (Ghose and Yang, 2009; Klapdor, 2013). Second, it is
expected that returning customers behave in a different manner than new cus-
tomers. For instance, new customers are more likely to click on a search en-
gine advertisement, whereas returning customers, indicated by a higher session
number, tend to type-in the URL directly (Rutz et al., 2011). Third, TV ads are
expected to have a higher impact on direct type-ins or search requests than on
display or affiliate clicks (Naik and Peters, 2009).

The hierarchical logistic model with random slopes used here is described by
Rossi et al. (2006). The corresponding algorithm rhierRwMNLogit from the R
package bayesm involves high computational costs when, as in this case, large
sample sizes are used. Therefore, the R package rpud by Yau (2015) is used. It

1A detailed analysis conducted after publication of this article showed that the model is
unable to identify TV advertising effects in case of a strong correlation of effects related to the
time of the day and those related to TV ads. This issue is discussed in greater detail in Section
5.8.
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contains a parallelized version of the model from the bayesm package that uses
Graphical Processing Units (GPUs) for computation. This parallelization reduces
the computation time by the order of a magnitude. A simplified version without
the multinomial part of the original model is presented in Equation 5.5.

Convij ∼ Bernoulli(Prij)

Prij = ϕ(X̂ijβ
G
X + Ŷijβ

G
Y)

{βX, βY}G = ∆ + ϵG

∆ ∼ Multivariate Normal(µ∆, Ω∆)

ϵG ∼ Multivariate Normal(µϵ, Ωϵ) (5.5)

In Equation 5.5, X̂ij and Ŷij represent the transformed covariates from Xij and
Yij according the first two steps of the analysis. The index G ∈ {A, D, EM, OS,
PS, R, SEA, SM, TI} indicates the type of the contact, the vector ∆ represents
the grand mean of the parameters from all groups, and the residual term ϵG

represents the deviation of the individual βG values from the grand mean ∆.

5.5 Results of the Analyses

This chapter is structured as follows: First, the results generated during the
first two modeling steps, which were described in the previous chapter, are pre-
sented. Second, a comparison of the different modeling approaches is made. It is
shown that a model that includes both non-linearity terms as well as TV param-
eters is the best one to describe the data. Third, the results from the hierarchical
logistic regression are presented.

5.5.1 Non-Linearity Parameters

To estimate the γ parameters, the software package JAGS in combination with
the R package runjags is used to run three MCMC chains with 60,000 burn-
in iterations and 125,000 sampling iterations. The sample size is n=20,000 in
this step. The Gelman-Rubin diagnostic shows convergence of the chains. The
results from the non-linearity analysis are presented in Table 5.5.

The results clearly show that only counting channel contacts is not an appropri-
ate method for user journey analyses. Most median values are < 1, which im-
plies saturation effects for each channel. For instance, γJA , the exponent of the
number of previous affiliate marketing contacts during a given session, is close
to zero, which means that it makes hardly any difference whether a customer
contacted the website once, twice, or ten times through this channel during a
session. In this case study, the γ parameter for the additional control variable
SN, which was introduced by Chatterjee et al. (2003), shows that this variables
has a very small impact since it is always very close to 1.
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Var. 2.5% 25% 50% 75% 97.5% Var. 2.5% 25% 50% 75% 97.5%
γJTI 0.005 0.058 0.125 0.211 0.401 γKD 0.042 0.343 0.635 0.984 1.740
γJA 0.008 0.081 0.162 0.270 0.565 γKSEA 0.314 0.874 1.097 1.319 1.822
γJD 0.049 0.336 0.555 0.791 1.410 γKSM 0.048 0.375 0.675 1.018 1.750
γJSEA 0.003 0.030 0.070 0.128 0.291 γKEM 0.064 0.407 0.622 0.844 1.305
γJSM 0.022 0.186 0.355 0.590 1.497 γKPS 0.047 0.393 0.700 1.079 2.004
γJEM 0.006 0.060 0.128 0.221 0.424 γKR 0.033 0.305 0.553 0.839 1.483
γJPS 0.070 0.455 0.738 1.011 1.574 γSN -0.388 0.083 0.144 0.252 0.698
γJR 0.101 0.490 0.714 0.937 1.477 γIST 0.001 0.016 0.039 0.078 0.185
γKOS 0.041 0.307 0.566 0.855 1.476 γCWS 0.091 0.581 0.994 1.443 2.293
γKTI 0.089 0.435 0.617 0.792 1.288 γCAS 0.504 0.720 0.820 0.913 1.080
γKA 0.165 0.430 0.574 0.725 1.070 - - - - - -

Table 5.5: Quantiles of the sampled γ parameters.

5.5.2 Time-Dependent TV Effect

The densities of the sampled Γ distribution parameters θ and k are presented
on the left side and in the middle of Figure 5.1. They are obtained using 60,000
burn-in steps and 125,000 sampling iterations with n=10,000 samples. The graph
on the right shows the resulting time-dependent TV spot effect based on the
median values for θ and k. In the minutes after the spot broadcast, the effect
strength grows very quickly. It is strongest after approximately 20 minutes and
decreases exponentially afterwards. The resulting Γ shaped diagram is in line
with the observations from previous TV uplift studies2.
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Figure 5.1: Densities of θ, k and the resulting time-dependent TV
advertising effect.

5.5.3 Model Comparison

Before the final results are presented, alternative versions of the user journey
model discussed above are compared (Table 5.6). Each model is estimated with
and without the TV variables Y and Ŷ, respectively. The first two models are

2Indeed, a Γ shaped TV effect is in line with other studies. However, the spike in website
traffic is usually located in the few minutes after an ad was aired (not after 20 minutes). This
contradiction can be explained with the inconsistencies in the original data set and the strong
correlation of effects related to time and effects related to TV ads. This issue is described in
greater detail in Section 5.8.
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based on the approach proposed by Chatterjee et al. (2003) and presented in
Table 5.1. In the first case, the TV variables are set to 1 if the time difference
between the spot broadcast and the contact is less than T = 30 minutes. In
the second case, the Γ parameters θ and k obtained during the second analysis
to calculate the time-dependent TV effects are applied. In the third model, the
time of day variables and the indicator for weekends WE are added to control
for time-dependent conversion rates over the day. If these variables were not
included, time-dependent conversion rates might be assigned to the effect of TV
spots3. In the fourth model, the X variables are transformed into X̂ using the γ
parameters obtained during the first analysis. Finally, a quadratic term for each
covariate is added to account for decreasing awareness effects from individual
marketing channels. Table 5.6 shows the analysis of variance for the ten different
models. The residual deviance is given with and without TV variables and the
difference of the residual variance to the next smaller model. In addition, the
area under the ROC curve (AUC) is reported as a measure for the predictive
accuracy of the model. The values are obtained with 2,000,000 contacts for the
training set and 1,000,000 contacts for the holdout set.

Model R without TV R with TV Dev. Delta Sign. Dev. Diff. AUC w. TV
Plain 642409.3 641833.6 575.7 *** - 0.7314
Gamma 642409.3 641612.5 796.8 *** 221.1 0.7315
Times 641805.6 641080.1 725.5 *** 532.4 0.7326
Non-Linearity 630168.2 629627.7 540.5 *** 11452.3 0.7545
Quadratic 625877.2 625368.4 508.8 *** 4259.3 0.7624

Table 5.6: Residual Deviances R for 10 different models and AUC
measures.

The results of the model comparison show that the addition of TV variables
reduces residual deviance in all cases. Additionally, they show that the time-
dependent TV effects reduce more deviance than the simpler approach to model
TV effects. The addition of variables to describe the time of the day also reduces
deviance. However, most of the deviance is reduced when the γ parameters are
applied to transform X into X̂. Even the addition of a quadratic term for each co-
variate has a much higher impact on residual deviance than the TV effects. This
shows the importance of the feature selection process in user journey modeling,
which is, however, not the focus of this study.

5.5.4 Results from the Non-Hierarchical Logistic Regression

The results from the hierarchical model cannot be presented in great detail here,
because one set of β values for each contact type was obtained. However, to
offer an overview of the size of the effects, the complete set of β parameters for
the non-hierarchical logistic model in Table 5.7 are presented. The used model
is the one with included TV effects and non-linearity from the fourth row in

3The correlation between the effects of TV ads and effects that are related to the time of the
day when the ads were aired is discussed in greater detail in Section 5.8
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Table 5.6. Note that the X̂ and Ŷ covariates were standardized to allow for easy
comparison between individual effect sizes. Thus, the values listed in Table 5.7
show the increase of the logit of Pr by β(·) resulting from adding one standard
deviation of the respective covariate.

β(·) Est. SD z Sig. Lv. β(·) Est. SD z Sig. Lv.
0 -3.461 0.004 -769.985 *** CWS 0.006 0.002 2.487 *
IOS 0.182 0.012 15.367 *** CAS 0.218 0.003 72.476 ***
ITI 0.413 0.013 31.175 *** t 1.266 0.090 14.004 ***
IA 0.489 0.009 54.591 *** t2 -4.812 0.387 -12.441 ***
ID -0.016 0.008 -1.998 * t3 6.262 0.548 11.424 ***
ISEA 0.308 0.015 19.906 *** t4 -2.783 0.252 -11.061 ***
ISM 0.017 0.005 3.088 ** WE -0.030 0.004 -7.482 ***
IEM 0.273 0.009 29.778 *** TVOnB1

2 0.008 0.004 2.084 *
IPS 0.039 0.005 7.291 *** TVOnB1

4 0.017 0.004 4.464 ***
JTI 0.195 0.002 80.345 *** TVOnB1

6 0.010 0.004 2.458 *
JA 0.122 0.003 41.561 *** TVOnB1

11 0.027 0.004 6.211 ***
JD 0.061 0.003 17.897 *** TVO f f P1

5 0.008 0.004 2.089 *
JSEA 0.223 0.004 56.486 *** TVO f f P1

7 0.024 0.004 5.773 ***
JSM 0.006 0.004 1.542 TVO f f P1

8 -0.008 0.004 -1.875 .
JEM 0.146 0.003 51.579 *** TVO f f B1

1 -0.002 0.004 -0.617
JPS 0.029 0.003 9.241 *** TVO f f B1

2 -0.009 0.004 -2.095 *
JR 0.055 0.003 16.093 *** TVO f f B1

3 -0.016 0.004 -4.044 ***
KOS -0.056 0.005 -11.882 *** TVO f f B1

4 -0.013 0.004 -3.259 **
KTI -0.118 0.009 -13.263 *** TVO f f B1

5 -0.049 0.004 -11.469 ***
KA -0.168 0.004 -40.109 *** TVO f f B1

6 0.035 0.004 9.697 ***
KD 0.006 0.004 1.466 TVO f f B1

9 -0.001 0.004 -0.302
KSEA -0.078 0.006 -12.301 *** TVO f f B1

10 0.009 0.004 2.312 *
KSM -0.015 0.005 -3.060 ** TVO f f B1

11 0.002 0.004 0.496
KEM -0.028 0.005 -6.058 *** TVOnB2

1 0.015 0.004 4.037 ***
KPS -0.033 0.004 -7.619 *** TVOnB2

2 0.011 0.004 2.809 **
KR -0.053 0.005 -10.299 *** TVOnB2

3 0.009 0.004 2.220 *
SN -0.334 0.014 -24.062 *** TVOnB2

5 0.040 0.004 10.317 ***
IST 0.728 0.006 116.306 *** TVOnB2

11 0.014 0.004 3.769 ***

Table 5.7: Results from the simple logistic regression with trans-
formed covariates (Signif. codes: *** p < 0.001; ** p < 0.01; * p <

0.05; . p < 0.1).

The intercept β0 and the term βSN indicate that the baseline conversion proba-
bility is, at approximately p ≈ ϕ(−3.461− SNγSN · 0.334) ≈ 0.02, very low. As
stated before, this value corresponds to conversion rates for direct referrals. This
baseline probability for conversions matches typical conversion rates found in
the industry and is in line with previous studies (Ghose and Yang, 2009). The
probabilities for conversions through affiliate channel, search engine channel, e-
mail channel, and direct type-ins are higher than this baseline probability, which
is represented by the positive value of the respective β I(·) terms.

The effect of the number of previous channel contacts during one session β J(·)
is positive in all cases, although the value for contacts through the social media
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channel is not significant. This indicates that customers who are more likely to
convert tend to use multiple marketing channels during a given session before
they make their purchase decision.

The effect of the number of channel contacts in previous sessions βK(·) , however,
is negative for all channels except for the display channel effect βKD , which is
not significant. At first, this finding is unexpected, because it is generally as-
sumed that returning customers with more than one session are more likely to
convert than customers with shorter user journeys. As the data set has been gen-
erated during the Christmas season, one could argue that customers shopping
during the season tend to use the shop for spontaneous gift purchases that can
be completed during one user session.

The effects of TV spots that advertise for the online shop (i.e., OnB1 and OnB2)
are positive in all cases. In addition, the offline and product-related spots have
a positive impact on the conversion probability, except TVO f f P1

8 which does not
fulfill the significance criteria.

However, the effect from the TV spots is rather low in comparison to the effect
from the online channel contacts. This is because it is not known whether a user
in fact watched a certain TV program. Additionally, information about the reach
and the placements of the spots within the advertising blocks is unavailable.
Consequently, to develop the model it is assumed that the TV spots have an
effect on each contact of every customer. Thus, the βTV values represent the
mean TV effect for all customers.

Depending on the TV station, there are positive or negative effects resulting from
offline brand spots, i.e., O f f B1. Significant negative effects from TV spots are
rather unintuitive, because one would expect they either have a positive effect,
if the customer watched the spot, or no effect at all, if the customer did not
watch it. However, negative effects can be explained with customers who make
last-minute decisions. They tend to search online for a certain product to read
reviews, for instance. However, these customers tend to buy the product in a
retail store, because they might worry that the product cannot be delivered in
time. This hypothesis is realistic, because a multitude of the brand-related offline
spots have been broadcast in the few days before Christmas Eve. Furthermore,
there might be lots of customers who visit the online shop to read reviews about
a certain product and, nevertheless, decide to visit the retail store to try out the
product before purchasing it (Cheema and Papatla, 2010).

5.5.5 Cross-Channel Effects

Running the hierarchical logistic model from the R package rpud with 2,000,000
samples and 250,000 iterations results in 9 · 48 = 432 posterior densities of the
βG
(·) parameters. These values cannot be reported in full detail here. Instead, the

results are discussed by example. Some significant effects of the covariates from
X \ I(·) on the contact types represented by I(·) are shown in Figure 5.2 and 5.3.
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The graph included on the left side of Figure 5.2 shows the effect of clicks on
display ads in previous sessions on search engine advertising contacts and direct
type-in contacts. The non-hierarchical logistic regression did not reveal signifi-
cant results for βKD . However, the hierarchical analysis shows that βSEA

KD
and βTI

KD
are significant. The result is relatively intuitive, because previous contacts with
display ads increase the awareness for the brand and, hence, increase the proba-
bility for direct type-ins (Chatterjee, 2008). The probability for conversions after
clicks on search engine ads decreases with increasing KD. The negative value for
βSEA

KD
is sensible, since one of the major goals of search engine advertising is the

acquisition of new customers (Rutz et al., 2011).
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Figure 5.2: Significant densities of βKD and βKSEA per contact type.

The graph included on the right side of Figure 5.2 shows the effect of the number
of search engine advertising contacts in previous sessions KSEA on five different
channels. It has a positive impact on the probability for conversions through
the affiliate channel and negative impacts on the probability for conversions
through the organic search, the search engine, the display, and the e-mail mar-
keting channels. A negative value for βKSEA is in line with the results from the
non-hierarchical analysis. However, the hierarchical analysis reveals different ef-
fects across contact types. The affiliate channel, for instance, benefits from the in-
creasing value for KSEA. One reason for this might be the growing awareness of
the customers for discount coupons that are often offered in affiliate marketing.

The graph included on the left side of Figure 5.3 shows the effect of the inter-
session time IST on eight different channels. The hierarchical analysis shows
that the deviation from the mean effect β IST = 0.728, calculated in the non-
hierarchical logistic regression, is relatively high. The inter-session time has
a high impact on the probability for conversions after a direct type-in and a
low impact for a conversion after a display click. The effect of the number of
conversions in previous sessions CAS on eight different channels is shown in
on the right side of Figure 5.3. The CAS value has the highest impact on the
probability for conversions after an organic search request and the less impact
for a conversion after an e-mail advertising click.

Significant effects of TV spots are shown in Figure 5.4 and 5.5 by example. Non-
significant values are omitted for clarity. The graph included on the left side
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Figure 5.3: Significant densities of β IST and βCAS per contact type.
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of Figure 5.4 shows the impact of the online brand spot #1, station #11, on the
probability for e-mail conversions, organic search conversions and search engine
advertising conversions. The increase of the probability for search engine con-
versions after a TV spot is relatively intuitive and in line with previous studies
(e.g., Kitts et al., 2010; Zigmond and Stipp, 2010). The interpretation of the value
for βEM

TV
OnB1
11

needs more explanation, because the increase of the probability for

e-mail conversions after a TV spot is rather surprising. The reason might be the
concurrent e-mail marketing campaign that was dominated by providing dis-
counts coupons for online purchases. Apparently, customers who had received
such a coupon have been likely to reopen that e-mail and use the coupon to
purchase a product after watching a brand-related TV spot. This finding is con-
sistent for all TV spots and has managerial implications that are discussed in the
next chapter. The effect of an offline product-related spot is presented on the
right side of Figure 5.4 and shows a similar picture as the online-related brand
spot #1. The effect of direct type-ins is not significant in this case because it is
rather uncommon to directly type-in the product-related URL in the browser.

The left side of Figure 5.5 shows the cross-channel effects for the offline brand
spot on station #6. As seen before, the highest positive impact of the TV spot can
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be observed for e-mail conversions, followed by the impact on organic search
conversions and search engine advertising conversions. Additional significant
positive effects are observed for affiliate conversions and direct type-ins. The
increase of the probability of affiliate conversions might be caused by the ten-
dency of some customers to search for discount vouchers before visiting the
website and purchasing a product. The graph included on the right side of Fig-
ure 5.5 presents the effect of the second online brand spot on station #5. It draws
a very similar picture. The only difference is the missing negative effect on dis-
play conversions. This might be again due to the fact that the advertiser also
operates retail stores and cross-channel saturation effects (Piercy, 2012).

In summary, the application of the hierarchical model provides new insights
into cross-channel effects that determine the user behavior. The AUC for this
model is 0.7606 and thereby higher than the analog model without the quadratic
terms from the non-hierarchical analysis. In particular in the context of real-
time advertising, where millions of decisions are made every second, such a
model is valuable to determine the size of the bids on the basis of the predicted
probability for a conversion.

5.6 Implications, Limitations and Outlook

In this paper, a model commonly used for clickstream analyses is extended by
introducing offline advertising effects. Such an extended model outperforms the
simple clickstream model in terms of predictive accuracy. Adding a hierarchical
structure, the cross-channel effects of both online and TV advertising activities
are revealed.
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5.6.1 Implications

The approach presented in this study has several implications for researchers in
the fields IS and marketing. First, future research needs to be done on decision
support systems in e-commerce that integrate tracking data and offline adver-
tising data from other data sources to improve the quality of strategic decisions,
for example the allocation of parts of the marketing budget. Since customer be-
havior is influenced by many external factors such as seasonal effects (as in this
case study) or new brands or products, analyses based on user data should be
updated frequently to obtain reliable results. Therefore, efficient tools to manage
and analyze these high-volume tracking data and data from offline sources are
required to make the model viable in practice, for example in strategic decision
support systems or bidding agents in real-time advertising (Stange and Funk,
2014). Second, for future research at the intersection of IS and marketing, data
from tracking systems that identify users across different devices should be used
to arrive at a better understanding of users’ behavior in e-commerce contexts. In
combination with data from traditional offline advertising channels such as print
and television advertising, the model presented in this paper can provide even
more precise insights into cross-device and cross-media user behavior. Third,
marketing researchers can use this approach to analyze the impact of additional
properties of offline advertising, such as information about television stations,
the positions of the spots within the advertising blocks, or the context in which
the spot was aired. These model extensions can yield better predictive accura-
cies and improve strategic decision support, for example for future advertising
campaigns.

In addition, the study has several managerial implications: First, a model to esti-
mate time dependency of the short-term TV spot effects is proposed. The results
show that the strongest effect is observed 15 minutes after a spot has been broad-
cast. Bidding agents in real-time advertising can use this information to select
ads related to the product advertised within that time frame to optimize profits
from cross-channel marketing. Second, the model proposed here can be used in
practice to plan future online advertising campaigns, i.e., the allocation of future
marketing budgets. For instance, advertising activities on channels that show
a relatively high conversion rate (in the case study, affiliate marketing, search
engine advertising) could be expanded. The same is valid for TV advertising
activities: The spendings for TV ads on stations that show a high positive effect
on the purchase probability could be increased whereas the number of spots on
stations without a noticeable effect might be reduced. To optimize the budget
the estimated effects per channel have to be weighted in light of the costs per
acquisition for each channel. Third, the results of the hierarchical analysis show
that the impact of TV advertisement is different for each online channel. Compa-
nies who consider a TV advertising campaign should coordinate advertising ac-
tivities on online channels that greatly benefit from TV advertising activities, for
example search engine advertising, organic search, and e-mail advertising. For
instance, if an advertiser runs a campaign for a certain product on television, it
would make sense to run a search engine advertising campaign during that time
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to increase the spillover effect from the TV ad. Surprisingly, in this study, the
highest impact of TV ads on the conversion probability can be observed for the
e-mail channel. During an advertising campaign for a certain product on TV, an
advertiser should also conduct a complementary e-mail campaign to optimize
the spillover effect from the TV channel. This is but one example emphasizing
the importance of a well-balanced cross-channel marketing strategy.

5.6.2 Limitations

Although it clearly reveals the expected TV effects, the analysis has primarily
seven limitations. These are mostly related to incomplete data. First, to model
the impact of television ads, it is crucial to have an idea of how many cus-
tomers might have been watching a certain TV station at a given time. While
it is possible to determine when a spot was aired and where individual spots
where placed in the advertising blocks, it is hard to acquire reliable data on
how many people actually saw these ads. This information should be still in-
cluded in future analyses. Second, the device information of each contact was
unavailable. However, this information is important, because it is expected that
the probability for a conversion on a mobile tablet, which is used as a second
device while watching TV, is higher than for a conversion on a standard PC,
which is usually not instantly available when watching TV. Future studies in
this area need to include information about user devices to build a model that
can validate this hypothesis. Third, to estimate the TV impact, a simple logistic
regression and a hierarchical logistic regression model were used. These models
do not restrict the impact of TV spots in any form, which might be useful in
some cases. For instance, it is rather unlikely that the impact of TV ads is less
than zero. Therefore, it could make sense to change the prior information of
the TV effects βTV from multivariate normal to truncated multivariate normal.
However, efficient algorithms to estimate the parameters for this kind of model
are currently unavailable4. Fourth, the focus was on conversions here and the
activities of a user on the retailer’s website were ignored. However, it would also
be very important to analyze onsite user behavior with a focus on products and
purchase intentions depending on TV advertising activities. Fifth, the increase
in the AUC value resulting from the addition of the parameters for TV spots and
from the hierarchical model structure were small in comparison to the increase
that resulted from the introduction of the γ exponents and the quadratic terms.
This fact emphasizes that the feature selection process is more important than
a sophisticated model structure. Sixth, the data was collected during Christmas
time and, thus, includes many shorter user journeys suggesting the spontaneous
purchase of gifts. Although the modeling approach presented here is generally
applicable for offline-online studies, the results from the case study can not be
transferred to other periods without limitation. Seventh, the focus of this study

4In fact, TV ads can have a negative effect on conversion probabilities as it is shown in Chap-
ter 6. By contrast, a negative effect of TV ads on the total number of visits or conversions is
rather unlikely.
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was on the short-term effects of TV advertising activities. As indicated by pre-
vious studies, TV advertising focuses, however, on the awareness of potential
customers (Liaukonyte et al., 2015). It was not possible to model the awareness
effect, because user journeys without the influence of a TV campaign are not
contained in the data set. For experimental settings in future studies, it would
be desirable to measure both short-term and long-term TV advertising effects.

5.6.3 Outlook

The analysis of cross-channel marketing effects is often limited to online market-
ing channels, because they enable advertisers to track every customer activity.
However, online marketing is only one part of the broad range of marketing
activities that, ideally, are seamlessly coordinated. The analysis of the effect of
online-offline marketing activities is a chance for practitioners to improve their
marketing activities. For instance, an important question for practitioners is how
to allocate parts of the budget to individual channels. The estimations of the pro-
posed model can be used to answer this question. In addition, the measurement
of online-offline advertising effects offer many opportunities for future scholar-
ship at the intersection of IS and marketing. This analysis represents a first step
in this direction.
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5.8 Erratum

During the data preparation for the study presented in Chapter 6, it was found
that the results of the article presented here are based on an inconsistent sample
of user journeys: First, user journeys of length 1 that did not result in a conver-
sion have not been included in the original analysis. User journeys of length 1
that resulted in a conversion remained in the sample but the dependent variable
was falsely set to zero. This issue resulted from a programming error in the Java
code used to generate the sample. As a consequence, the AUC values reported
in the original version of the article (Table 5.6) are greater than the ones achieved
with a corrected sample (Table 5.9). In addition, the values of several model pa-
rameters are biased (Table 5.7). Second, and more problematic, the two data sets
used to measure the effect of TV ads stem from two servers using two different
time zones. More precisely, the TV ads were aired one hour before the time
suggested by the time stamps. Consequently, the measured short-term effect of
TV ads on website traffic reflects the effect of TV ads on website traffic after one
hour. Figure 5.6 shows the aggregated number of visits over time around each
ad. The spike in website traffic is shifted by one our.
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Figure 5.6: Illustration of the time shift between the two data sets.

These inconsistency issues, however, do not limit the main contribution of this
article, since it focuses on developing and evaluating a novel tool to measure the
effect of TV ads on online behavior at the level of the individual user that could
be used to improve cross-channel campaigns. For this reason and to preserve
the originality of the published article, it was decided to include it into this
dissertation without changes.

Nevertheless, using a corrected sample, the approach was tested again for the
purpose of this dissertation. In particular, it was investigated why the inconsis-
tencies were not noticed in the first place. During this process, many findings
included in the original article could be confirmed. Table 5.8 (the reproduction
of Table 5.6) confirms, for instance, that the variance is reduced when TV ads are
included into the model and that the inclusion of the non-linearity terms results
in the highest increase of the AUC values.

However, the investigation also revealed a major methodological drawback of
the original method in combination with the data set used. This drawback con-
cerns the correlation of effects related to TV ads and effects related to the time
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Model R without TV R with TV Dev. Delta Sign. Dev. Diff. AUC w. TV
Plain 222899.6 222819.6 80.0 *** - 0.6402
Gamma 222899.6 222843.8 55.8 *** -24.2 0.6403
Times 222647.0 222606.5 40.4 *** 237.3 0.6417
Non-Linearity 220380.5 220342.4 38.2 *** 2264.2 0.6616
Quadratic 219924.9 219886.2 38.7 *** 456.2 0.6631

Table 5.8: Residual Deviances R for 10 different models and AUC
measures using a corrected sample (N = 500,000).

when ads were aired (Section 5.8.1). This correlation cannot be captured suffi-
ciently using the modeling approach proposed in the original article and em-
phasizes the need for a thorough feature selection process. To reduce this cor-
relation and the associated omitted-variable bias, Section 5.8.2 discusses an al-
ternative modeling approach that is more robust in this regard, even without
including additional time-related variables into the model.

5.8.1 Correlation of Effects Related to Time and TV Ads

Although they have been generated based on an inconsistent sample, the results
presented in the published version of the article show statistical significance in
many cases. This contradiction suggests that the data includes unobserved time-
dependent effects on conversion probabilities that correlate with the time when
ads were aired on TV. To provide deeper insight concerning this correlation, Ta-
ble 5.9 shows cross-validated AUC values of multiple logistic regression analy-
ses using different parameterizations of the Γ-shaped TV effects. The table is or-
dered by AUCΓ, which represents the AUC generated with the Γ-shaped trans-
formation of TV variables as described in Section 5.4.2. The value AUCT is gen-
erated with uniform parameterizations where the TV effect is set to 1 if the time
difference between TV ad and visit is less than T, and 0 otherwise. The value for
T is determined by the 99% quantile of the respective Γ distribution floored to
the next integer that is divisible by 5. The numbers show that the highest AUC
can be achieved with a uniform parameterization of TV effects with T = 225
minutes (first row column AUCT). The value of AUCΓ from the same row is
smaller. Consequently, the Γ-shaped parameterization is less accurate than the
uniform parameterization in this case. This finding suggests that the results do
not represent short term TV effects but effects that relate to the time of the day in
which the ads were aired, and, consequently, that only 5 control variables with
respect to time (see Equation 5.1) are not sufficient to explain all time-related
effects.

The values in the second row of Table 5.9 draw a different picture: Both AUC
values are smaller than in the first row. However, the value of AUCΓ(2,0.67) is
greater than AUCT=5, which suggests that TV advertising effects dominate time-
dependent effects in this case. However, the complete separation of effects re-
lated to time and effects related to TV ads requires more effort. Obviously, higher
AUC values can be achieved by considering larger time frames after spots were
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E(Γ(α, β)) Mode(Γ(α, β)) α β AUCΓ T (min) AUCT
50.000 1.170 1.02 0.02 0.6429 225 0.6443
3.000 1.500 2.00 0.67 0.6412 5 0.6402
2.000 0.500 1.33 0.67 0.6411 5 0.6401
4.715 1.170 1.33 0.28 0.6407 15 0.6401

10.000 1.500 1.18 0.12 0.6406 40 0.6414

Table 5.9: Cross-validated AUC values for different parameteriza-
tions of the Γ-shaped TV effects.

aired. This is the reason for the statistical significance of the results presented
in the published version of the article. The results might involve effects that are
in fact caused by TV ads which endure for over 90 minutes; however, Table 5.9
suggests that the TV ad variables mainly mediate effects that relate to the time
when they were aired.

As additional challenges, the effects of TV ads on conversion probabilities are
very small in comparison to the effects of online ads, heterogeneous across re-
ferral channels, and not constant over the course of a day. In light of this find-
ing and the correlation between time-related effects and TV advertising effects,
the original form of the Bayesian model presented in Section 5.4.2 is not able to
adequately find the shape and scale of the Γ-shaped TV effect. Consequently,
highly informative priors need to be used to identify the time-dependent TV ad
effects more accurately. Figure 5.7 presents the results of this approach with a
maximum effect at t = 70 seconds.
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Figure 5.7: Densities of θ, k and the resulting time-dependent TV
advertising effect generated with a corrected sample and informa-

tive priors (1/θ ∼ Exponential(1); k ∼ N(µ = 1.1, σ = 0.1)).

In summary, the data used here is highly influenced by unobserved time-de-
pendent effects, which is why the inconsistencies of the original sample were
not noticed in the first place. These time-dependent effects can be explained
by including TV variables, since TV ads are not aired randomly over time and,
thus, correlate with effects related to time. However, a distinct causal effect
of TV ads on online customer behavior cannot be derived from this kind of
analysis. As discussed in Sections 1.4.2, 5.5.3, and 5.6.2, this finding emphasizes
that a thorough feature selection process is crucial to clearly identify the effects
of offline ads on online purchasing behavior.
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5.8.2 Modeling Alternative

In light of the drawbacks described above, this section provides an alternative
approach to model TV ads at the level of the individual user, which is closely
related to the model developed in Section 6.4.1. The model is based on the prob-
ability that a given user session is a response to a TV ad. This probability is then
used as independent variable in the user journey model. However, to apply the
modeling approach discussed in Section 6.4.1 to the data set used here, three
changes are required: First, the data set used here does not contain information
on TV ad expenditures, which can be used as proxy variable to describe the
reach of ads. Instead of expenditures, information on TV stations and time of
the day, which also correlate with reach, are included into the model presented
here. Second, information on device types is not available in the data set used
here and, therefore, cannot be included into the model. Third, the signal to noise
ratio is much smaller in the data used here, because it was recorded during the
Christmas Time and stems from an online shop with a much higher baseline
traffic. Therefore, the uplift in website traffic is modeled by only two parameters
to reduce the degrees of freedom of the model.

Identifying the Spike in Website Traffic

To clearly identify the spike in website traffic caused by a TV ad, a constant
baseline traffic is required in the minutes before and after an ad was aired, i.e.,
no other factors, such as the time of the day, should influence the number of
visits per time interval around each ad. Figure 5.8 shows the aggregated website
traffic over time for two different time frames (red lines). In the morning hours,
the number of visits increases over time, while, in the evening hours, the number
of visits decreases over time. This biased baseline traffic needs to be corrected
to identify the uplift of website traffic caused by TV ads. This can, for instance5,
be achieved by fitting a linear model and subtracting the fitted website traffic
without the intercept (blue lines in Figure 5.8).

5Alternatively, this could be achieved by using a time series model to extract seasonal (daily),
random, and trend components.



5.8 Erratum 97

−20 −10 0 10 20

34
00

40
00

46
00

Aggregated paid and organic search traffic − 6am to 9am

t (minutes before and after TV ads)

# 
V

is
its

 p
er

 2
0 

se
co

nd
s

original
corrected

−20 −10 0 10 20

45
00

55
00

Aggregated paid and organic search traffic − 9pm to 12pm

t (minutes before and after TV ads)

# 
V

is
its

 p
er

 2
0 

se
co

nd
s

original
corrected

Figure 5.8: Measured and corrected aggregated website traffic.

Modeling the Increase in the Number of Sessions

The aggregated number of sessions ∆t minutes after an ad was aired is described
with Equation 5.6. It considers the station S on which an ad was aired, the
referral channel r and the time of the day τ. The model is a variant of the model
described with Equation 6.2 (Section 6.4.1).

yr,τ,S(∆t) = ar,τ,S · [1 + br · cτ · dS · Γ(∆t, α, β)] + ϵr,τ,S(∆t) (5.6)

In this equation, yr,τ,S(∆t) represents the measured aggregated website traffic
established via referral r, at time of the day τ, ∆t minutes after an ad was aired
on TV station S. The variable ar,τ,S represents the respective baseline traffic. An
example on how to aggregate website traffic with respect to TV ads is provided
in Table 6.7. The product of the parameters br, cτ, dS, and the Γ term determine
the relative uplift of website traffic. The term Γ(∆t, α, β) returns the value of the
Γ distribution parameterized with shape α and rate β at x = ∆t.

The baseline traffic ar,τ,S is sampled from an uninformative Γ distribution. The
parameters br, cτ, and dS are sampled from uniform distributions stemming
from different value ranges. This approach assures that the model has only one
solution. Otherwise the parameters br, cτ, and dS would not be identifiable,
i.e., the MCMC algorithm would result in inconsistent parameter distributions.
This is because only the product of the three parameters is identifiable. The
parameters α and β are sampled from two Γ distributions with an expected
value of 1.5/0.5 = 3 and a mode of (1.5− 1)/0.5 = 1:
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ar,τ,S ∼ Γ(1, 0.02)
α, β ∼ Γ(1.5, 0.5)

br ∼ Uniform(0, 1)
cτ ∼ Uniform(1, 10)
dS ∼ Uniform(10, 100)

ϵr,τ,S(∆t) ∼ Normal(0, 0.1) (5.7)

The highest density intervals of the posterior densities of br, cτ, and dS are pre-
sented in Table 5.10.

Parameter 2.5% 50% 97.5% Parameter 2.5% 50% 97.5%
α 1.08283 1.09515 1.10777 c3−6pm 2.00362 2.08984 2.17297
β 0.05807 0.05977 0.06159 c6−9pm 9.73400 9.94600 9.99787
bA 0.00028 0.00041 0.00054 c9−12am 1.00022 1.00520 1.02767
bD 0.00000 0.00005 0.00023 d1 83.13984 87.44710 92.13300
bSEA 0.00262 0.00270 0.00279 d2 42.12270 43.80610 45.59487
bOS 0.00156 0.00164 0.00172 d3 99.02144 99.81170 99.99460
bSM 0.00000 0.00009 0.00045 d4 44.64786 46.29695 48.04272
bEM 0.00063 0.00079 0.00096 d5 64.94450 67.16835 69.51593
bPS 0.00005 0.00062 0.00157 d6 41.15369 42.65200 44.11290
bTI 0.00152 0.00157 0.00163 d7 10.00060 10.02150 10.11810
bR 0.00193 0.00207 0.00221 d8 53.07410 54.77690 56.55617
c12−3am 1.10511 3.52036 9.20395 d9 57.38218 61.91110 66.54130
c3−6am 1.01731 1.42753 2.68978 d10 10.24854 14.10075 20.65910
c6−9am 2.55406 2.74914 2.93975 d11 49.21148 50.91740 52.82062
c9−12pm 2.71238 2.84095 2.97217 d12 10.00520 10.16470 10.89951
c12−3pm 1.16096 1.27482 1.38628 - - - -

Table 5.10: Highest density intervals of the posterior distributions.

Several posterior distributions reported in Table 5.10 are located at the edges
of the allowed value ranges defined by the prior distributions. This finding
suggests that the true relative difference in uplift is larger than the ratio of the
minimum and the maximum of the respective value range. Adjusting the prior
value ranges of the model could resolve this issue.

Figure 5.9 illustrates the marginal relative uplift of different referrals, times of
the day, and TV stations. It shows, for instance, that the uplift of paid search
referrals caused by ads aired on Station 3 between 6pm and 9pm is high as
compared to other combinations of referral, time, and station. In combination
with information on the TV ad expenditures, which is not included in the data
set used here, the results could be used to determine the cost per lead per TV
station.
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Figure 5.9: Relative uplift per channel, time of the day, and station.

Calculating the Probability for Being TV-Induced

In addition to providing insights concerning the uplift of visits, the posterior
estimates presented in Table 5.10 can be used to calculate the probability that a
given user session is a direct response to a certain TV ad (Equation 5.8).

pr,τ,S(∆t) =
Upliftr,τ,S(∆t)

Baseliner,τ,S + Upliftr,τ,S(∆t)

=
ar,τ,S · [br · cτ · dS · Γ(∆t, α, β)]

ar,τ,S + ar,τ,S · [br · cτ · dS · Γ(∆t, α, β)]

=
br · cτ · dS · Γ(∆t, α, β)

1 + br · cτ · dS · Γ(∆t, α, β)

=
1

1 + [br · cτ · dS · Γ(∆t, α, β)]−1 (5.8)

This equation can be used to calculate the probability that a user opened the
website in response to a TV ad even without knowing the ads’ expenditures.
Given a TV ad was aired on Station 3 at 7pm, the probability that a user who
opens the website at 7:01pm by clicking a search engine advertising link has seen
the ad is pSEA,6-9pm,3(∆t = 1 min) ≈ 0.108. Sessions established from 3pm to
6pm via paid search one minute after an ad was aired on Station 3 are less likely
to be TV-induced (pSEA,3-6pm,3(∆t = 1 min) ≈ 0.025).

The total probability that a given user opening the website via referral r has seen
an ad of a certain type can be approximated using Equation 5.9:

pr(t) = 1−∏
i

{
1− pr,τ,S

i (t− ti)
}

(5.9)

Non-Hierarchical Analysis

The probability described with Equation 5.9 can be used as independent variable
in a user-level model. The data set used here contains five different TV ads.
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Therefore, five different variables are generated using Equation 5.9. For instance,
the probability that a given visit is a direct response to an offline-related ad
for product #1 is denoted as pO f f P1 . The results of a non-hierarchical logistic
regression that includes the non-linearity terms from Equation 5.3 are presented
in Table 5.11.

Var. Est. SD z Sig. Lv. Var. Est. SD z Sig. Lv.
I0 -2.866 0.003 -861.941 *** KSEA 0.037 0.005 7.868 ***
IOS -0.268 0.006 -45.817 *** KD 0.014 0.004 3.940 ***
ITI 0.082 0.006 13.826 *** KSM 0.003 0.004 0.643
IA 0.142 0.004 35.869 *** KEM 0.030 0.003 8.744 ***
ID -0.178 0.005 -35.811 *** KPS -0.011 0.004 -2.758 **
ISEA -0.085 0.006 -13.146 *** KR -0.094 0.007 -13.567 ***
ISM -0.086 0.006 -15.479 *** SN -0.405 0.010 -40.374 ***
IEM 0.056 0.004 13.874 *** IST 0.397 0.005 86.008 ***
IPS -0.091 0.005 -18.294 *** CWS 0.058 0.002 24.994 ***
JTI 0.091 0.002 43.113 *** CAS 0.112 0.003 40.232 ***
JA 0.054 0.002 24.082 *** t 1.022 0.083 12.317 ***
JD 0.018 0.003 6.665 *** t2 -3.258 0.352 -9.255 ***
JSEA -0.048 0.004 -13.732 *** t3 3.952 0.493 8.017 ***
JSM 0.007 0.003 2.797 ** t4 -1.764 0.223 -7.905 ***
JEM 0.041 0.002 18.144 *** WE -0.017 0.003 -5.597 ***
JPS 0.024 0.003 8.499 *** pOnB1 0.016 0.004 4.407 ***
JR -0.061 0.004 -16.511 *** pO f f P1 0.013 0.004 3.423 ***
KOS -0.010 0.004 -2.441 * pO f f B1 -0.011 0.004 -3.051 **
KTI -0.009 0.007 -1.406 pOnB2 0.012 0.004 3.373 ***
KA -0.062 0.003 -18.708 *** pO f f P2 -0.017 0.004 -4.437 ***

Table 5.11: Results generated with the alternative model (N =
2,000,000). Signif. codes: *** p < 0.001; ** p < 0.01; * p < 0.05; .

p 0.1.

The results presented in Table 5.11 show that the probabilities p(·) significantly
affect the probability to convert. Online-related ads seem to positively affect the
probability to convert, whereas the offline-related ad has a negative effect. To
validate these results, an 8-fold cross-validation was conducted. The mean AUC
of the model that includes the probabilities p(·) is 0.6613, while the AUC of the
model that does not include these parameters is 0.6612. However, this difference
is smaller than a standard deviation of the cross-validated values of the AUC
(σAUC ≈ 0.001). This finding suggests that the short-term TV advertising effect
does not play an important role in predicting behavior at the level of the individ-
ual customer in this study. This finding also emphasizes the need to spend more
effort on feature selection in this context, as it was mentioned before. Consider-
ing interactions between different advertising activities, for instance, could im-
prove predictive accuracy as suggested by the results of the hierarchical analysis
conducted here (Section 5.5.5).

Hierarchical Analysis

This paragraph discusses the results of a hierarchical analysis that was con-
ducted to provide insights concerning cross-channel advertising effects using
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the probability variables described above. The model closely follows the one
presented in Section 5.4.3. Figure 5.10 illustrates the effects of different TV ads
on the conversion probability after opening the shop’s website via different on-
line channels.
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Figure 5.10: Significant densities (95% HDI) of βG
p(·) per ad. The

missing ad, O f f B1, only shows a significant effect on conversions
after clicks on e-mail links (β̄EM

pO f f B1
≈ −0.16).

These results clearly show that some online channels are more and others are
less strongly affected by TV ads in terms of the individual user’s conversion
probability. For instance, the probability to convert after clicking an affiliate
link seems to benefit more from TV ads than the probability to convert after
typing-in the URL directly (left side and top right side of Figure 5.10). However,
in light of the correlation of time and TV effects described above, this finding
should more be regarded as a suggestion for further research than as a distinct
result. For instance, the different valence of the TV effects on the probability
to convert after clicking an e-mail link (positive for OnB1, O f f P2, and negative
for O f f B1, OnB2) needs further investigation. An even more precise separation
of TV effects and time dependent effects could be useful in this regard. One
way to close this gap could be to omit the aggregation step in preparation to
the analysis described above and to use Equation 5.6 to estimate the increase in
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website traffic caused by each individual ad. This would lead to more accurate
probability values. In addition, more variables related to time (e.g., day of the
month and day of the week) should be included, which is particularly important
for analyses of e-commerce data stemming from the Christmas season.

In summary, the approaches described in this chapter can be used to measure
the effects of TV ads on online behavior at a new level. These kinds of analyses
could answer open questions on the behavior of users who opened a shop’s
website in response to TV ads, for instance, in terms of conversion probability,
shopping baskets, device usage, loyalty, or customer lifetime values. This kind
of research could also lead to more robust theories on the specific synergies of
offline and online advertising activities which could to involve many important
managerial implications.
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Abstract

Second screen usage has dramatically increased within the last years. For instance, many
customers spontaneously decide to visit an online shop in the few minutes after watching
the shop’s TV ad. In this study, we examine the behavior of these TV-induced customers
along the sales funnel (including conversions, shopping baskets, and repeat purchase be-
havior) over a 90-day period. The empirical study is based on a unique data set provided
by an international online retailer that runs extensive TV advertising. To measure the
difference between TV-induced customers and their non-induced counterparts, we de-
velop a Bayesian model to estimate the probability that a given visit to the online shop is
a spontaneous reaction to a TV ad. Our results indicate that conversion probabilities and
shopping baskets of TV-induced customers tend to be lower than the ones of their non-
induced counterparts. As a consequence, we find that their 90-day customer revenue is
approximately 10% lower. Advertisers are, thus, well advised to consider the difference
in customer revenue when planning their marketing activities or calculating the return
on investment of TV advertising campaigns.

6.1 Introduction

Second screen usage has dramatically increased within the last years (Statista,
2016) leading customers to spontaneously visit online shops after watching their
ads on TV. In this article, we examine the online shopping behavior of these
customers over a 90-day period. While prior literature suggests that TV ads
increase the absolute number of visits to an online shop (Joo et al., 2014) and
lead to an increased number of conversions (Liaukonyte et al., 2015), it is an
open question as to what type of customers are attracted to spontaneously visit
an online shop after a TV ad has been aired. More specifically, the shopping
behavior of customers who open a shop’s website in response to TV ads vs. the
behavior of those that visit the shop for another reason (e.g., searching for a
specific product using a price search engine, or clicking on a newsletter link) has
yet to be investigated.
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We call customers who open the website in response to TV ads TV-induced cus-
tomers and investigate their purchasing decisions, including their probability to
convert, the value of items in their shopping baskets, their repeat purchase be-
havior, and 90-day customer revenue (i.e., shopping baskets × repeat purchases
over a 90-day period). More precisely, we aim to answer the following research
questions:

• Are TV-induced customers more or less likely to convert than those who
have not been induced by a TV ad to visit the shop?

• Do their basket sizes differ from the ones of their non-TV-induced counter-
parts?

• Do they return to the online shop as frequently as those customers that
found their way to the online shop without seeing a TV ad?

• Does their 90-day customer revenue differ from those customers who have
not been attracted to spontaneously visit an online shop after a TV ad has
been aired?

To answer these research questions, we utilize a unique sample obtained from
merging two data sets that were provided by an international online retailer.
The first data set contains a total number of 4,403,866 visits to the retailer’s
website generated by 3,471,532 unique customers. The total number of conver-
sions is 489,884. The second data set contains information on over 3,500 TV
ads including their expenditures and the time when they were aired exact to
the second. We transform the sample into customer journeys using a common
approach for modeling clickstream data (Chatterjee et al., 2003). Based on this
transformation, we estimate four different models: (1) conversion probabilities
(logistic model), (2) shopping baskets (linear model), (3) repeat purchase be-
havior (negative-binomial model), and (4) the 90-day customer revenue (linear
model). In contrast to most studies concerning the impact of TV ads on online
behavior (Joo et al., 2014; Joo et al., 2015; Liaukonyte et al., 2015), we model the
spontaneous effect of TV ads on online shopping at the level of the individual
customer, which allows us to identify customers across multiple visits. To do so,
we first model the probability that a visit is a spontaneous response to a TV ad
and, second, use this probability as an independent variable in customer journey
models, which primarily aim to explain differences in conversion probabilities,
basket sizes, repeat purchases and customer revenues of TV-induced and non-
TV-induced customers. We find that TV-induced customers are characterized by
lower individual conversion probabilities, lower shopping baskets, and, conse-
quently, lower customer revenues (over a 90-day period). We also show that the
main driver behind their lower customer revenue is that their shopping baskets
tend to be lower than the ones of their non-TV-induced counterparts. Lower
shopping baskets could have different reasons: (1) TV-induced customers might
want to try out the shop before engaging in more extensive buying later on,
(2) they might be very price-sensitive, always looking for the best price which
reduces their loyalty to a single shop, (3) they might be characterized by less
purchase power than their non-TV-induced counterparts.
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The remainder of this article is organized as follows: In Section 6.2, recent lit-
erature on measuring the effects of TV ads on browsing behavior and attribu-
tion modeling is reviewed and research gaps are identified. In Section 6.3, we de-
scribe our sample that was obtained from merging two distinct data sets, namely
data about (1) TV ads and (2) online shopping behavior. In Section 6.4, we first
present our approach to model the probability that a customer has been in-
duced by a TV ad to visit the shop. Second, we introduce the models we use to
explain the differences in conversion probability, shopping baskets, repeat pur-
chases, and customer revenue of TV-induced and non-TV-induced customers.
We present and discuss the results in Section 6.5 and summarize our contribu-
tions and managerial implications in Section 6.6.

6.2 Related Work

This section provides an overview of recent literature on measuring the effect
of TV ads on search requests, number of visits, and conversions. Specifically,
we review literature dealing with the effect of TV ads on online behavior, which
gained in popularity with the emergence of second screen usage since 2010. In
addition, we review literature concerning approaches to attribute conversions to
TV advertising efforts. Table 6.1 provides an overview of recent studies dealing
with TV ads and online behavior and illustrates key differences to our study.
Previous studies mainly focus on the short-term influence of TV ads on customer
behavior (Joo et al., 2014; Joo et al., 2015; Kitts et al., 2014; Liaukonyte et al.,
2015). By contrast, we investigate the influence of TV ads on customer behavior
over a 90-day period. For this purpose, we model TV ads at the level of the
individual customer. In contrast to previous approaches based on aggregated
data, this approach allows for estimating differences in customer behavior of
TV-induced and non-TV-induced customers.

6.2.1 Effect of TV Ads on Online Behavior

One of the first articles that aim to make the effect of TV ads on online behavior
measurable has been published by Zigmond and Stipp (2010). They present
multiple empirical studies (concerning, for instance, TV ads during the opening
ceremonies of the Olympic Games) and show that a clear increase in search
queries related to the advertised products can be observed after TV ads have
been aired. The authors propose using this uplift as one additional measure
to better understand the effect of TV ads on customer behavior. This measure,
however, can only be applied if TV ads reach a large audience (Lewis and Reiley,
2013). Since the majority of TV ads in our data set only has a small audience,
though, their modeling approach is not applicable in our case.

Lewis and Reiley (2013) investigate the uplift in search requests caused by TV
ads aired during the Super Bowl 2011 and observe that the tendency to go online
and search for an advertised product or brand differs across brands and ads. For
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This study Customer revenue of TV-
induced online shoppers

✓ ✓ ✓ ✓ ✓ ✓

Liaukonyte et al. (2015) Influence of TV advertising on
online shopping behavior

✓ ✓

Joo et al. (2015) Influence of TV advertising on
online search behavior

✓

Stange (2015) Influence of TV ads on conver-
sion probability

✓ ✓

Joo et al. (2014) Influence of TV advertising on
online search behavior

✓

Kitts et al. (2014) Attribution modeling for TV-
induced conversions.

✓ ✓

Lewis and Reiley (2013) Effect of different ads on brand
search.

✓

Zigmond and Stipp (2010) Measuring the effect of TV ads
on brand search

✓

Table 6.1: Overview of related work.

instance, they find that the increase in the number of visits tends to be greater
in response to movie trailers than to ads for consumer goods. In addition, they
observe causal effects between TV ads and the increase in the number of visits by
controlling for other brands that did not advertise during that period. However,
the authors acknowledge that purchase intention and search requests do not
perfectly correlate, which is particularly true for an event such as the Super
Bowl, during which many customers are interested in the commercials as such
and not necessarily in the related brand or product. This thought suggests that
customers who open a website in response to a TV ad might just be curious
to see what the shop is like and might, thus, have lower conversion rates than
customers who have not been induced to visit the shop by TV ads.

In contrast to previous studies, Liaukonyte et al. (2015) measure the impact of
TV ads at three different levels, going beyond search requests. The authors also
include the absolute number of direct type-ins of the URL of an online shop
and transactions (i.e., conversions/purchases) into their model. Thus, they have
been the first to model customer shopping behavior in response to TV ads. They
find that the effect of TV ads on direct type-ins and transactions highly de-
pends on the kind of TV ad, whether it is information-focused, emotion-focused
or imaginary-focused. They use aggregated data to estimate their models and,
therefore, their approach cannot be used to extract characteristics of individual
customers. We take a different approach and model the probability that a cus-
tomer’s visit was induced by a TV ad and use this probability as independent
variable to model shopping baskets, repeat purchase behavior and customer rev-
enue generated by TV-induced customers.
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6.2.2 Attribution Modeling

Kitts et al. (2014) use the data set of Lewis and Reiley (2013) to develop a method
that can be used to identify TV-induced visits even if the increase in the num-
ber of visits is not significant. Thereby, they show that it is possible to measure
web activity bursts after the end of traditional TV ad broadcasts with smaller
audiences. They argue that their method could be used to attribute conversions
to TV ads. In contrast to the difference in difference approach proposed by Li-
aukonyte et al. (2015), they identify TV-induced visits by considering heteroge-
neous user responses with respect to time, geographic location, active device
type, and referral channel. A similar approach is used in our empirical study,
which considers heterogeneous reactions to TV ads using different device types
and referrals. All of the above studies use aggregated data (number of search
requests, number of direct visits or purchases) to estimate the effect of TV ads.
Since, in this study, we aim to model the impact of TV ads on customer behavior
over the entire customer journey, using aggregated data is not possible. Instead,
answering our research questions requires a modeling approach that allows to
measure the impact of TV ads on customer behavior over the entire customer
lifetime. Therefore, we use a modeling approach that is based on an a com-
monly used clickstream model proposed by Chatterjee et al. (2003). This model
has been extended by Stange (2015) to measure the impact of TV ads on conver-
sion probabilities at the level of the individual customer. By using and extending
this method, we are able to measure the difference of TV-induced customers and
their non-TV-induced counterparts in terms of conversion probability, shopping
baskets, repeat purchases, and customer revenue.

6.3 Data Description

This section provides detailed information on the unique sample we use to
model shopping behavior of TV-induced customers and their non-induced coun-
terparts. Note that, due to non-disclosure agreements, the numbers presented
here have been altered using a constant factor.

6.3.1 Data Sources

The data is obtained from merging two distinct data sets provided by an interna-
tional online retailer who only operates online shops. Both data sets cover a pe-
riod from January 1 till April 30, 2015. The first data set is a very common visit-
based online shop data set covering customer activity on the shop’s website. The
sample contains a total number of 4,403,866 visits generated by 3,471,532 unique
users. This number contains 375,762 visits of 177,727 customers who registered
during the four months, and 686,716 visits of 213,217 customers who registered
before January 1. The total number of conversions is 489,884. To obtain a homo-
geneous set of customers, we only focus on those who registered for the online
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shop between January and April because the data set does not contain informa-
tion on previous activities of customers who registered before January 1, 2015.
Table 6.2 provides descriptive statistics of these customers related to the number
of visits, repeat purchases and customer revenue. It shows that during January
and April 2015 most customers visited the website only once.

2.5% 50% Mean 97.5%
Number of visits 1.00 1.00 2.11 7.00

Repeat purchases 0.00 0.00 0.17 2.00
Customer revenue 6.77 27.95 36.99 120.96

Table 6.2: Descriptive statistics of number of visits, repeat pur-
chases, and revenue generated by customers who registered be-

tween January and April 2015.

The second data set includes information on the online shop’s TV campaign
from January 1 until March 31, 2015. The company broadcasted one TV ad
over 3,500 times during that period. No ad was aired in April 2015. The ad
includes information on the online shop in general, therefore, rather focuses
on branding than on promotion. It was aired on 12 different TV stations and
each record from the data set contains an exact time stamp (which enables us
to merge the two data sets), the station at which the TV ad was aired, and the
corresponding expenditures for each ad. The length of the ad is 15 seconds. The
exact time stamps have been provided by a tracking company offering solutions
to identify when TV ads were aired exact to the second. Figure 6.1 shows the
frequency of TV ad expenditures in our data set. It shows that the majority of
TV ad expenditures lies between 100$ and 1,000$. In our model, we use these
expenditures as a proxy variable for the reach of ads.
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Figure 6.1: Frequency of TV ad expenditures on logarithmic scale.

6.3.2 Description of Variables

Each record of the first data set contains the customer’s current activity on the
website including indicators for registration and conversion. In addition, the
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data includes the size of the shopping basket for each conversion. For each
touch point, it also includes the corresponding referral (i.e., whether a given
customer was referred to the website by a direct type-in, an organic or paid
search link, a display ad, etc.) as well as the device type (i.e., smart phone,
tablet, and desktop/laptop) that the customer used for visiting the shop. Table
6.3 and Table 6.4 show the number of visits and conversions per combination of
referral and device. The majority of customers visit the website by clicking paid
or organic search engine links. Most of these customers use a desktop device; the
number of visits and conversions via tablets and smart phones is much smaller.

Direct type-in Organic search Paid search Newsletter Other
Desktop 31,090 42,491 149,250 17,036 36,971

Smartphone 8,030 10,064 22,090 2,154 3,767
Tablet 3,750 5,490 35,034 2,911 5,635

Table 6.3: Number of visits for different combinations of device
and referral.

Direct type-in Organic search Paid search Newsletter Other
Desktop 13,758 22,591 74,070 4,284 13,418

Smartphone 2,033 3,530 6,604 288 1,161
Tablet 1,387 2,814 13,788 462 1,835

Table 6.4: Number of conversions for different combinations of
device and referral.

In addition, the data set includes demographic information, which is collected
during the registration process, i.e., it is only available for those customers that
have registered with the shop because they either receive its newsletter or al-
ready bought from the shop. This information includes gender and age – vari-
ables that are used as control variables in our models.

6.4 Model and Estimation

We model online shopping behavior using four different models to identify
whether customers, who are attracted by TV ads behave differently than their
non-TV-induced counterparts. More precisely, we aim to identify whether TV-
induced customers are characterized by different (1) conversion probabilities, (2)
shopping baskets, (3) repeat purchase behavior, or (4) 90-day customer revenues
(shopping baskets × repeat purchases). Since it is impossible to know for sure
whether a customer watched a certain TV ad before visiting the online shop,
we first need to model the probability that a given visit is TV-induced (Section
6.4.1). Then, we use this probability as an independent variable in each of the
four models (Section 6.4.2).
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6.4.1 Modeling the Probability of Being TV-Induced

We model the probability that a given visit was induced by a TV ad using four
consecutive steps. The following list provides an overview of the four steps.
They are described in greater detail in the following paragraphs.

• Step 1: We count the number of new visits on three different device types
(desktop, tablet, and smart phone) and three different referrals (direct type-
in, organic search, paid search ads1) per 5-second interval around each TV
ad.

• Step 2: We sum up the number of new visits per 5-second interval over all
time intervals around all TV ads and are left with 3x3 sets of aggregated
new visits per 5-second interval, i.e., we obtain one set per combination of
device and referral.

• Step 3: Using these sets, we estimate the aggregated increase in the num-
ber of visits for each combination of device and referral by applying a
hierarchical Bayesian model.

• Step 4: For each visit, we calculate the probability that it was induced by a
TV ad by weighing the estimated uplift per TV ad with the corresponding
TV ad expenditures2.

The modeling steps described above require different variables that are de-
scribed in this section. An overview of all variables used in our models is given
in Table 6.5.

Step 1: Counting Visits Over Time

To estimate the increase in the number of visits to the online shop, we count
visits on device d using referral channel r within 5-second time frames over the
3 minutes before and 9 minutes after the start of each TV ad. This counting step
results in the number of visits per 5 seconds in the minutes before and after each
TV ad. We use 5-second windows, because they allow for a precise measurement
of the time-dependent uplift in the number of visits, and, at the same time, are
computationally tractable. Using this data, we are able to estimate the uplift in
visits per TV ad. We denote the 5-second time windows around each ad i as ∆tj

i
with j ∈ {−36, ...,−1, 1, ..., 108}. Negative values of j represent time windows
before an ad was aired, positive values represent time windows after an ad was
aired. For instance, ∆t−1

i represents the time window starting 5 seconds before
ad i starts and ending with the start of ad i.

To provide an example of this counting process, Table 6.6 shows the number of
new visits established by clicking paid search links on smart phones and organic
search links on desktops per 5-second window around two different ads aired

1The uplift in the number of visits via other referrals can be neglected.
2We use TV expenditures as proxy variable for the reach of ads.
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∆tj
i Time difference between new visit and TV ad i; time interval j

before/after ad i
yd,r

i (∆tj
i) Number of visits around TV ad i on device d and referral r in

time interval ∆tj
i

yd,r(∆tj) Aggregated number of visits on device d and referral r in time
interval ∆tj

αd,r, α̂d,r Aggregated baseline number of visits on device d and referral r
α̂d,r

i Baseline number of visits on device d and referral r around ad i
ϕd,r

1 , ϕ̂d,r
1 Weight of the Gamma-shaped uplift component (hat = posterior

median)
ϕd,r

2 , ϕ̂d,r
2 Shape of the Gamma-shaped uplift component (hat = posterior

median)
ϕd,r

3 , ϕ̂d,r
3 Rate of the Gamma-shaped uplift component (hat = posterior

median)
ϕd,r

4 , ϕ̂d,r
4 Weight of the exponential decay component (hat = posterior me-

dian)
ϕd,r

5 , ϕ̂d,r
5 Exponential decay constant (hat = posterior median)

ψk Hyper prior for ϕd,r
k

πd,r Probability that a given visit (device d, referral r) is a direct re-
sponse to a TV ad

πany Probability that at least one visit of a customer was TV-induced
πprev Probability that at least one previous visit was TV-induced
N Number of TV ads
r Indicator variable for the referral channel used to open the web-

site (one of organic search, paid search, direct type-in, newslet-
ter, other)

d Indicator variable for the device type used to open the website
(one of desktop, smart phone, tablet)

ud,r, ud,r
i Aggregated increase in number of visits / increase in number of

visits with respect to ad i
ci, ctot Expenditures of ad i, total TV ad expenditures

Table 6.5: Variables used to determine the probability that a given
visit is TV-induced.

at different times. The baseline number of visits around Ad 2 is higher than
the number of visits around Ad 1, since Ad 2 has been aired at a time of the
day where more customers use the online shop. The example also shows that
the relative uplift of the number of visits on smart phones is higher than on
desktops due to the lower baseline number of visits on smart phones.

Step 2: Aggregating Visits Over All Ads

To reduce the computational effort of our estimation algorithm, we sum up the
number of new visits per 5-second time interval over all TV ads (Equation 6.1).

yd,r(∆tj) = ∑
i

yd,r
i (∆tj

i) (6.1)
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Number of visits via ∆t−2
i ∆t−1

i ∆t1
i ∆t2

i ∆t3
i

TV ad 1 Paid search / smart phone 5 4 6 10 14
(9am) Organic search / desktop 30 29 35 37 39

TV ad 2 Paid search / smart phone 10 9 12 20 22
(5pm) Organic search / desktop 51 52 56 58 62

Table 6.6: Example of the number of new visits on smart
phone/paid search and desktop/organic search over time for two

TV ads.

In this equation, yd,r
i (∆tj

i) represents the number of visits established via device
type d, using referral r in the 5-second time interval ∆tj seconds before/after TV
ad i was aired. Consequently, yd,r

i (∆tj) is the sum of the number of new visits
using device d and referral r in the 5-second time interval ∆tj. Table 6.7 illustrates
this aggregation approach for two TV ads with respect to the combinations of
desktop/organic search and smart phone/paid search.

Number of visits via ∆t−2
i ∆t−1

i ∆t1
i ∆t2

i ∆t3
i

TV ad 1 Paid search / smart phone 5 4 6 10 14
(9am) Organic search / desktop 30 29 35 37 39

TV ad 2 Paid search / smart phone 10 9 12 20 22
(5pm) Organic search / desktop 51 52 56 58 62

Aggre- Paid search / smart phone 15 13 18 30 36
gated Organic search / desktop 81 81 91 95 101

Table 6.7: Aggregation example on smart phone/paid search and
desktop/organic search.

The aggregated number of visits for each combination of device and referral is
illustrated in Figure 6.2. For each combination, the uplift reaches a maximum
approximately 1 minute after the start of the ads and decreases exponentially
afterwards. The size of the uplift and the shape of the spike varies from combi-
nation to combination.

Step 3: Estimating the Aggregated Number of Visits

Next, we use the aggregated number of visits to estimate the following uplift
model which aims to fit the spike in the number of visits over time. It consists
of four components: a baseline component, a Gamma function component to
account for the dominating spike in the number of visits after approximately 1
minute, an exponential decay component to compensate for the fast decaying
shape of the Gamma function in the few minutes after the maximum uplift, and
an error term (Equation 6.2).

yd,r(∆tj) = αd,r + ϕd,r
1 Γ(∆tj, ϕd,r

2 , ϕd,r
3 ) + ϕd,r

4 ∆tj Exp(−ϕd,r
5 ∆tj) + ϵd,r(∆tj) (6.2)

In this equation, yd,r(∆tj) represents the aggregated number of visits on device
d and referral r in the 5-second time interval after ∆tj seconds. The variable αd,r
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Figure 6.2: Aggregated uplift for each combination of referral and
device per 5 seconds interval. As reported by previous studies
(Kitts et al., 2014; Stange, 2015), the uplift in website traffic has

roughly the form of a Gamma distribution.

represents the aggregated baseline number of visits on device d and referral r.
The parameter ϕd,r

1 indicates the size of the spike in the number of visits, while
ϕd,r

2 and ϕd,r
3 parameterize the Gamma-shaped spike concerning device d and

referral r in the first few minutes after a TV ad was aired. The parameter ϕd,r
4

indicates the weight of the exponential decay component (relative to the size of
the Gamma-shaped spike in the number of visits), whereas ϕd,r

5 represents the
decay parameter on device d and referral r. This exponential decay component
is multiplied with ∆t, i.e., the more time elapses since a spot was aired, the more
important becomes the exponential decay component. As a result, the uplift
in the number of visits in the first few minutes after an ad was aired is domi-
nated by the Gamma-shaped component, and as ∆t increases, the exponential
decay component becomes more dominant. The weight of the exponential decay
component ϕd,r

4 defines how dominant this component becomes. The error term
ϵd,r(∆tj) captures the difference in visits between the model and the measured
number of visits.

We use a hierarchical Bayesian model to estimate these parameters using the
following prior distributions (Equation 6.3). A hierarchical model is feasible,
because it allows for learning parameters on group level (for instance, the pa-
rameters that represent the uplift on tablets) from other groups (for instance,
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the parameters that represent the uplift on desktops). This is achieved by using
shared hyper parameters, that allow for the propagation of beliefs among the
group level parameters, denoted as ψ1,...,5.

ψ{1|2|3|4|5} ∼ Exponential(0.01)

ϕd,r
{1|2|3|4|5} ∼ Gamma(10, 10/ψ{1|2|3|4|5})

αd,r ∼ Normal(µd,r, τd,r)

ϵd,r(∆t) ∼ Normal(0, 0.01) (6.3)

A hierarchical modeling approach is more robust with respect to outliers. In
addition, it leads to statistically more significant results than estimating separate
models per combination of device and referral. The posterior distributions of
the hyper parameters can be interpreted as the grand mean of parameters ϕd,r

1,...,5.
The prior for αd,r is drawn from a normal distribution parameterized with µd,r

as the mean number of visits on device d using referral r and precision τd,r. The
values of µd,r and τd,r are obtained from our sample.

Step 4: Calculating the Probability That a Visit Was Induced by TV Ads

Based on the estimates obtained from the uplift model described in the previous
paragraph, we calculate the probability that a given visit is a direct response to
a TV ad. To do so, we switch to continuous time and calculate the estimated
aggregated uplift on device d using referral r after t seconds, denoted as ud,r(t),
in accordance with Equation 6.4. This uplift results from subtracting the baseline
number of visits α̂d,r from the aggregated number of visits (yd,r, Equation 6.2) on
device d and referral r:

ud,r(t) = ϕ̂d,r
1 Γ(t, ϕ̂d,r

2 , ϕ̂d,r
3 ) + ϕ̂d,r

4 t Exp(−ϕ̂d,r
5 t) (6.4)

To estimate the probability, we then need to calculate the uplift caused by one
specific TV ad, which can be approximated by weighing the aggregated uplift
ud,r(t), with the ratio of costs of TV ad i and the total costs of all TV ads (ci/ctot).
We do so since the costs of ads can be assumed to be an appropriate proxy for
their reach. As the aggregated uplift was caused by all TV ads with total costs
of ctot, the uplift in the number of visits at time t caused by a single TV ad with
individual costs ci is assumed to be given by:

ud,r
i (t) =

ci

ctot
ud,r(t− τi) (6.5)

In Equation 6.5, the parameter τi represents the time when ad i was aired. The
uplift of a single TV ad does not correspond to a probability yet. To calculate the
probability that a given visit has been induced by TV ad i, one needs to further
consider the estimated ad-specific uplift ud,r

i and the baseline number of visits
around a single TV ad, denoted as α̂d,r

i . Therefore, we divide the aggregated
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baseline number of visits α̂d,r by the number of ads N:

α̂d,r
i =

α̂d,r

N
(6.6)

For simplicity, this approach assumes that the baseline number of visits is con-
stant over time and does not fluctuate over the course of a day. The probability
that a given visit has been induced by TV ad i is given by the ratio of ud,r

i and
the sum of ud,r

i and α̂d,r
i , i.e., the uplift divided by the sum of the uplift plus the

baseline number of visits with respect to TV ad i, device d and referral r. Since
the uplift in number of visits depends on the time difference between TV ad and
the time of a visit, the probability necessarily depends on t:

πd,r
i (t) =

ud,r
i (t)

ud,r
i (t) + α̂d,r

i

(6.7)

Equation 6.7 represents the time-dependent probability that a given visit at time
t is a direct response to TV ad i. The opposite probability, 1− πd,r

i (t), represents
the probability that a given visit has not been induced by TV ad i. The proba-
bility that a visit observed at time t has not been induced by any TV ad, which
was aired previously, is given by the product of all these opposite probabilities,
namely Πi(1− πd,r

i (t)). Consequently, the probability that a given visit estab-
lished via device d and referral r has been induced by at least one TV ad that
was aired previously is given by:

πd,r(t) = 1−∏
i
[1− πd,r

i (t)] (6.8)

While we are sure that a visit has not been induced by a TV ad when no TV
ad has been aired (π is very close to 0), we cannot be sure that a visit has
really been induced by a TV ad since we cannot directly observe the customer
in his/her living room – even if the visit was established directly after a TV ad.

In our four models to explain explain conversion probability, shopping baskets,
repeat purchases and customer revenue, we need three different variables con-
cerning customers’ probabilities of being induced by TV ads. First, the probabil-
ity described with Equation 6.8 represents the probability that the current visit is
a direct response to a TV ad. Second, we include the probability that a previous
visit has been induced by a TV ad. This probability is defined for all visits j after
the first visit, i.e., j > 1, and is described with Equation 6.9:

π
prev
j = 1−

j−1

∏
l=1

(1− πl) (6.9)
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For example, if visit 1 and 2 show a 20% probability that they have been induced
by a TV ad, the resulting value for π

prev
3 in visit no. 3 is 1− 0.82 = 36%. This

variable can be regarded as a proxy for the ad stock.

Third, we define the probability that at least one visit j of a customer k was
induced by a TV ad (Equation 6.10).

π
any
k = 1−∏

j
(1− πj) (6.10)

In Equation 6.10, the variables πj are the visit-related probabilities described
with Equation 6.8. Given a customer with two visits with a probability of 50%
to be induced by a TV ad, the resulting probability that the customer has been
induced by a TV ad at least once equals π

any
k = 1− 0.52 = 0.75.

6.4.2 Models to Explain Conversion Probability, Shopping Bas-
kets, Repeat Purchases, and Customer Revenue

We would like to investigate the differences of TV-induced customers and their
non-induced counterparts in terms of conversion probability, shopping baskets,
repeat purchases, and 90-day customer revenue. As discussed before, our data
set does not include historical information on existing customers. Therefore, we
only include customers who registered within the time period covered by our
data set. This selection criterion allows us to compare different customers. Our
four models are based on the operationalization of customer journeys proposed
by Chatterjee et al. (2003). Their approach allows for estimating the effects of
different ad exposures over the course of a customer journey (Bucklin and Sis-
meiro, 2009; Chatterjee et al., 2003). An overview of the models used here is
given in Table 6.8.

Model DV Sample Level
Probability to convert - Logistic re-
gression (Equation 6.11)

p(conv)j All visits from all new customers Visit

Shopping basket - Log-linear re-
gression (Equation 6.12)

SBj All conversions of all new cus-
tomers

Repeat purchases - Negative-bino-
mial regression (Equation 6.13)

RPk Customers registered in January.
At least one conversion.
Max Journey length 90 days.

User

Online customer revenue - Log-
linear regression (Equation 6.14)

CRk

Table 6.8: Overview of models used here.

Conversion Probability

We model conversion probabilities by using a logistic regression that aims to
explain the purchasing decision of registered customers for each of their visits.
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p(conv = 1)j =
1

1 + exp
{
−(δ0 + δ1πj + δ2π

prev
j + δ3Xj + ϵj)

} (6.11)

Here, πj represents the probability that a given visit j has been induced by a TV
ad (Equation 6.8). The variable π

prev
j represents the probability that any previous

visit has been induced by a TV ad (Equation 6.9). The row vector Xj represents
the set of control variables: We account for referral channel (i.e., SEA, newsletter,
organic search, direct type-in, others) and device type used to open the website
(desktop, smart phone, tablet). These variables take on binary values (0/1). In
addition, we account for the number of previous contacts with the website using
different devices and referrals. Furthermore, we control for demographics, time
of day, day of the week, and month, the total number of visits (independent of
device and referral), the time between two visits, and time since the first visit of
a customer.

Shopping Baskets

The value of all items in the shopping basket (SB) at checkout is also modeled
per visit. To gain deeper insight concerning shopping baskets that result from
TV-induced visits and non-TV-induced visits, we focus only on visits that re-
sulted in a conversion and exclude all visits that did not result in a conversion.
We define the following log-linear model.

log(SBj) = δ0 + δ1πj + δ2π
prev
j + δ3Xj + ϵj (6.12)

We use the logarithm of shopping baskets as a dependent variable because of
the non-normal distribution of shopping baskets. Aside from these differences,
we include the same control variables as in the model used to explain conversion
probabilities (Equation 6.11).

Repeat Purchases

In contrast to the models used to estimate conversion probabilities and shop-
ping baskets, the number of repeat purchases is modeled on a per customer
basis (i.e., over multiple visits). To obtain a homogeneous set of customer jour-
neys, we first exclude customers who registered after January 2015 and truncate
every customer journey after 90 days. Since the number of repeat purchases
corresponds to the number of purchases after the first purchase, we exclude all
customers without conversion in our data set. To model the number of repeat
purchases (RP) on a per customer basis, we need to aggregate the visit-specific
variables by cumulating the number of contacts established by certain referral
channels and device types per customer. We control for the total number of
visits, demographics and time represented by Xk. We use a negative binomial
regression, because we deal with over-dispersed count data. The variable π

any
k
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represents the probability that any visit of customer k was induced by a TV ad
(Equation 6.10). The model is given by:

RPk = NB(δ0 + δ1π
any
k + δ3Xk + ϵk) (6.13)

Customer Revenue

Similar to the number of repeat purchases, customer revenue is modeled on a
per customer basis. We define the revenue per customer as the sum of shop-
ping baskets at checkout within the first 90 days and exclude customers without
conversions during that time. Since the customer revenue is non-normally dis-
tributed, we use its logarithm as dependent variable. We use the same control
variables Xk as in Equation 6.13. The model is described with Equation 6.14:

log(CRk) = δ0 + δ1π
any
k + δ3Xk + ϵk (6.14)

6.5 Results and Discussion

In this section, we first discuss the results of the model used to calculate the time-
dependent probability that a given visit was induced by a TV ad (Equation 6.2
– 6.8). Afterwards, we present the results regarding differences in online shop-
ping behavior between TV-induced customers and their non-TV-induced coun-
terparts. Specifically, we focus on differences in conversion probability, shopping
baskets, repeat purchases, and 90-day customer revenue.

6.5.1 Probability That a Visit Is TV-induced

To estimate the Bayesian model (Equation 6.2 and 6.3) we run 10,000 burn-in
iterations and 10,000 sampling iterations and take every 10th sample to obtain
the posterior distributions. Based on these results, we calculate the probability
that a given visit is TV-induced. Figure 6.3 shows the distribution of probabilities
on logarithmic scale. It shows, that the majority of probabilities of being TV-
induced is smaller than 1% (π = 10−2).

Figure 6.4 illustrates the probability that a visit was induced by a TV ad, given
that it was established using a certain device and referral channel: (1) within the
two minutes after an ad was aired and (2) after two minutes of an ad’s airing.
The diagrams show that the effect of TV ads is largest for direct type-ins followed
by paid search requests. Since the baseline number of visits on mobile devices is
rather small, the probability that a visit observed on these devices is induced by
a TV ad is greater than on desktop devices. This finding shows that customers
tend to use mobile devices as a second screen while watching TV.
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Figure 6.4: Probability that a given visit was induced by a TV ad
with mean expenditures (ctot/N). The dark grey bar represents the
probability within the first two minutes after a spot was aired. The
light grey bar represents the probability after two minutes of an

ad’s airing.

Figure 6.5 shows the time-dependent probability that a visit is TV-induced after
broadcasting TV ads at three different points in time (i.e., at t = 0, t = 7.5,
t = 15, and t = 25 minutes). In addition, it shows three distinct probabilities
over time that a given visit has been induced by a TV ad. For example, a visit
established with a desktop PC using an organic search result, which is observed
at t = 3, has a probability of 0.04 of having been induced by a TV commercial.
Figure 6.5 illustrates that the probability is largest in the minute after an ad was
aired, and that it decays exponentially afterwards. In addition, the size of the
probability is highly dependent on the expenditures of a given TV ad. In the
example, the third ad is the most expensive one followed by the fourth ad.

6.5.2 Results Regarding Conversion Probabilities, Shopping Bas-
kets, Repeat Purchases, and Customer Revenue

As discussed above, we are interested in the type of customers who are attracted
by TV ads and spontaneously visit the shop’s website in response to TV ads.
In this section, we present the results of the four models (Equations 6.11 – 6.14)
to analyze TV-induced customers’ probability to convert, their shopping baskets
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Figure 6.5: Probability over time (in minutes) that a new visit es-
tablished via organic search on a desktop/laptop has been induced
by different TV ads (1,500$, 1,500$, 5,000$, 2,000$), and values of πj

for three visits.

and repeat purchase behavior as well as their 90-day customer revenue (Table
6.9).

The first column of Table 6.9 shows that the probability to convert is lower for
TV-induced visits, i.e., customers who spontaneously respond to a TV ad are
less likely to convert than customers who visit the shop for another reason. The
probability of TV-induced customers to convert is by exp(−0.32) = 0.73 lower
than the one of their non-TV-induced counterparts3. The probability to convert
on smart phones is lower than on tablets, which is, in turn, lower than the proba-
bility to convert using a desktop or laptop. This finding suggests that customers
still tend to use mobile devices to gather information on certain products rather
than to directly purchase them. The probability that a previous visit was in-
duced by a TV ad (πprev) does not affect the probability to convert in the current
visit.

The results presented in the second column of Table 6.9 suggest that shopping
baskets of TV-induced visits are approximately 10% lower than shopping baskets
of non-TV-induced visits. In addition, the probability that a previous visit was
induced by an ad, πprev, leads to 5% smaller basket sizes in the current visit. This
finding suggests that customers who visited the website in response to a TV ad
tend to spend less money in the future. In addition, the results suggest that
shopping baskets tend to be lower on smart phones than on tablets or desktops.
Finally, customers who type in the URL directly tend to spend more money
indicating that these customers might be particularly loyal to the shop, doing all
their related shopping there instead of chasing the best deal at multiple shops.

The results presented in the third column of Table 6.9 suggest that the number of
repeat purchases within the first 90 days after a registration are not influenced by
the probability that a customer was induced by a TV ad at least once. However,

3The marginal probability of the mean TV-induced customer is by 7.5% lower than the one of
his/her non-induced counterpart (41% vs. 33.5%)
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Var. p(conv) SB RP CR
TV variables
Current/any visit TV-induced -0.32 *** -0.10 *** -0.00 -0.10 **
Any previous visit TV-induced -0.07 -0.05 *
Device indicators
Smart phone contact -0.69 *** -0.22 *** -0.02 *** -0.05 ***
Tablet contact -0.31 *** 0.01 -0.02 *** -0.02 ***
Referral indicators
SEA contact 0.05 *** 0.01 ** 0.02 *** -0.00
Direct contact 0.03 * 0.14 *** -0.01 * 0.03 ***
Newsletter contact -0.64 *** 0.16 *** -0.04 *** -0.02 ***
Other contact -0.25 *** 0.14 *** -0.05 *** -0.01 *
Customer history variables
Visit number -0.33 *** 0.01 ***
Total number of visits 0.12 *** 0.17 ***
Num. prev. tablet contacts 0.01 ** 0.00 .
Num. prev. smart phone contacts 0.04 *** 0.01 ***
Num. prev. SEA contacts 0.04 *** 0.01 *
Num. prev. direct contacts 0.07 *** -0.01 .
Num. prev. newsletter contacts 0.19 *** -0.01 *
Num. prev. other contacts 0.04 *** 0.02 ***
Last basket value -0.01 *** 0.01 ***
Time between two visits -0.10 *** 0.00 *
Time since last conversion -0.06 *** -0.03 ***
Time since first visit 0.02 *** 0.00 ***
Demographic information
Age < 18 -0.81 *** -0.28 *** -0.57 ***
Age: 18-29 0.14 *** -0.17 *** -0.03 -0.17 ***
Age: 30-39 0.27 *** -0.02 *** -0.00 0.01
Age: 40-49 0.19 *** -0.00 0.02 0.02 .
Gender -0.15 *** 0.04 *** -0.00 0.01
Time variables
Monday -0.05 *** -0.04 *** -0.01 -0.02 **
Tuesday -0.15 *** -0.05 *** -0.01 -0.02 **
Wednesday -0.09 *** -0.05 *** 0.01 -0.03 ***
Thursday -0.13 *** -0.04 *** -0.01 . -0.01 *
Friday -0.20 *** -0.04 *** -0.01 -0.04 ***
Saturday -0.16 *** -0.02 *** -0.02 * -0.02 *
January -0.30 *** 0.04 *** -0.05 *** -0.08 ***
Februrary -0.15 *** 0.00 -0.01 -0.05 ***
March -0.06 *** 0.00 -0.02 *** -0.01
0-5 hours -0.51 *** -0.06 *** -0.02 -0.06 ***
6-11 hours -0.07 *** -0.03 *** 0.01 * -0.01 **
12-17 hours -0.10 *** -0.02 *** 0.00 0.00
Intercept -0.37 *** 3.42 *** 0.01 3.61 ***

Table 6.9: Results generated with our four different models. Signif.
codes: *** p < 0.001; ** p < 0.01; * p < 0.05; . p < 0.1. For all models,
the following baselines are used: organic search referral; desktop;

age: ≥ 50; day: Sunday.

the average number of repeat purchases equals 0.17, which is why it is hard to
observe any differences between TV-induced and non-TV-induced customers.
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Finally, the 90-day customer revenue of TV-induced customers is 10% lower than
the revenue of non-TV-induced customers (fourth column in Table 6.9). This
finding is in line with the findings from modeling shopping baskets (10% lower
shopping baskets) and conversion probabilities (27% lower conversion probabil-
ities). Although their probability to convert is lower, TV-induced customers who
buy at least once buy as frequent as other customers, i.e., they are character-
ized by the same number of repeat purchases. Therefore, the main driver for
the reduced customer revenue of TV-induced customers is their lower shopping
baskets.

6.6 Conclusion

In this paper, we examine the online shopping behavior of customers who spon-
taneously visit an online shop after seeing the shop’s ad on TV. Modeling these
decisions at the level of the individual, we find that TV-induced customers are
characterized by lower conversion probabilities, lower shopping baskets and,
consequently, lower 90-day customer revenues. Since we only observe the cus-
tomer’s behavior, we can only speculate about the reasons for these differences:
First, these customers might just want to gather information on the online shop
(resulting in lower conversion probabilities) or try it out by shopping a product
of lower value (lower shopping baskets). Second, since these customers seem
to be very spontaneous they seem to spend less time on the website and, con-
sequently, do not take the time or do not have the time – due to the limited
length of the commercial break – to browse through many different products
(also resulting in lower shopping baskets). Third, these customers might be very
price-sensitive, always chasing after a good deal, which would lead them to buy
only some products at the focal shop and cheaper ones elsewhere (also resulting
in lower shopping baskets).

The reduced customer revenues are strongly driven by reduced shopping bas-
kets. This insight could be used by the online shop to find measures to in-
crease them. For instance, they could grant discounts related to the number of
items in a shopping basket for customers who show a high probability to be
TV-induced. In addition, advertisers are well advised to consider differences
in online customer revenues when calculating the return on investment of TV
advertising campaigns. In practice, the modeling approach proposed here can
further be extended to evaluate audiences of different TV stations and measure
the effectiveness of different TV ads in terms of long-term customer behavior.
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Abstract

Generating economic value from big data is a challenge for many companies these days.
On the Internet, a major source of big data is structured and unstructured data gener-
ated by users. Companies can use this data to better understand patterns of user behavior
and to improve marketing decisions. In this paper, we focus on data generated in real-
time advertising where billions of advertising slots are sold by auction. The auctions are
triggered by user activity on websites that use this form of advertising to sell their ad-
vertising slots. During an auction, so-called bid requests are sent to advertisers who bid
for the advertising slots. We develop a model that uses bid requests to predict whether a
user will visit a certain website during his or her user journey. These predictions can be
used by advertisers to derive user interests early in the sales funnel and, thus, to increase
profits from branding campaigns. By iteratively applying a Bayesian multinomial logis-
tic model to data from a case study, we show how to constantly improve the predictive
accuracy of the model. We calculate the economic value of our model and show that it
can be beneficial for advertisers in the context of cross-channel advertising.

7.1 Introduction

As more and more data is generated by customers, sensors, or governments,
business intelligence and analytics become increasingly important. Many prac-
titioners and researchers have been focusing on this topic and have developed
methods to measure the impact of big data in recent years (Chen et al., 2012). In
this paper, we focus on the impact of a fairly new source of big data generated
during the real-time advertising process on the Internet.

In real-time advertising, advertising slots on a website are sold by auction in the
200 milliseconds after a website is called by a user. In the first few milliseconds
after the call, website context information (such as content, language, quality)
and an anonymous user id is sent to a so-called ad exchange. The ad exchange,
which is a marketplace for advertising slots, sends out so-called bid requests
to advertisers and their service providers, who employ bidding agents, which
instantaneously select the advertising media which best fits to the current user’s
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interests. In addition, these agents determine the maximum price the advertiser
is willing to pay for the ad impression at auction. This information is bundled to
a so-called bid response and sent back to the ad exchange, which forwards the
advertising media of the highest bidder to the publisher’s website and charges
the highest bidder the second highest price (second price auction). The whole
process is completely invisible for the user because, as the website is completely
loaded, the auction is already closed. As the process happens tens of thousands
of times per second, it is a distinct source of big data (Stange and Funk, 2014). In
this paper, we develop a model to gain economic value from the massive amount
of data that is generated during this process.

Bidding agents in real-time advertising usually make use of information from
recent customer activity (i.e., cookie data) on the advertiser’s website to deter-
mine appropriate advertising media for the current user. Users often recognize
this by being exposed to advertising material of products they were searching
for recently (re-targeting). Of course, real-time advertising is not limited to this
rather simplistic form of advertising. However, there is often not enough infor-
mation about the current user and his or her interests available to make better
decisions (Perlich et al., 2012). In this context, we propose a new approach to
derive users’ interests based on the stream of bid requests that were generated
by their browsing activity, and show that users’ interests can be accurately pre-
dicted by only using this data. In our approach, a user’s interest in a certain
product is assumed if he or she visited a website related to this product during
his or her journey. The method enables advertisers to expose ads only to users
that exhibit a certain probability to be interested in their products. At the same
time, users who will most likely never be customers can be ignored. In our case
study, we focus on the users’ interests in certain TV programs.

We contribute to IS research by determining the impact of bid request data from
an advertiser’s perspective (Chen et al., 2012). To determine this impact, we
calculate the economic value of a person-centered model that can be used to un-
derstand and predict users’ behaviors on the Internet based on bid request data.
We develop an iterative Bayesian model that enables us to update once trained
parameters with new data according to Bayes’ rule. This model can be used
by researchers to develop and extend decision support systems on the Internet
and to develop new business models for predictive analytics in the field (Veit
et al., 2014). The approach is not intended to replace well established methods
to target users in online marketing contexts. Instead, our method is supposed to
be a conceptual extension of the landscape of methods and tools to target users
with proper advertisements. In practice, our approach may be valuable for TV
stations or their agencies to coordinate TV and online advertising campaigns,
for instance (Joo et al., 2015; Stange, 2015). In this context, the proposed method
could be used to expose ads online only to users who show a high probability for
having watched a certain TV program recently. We apply the approach to bid re-
quest data from a major ad exchange and show how benefits from cross-channel
advertising activities can be increased.
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The remainder of this paper is structured as follows: First, we review recent lit-
erature on using tracking data to analyze user behavior. Second, we describe our
modeling approach and show how to integrate the model into bidding agents.
Third, we describe data collection and preparation. Fourth, we present the re-
sults of the analysis and calculate its economic value from an advertiser’s per-
spective. Finally, we discuss the implications of our study.

7.2 Related Work

In our study, we make use of several results from IS and marketing research,
which are going to be outlined in the following paragraphs.

For many companies in e-commerce, it is crucial to identify their customers’ in-
terests for products and services. It is clear that the more information companies
have available about their customers, the better they can customize their prod-
ucts to the clients’ individual needs. For this reason, researchers have analyzed
the users’ click and purchase behavior on the Internet to make better marketing
decisions (Bucklin and Sismeiro, 2009) in order to achieve, for instance, an opti-
mal fit between advertising materials and users or to offer customized products.

Chatterjee et al. (2003) developed a user journey model consisting of variables
representing long term and short term advertising effects based on clickstream
data that was generated in advertising campaigns. They conducted a hierarchical
logistic regression to estimate the variables’ effects on the users’ click probability.
With the results, the impact of individual advertising channels on the customers’
click behavior can be extracted and thus, predictions can be made about the click
probabilities of future users. This outcome can be used to increase the effects of
display advertising campaigns.

However, users’ click probability does not necessarily correlate with their prob-
ability to purchase a product or to register for a newsletter, i.e., the users’ con-
version probability (Lee et al., 2012; Pandey et al., 2011). In the context of real-
time advertising, these conversion probabilities can be used to determine the
size of bids. Many researchers (Perlich et al., 2012; Zhang et al., 2014) have
developed methods to determine the most profitable bids from the perspective
of a demand-side platform – a service provider who places bids on behalf of
the advertisers. Approaches in the literature often focus on using real-time ad-
vertising for performance-oriented displaying of advertising materials, i.e., on
selecting ads that will most likely lead to direct purchases (Chen and Berkhin,
2011), and on placing optimal bids for these ads (Zhang et al., 2014). In addi-
tion, published studies have focused on optimal selection of ads with respect to
budget constraints, or recency and frequency capping (Yuan et al., 2013). Lee
et al. (2012) showed how to use past performance data to effectively determine
the right advertisement to be exposed to the right user on the right publisher
website. The proposed models can be used to improve advertising effects or to
reduce costs. However, performance-oriented ad selection aims to target users at
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a late stage in the sales funnel, where often sufficient information about a given
user is available. By contrast, our approach aims to target users at an early stage
in the sales funnel and focuses on predicting user interests only based on bid
request data.

A growing number of advertisers use real-time advertising also for branding
campaigns. In these campaigns, exposing the right ads to the right user is a
challenge because in this early phase of the sales funnel only little information
about users is available. In the context of branding campaigns, many authors
have pointed out the importance of a cross-channel advertising strategy to in-
crease users’ awareness of certain products (Dinner et al., 2014; Duan and Zhang,
2014; Joo et al., 2015; Yang and Ghose, 2010). The idea behind this strategy is
that advertising activities should not only be focused on individual advertising
channels but should also consider synergies that can be observed when adver-
tising activities on different channels are seamlessly coordinated. For instance,
it might be very sensible to combine a TV advertising campaign with a com-
plementary search engine advertising campaign or an e-mail advertising cam-
paign instead of treating these advertising activities individually (Liaukonyte et
al., 2015; Stange, 2015). In contrast to the effect of online advertising, however,
the possibilities to measure the effect of offline advertising are limited (Kitts
et al., 2014), and therefore it is often challenging to coordinate online and of-
fline advertising campaigns effectively. We address this challenge by developing
a method to increase benefits from awareness-related offline-online advertising
campaigns using bid request data. We use the method to predict whether a user
has watched a certain TV program recently.

Chen et al. (2012) demonstrated the increasing impact of big data analytics that
can be observed in many industries. To identify the impact of bid request data on
companies in e-commerce and marketing, we propose to measure its economic
value as it is proposed by Nottorf and Funk (2013). In the context of online
advertising, they determine the economic value of clickstream data by assign-
ing (negative) costs to true and false predictions of a classifier that was trained
using the data. We apply this method to a multinomial classifier that is trained
using bid request data. Thereby, we show that the analysis of this kind of big
data can be particularly beneficial for companies conducting awareness-oriented
advertising campaigns.

7.3 Model Development

This section first discusses the general framework of the modeling approach
used here. Second, it describes the proposed model in detail. Third, it presents
a process that shows how the model can be used by bidding agents in real-time
advertising.
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7.3.1 Modeling Approach

The goal of our analysis is to calculate the probabilities that a user is going to
visit certain websites during his or her journey. We interpret these probabilities
as an indication of the user’s interests. In our case study, we focus on the users’
interest in a certain TV program. To identify whether a user is interested in a
certain TV program or not, we use the websites of five different TV stations.
For instance, we assume that a user who visits rtl.de is most likely interested in
the TV program aired on RTL. Our method could, for instance, be used by TV
stations or their agencies to enrich the TV advertising campaigns of their cus-
tomers (i.e., the advertisers) with complementary online advertising campaigns.
Of course, it is impossible to fully understand users’ actual TV consumption
behaviors only based on their online user journeys. However, since the goal is
to demonstrate the possibilities of using bid request data to determine users’
interests, we consider this to be only a minor limitation.

The modeling approach presented in this paper addresses the challenge of the
high volume and velocity of bid request data. We handle the high velocity by
iteratively applying a multinomial Bayesian logistic model, which uses prior
knowledge about its parameters as follows: Initially, no information about the
regression parameters is available. After the first iteration, the model returns
parameter distributions based on the first batch of data. We extract the means
and standard deviations of these distributions to then use these values as prior
information for the subsequent run. Thus, the precision of the parameter distri-
butions and the predictive accuracy of the model increase with the number of
iterations.

We handle the high volume of bid request data by applying stratified sampling.
As many analytical tasks in the context of e-commerce, such as the prediction of
purchases or clicks, have to deal with rare events (i.e., conversions or clicks are
very rare compared to the number of views), this approach can save computa-
tional costs. In our data set, over 99% of the overall data set contains user jour-
neys that are irrelevant for our analysis. Stratified sampling makes the learning
algorithm more efficient, since less data is required to estimate the parameters.

7.3.2 Model Description

The dependent variable of our analysis is denoted as K ∈ {0, . . . , 5} and indicates
whether a user opened the website of a specific TV station during the entire user
journey or not. We regard this variable as a proxy variable that indicates users’
interest in a certain TV station and their potential interest in certain products
advertised on this station. We include the following target URLs: rtl.de (K = 1),
rtl2.de (K = 2), vox.de (K = 3), sat1.de (K = 4), and prosieben.de (K = 5). If a
user did not open one of these websites, K is set to 0. The independent variables
are all other URLs from which bid requests can be triggered. For instance, if a
user i visits an URL Uj such as amazon.de and ebay.de during her or his user
journey Ji, the set of independent variables for this user is 1 for both of these
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variables, and all other variables are set to 0. In Equation 7.1, Xij is the jth

covariate from the design matrix X at row i, and Uj is the jth entry from a list of
URLs.

Xij =

{
1 if Uj ∈ Ji

0, otherwise
(7.1)

We use a Bayesian multinomial logistic regression model, which we estimate
using JAGS (Plummer, 2003) based on Equation 7.2:

Ki ∼ Multinomial(pi)

p(Ki = l|Xi) =
exp(αl + Xiβl)

∑k exp(αk + Xiβk)

β jk ∼ Normal(bjk, σjk)

αk ∼ Normal(ak, sk) (7.2)

In this equation, αk represents the intercept for class k, and β jk represents the
jth entry of the parameter vector βk, i.e., the slope for the jth URL in the list of
parameters of class k. The values ak and bjk represent the prior knowledge of
αk and β jk. The terms sk and σjk represent the prior knowledge of the standard
deviation of αk and β jk. The term p(Ki = l|Xi) represents the probability that
the row vector Xi is of class l. In each iteration, the prior values ak, bjk, σjk,
and sk are updated with the posterior means and standard deviations from the
previous steps of the analysis. The initial values for αk and β jk are defined as 0,
whereas σjk and sk are set to 10.

In our case study, the number of users labeled with K = 0, i.e., users who never
visited a website of a TV station, is high in comparison to the other classes. For
this reason, stratified sampling for training the model has been recommended
(King and Zeng, 2001). However, after parameter estimation, the sampling bias
needs to be considered before using the results for prediction in accordance with
Equation 7.3:

p(Ki = l|Xi) =
exp(αl + Xiβl) · τl/ȳl

∑k exp(αk + Xiβk) · τk/ȳk
(7.3)

In this equation, τk represents the ratio of instances of class k in a random sam-
ple, and ȳk represents the ratio of instances of class k in the training set (King
and Zeng, 2001).

For each iteration, we only include variables of URLs that are contained in the
data of the current training batch. The parameters of the other variables re-
main unchanged. This is possible due to the assumed statistical independence
between the parameters and enables the model to include a large number of
parameters.
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7.3.3 Updating the Decision Engine

We propose to include the model in a real-time advertising decision support
system as presented in Figure 7.1 and described in the following.

Figure 7.1: Bidding and model updating process. Each Bayesian
model iteration uses prior information from the previous iteration.

The process begins with the incoming bid request, which is analyzed and stored
by the decision engine. Based on prior knowledge of the current user’s interests,
the decision engine selects the advertising material and the size of the bid and
sends a bid response to the ad exchange. Simultaneously, the bid request is for-
warded to the model updating engine, which first assesses the relevance of the
bid request for the analysis. Depending on its relevance, the bid request is dis-
carded or stored in a training database. The Bayesian analysis is executed when
the amount of data reaches a predetermined minimum sample size. Afterwards,
the posterior information is sent to the decision engine, which then uses the up-
dated parameters for prediction as new bid requests are processed. Since the
model is trained with a stratified sample, the prediction algorithm must rescale
the true probabilities of the individual classes in accordance with Equation 7.3.

7.4 Data Description and Preparation

Our data set was provided by a German cross-media online marketing agency
and consists of bid requests from a major ad exchange in the form of URL query
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strings. A query string contains the URL of the website triggering the bid re-
quest, the anonymized ID of the current user, location information on the user,
and the timestamp of the visit (Figure 7.2)1.

The data set contains 3 Tbytes of bid request data for a time period of 4 days.
During this period, over 1.4 billion bid requests were triggered by over 35 million
unique users. The data set contains 35,058,383 users who never visited the web-
sites of the TV stations during their journeys, 275,167 users who visited rtl.de,
56,416 users who visited rtl2.de, 3,978 users who visited vox.de, 3,529 users who
visited sat1.de, and 6,738 users who visited prosieben.de.

h=http%3A%2F%2Fwww.jetztspielen.de%2Fvda%2friendlyiframe_html_
40.2.1&t=1396894441.691&id=7358864011747200610&ip=93.84&s=DE&c
=Ludwigsburg&a=Mozilla%2F5.0+%28compatible%3B+MSIE+9.0%3B+Wind
ows+NT+6.0%3B+Trident%2F5.0%29 
 
h=http%3A%2F%2Fwww.ebay.de%2F&t=1396894441.692&id=130762252527
275372&ip=88.65&s=DE&c=Munich&a=Mozilla%2F5.0+%28iPad%3B+CPU+O
S+7_1+like+Mac+OS+X%29+AppleWebKit%2F537.51.2+%28KHTML%2C+like
+Gecko%29+Version%2F7.0+Mobile%2F11D167+Safari%2F9537.53%2Cgzi
p%28gfe%29 
 
 Figure 7.2: Examples of bid requests from the raw data. The vari-

able h represents the triggering URL, t the timestamp, id the ID of
the current user. In our approach we do not include information
on user agents (a) and geographical information (s, c). However,
in a real-life situation, these variables may lead to more accurate

predictions.

The process of data preparation is often not discussed in the literature, but we
would argue that this process deserves critical attention because it may have
implications for practitioners who intend to use our model. For this reason, we
share our experience with the community and briefly describe how we trans-
formed the data into user journeys. First, we stored the raw data (text files, each
capturing one minute of traffic) in a Hadoop file system and then accessed it
with Apache Spark. To reduce the number of features, we stripped the URL
data after the top-level domain and aggregated the resulting list. We ranked the
URLs by visit and encoded the URLs with their positions in the list. We removed
all websites with fewer than 5 visits in the data set, resulting in over 500,000 base
URL entries. Second, we grouped the data set by user ID and defined the depen-
dent variable for each user by labeling the user with one of the six classes. Our
sample does not contain users who visited more than one websites of a TV sta-
tion, because we truncated all users journeys after the first visit of a TV station
website to avoid a bias originating from bid requests that are directly related
with the TV station website. Finally, we wrote each user journey into one line
of an output file, starting with the class followed by a list of numbers separated
with commas. These numbers represent the URLs a user visited during his or
her journey. This process resulted in a text file of 4 Gbytes.

1Note, that it was not possible to draw conclusions about users’ personal information from
the data at any time.
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7.5 Results

In this chapter, we first describe the results of the iterative parameter estimation.
Second and third, we report the misclassification error of the model on a strati-
fied holdout sample and on a random holdout sample. Fourth, we evaluate the
model by calculating its economic value.

7.5.1 Parameter Estimation

We split the data into a training set (75% of the available data set) and a holdout
set (25% of the available data set). To train the model iteratively, we split the
training set into 75 separate batches, each containing 1,600 data records. Each
batch contains 500 records of Class 0, 400 records of Class 1, 300 records of Class
2, 100 records of Class 3, 100 records of Class 4, and 200 records of Class 5.
This ratio of classes is loosely based on the number of each classes’ instances
in the complete data set on logarithmic scale. We run the analysis with 15,000
parameters, i.e., we included the 15,000 most frequently visited websites into the
model.

Each run of the MCMC sampler consists of 4 chains with 3,000 burn-in itera-
tions and 3,000 sampling iterations. We keep every tenth record from the poste-
rior sample to avoid auto-correlation of the Gibbs sampler. Each iteration took
approximately 40 minutes on an Intel i7 4820K processor with 3.7 GHz. Figures
7.3 and 7.4 show the densities of four selected parameters for different iterations.
Both figures indicate that the precisions of the parameters’ posterior densities in-
crease with the number of iterations. A comparison of Figure 7.3 and 7.4 shows
that the less frequent a variable is included in the data, the less precise the esti-
mation of its parameter, and the more iterations are required to obtain a desired
parameter precision.
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Figure 7.3: Posterior densities of β2,15 and β4,15.
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Figure 7.4: Posterior densities of β2,3500 and β4,3500.

7.5.2 Misclassification Error

After each iteration, we calculate the misclassification error of the model on a
stratified holdout sample. The baseline of the misclassification error is estab-
lished by making a random guess. This approach results in an error of 83.3%
when, as in this case, an equal number of instances of the six classes is included
in the holdout set. Figure 7.5 shows that the misclassification error decreases
with the number of iterations, i.e., the more data is considered for training the
model, the more likely it is that a data record is classified correctly.

0.55

0.60

0.65

0.70

0 25000 50000 75000 100000 125000
N

M
is

cl
as

si
fic

at
io

n 
E

rr
or

Figure 7.5: Misclassification error on the holdout sample depend-
ing on the number of training samples. The misclassification error
seems to converge to a minimum as more and more iterations of

the analysis are performed.

Figure 7.6 presents the confusion matrix describing the misclassification error of
the model using the parameters obtained from the 75th model iteration.

To determine how many user contacts have to be observed to achieve a desired
misclassification error, we examine the relationship between the misclassification
error and the observed user journey lengths. Figure 7.7 shows that the misclas-
sification rate decreases as user journey length increases. This result is expected:
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0 1249 532 421 224 75 113 

1 709 858 612 237 84 114 

2 574 524 976 226 113 201 

3 494 454 441 1133 45 47 

4 164 179 304 67 1632 268 

5 198 201 363 70 204 1578 

Figure 7.6: Confusion matrix of the prediction on the stratified
holdout set after the last iteration of the analysis (misclassifcation

error: 52.7%).

The more data on users is available, the more accurate the prediction. The blue
line in Figure 7.7 shows, for instance, that users who have been observed at least
on 10 different websites are classified correctly in 65% of all cases (i.e., the mis-
classification error is approximately 35%). The red line shows that users who
have been observed 8 to 10 times are classified correctly in more than 60% of all
cases (misclassification error of 40%). The green line shows that users who have
been observed less than 6 times will be classified correctly in 40% of all cases
(misclassification error of 60%).
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Figure 7.7: Misclassification error vs. user journey length. The
more information on users is available, the more accurate the pre-

diction of user classes.
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7.5.3 Predictions Based on a Random Sample

Stratified sampling is a feasible way to benchmark a model such as the one
described here. However, in a real-life scenario, the distribution of user classes
is greatly unbalanced. For this reason, we rescale the parameter estimations to
predict user classes on the random sample in accordance with Equation 7.3.

We calculate the probabilities p(Ki = l|Xi) to classify each record of a random
holdout set. We obtain a rather small misclassification error of 2.5% (Figure 7.8).
This value is so small, because of the high number of records of Class 0. Thus,
classifying a record with K = 0 is nearly always correct. Even a model that
yields p(K = 0) = 1 for each test record would nearly always classify correctly.
For this reason, using the misclassification rate is not a meaningful means to
evaluate the model. Instead, we calculate the economic value of applying the
model, and, thereby determine the economic value of bid request data.
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Figure 7.8: Confusion matrix obtained from applying the model to
a random holdout set containing 600,000 records. The misclassifi-

cation rate is 2.5%.

7.5.4 Economic Value of Bid Request Data

We determine the economic value of bid request data from the perspective of an
advertiser who employs a bidding agent that places bids based on predictions
made by our model. The bidding agent would not place a bid for predictions
of Class 0, i.e., it would not answer to bid requests triggered by users who are
unlikely to be interested in one of the TV programs. In case the prediction of
Class 0 is correct, the behavior of the bidding agent produces no costs (true
negative prediction). Otherwise, i.e., the current user is in fact interested in one
of the TV programs (false negative prediction), the behavior of the bidding agent
produces opportunity costs. These costs are determined by the lost contribution
margin for not exposing a user to an ad, who would have clicked on the ad or at
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least have been attracted by it. For predictions of Class 1 through 5, the bidding
agent would always place a bid. Consequently, it would produce costs that are
equal to the costs of the ad impressions. In addition, it would generate benefits
that can be derived by exposing an interested user to an ad that matches his or
her interests (true positive prediction).

Based on the aforementioned scheme, we estimate the economic value of bid
request data by applying our model to a random holdout sample. We assume
the typical costs in the industry for ad impressions and typical benefits from
user clicks on display ads at the time of writing. For false negative predictions,
we assume costs ranging from 0.01 EUR through 0.40 EUR. We define a range of
costs here, because the contribution margin may vary for different advertising
scenarios. For false positive predictions, we assume a value of 0.001 EUR, i.e.,
the costs for an ad impression. For true positive predictions we assume a benefit
equal to the contribution margin (i.e., 0.01 EUR through 0.40 EUR) minus the
costs for the ad impression (0.001 EUR). A true negative prediction, i.e., no ban-
ner is shown to a user who would not have clicked, has no costs at all. For false
predictions concerning the Classes 1 through 5, we also assume no costs because
users belonging to these classes might, in general, be interested in products they
see advertised on TV, but at another TV station. We assume that the costs for the
ad impression is annulled by the benefit through the branding effect.

To obtain the best balance between true and false predictions and their costs and
benefits we seek for the optimal cutoff value pcut for p(K > 0) that minimizes
the costs of the classification by iteratively classifying the data from the holdout
set with different values for pcut. The cutoff value is used as follows: All user
contacts Xi that show a probability p(K = 0) less than pcut are classified based
on the probabilities of the other classes, i.e., p(K ∈ {1, . . . , 5}). All other user
contacts Xi are classified as class K = 0. Thus, when pcut is very small, nearly
all contacts are classified as one class between 1 and 5, and, as pcut is increases,
more and more contacts Xi are categorized as class K = 0.

To calculate the benefits related to a given cutoff value, we define the maximum
benefit per decision of a model B as the minimum of the costs for showing no
impressions at all (CNI) and the costs for showing impressions to all users (CAI)
minus the minimum costs of applying the model (CM) using the optimal cutoff
value (Equation 7.4):

B = min(CNI , CAI)−min(CM) (7.4)

Figure 7.9 presents the benefits per 1,000,000 decisions based on different ben-
efit/cost ratios. The diagram indicates that using the model for classification is
valuable in a relatively narrow range of benefit/cost ratios. On the left side of the
ratio range (below a benefit/cost ratio of 40), the advertiser would never bid for
a free ad slot, because the overall costs of impressions are higher than the sum
of contribution margins. Above the ratio of 40/1, the advertiser is best advised
to always use the model for classification. The highest benefit can be achieved
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when the benefit/cost ratio is at 75/1. As the ratio increases, the benefit that can
be generated by applying the model decreases.
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Figure 7.9: Max. benefits vs. cost benefit ratio. The model is most
beneficial when the benefit/cost ratio is 75/1, i.e., when the costs
for a lost contribution margin are 75 times greater than the costs for
an impression. The optimal cutoff value for this benefit/cost ratio

is pcut = 0.007898.

7.6 Conclusion

In this paper, we develop a model employing bid request data that can be used
to derive users’ interests in certain products or services. Our approach has im-
plications for researchers and practitioners from IS and marketing (Spann et al.,
2013).

7.6.1 Implications

The model developed here enables researchers and practitioners to make pre-
dictions about users’ interests for arbitrary products or services by using cor-
responding websites as dependent variables. A company offering smart phone
contracts, for instance, can use bid requests triggered by a mobile phone prod-
uct website to identify users who are interested in a new smart phone very early,
namely before they visit the website of the mobile phone company. In this way,
our approach extends the landscape of methods and techniques to target users
based on cookie data or third-party data. In marketing research, the method
can be used to measure the impact of television ads on the users’ online shop-
ping behavior more accurately because it allows for identifying users who have
watched a certain TV program recently (Stange, 2015). In addition, we contribute
to IS by developing a framework to extend and improve existing decision sup-
port systems employed in e-commerce and marketing to target users based on
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cookie data. Furthermore, we provide a method to measure the impact of bid
request data that is based on the valuation of the analysis conducted in our case
study.

In practice, the method can be used to increase profits from cross-channel adver-
tising campaigns. In particular, awareness-oriented campaigns can benefit from
the proposed model. These campaigns aim to reach a broad audience early in the
sales funnel where relatively little is known about a given user’s interests. Thus,
using bid request data streams in addition to cookie data and other third-party
data is a promising possibility to improve effects from branding campaigns. The
integration into existing decision engines employed by ad exchanges or demand
side platforms is relatively easy because of the iterative approach of the analy-
sis. They could use the proposed method to extend their portfolio of targeting
services. Aside from cross-channel advertising, the probability of a user being
interested in certain content can be used by e-commerce companies to customize
their products and services.

7.6.2 Limitations

Although the approach proposed here suggests successful possibilities for using
bid request data to predict user behavior, it also has primarily five limitations:
First, our bid request data was not filtered for any data from background pro-
cesses such as ad servers, which are not necessarily directly related to the user
journey. In addition, the data contains websites in different languages. These
websites should eventually be excluded from the data because is very likely that
a user is not interested in a German TV program if he or she has only visited
French or Polish websites during his or her journey. In addition, we expect a bias
in our training data because it is likely that not all (sub) websites of the TV sta-
tions we focused on use real-time advertising to sell their advertising inventory.
Hence, users who exclusively visited such (sub) websites are falsely labeled with
Class 0 in our training data. Second, the Gibbs sampler used here to estimate the
parameter values during the iterative analysis is relatively slow. It takes about 40
minutes to run 4 chains simultaneously with 6.000 sampling iterations on an In-
tel i7 4820K processor. This duration might be unsuitable for some applications,
especially when the number of relevant bid requests is much higher than in our
case study. However, because of the statistical independence of the parameters,
it is possible to parallelize sampling of parameters on GPUs using programming
languages such as CUDA-C. These improvements would reduce computational
costs to a great extent. Another opportunity to speed up computation time is
to employ variational Bayesian methods. These methods can be used to approx-
imate parameters of simple models such as the one presented here. However,
the complexity of models that can be estimated with these methods is limited.
Third, we assume statistical independence between the URLs to make the model
computationally tractable. However, website visits by a given group of users
with the same interests are generally not statistically independent. In addition,
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using TV station websites as proxy variables to determine users’ TV consump-
tion behavior can only be an approximation because many users might tend to
watch the program of a certain TV station but never visit its website. Fourth, the
valuation of the model is simplified, because it assumes that every impression
can be bought at the same price. In real-time advertising, however, the general
approach is to pay individual prices for individual users. Thus, the calculated
benefits based on true and false predictions is only an approximation of the true
benefit that could be achieved in a real-life system. Fifth, our approach is not in-
tended to replace current methods applied in behavioral targeting because only
relying on bid request data streams could lead into a ’big data trap’ (Lazer et al.,
2014). Therefore, we recommend to use the proposed method as an extension to
techniques and tools used in behavioral targeting. More conceptual research is
required on how to integrate predictions from our model into existing bidding
agents in RTA.

7.6.3 Outlook

Unlike typical bid request data from other major ad exchanges, our data set
neither contains information on free advertising slots nor any contextual infor-
mation. The model does not contain time-dependent variables that are com-
monly used in the user journey analyses, such as the number of contacts with a
certain website or the time difference between contacts (Chatterjee et al., 2003).
However, due to the flexible approach using Bayesian estimation that employs
MCMC sampling, it is rather simple to extend the model by new variables and
hierarchy levels. For instance, website languages or user locations could be used
to determine users’ interests depending on their location or spoken languages.
In addition, text-mining techniques could be used to derive context information
from websites, which could be used as additional independent variables. This
kind of information could be very useful for predicting user behavior and would
enable e-commerce companies to understand their customers’ behavior even bet-
ter. The high number of parameters could be reduced by applying regularized
Bayesian regression that employs non-normal prior distributions Kyung et al.,
2010. However, further investigation is needed on how to use non-normally dis-
tributed posteriors as prior information in an iterative modeling approach such
as the one presented here.

We present an approach to predict the probability for a user being interested in
a certain product. It is clear that these predicted probabilities are not the only
values that bidding agents require to place a bid. The integration of predic-
tions from our model into real-life bidding agents, which also need to consider
all other available information about customers, publisher websites, advertisers’
budgets, and advertising materials is still a challenge (Lee et al., 2013).

In summary, we demonstrate that bid request data is a very promising source of
big data on the Internet that is worth further investigation by researchers at the
intersection of IS and marketing.
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