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Summary 
 
When flood disaster is considered country or region wise, South and Southeast Asia regions are 

the worst sufferers due to complex topography and high rainfall intensity during the southwest 

monsoon. In order to protect human lives and possessions against severe floods, understanding 

potential flood hazard as well as an early warning of the upcoming flood with a sufficient lead 

time is necessary. Therefore, special attention must be paid to significant research and 

development activity for upgrading the existing models as well as for developing new ones in 

order to meet the regional and local requirements. In this thesis, limited data availability in the 

region has been addressed to further develop tools and techniques for river flood prediction.  

As the third largest river of Myanmar, the Chindwin River with 113800 km2 was considered as 

the study area because it has great importance as a water resource and a transport artery of 

Myanmar. Prior to the investigation of black-box forecasting approaches, hydrologic aspects of 

monsoon floods were analyzed using statistical and frequency analysis with the data covering 

the period 1966 to 2011. To analyze the change in flood values, the relative differences of flood 

quantiles for return periods of 2 to 1000 years in two time phases, 1966-1990 and 1991-2011, 

with respect to the entire observation period were compared. The expected floods of the latter 

period are found to be the highest. Overall, flood probability and time series analyses show that 

the upper and middle parts of the basin have particularly high flood risks. One-dimensional 

hydraulic (MIKE 11) simulations also agree with that the upper half of the basin is likely to 

suffer frequent floods. Flood risks in Myanmar, particularly the Chindwin River, continue to rise 

in the last two decades as evidenced by the interannual structure of regional climate, suggesting 

that robust approaches for estimating and characterizing floods would be valued by society. 

Since the flood warning or forecasting system does not aim at providing explicit knowledge of 

the rainfall–runoff process, applications of black-box approaches have been extensively 

researched in case of data deficiency. In this context, data driven models and hydrologic routing 

method were investigated for flood prediction at gauged sites. For developing forecasting 

models, the Mawlaik station of the Chindwin River is considered as the forecasting station, 

which has been defined as the flood prone site.  

As a tool for multi-step forecasting at gauged sites, performances of stepwise multiple 

regression (SMLR) and artificial neural network (ANN) techniques were investigated. Future 

river stages are modeled using past water levels and rainfall from the forecasting station as well 
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as from the hydrologically connected upstream station. The input vector selection of both 

approaches involved auto-, partial- and cross-correlation of the data series. The developed 

models were calibrated with flood data from 1990 to 2007 and validated with data from 2008 to 

2011. Model performances were compared for one- to five-day ahead forecasts. With a high 

accuracy, both candidate models perform well for forecasting the full range of flood levels. The 

ANN models show a clear-cut superiority to the SMLR models, particularly in predicting the 

extreme floods. The contribution of upstream data to both types of models improve the 

forecasting performance with higher R2 values and lower errors. Considering the commonly 

available data in the region as primary predictors, the results would be useful for real time flood 

forecasting, avoiding the complexity of physical processes.  

In case of deficiency in meteorological data, the Muskingum routing model is a widely used 

technique with known hydrographs, despite the limitations in its linear form. However, this 

method, even in its nonlinear forms with more parameters, is not often adequate for flood 

routing in natural rivers with multiple peaks. Therefore, as an alternative approach for flood 

forecasting at gauged sites,  the feedforward multilayer perceptron (FMLP) model was 

developed according to the Muskingum formula in a black-box manner. The results are 

compared to that of other reported methods, that have tackled the parameter estimation of the 

nonlinear Muskingum model for the Wilson’s benchmark data with a single-peak hydrograph. 

Evaluating performance statistics, the FMLP model outperforms other methods in flood routing 

of the well-known benchmark data. Further, the FMLP routing model was also proven to be a 

promising model for routing real flood hydrographs with multiple peaks of the Chindwin River. 

Unlike other parameter estimation methods, the ANN models directly capture the routing 

relationship, based on the Muskingum equation and perform well in dealing with complex 

systems of a natural river.  

On the other hand, understanding potential flood response and possible flood estimation in 

ungauged catchments can assist the water resources practitioners in management decision. 

Therefore, in the context of ungauged sites, principal components and clustering techniques 

were applied for detecting homogeneous regions with similar flood response, and the neural 

network-based regional models were developed. Based on catchment physiographic and climatic 

attributes, the principal component analysis yields three component solutions with 79.2% 

cumulative variance. The Ward’s method was used to search initial cluster numbers prior to k-

means clustering, which then objectively classifies the entire catchment into four homogeneous 
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groups. For each homogeneous region clustered by the leading principal components, the 

regional index flood models are developed via the ANN and regression method using the longest 

flow path, basin elevation, basin slope, soil conservation curve number and mean annual rainfall, 

which are less correlated each other. At the stage of developing regional models, main concern 

is not only to establish regional IF models via two approaches, but also to reveal the 

inconsistency in the performances of the conventional power form model (regression method) 

under the conditions of using the log domain as well as real domain. To address this 

shortcoming, ANN approach was investigated in the regional models. In the real domain, the 

ANN models capture the nonlinear relationships between the index floods and the catchment 

descriptors for each cluster, showing its superiority towards the conventional regression method.  

Overall, the robustness of the black box approaches will satisfy the requirement of the flood 

forecasting system in a developing country, where physical and hydro-metric data are scarce. 

The feasibility of such models to the natural river basin is successfully validated with real data. 

In all cases, relationships between input and output with a given concept of the approaches are 

established as per the existing hydro-meteorological conditions and data availability. Better 

understanding the regional characteristics of flood risks and improving forecasting practices for 

a monsoon river represents reliable contributions of black-box forecasting approach that will be 

a key feature in the future. 
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Zusammenfassung 
 

Betrachtet man Flutkatastrophen national oder regional, so sind Süd- und Südostasien auf Grund 

komplexer Topographie und intensiver Niederschläge während des Südwest-Monsuns besonders 

gefährdet. Zum Schutz humanen und wirtschaftlichen Kapitals vor schweren Überflutungen sind 

neben dem Verständnis potentieller Überflutungsgefahren vor allem Frühwarnsysteme mit 

ausreichenden Vorlaufzeiten wichtig. Deshalb gilt der Forschung und Entwicklung bestehender 

Vorhersagemodelle besondere Aufmerksamkeit, ebenso wie der Neuentwicklung von Modellen, 

die regionale und lokale Gegebenheiten berücksichtigen. Auf Grund limitierter 

Datenverfügbarkeit in diesen Regionen werden in dieser Arbeit Werkzeuge und Techniken zur 

Hochwasservorhersage untersucht und weiter entwickelt. 

Als drittgrößter Fluss Myanmars wurde der Chindwin Fluss mit einem Einzugsgebiet von 

113.800 km² als Untersuchungsgebiet ausgewählt, da er sowohl zur Wassernutzung als auch als 

Wasserstraße bedeutend für Myanmar ist. Vor der Betrachtung von Black-Box Prognosen 

wurden hydrologische Aspekte von Monsoon-Überschwemmungen auf Grundlage statistischer 

und frequenter Analysen mit Daten von 1966 bis 2011 untersucht. Um Veränderungen in den 

Mengenabflüssen berücksichtigen zu können, wurde die relative Abweichung der Quantile für 

die Wiederkehrzeit zwischen 2 und 1.000 Jahren in zwei Abschnitten, 1966-1990 und 1991-

2011, unter Berücksichtigung des gesamten Zeitraums, miteinander verglichen. Dabei zeigte 

sich, dass die prognostizierten Hochwasserabflüsse der zweiten Periode am höchsten sind. 

Insgesamt ergab die Analyse der Überflutungswahrscheinlichkeiten und Zeitserien, dass das 

obere und mittlere Einzugsgebiet höhere Überflutungswahrscheinlichkeiten aufweisen. Auch die 

eindimensionale Simulation (MIKE 11) weist auf häufigere Hochwasserereignisse in der oberen 

Hälfte des betrachteten Flussgebiets hin.  In den letzten beiden Dekaden stieg in Myanmar, 

insbesondere am Chindwin Fluß, die Zahl der Hochwasserereignsse nachweislich an. Dies ist 

auf die unterjährige Struktur des Regionalklimas zurückzuführen. Diese Situation lässt 

vermuten, dass robuste Ansätze zur Abschätzung und Charakterisierung von Hochwasser von 

der Gesellschaft bewertet werden. 

Da Flutwarn- und Vorhersagesysteme oftmals nicht die genaue Kenntnis der Niederschlag-

Abfluss-Prozesse vorraussetzen können, ist die Anwendung von Black-Box-Modellen bei 

mangelnder Datengrundlage ausführlich erforscht worden. In diesem Zusammenhang wurden 

auch datenbasierte Modelle und hydrologische Routing-Modelle zur Flutvorhersage an 

Messpegeln untersucht. Am Chindwin Fluss wurde die Mawlaik Station zur Entwicklung von 

Vorhersagemodellen als Mess- und Vorhersagestation gewählt, da diese als  überflutungsanfällig 
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eingestuft wurde. 

Als Techniken für multi-step Vorhersagen an Messstandorten wurden die Schrittweise multiple 

lineare Regression (SMLR) und Künstliche Neuronale Netze (ANN) untersucht. Zukünftige 

Flusspegelstände wurden mit Hilfe von vorhandenen Pegelständen und Regenreihen aus der 

Messstation ebenso wie von einer hydrologisch vernetzten Station flussaufwärts modelliert. Die 

Input-Vektor-Auswahl beider Methoden beinhaltet auto-, teil- und Kreuzkorrelationen der 

Datenserien. Die entwickelten Modelle wurden mittels Überflutungsdatenreihen  von 1990 bis 

2007 kalibriert und mit Daten von 2008 und 2011 validiert. Die Ergebnisse wurden mit ein- bis 

fünftägigen Vorhersagen verglichen. Mit hoher Genauigkeit lieferten beide untersuchten 

Modelle genaue Vorhersagen über die gesamte Bandbreite der Pegelstände. Die ANN Modelle 

zeigten im Vergleich zu den SMLR Modellen dabei eine klare Überlegenheit insbesondere in der 

Vorhersage von Extremfluten. Die Einbeziehung der Daten von flussoberhalb verbesserte in 

beiden Modelltypen die Vorhersagegenauigkeit mit höheren R²-Werten und geringeren Fehlern. 

In Anbetracht der allgemein verfügbaren Daten für das Untersuchungsgebiet als primären 

Einflusswert, können die Ergebnisse nützlich sein für eine Echtzeitflutvorhersage unter 

Vermeidung der komplexen physikalischen Prozesse. 

Bei fehlender meteorologischer Datengrundlage und bekannter Abflussganglinie ist das 

Muskingum Routing Verfahren eine weit verbreitete Methode, trotz der Beschränkungen in 

seiner linearen Form. Dennoch ist diese Methode, auch in nonlinearer Art mit mehr Parametern, 

oft nicht passend für Flood Routing Berechnungen in natürlichen Gewässern mit vielen 

Abflussspitzen. Als Alternative wurde deshalb das Feedforward Multilayer Perceptron Modell 

(FMLP) in Anlehnung an das Muskingum Verfahren gemäß eines Black-Box-Modells 

entwickelt. Die Ergebnisse wurden mit denen der anderen angeführten Modelle verglichen, 

welche die Parameterschätzung des nonlinearen Muskingum Models für Wilson’s 

Vergleichsdaten mit einer einzigen Abflussganglinie angegangen sind. Bei höheren 

Leistungsstatistiken ist die FMLP Modell besser als andere Methoden für Flood Routing vom 

dem bekannten Wilson’s Vergleichsdaten. Darüber hinaus wurde die FMLP Modell auch 

bewiesen, ein zuverlässiges Modell für das Routing mit mehreren Abflussganglinien sein. 

Anders als andere Parameterabschätz-Methoden erfassen ANN Modelle, basierend auf dem 

Muskingum Equation, direkt die Abflussbeziehung, und funtkionieren gut mit den komplexen 

Systemen natürlicher Flussläufe.  

Andererseits kann das Verstehen von möglichen Hochwasserereignissen und deren Vorhersage 

in datenlosen Einzugsgebieten wasserwirtschaftliche Fachleute in Managemententscheidungen 

helfen. Deshalb wurden Einzugsgebiete ohne vorhandene Messdaten nach Haupteinflussgrößen 

gruppiert um homogene Regionen mit ähnlichen Hochwasserereignissen festzulegen. Auf dieser 
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Grundlage wurden neutrale netzwerkbasierte Regionalmodelle entwickelt. Basierend auf den 

physiografischen und klimatischen Attributen der Einzugsgebiete ergaben sich mittels 

Hauptkomponentenanalyse drei Komponentenlösungen mit 79,2 % kumulativer Varianz. Die 

Ward-Methode wurde verwendet, um erste Clusternummer zu suchen vor der K-Means 

Clustering, womit dann das gesamte Einzugsgebiet objektiv in vier Gruppen klassifiziert wurde. 

Für jede dieser nach den Hauptmerkmalen geordneten Gruppen wurde mittels ANN und 

Regressionsmethode unter Benutzung des längsten Fließweges, Einzugsgebietshöhen und -

neigungen sowie Bodenkennwerten und jährlichen Niederschlagsmengen, ein regionales Index-

Hochwasssermodell entwickelt. Bei der Entwicklung eines regionalen Modells liegt das 

Hauptaugenmerk nicht nur darauf ein IF Modell mittels zweier Methoden zu entwickeln, 

sondern auch darauf die Unstimmigkeiten der Leistung des herkömmlichen Kraftform-Modell 

(Regressionsmethode) bei Nutzung der Log Domain als Real Domain aufzudecken. Um sich 

diesem Fehler zu widmen, wurde die Anwendung von ANN in regionalen Modellen untersucht. 

In der Real Domain erfasste das ANN-Verfahren die nonlineare Beziehung zwischen Index-

Hochwasser und den Einzugsgebietsdeskriptoren für jede Gruppierung und zeigte damit seine 

Überlegenheit gegenüber den konventionellen Regressionsmethoden. 

Insgesamt genügt die Zuverlässigkeit des Black-Box-Ansatzes den Anforderungen des 

Hochwasservorhersagesystem in einem Entwicklungsland, insbesondere mit Blick auf die 

knappe, vorhandene Grundlage physikalischer und hydrometrischer Daten. Die Übertragbarkeit 

solcher Modelle auf natürliche Flussgebiete wurde erfolgreich mit vorhandenen Datenreihen 

validiert. In allen Fällen konnten die Beziehungen zwischen In- und Output mit den bewährten 

Methoden gemäß den existierenden meteorologischen Gegebenheiten und verfügbaren 

Grundlagendaten nachvollzogen werden. 

Ein besseres Verständnis der regionalen Charakteristika von Hochwassergefahren sowie die 

Verbesserung von Vorhersageanwendungen unter Anwendung von Black-Box-Vorhersage-

Modellen werden die Hauptmerkmale für zukünftige Hochwasservorhersagen von 

Fließgewässern in Monsun-Gebieten sein. 
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CHAPTER 1  

BACKGROUND 

 

Floods rank highly among the most devastating natural disasters in the world, leading to higher 

significant economic and social damages than any other natural phenomenon (DMSG 2001). 

Flood risk arises because people use river flood plains which conflicts with the natural function 

of the water conveyance (Stancalie et al, 2006; Marchi et al. 2010). Therefore, understanding the 

hydro-meteorological processes that control flooding is extremely important from both scientific 

and societal perspectives. For reducing vulnerability against flood risks, strategies of living with 

flood deal with non-structural measures, out of which a flood assessment tool helps water 

resources engineers characterize the watershed behaviors during floods (Gendreau and Gilard 

1998). In case of application oriented in flood forecasts, time to peak and flow volume are 

important, while in case of object oriented, the purpose of design models is to predict 

hypothetical floods with statistical return periods (Shahzad 2011). 

Although the processes which generate river floods could be understood, their spatial and 

temporal complexity are normally incorporated into flood forecasting procedures only in a 

generalized and largely empirical manner. Since hydrological and hydraulic situations change 

with time, flood forecasting models should be capable not only of using the current output of 

continuous monitoring systems, but also of continuously updating model inputs. Even where 

such system exit, they are still far from perfect. In many countries, significant research and 

development activity is being concentrated for upgrading the existing models as well as for 

developing new ones in order to meet the regional and local requirements.  

 

1.1 River Flood Forecasting System 

Flood forecasting models can help with translating what is observed into estimates of flooding 

extents and are increasingly used to improve lead time and accuracy of warnings (Sene 2008). 

River flood prediction generally requires the forecast of flood hydrograph at the gauging stations 

and calculation of water levels or discharge at critical locations in a river reach. A typical flood 

forecasting system may consist of a number of subsystems that include precipitation forecasts, 

unit hydrograph (UH), rainfall-runoff models, flood routing and inundation models (Shrestha 

2005). Das and Saikia (2010) pointed out that in practical application, some of the techniques 

have limitations. For example, rainfall-runoff relationship is very much dependent on storm 

frequency, initial soil moisture conditions and storm duration. Similarly, UH method may 

produce error due to its limitation of assumption of uniform rainfall distribution over the entire 

catchment. For the operational flood management, geographic information system (GIS) tools 
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facilitate the integration and spatial analysis of data, while the numerical models provide the 

tools to forecast the likely magnitudes, extent and duration of flood events. One extreme is 

techniques based on physical laws and theoretical concepts that govern hydrological processes: 

the so-called hydrodynamic models. Another extreme is the purely empirical, black-box 

techniques: those that make no attempt to model the internal structure, but only match the input 

and output of the catchment system (WMO 2009). 

In fact, model selection depends on the amount of data available, the complexity of the 

hydrological processes to be modeled, reliability, accuracy and lead time required, and user 

requirements. From a practical point of view, WMO (2009) recommends that a flood forecasting 

model should satisfy the following criteria: 

(a) Provide reliable forecasts with sufficient warning time; 

(b) Have a reasonable degree of accuracy; 

(c) Meet data requirements within available data and financial means 

(d) Feature easy-to-understand functions; 

(e) Be simple enough to be operated by operational staff with moderate training. 

Despite several forecasting techniques, some are too complicated to calibrate and require robust 

optimization tools; and some need to know better understanding of physical processes in the 

catchments (Varoonchotikul 2003). Although comprehensive models may provide increased 

warning time and greater degree of accuracy, they may have very elaborate input data 

requirements. However, all input data for a specific model may not be available on a real-time 

basis in many regions. Therefore, significant research on developing forecasting models from 

data only has been a prime interest in water resources management in developing countries in 

order to address the specific hydrological problems, which make applied methods likely to be 

trapped in available data.  

 

1.1.1 Black-box Approach 

Black-box models can be considered of little significance in enhancing the understanding of 

hydrological and hydraulic processes; nevertheless in operational hydrology their usefulness can 

be paramount. A black-box system can be viewed in terms of its input, output and transfer 

characteristics (system model) without any knowledge of its internal workings (Fig. 1.1).  

 

 

 

 

Fig. 1.1 A black-box system 

System 
Model 

Input (time) Output (time) 
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Empirical black-box models belong to two main categories (He et al. 2014). The first is linear 

models, which use a linear time-invariant response function to model the relationship of rainfall 

to runoff, like Nash model and UH. The second category is the nonlinear models such as Fuzzy 

system and artificial neural network (ANN), which are based on a nonlinear response function 

and time-varying characteristics for describing the rainfall–runoff processes. 

In the context of black-box approach, the application of data driven model in flood forecasting 

such as statistical approaches (regression and correlation methods) and data mining techniques 

(ANN, genetic programming, support vector machines etc.) are gaining in popularity. The data 

driven approaches are capable of simulating any variables that have been trained for and are 

relatively easy to set up and are advantageous because of their capability to handle highly 

nonlinear formation of data in dynamic systems. 

 

1.2 Description of the Study 

The trend of flood disaster is increasing with time and continent wise. Flood events in Asia, 

where the monsoon season is dominant, accounts over one third of the world’s total number of 

flood events (Dutta and Herath 2004). This increasing trend in Asia has some relationship with 

the facts that many regions are under the highest influence of monsoon with high annual rainfall 

intensity and cyclones/typhoons. (Das and Saikia 2010). Having struck by the large amount of 

rainfall, South and Southeast Asian countries are the worst sufferer. The assessment of water 

resources in a region usually must cope with a general lack of data, both in time (short observed 

series) as well as in space (ungauged basins) (Sene 2008). With network density of 12000 

km2/station, Myanmar rivers are an example of a poorly gauged basin. Consequently improper 

spatio-temporal data monitoring, storage and transmission still lead to the lack of reliable flood 

management system for monsoon dominated river basins in these regions. 

 

1.2.1 Myanmar, a typical monsoon Country 

Characterized by tropical rain forest and monsoon climates with a high and constant seasonal 

rainfall, Myanmar, the second biggest country in Southeast Asia, is located in the northwestern 

part of the Indochina peninsula, between 9°32'N and 28°31'N latitudes (with most of the area 

between the Tropic of Cancer and the Equator) and between 92°10'E and 101°11'E longitudes 

(Fig. 1.2 ). Lying within the tropics and the great Asiatic continent to the north and the wide 

expanse of the Indian Ocean to the south, Myanmar furnishes one of the best examples of a 

monsoon country. Flood occurrence in Myanmar can be generally recognized as 6% in June, 

23% in July, 49% in August, 14% in September and 8% in October respectively. Among four 

major rivers of Myanmar, the occurrence of extreme floods in the rivers of Ayeyarwaddy and 
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Chindwin is mostly associated with the pronounced monsoon trough and cyclone storm crossing 

Myanmar and Bangladesh coast during pre-monsoon and post-monsoon. 

The topographically complex Chindwin catchment was selected for this research because the 

Chindwin River and its associated flood plain are considered to have high economic and 

ecological values, but receive relatively little attention. With 113,800 km2, the river basin is the 

third largest river and one of the principal water resources of the country. However, streamflow 

is sparsely monitored in the catchment with there being only five gauges in 930 km river reach. 

The Chindwin River is the biggest tributary of the well-known Ayeyarwaddy River, which is 

one of the major principal rivers in the South East Asia region. Extreme floods, hit in the basin 

during the southwest monsoon, are hardly controlled and consequences are not properly 

forecasted. 

 

1.2.2 Research Needs  

What is needed in flood forecasting is a system that can be updated continuously without the 

costly and laborious resurveying. Since prolonging forecasting and warning times enables the 

affected people to safeguard their belongings as well as their lives, a lead time must be assured 

with a span that allows for an effective reaction to the forecast. In addition, the desired 

generalization of flood information requires a sound method of transferring available 

information to other sites because only a sample of natural streamflows is gauged in developing 

countries. The possible approaches analyzed in this research would help address the problem of 

data deficiency in flood forecasting and provides improved estimates of flood discharge. 

Further, they must fit to regional conditions and be workable with the database in the region. 

Indeed, the choice of models should never be restricted to how much physical meaning 

embedded in the models, but to meet the forecasting requirements. In this context, feasibility of 

black-box models to river flood forecasting needs to be extensively focused. In order to pay 

more attention to flood prone areas as well as to formulate efficient forecast models considering 

influencing flood generating factors, analytical flood assessment should also be emphasized in 

the region of interest prior to the development of the forecast models.  

 

1.2.3 Objectives 

The overall objective of the research is to improve flood assessment and forecasting, based on 

local conditions and available database, in a sustainable manner for a monsoon rain-fed basin, 

where observed data are scarce and flood hazard is critical.  
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The specific objectives are: 

(1) To understand the currently applied flood forecasting system in Myanmar as well as in 

the similar climatic regions 

(2) To assess the hydrologic behaviors and potential floods of a typical monsoon river basin 

(3) To formulate flood forecasting models via black-box approaches in a cost-effective and 

sustainable manner 

(4) To define the possible measures in parameter estimation for flood assessment and 

forecasting model 

(5) To recommend a knowledge platform at the watershed level by facilitating a flood 

forecasting tool into integrated water resources management. 

 

1.3 Structure of the Thesis 

The dissertation comprises of a framework paper and appendices (published and submitted 

articles). The framework paper is structured into five chapters. A brief outline of the chapters is 

given below. 

Chapter 1 provides the general background on the vital role of river flood forecasting. This 

chapter also gives the overview of the study, highlighting the research needs and objective of the 

study. Chapter 2 gives the general assessment of the current flood forecasting system in 

Myanmar and its neighboring countries in South and Southeast Asia. The chapter highlights on 

the weakness of the current flood forecasting practices in Myanmar. Chapter 3 presents the 

research methods, describing basic concepts, limitations and fundamental structures with respect 

to river flood forecasting. It includes data driven approaches (multiple linear regression and 

ANN) and Muskingum routing in flood forecasting for gauges sites. For flood forecasting at 

ungauged sites, neural network-based regional index flood modeling with GIS is presented. 

Chapter 4 describes an overview of the results of the major applications. Chapter 5 provides 

overall conclusions on the important findings, and the perspective of black-box models for 

further research in the area of river flood prediction. 
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CHAPTER 2 

FLOOD FORECASTING SYSTEM IN SOUTH AND SOUTHEAST ASIA REGIONS 

 

The need for reliability in flood forecasting has been stressed frequently. Improvement in river 

flood forecasting in developed countries has resulted partly from the global increase in stream 

gauging stations and partly from major and accelerating advances in both the technology of data 

collection (e.g. weather radar, satellite imagery) and processing, and telecommunication systems 

(Smith and Ward 1998). On the other hand, national flood forecasting systems in most 

developing countries are somewhat satisfactory for river stage forecasts whereas flash floods and 

overland flood assessments are still under development. This chapter provides a brief overview 

of current forecasting systems in monsoon countries in the South and Southeast Asia, where 

flood hazards and risks are the highest in Asia. A brief conclusion on the weakness of the 

current flood forecasting system in Myanmar is also given. 

 

2.1 Flood Forecasting System in Myanmar 

Flood forecasting deficiencies in Myanmar were dramatically exposed many decades ago. 

Despite water level forecasts with minimum lead times for major large-scale rivers, there was no 

forecast for ungauged rivers and ineffective forecasts for coastal areas, where only 

meteorological forecasts are available. In Myanmar, the Department of Meteorology and 

Hydrology (DMH) is solely responsible for the 

flood management in terms of hydrological aspects 

whereas the Irrigation Department takes especially 

physical measures against flooding. As shown in 

Fig. 2.1, forecasting stations are only at the major 

rivers; Ayeyarwaddy, Chindwin, Sittaung, 

Thanlwin, Dokhtawady, Bago  and Shwegyin with 

the station number 12, 5, 2, 1, 2, 1 and 1 

respectively. It can be seen that the density of 

hydro-metric monitoring stations is relatively low, 

and thus many flood prone regions across the 

country remain ungauged and unforecasted. For 

streamflow monitoring, this situation is beyond the 

minimum density of 1500km2/station, 

recommended by the WMO (2008). There are 41 Fig. 2.1 Forecasting Stations in Myanmar 

Andarman Sea 

Ayeyarwaddy 

Chindwin 

Thanlwin 

±

0 40 80 12020
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hydro-meteorological stations, 63 meteorological stations and 37 flow monitoring stations across 

the country. However, flood forecasts are available only for 24 stations of major rivers. River 

stages and rainfall are currently monitored on a daily basis at all observation stations. Rating 

curves for all gauging stations are used to transform observed water levels into discharges. 

 

2.1.1 Flood Types and Vulnerable Area 

Flood magnitudes and types in Myanmar vary due to the different physiographic regions across 

the country, and can generally be categorized as follows:(a) Riverine floods (b) Flash floods (c) 

Localized floods (d) Flooding due to cyclone and storm surge. Riverine floods are the most 

common to the country, and they occur when the monsoon troughs or low pressure waves 

superimpose on the general monsoon pattern resulting in intense rainfall over strategic areas of 

the river catchments. 

The catchment areas of major rivers in the north and central zone are prone to riverine floods. 

The Southern Delta also faces riverine floods when there are flood tides and high streamflows at 

the same period. In the northern mountainous regions, at the confluences of the Ayeyarwady 

River, the snow in the higher altitude melts and flash floods occur quite frequently at the 

beginning of summer. Along the coastal regions, floods are a secondary hazard generated by 

cyclones. 

 

2.1.2 River Flood Forecasting Techniques 

Flood forecasting system may range from simple empirical methods to complex physical 

models, depending on data availability and forecast requirements. As shown in Table 2.1, it is 

clear that each type of system has its advantages and disadvantages. Although the simplest are 

often the cheapest to set up and operate, and tend to generate the most reliable forecast, their 

lead time is usually the shortest of all. 

Category 3, 4 and 5 enable forecast systems to accommodate extensive data inputs. Such kind of 

forecasts, which require reliable quantitative data monitoring, could not be practiced for 

operational purposes in Myanmar yet, but for specific uses in academic research as well as for 

very specific areas in water resources planning. In the context of real-time practice in Myanmar, 

forecast category 1 and 2 are still widely practiced only for major rivers. Even though 

conventional, widely used techniques for flood forecasting in Myanmar are simple stage 

correlation method and multiple regression analysis for daily forecasts in flood seasons. 

Frequency analysis and conceptual models are also used in addressing specific problems. 
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Table 2.1 Flood Forecasting Categories (Adapted from Smith and Ward, 1998) 

Category System Description 
Forecast 

lead time 

Sophistication of 

forecast procedures 
Expense 

Potential 

uncertainty 

1 Real-time measurement of 

streamflow with 

routing/correlation to key 

location 

Shortest Simplest Least Least 

2 Same as 1 but including 

precipitation in correlation 

to key location 

Short Simple Little Little 

3 Real-time measurement of 

precipitation, streamflow, 

temperature, etc. plus a 

catchment runoff model 

Long More complex to very 

complex 

More to 

very 

More 

4 Same as 3 but including a 

meteorological model 

Longer Very complex Very More 

5 Same as 4 including 

weather forecasts 

(precipitation, temperature, 

etc.) 

Longest Most complex Most Most 

 

(a) Multiple Regression Models 

Multiple regression technique (Table 2.2) is applied by using only observed water levels from 

the upper stations to predict the water levels at the lower stations of a basin.  

 

Table 2.2 Regression-based forecasting models for selected rivers in Myanmar 

Station/City Water Level (H) Forecast Formula River 

Homalint+1 =  0.95HHMt + 0.02 HHTt-1 + 0.35 HHTt(Change) + 114.57 Chindwin 

Mawlaikt+1 =  0.93HMLt + 0.001 HHMt-1 + 0.05 HHTt-3 + 0.79 HHMt-1(Change)+ 0.02 HHTt-3(Change) + 16.81 Chindwin 

Nyaungoot+1 =  0.63HMYt + 0.67 HSGt-1)-250 Ayeyarwaddy 

Pyayt+1 =  0.40HBMt + 0.58 HMLt-1 + 1628 Ayeyarwaddy 

(Station Name: HT=Hkamti, HM=Homalin, ML=Mawlaik, MY=Monywa, SG=Sagaing, BM=Bamaw) 

 

It can be seen that the classical multiple regressions are applied only for large river basins with 

1-day lead time. DMH has assessed itself that using regression method, water level forecast for 

the pre-monsoon period is excellent; poor for the peak monsoon period; and good for the late 
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monsoon period (DMH 2012). As a result, the current forecasts should be practiced with much 

cares, especially during high flood seasons. 

 

(b) Frequency Analysis 

Flood frequency analysis is normally used for probabilistic forecasts using annual maximum 

water levels. Commonly used frequency distribution functions by the DMH are Log Normal, 

Gumbel Extreme Value 1 and Log Pearson III, depending on annual maxima series produced by 

the different river systems. At present, probabilistic forecasts are available only for seven rivers: 

Ayeyarwaddy, Chindwin, Sittaung, Thanlwin, Bago, Shwegyin and Dokehtawady, as the 

availability of annual maxima series for other rivers are not consistent. 

 

(c)   Conceptual Models 

A large proportion of flood forecasting relies upon the use of conceptual catchment models 

(category 3) which have either been developed initially or adapted subsequently to operate in a 

real time mode. In Myanmar, DMH reported that the conceptual models (Sacramento model, 

Tank model, Streamflow Synthesis and Reservoir Regulation (SSARR) model, HBV model, and 

Discrete Linear Cascades model) could be used for river forecasting in sub-systems, and the 

channel routing for operational use in some cases. However, these conceptual and routing 

methods are not consistently practiced for real-time forecasting during flood seasons, but used 

only for planning and management purposes in specific areas. 

 

2.2 Flood Forecasting System in Mekong River Basin 

The flood forecasting and river monitoring system of the Mekong River Commission (MRC) 

consists of three main components: data collection and transmission, forecast operation, and 

forecast dissemination (Manusthiparomet et al. 2005). 

 

Table 2.3 Operational data for flood forecasting and river monitoring works by MRC 

Item Wet Season (Jun-Oct) Dry Season (Nov-May) 

Forecasting Activities Flood Forecasting River Monitoring 

Data Delivery to MRCS Daily Weekly 

Day-ahead Forecast 5-Day Forecast 7-Day Forecast 

Water Level Data 44 Stations (including 2 Sta. from China) 19 Stations 

Rainfall Data 44 Stations (including 2 Sta. from China) 19 Stations 

Forecasting Points 21 Stations 19 Stations 
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For data and information exchange and sharing of the MRC, the hydro-meteorological data from 

42 stations of the four MRC member countries (the Lao People's Democratic Republic, 

Cambodia, Vietnam and Thailand) in the Lower Mekong Basin as well as 2 stations data from 

China are sent to the Mekong River Commission Secretariat (see Table 2.3). 

At present, the SSARR model is applied to the upper and middle reaches, while regression 

models are used for the lower reaches of the delta with overbank flow (see Fig 2.2). An ANN 

model is also applied to both, upper and lower reaches. The ANN technique is used not only as a 

forecasting tool, but also it importantly serves for increased forecast accuracy through the 

process of double checking with the forecasts produced by the SSARR and regression models. 

After flood water levels at key stations are forecasted, MIKE-11 (one dimensional fully 

hydrodynamic model) is employed to simulate flood water depth and flood extension over the 

Cambodian floodplain. The existing MRC Forecasting System was supposed to be adequate. 

However, rapid population growth in the region, intensification of agriculture, climate change, 

changes in land use and river morphology, and rapid technology development makes the system 

be upgraded. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2 Forecasting stations in the Mekong River basin (Adapted from Manusthiparomet et al. 

2005) 
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2.3 Flood Forecasting System in Bangladesh 

Flood forecasting systems in Bangladesh can be divided into three categories: (a) flood 

forecasting in the rivers caused by the upstream rise of river stage as well as rainfall in the 

catchment, (b) forecasting overland flows from upstream, and (c) flash flood forecasts in small 

basins due to localized heavy rainfalls. 

Bangladesh Flood Forecasting and Warning Center collects measurements of water level, 

rainfall and satellite pictures. During the monsoon season, a numerical model of the Bangladeshi 

river network simulates the water levels during the previous 7 days (hind-cast simulations) and 

during the coming 3 days (forecast simulation). More precisely the forecasting starts during 

early monsoon when the water level of any measuring stations is 60 cm below danger level. 

Basically, MIKE 11 model is applied incorporating all major rivers and floodplains, comprising 

of 8, 2000 km2. With 30 forecasting stations, the total length of the modeled rivers amounts to 

7270 km. This is linked to a lumped conceptual rainfall-runoff model (MIKE11 RR) which 

generates inflows from catchments within the country. 

The confidence level of forecasts has been defined on the basis of mean absolute errors as 

compared to observed levels at forecast stations. The present operational forecasting in 

Bangladesh is said to be satisfactory for river floods with a limited lead time, and not for 

overland flow assessment and flash floods. Flood forecasting model for 10-day lead time is 

under development.  

 

2.4 Flood Forecasting System in India 

Across India, there are 175 Forecasting sites, out of which, 28 are inflow forecast station and 

147 are water level forecast stations. Forecasting methods in India depend upon availability of 

data at the time of the forecast, physiographic characteristics of the watershed, warning time 

available, infrastructure availability and purpose of the forecast. 

Simple statistical correlations using a gauge to gauge/discharge are being used for some 

forecasting sites. MIKE-11 models are also in use for some sites in Damodar, Godavari, 

Mahanadi and Chambal basins. For major rivers, flood forecasts are issued once a day with 1- to 

3-day lead time, while twice a day with lead time from 12 hours to 24 hours for medium rivers. 

For flashy river, forecasts are delivered multiple times (more than twice) a day with a warning 

time less than 2 hours. Under the bilateral flood forecasting and warning system for 

transboundary rivers, India has cooperated with Nepal, Bangladesh, Bhutan, Pakistan and China 

for exchange of data on real-time basis. 
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According to the present norms of CWC (2010), a forecast of a flood forecasting site is 

considered to be reasonably accurate if the difference between the forecast and the 

corresponding observed level of the river lies within +/-15cm. In case of inflow forecasts, a 

variation of inflow volume within +/-20% is considered acceptable.  

 

2.5 Conclusion 

Conventional regression methods as well as ANN models are still widely practiced for 

operational uses in flood forecasting for the Mekong River, while forecasting systems have been 

upgraded with complicated and distributed models. As seen the forecasting systems in 

neighboring regions like India and Bangladesh, they are trying to improve or have improved the 

existing system, which is formerly based on the regression models, by applying more physics in 

the system at least using 1-D hydraulic models. The forecast lead times for these regions are 

more than 3 days. The hydrometric stations in those countries are of a sufficient density at least 

to cover the flood prone regions. 

With abundant water resources and numerous flood prone rivers, density of hydrometric 

networks in Myanmar is not inadequate and physical-based forecasting systems are still far 

behind the practice. The weakness of the current forecasting systems in Myanmar can be seen as 

follows: 

- In using regression techniques, model inputs could not be used consistently and vary 

from station to station. 

- While the forecast lead time is only for 1 day at most stations, the forecast accuracy is 

not satisfactory for extreme floods during monsoon. 

- The current forecasts are intended only for the gauged sites in the major rivers, and thus 

flood forecasting for ungauged catchments are not available. 

- Sufficient amount of quantitative rainfall are not available and inconsistent 

- Data availability and monitoring is not the same for river systems, despite an operational 

flood forecasting is highly dependent upon reliable and timely data. 

- Ground information (topography, soil and land use etc.), which affects on flood 

generating, are not available in a good resolution. 

Under these circumstances, robust and sustainable flood forecasting approaches for a developing 

country are needed to answer the flood problems either in gauged or ungauged sites. Being able 

to provide more lead time, they must be adaptable to local conditions and workable with an 

available database in the region, without much effort in continuous updating such models. 
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CHAPTER 3 

RESEARCH METHODS 

 

In order to fulfill the research objectives, the major works on flood assessment and forecasting 

practices are addressed in four research articles (Fig. 3.1). Out of which, the first article focus on 

the flood hydrology and trend assessment to characterize the potential flood risks. The second 

and third articles focus on the development of flood forecasting tools for gauged sites in 

different aspects. The fourth article emphasizes the flood response assessment and 

regionalization for ungauged sites. In the context of a black box approach, data driven and 

routing methods to river flood modeling are mainly analyzed. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1 Applied methods for major applications 

 

3.1 Time Series and Frequency Analysis 

As a preliminary study, time series and frequency analyses are used to assess the potential flood, 

and understand the hydrologic behavior of the monsoon river basin. Time series analysis was 

applied to detect the trends of annual maximum, Qmax (the largest magnitude that occurred in 

each year) series and their deviation at each gauging station. The significance of a linear trend 

for annual maxima series was assessed whether the slope value is significantly different from 

zero (i.e. no trend) or not. For the test of significance, the P-value was determined by referring 

to a t-distribution. The null hypothesis of no trend is rejected if the p value is smaller than the 

significance level. In this study, a trend was considered to be significant at 5% significance 

level. If the p value is less than or equal to 0.05, there is a significant trend. If not, there is not 

enough evidence of a meaningful trend in this significance level.  
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As a supplement, non-parametric Mann-Kendall test (Mann 1945; Kendall 1975) together with 

Sen’s Slope estimator are also used to determine the temporal trend for Qmax, daily maximum 

rainfall (1-D Rmax), 3-Day maximum rainfall (3-D Rmax), 7-day maximum rainfall (7-D 

Rmax) and annual monsoon rainfall (total rainfall during June and October) at five stations. 

A probabilistic approach is also required to incorporate the effects of the occurrence of many 

extreme events into flood risk management decisions (WMO 2008). The annual maximum series 

is applied in frequency analyses because there is a simple theoretical basis for extrapolating the 

frequency of annual series data beyond the range of observation. Among numerous probability 

distributions, the log-Pearson type III distribution (LP3) distribution is used to fit a sample of 

extreme hydrological data. The distribution describes a variable x whose logarithm y = log x is 

Pearson III distributed. Using LP3, the hypothetical floods with different return periods (2 to 

1000 years) are estimated for gauged stations, and the regional frequency curve can also be 

produced. Computed hypothetical floods at each gauging station are analyzed with respect to 

different time spans, in order to detect the changes in flood quantiles. The computed index 

floods (flood with return period of 2.33 years) will also be used for index flood regionalization 

for ungauged basins (Section 3.4). 

 

3.2 Flood Forecasting using Data Driven Models 

Data-driven modeling (DDM) constitutes a universal approximation of input and output signals, 

without explicitly taking into account the physical processes in a system (Fig. 3.2). Shrestha 

(2005) stated that these models are able to make abstraction and generalization of the processes, 

and provide a fast and relatively easy means of model development for highly complex, non-

linear and dynamic systems.  

 

 

 

 

 

 

Fig. 3.2 Process of learning in DDM (Adapted from Solomatine and Ostfeld 2008) 

 

Examples of the most popular DDM methods are statistical methods, artificial neural networks 

and fuzzy rule-based systems. As an attempt to improve the current forecasting practices in 

Myanmar, multiple linear regression and ANN methods are applied for multi-step ahead 
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forecasting models. For both approaches, the input vector (xi) includes water level and rainfall, 

and the output (y) is forecasted water levels for 1- to 5-day lead times. 

 

3.2.1 Multiple Linear Regression 

In the case of multiple explanatory variables, multiple linear regression (MLR) is to explain as 

much as possible of the variation observed in the response variable, leaving as little variation as 

possible to unexplained “noise”. The general form of a regression model for k independent 

variable is given by 

Y = β0 + β1 X1 + β2 X2 + ………+ βk Xk + ε           (3.1) 

where, y is the response variable. β0 is the intercept. β1, β2, ..., βk   are the slope coefficients for 

the explanatory variables. ε is the remaining unexplained noise in the data (the error). The 

independent variables X1, X2,…., Xk may all be separate basic variables, or some may be 

functions of a few basic variables. The least-squares method is used to choose the best-fitting 

model, which is the one that minimizes the sum of squares of the distance between the observed 

responses and those predicted by the fitted model. Since MLR is one of the statistical 

techniques, attention should be paid to the conditions of multicollinearity, heteroscedasticy and 

autocorrelation in model development. 

Stepwise multiple linear regression (SMLR) method is applied as an alternative way of 

approaching the problem of multicollinearity. Moreover, instead of selecting the most important 

variables a priori, SMLR method is a way of choosing predictors of a particular dependent 

variable by an iterative procedure on the basis of a partial F test (Kleinbaum et al. 1998, Merz 

2011). Input vector selection is based on partial-, auto-, and cross-correlation of water level and 

rainfall data. The antecedent data, which are within the significant limit, are incorporated into 

the SMLR models. 

 

3.2.2 Artificial Neural Network 

As an alternative approach to flow forecasting, ANN technique is applied as a competitor to the 

conventional regression method, which has been applied as a benchmark forecast model in 

Myanmar, as well as in many developing countries. ANNs are bottom-up approaches for not 

making any prior assumptions about the model structure (Khatibi et al. 2011). ANNs are 

inspired by the capability of human brains to learn from highly complex nonlinear information 

in a parallel distributed network. Among the many fields of artificial intelligence, ANN is 

gaining a prime status, owing to its interesting properties such as “learning” from the examples, 

the ability to represent non-linearity by means of a smaller number of parameters and the least 
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required information regarding the process to be modeled (Yegnanarayana 1994; Pal and 

Srimani 1996). 

The black-box type flood forecasting can be classified under the category of pattern mapping 

(Sajikumar and Thandaveswara 1999). Feed-forward multilayer perceptron (MLP) network 

(Rumelhart et at. 1986) is usually used for pattern mapping problems. In a feed-forward 

network, information passes only in one direction, i.e. from the neurons of a layer to the 

succeeding layer. Thus, all input to a neuron in a particular layer is from the preceding layer and 

the unidirectional connection strengths are known as weights. The presence of a nonlinear 

activation function is an important characteristic; otherwise the MLP reduces to a linear model 

(Haykin 1994, Shrestha 2005). An MLP network (Fig. 3.3), which has been used in this study, 

consists of a set of sensory units that constitute the input layer, one or more hidden layers of 

computational nodes (neurons) and an output layer of computational nodes. A typical neuron of 

the ANN consists of the following features:  

 Input: Propagates input signal to neuron. 

 Synaptic weights: Interneuron connections that weighs their respective input signals. 

 Bias: Threshold that has an effect of either increasing or decreasing the net input. 

 Output: Provides the output signal of the neuron. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3 Configuration of feed forward ANN (multi layer perceptron) network 

 

A neuron consists of multiple inputs and a single output. The sum of the product of inputs and 

their weights minus bias (b) leads to a net as follows: 

net = ∑ x୧	. w୧ - b              (3.2) 

i = input node 
h = hidden node 
o = output node 
b = bias 
X = network input 
y= network output 
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Then the output of a neuron, f(net) is decided by an activation function that determines a 

response of the node to the input signal it receives (see Fig. 3.4 ). 

 

 

 

 

 

Fig. 3.4 A processing element with an activation function 

 

The commonly used activation functions, which were also used in this study, are as follows: 

(i) Linear Function: Defined as f(x) = x, making the network takes any values as 

predicted outputs may be distorted by non-linear activation functions. 

(ii) Sigmoid function: Given as f(x) = 
ଵ

ଵା	௘షೣ
 , which produces an output in the range of 

0 to +1.  

(iii) Hyperbolic tangent function: Given as f(x) = tan (x) = 
௘ೣି௘షೣ

௘ೣା	௘షೣ
, which produces an 

output in the range of -1 to +1.  

The limiting amplitude range of the asymptotes of the sigmoid and hyperbolic tangent functions 

produces a ‘squashing effect’ to the input signal, which is useful in keeping the output of a 

neuron within a reasonable dynamic range (Tsoukalas and Uhrig 1997). The sigmoid and 

hyperbolic tangent functions are used in the hidden layers. A linear function is applied at the 

output layer, making it possible for the network to take any value. 

The design of an ANN model consists of the selection of appropriate network architecture and 

the training algorithm. An optimum ANN model can be considered as the one with the best 

performance while retaining simple and compact network architecture. Until now, no general 

theory has existed for determining the optimal network geometry and three layered feed forward 

network ensures the required network performances in the flood forecasting context (Cullmann 

and Schmitz 2011). In this thesis, ANN structures with one hidden layer are considered in all 

cases of forecast model development. 

 

3.2.2.1 Neural Network Training 

The training process of ANN involves the presentation of inputs and target to the network, and 

the adjustment of the weights and bias until the specified performance criteria is met. This is 

similar to the idea of model calibration, which is an integral part of hydrological or 
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hydrodynamic modeling. In order to generate an output vector Y = (y1, y2,……,yn), a training 

(learning) process is employed to find optimal weight matrices and bias vectors that minimize a 

predetermined error function given as follows. 

E =∑ ∑ 	(y୧ − t୧)ଶ୒
୧ୀଵ

୮
୮ୀଵ		            (3.3) 

In flood forecasting, ti and yi represent the observed flood magnitudes and the computed ones by 

ANN model of the ith node respectively; N is the number of output nodes and p denotes the 

number of training patterns. In supervised learning, which is mostly used in forecasting 

problems of water resources systems, the network performance is judged by comparing the 

desired outputs corresponding to the target vector with the actual outputs. The most frequently 

used learning rule in many ANN applications is error back propagation, which belongs to 

supervised learning algorithm and is essentially a gradient-descent algorithm that minimizes the 

network error function (Minn and Halls, 1996). Based on Eq. (3.4) (ASCE 2000), the network 

weights and biases are adjusted by moving a small step in the direction of a negative gradient of 

the error function during each iteration (Thirumalaiah and Deo 1998). The iterations continue 

until a specified convergence or number of iterations is achieved. 

 Δw୧୨(n) = 	−ɳ ∗ əE
əwij

 + α ∗ Δw୧୨(n − 1)         (3.4) 

Where ݓ߂௜௝(݊) and ݓ߂௜௝(݊ − 1) are weight interconnections between node i and j during the 

nth and (n-1)th pass or epoch. ɳ and α denote learning rate and momentum, respectively. To 

perform a parallel comparison with regression method, ANN models are also trained using the 

same input vectors that have been identified by the SMLR models. 

For the ANN model to be able to generalize the system, it is important that the set of data 

contains different conceivable events. A large number of unnecessary inputs will lead to a 

complex model, and drastically slow down the training process. In the model development, 80% 

of the data were used for calibration while 20% were used for validation. As Minns and Hall 

(1996) stated that ANNs are a prisoner of their training data, the extrapolation capability of 

ANN has been regarded as a main problem. However, it can be overcome by appropriate data 

scaling. As an important step in preprocessing, the calibration data sets were standardized in a 

linear scale subtracting the mean and divided by the standard deviation in order to overcome 

numerical difficulties during the training. 

 

3.3 Flood Forecasting using Hydrologic (Muskingum) Routing 

In case of no climatic and catchment parameters to be used in forecasting models, hydrologic 

routing would be an efficient alternative to predict outflow hydrograph with known inflow                  

hydrographs. The Muskingum method (McCarthy 1938) is the most widely used method of 
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hydrologic flood routing, and has been extensively researched to find an ideal parameter 

estimation of its nonlinear forms, which require more parameters, and are not often adequate for 

flood routing in natural rivers with multiple peaks. To address this shortcoming, application of 

Muskingum routing coupling with ANN technique is investigated in this thesis. 

The Muskingum method is referred to routing in a lumped system for handling a variable 

discharge-storage relationship, based on the continuity equation as 

I – O = 
ௗௌ
ௗ௧

             (3.5) 

Where I = inflow to the reach, O = outflow from the reach, ௗௌ
ௗ௧

 = rate of change in channel 

storage with respect to time. In its original concept, the linear storage function for the 

Muskingum method with two parameters is expressed as a function of both inflow and outflow 

given by 

S = K [xI + (1-x)O]             (3.6) 

In which S = storage volume; I = inflow; O = outflow; K = a time constant or storage coefficient; 

and x = a dimensionless weighting factor. K accounts for the translation (or concentration) 

portion of the routing, as being interpreted as the travel time of the flood wave from the 

upstream end of the downstream end of the channel reach. The parameter x accounts for the 

storage portion of the routing and is a function of the flow and channel characteristics that cause 

runoff diffusion. From continuity equation (Eq. 3.5) and storage equation (Eq. 3.6), the outflow 

yields in finite difference form 

ܱ௧ା∆௧ = 	 ௧ା∆௧ܫ଴ܥ + ௧ܫଵܥ	 +  ଶܱ௧          (3.7)ܥ	

Where, C0, C1, and C2 are function of K, x and ∆ݐ. Since C0+C1+C2 = 1, and the routing 

coefficients can be interpreted as weighting coefficients, which are constant throughout the 

routing procedures. The parameters K and x are conventionally estimated using a graphical (i.e. 

trial and error) method. Despite the use of the trial and error method for many decades, it is time 

consuming and likely to be subjective (Chu 2009) as well as such estimates tend to be 

approximate (OʹDonnell 1985). The graphical method is dependable unless a linear storage 

function is not duly violated in the channel reach. However, linear routing in a natural river 

becomes complicated by the fact that storage is not a function of outflow alone (Linsley et al. 

1975).  

 

3.3.1. Non-linear Muskingum Models 

In natural river reaches, it is common to observe the nonlinear storage function and thus, 

significant errors may arise in downstream flood routing with the use of the conventional linear 
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Muskingum approach (Barati 2013). Frequently quoted nonlinear (NL) forms of Muskingum 

model in literature (Gill 1978; Kim et al. 2001; Barati 2013; Geem 2013) are 

S = K[x	ܫ௡+ (1 −x)ܱ௡]    (NL-1)       (3.8) 

S = K[x	ܫ௡ + (1 −x)ܱ௠]   (NL-2)       (3.9) 

 S = K[ݔ	ܫ	 + 	(1 −  ௠  (NL-3)                  (3.10)[ܱ(ݔ

Following a similar derivation to that of NL-1, Easa (2013) proposed a four-parameter nonlinear 

Muskingum model as follows: 

S = K[ݔ	ܫ௡ 	+ 	(1−  ௡]௠   (NL-4)      (3.11)ܱ(ݔ	

These nonlinear models have an exponential parameter n and m, which presumably makes the 

models closely search the nonlinear relation between accumulated storage and weighted flow 

(Kim et al. 2001). Among nonlinear models, three-parameter NL-3 model is the most commonly 

used in flood routing as it increases the accuracy of the routing (Orouji et al. 2013). Unlike in 

the linear model, K in the nonlinear model does not describe the travel time of the flood wave 

and x does not need to have the same preconditions (Barati 2011; Easa 2013). The parameters x, 

K, n and m in nonlinear models cannot be estimated through a simple graphical method. The 

calibration procedure becomes more complicated and use optimization algorithms in searching 

best routing parameters in order to minimize the objective function, defined as the sum of 

squared deviation (SSQ) (Eq. 3.12). This is minimized in terms of the routing parameters by 

applying the different optimization techniques. 

  Min SSQ = ∑ ൫ܱ௧ −	 ෠ܱ௧൯
ଶ௡

௧ୀଵ         (3.12) 

Where ܱ௧ and ෠ܱ௧ represent the observed outflow and the routed outflow. 

Therefore, the optimization model for NL-3 and NL-4 may be expressed in Eqs. (3.13) and 

(3.14) respectively as 

SSQ = ∑ ቈܱ௧ −	ቊቀ
ଵ

ଵି௑
ቁ ቀௌ೟

௄
ቁ
ଵ ௠ൗ

− ቀ ௫
ଵି௫

ቁ ௧ቋ቉ܫ
ଶ

௡
௧ୀଵ       (3.13) 

SSQ = ∑ ቎ܱ௧ −	ቊቀ
ଵ

ଵି௑
ቁ ቀௌ೟

௄
ቁ
ଵ ௠ൗ

− ቀ ௫
ଵି௫

ቁ ௧௡ቋܫ
ଵ ௡ൗ

቏

ଶ

௡
௧ୀଵ                 (3.14) 

The value of parameter x may range theoretically -∞ to 0.5 (Strupczewski & Kundzewicz 1980) 

while other parameter K, n and m have no specific constraints.  

 

3.3.2 Application of ANN in Muskingum Routing 

Even nonlinear Muskingum models may not be applicable to every flood event is likely because 

the inflow-outflow relationship in natural rivers depends not only on the storage characteristics, 

but also on other external influences. Moreover, a natural monsoon river has high external 
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influences on the relationship between storages and inflow-outflow patterns that could not be 

fully captured by conventional flood routing procedures. Therefore, a novel black box approach, 

namely ANN method, helps a direct mapping of observed outflows and inflows according to the 

Muskingum formula (Eq. 3.7) and minimizes the discrepancy between observed and routed 

flows, (Fig. 3.5). ANN-based Muskingum models are trained (calibrated) according to the 

concepts described in the section (3.2.2.1). The proposed model is compared to eight 

optimization methods for the benchmark data. The hydrologic routing enhanced by ANN 

technique was proven to be promising alternative for predicting the benchmark hydrograph by 

minimizing SSQ as well as real flood hydrographs of the Chindwin River.  

 

 

 

 

 

 

 

 

 

 

Fig. 3.5 Structure of the MLP model for Muskingum routing 

 

3.4 Flood Response Assessment and Regionalization for ungauged Sites 

Knowledge of the spatial distribution of flood response units is crucial to understanding the 

regional context and also essential for predicting floods at ungauged sites, which is still a 

challenge for practitioners in many regions. As a supporting tool for the flood management 

system, this section mainly explores the methods for detecting homogeneous regions with 

similar flood responses using GIS, and ANN-based regional index flood modeling.  

 

3.4.1 Determination of Homogeneous Region 

According to WMO (2009), homogeneous regions can be defined in three different ways (see 

Fig. 3.6): (a) as geographically contiguous regions; (b) as geographically non-contiguous 

regions; (c) as neighborhood, where each target station is associated with its own region. Using 

geographical proximity alone as surrogate for hydrological similarity might not be satisfactory 

since the regionalized areas may be hydrologically heterogeneous (Smith and Ward 1998).                                     

Given that sufficient flood data will seldom be available at the sites of interest, regionalization 
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with flood statistic is not possible, and it makes sense to use climatic and hydrologic data from 

nearby and similar locations (Maidment 1993). 

 

 

 

 

 

 

 

 

 

Fig. 3.6 (a) Geographically contiguous region, (b) Non-contiguous homogeneous regions, (c) 

Hydrologic neighborhoods (Adapted from WMO 2009) 

 

Rao and Srinivas (2008) mentioned the approaches to the regionalization of the watershed 

include: (i) method of residuals (Thomas and Benson 1970); (ii) the canonical correlation 

analysis (Ouarda et al. 2000); (iii) region of influence (ROI) approach and its extensions 

(Cunderlik and Burn 2006); (iv) hierarchical approach and its extension to ROI framework 

(Zrinji and Burn 1996); (v) the cluster analysis (Hosking and Wallis 1997). In this thesis, 

approaches for forming non-contiguous homogeneous regions are considered based on 

catchment descriptors and climatic attributes by using multivariate analysis i.e. factor and cluster 

analyses. 

 

3.4.1.1 Key Factors on Flood Generation 

The choice of variables for pooling homogeneous regions and regional flood models depends on 

data availability and influences on flood generation (GREHYS 1996). Therefore, eight 

independent variables, including five physiographic properties (area, elevation, slope, length and 

shape factor), two response variables (time of concentration and soil conservation service curve 

number), and one climatic variable (mean annual rainfall) were considered as flood causative 

factors for pooling homogeneous regions. 

 

(a) Soil Conservation Service Curve Number (CN) 

In classifying homogeneous regions, terrestrial information such as land use and soil types are 

needed to be included (Hosking and Wallis 1997). A basin can be characterized by a single 

parameter called CN which is an empirical parameter determined by the land cover description 
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and hydrologic soil groups. It is a convenient representation of the potential maximum soil 

retention.  Higher CN value represents higher runoff. 

 

(b)  Time of Concentration  

Time of concentration (Tc) is a function of flow length and slope, and influences the shape and 

runoff peak (USDA 1986). The time for runoff measures the time that water travels from the 

most hydrological remote points of the watershed to points of interest within the watershed and 

thus can be considered a significant factor in runoff generation. Tc for main stream was decided 

using the classical formula by Kirpich (1940) as TC = 0.0078 ൬ ௅
ඥௌబ

൰
଴.଻଻

 

Where, Tc is in hours, L is the maximum length of the main watercourse (km) and S0 is its 

average channel slope. 

 

(c) Mean Annual Rainfall 

Climatic condition over the study area such as duration, intensity and distribution of rainfall 

plays a vital role in defining hydrologic response of the watershed. In flood regionalization, 

mean annual rainfall (MAR) was used a contributing factor. An ordinary Kriging method with 

GIS was applied for spatial interpolation to produce MAR value at each grid cell in the entire 

catchment 

 

3.4.1.2  Multivariate Analysis 

To select catchment descriptors from a large data set, an objective factor analysisis used to 

reduce the number of variables, and to detect the structure of in the relationships between 

variables, that is to classify variables. A principal component analysis (PCA) is one method of 

factor analysis, which looks at the total variance among the variables. The criterion for the 

rotation is to maximize the variance (variability) of the new variable (factor), while minimizing 

the variance around the new variable. The selected flood causative variables described in the 

section (3.4.1.1) are reduced to significant factors by PCA while retaining maximum variation of 

the original data set. Then, the factor scores determined by PCA have been subsequently used 

for the clustering homogeneous region using Ward and K-mean algorithms in order to produce 

similar flood response regions.  

 

3.4.2 Regional Index Flood Models 

For each homogeneous region clustered by leading principal components, regional Index Flood 

models have been developed via two approaches: conventional power form (regression model) 
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and ANN. The power form model is the most commonly used relation between flood statistics 

and a set of climatic and catchment characteristics within a region (Thomas and Benson 1970; 

Cunnane 1988). Independent variables for the regional IF model are considered based on the 

lower interrelation among the selected variables, which have been described in the section 

(3.4.1.1). Then, the relationship between IF and the independent catchment descriptors becomes 

ܳ௠ = ߙ଴	ܮఈభ 	ܵఈమ ఈయܧ	 ఈరܰܥ	 	ܴఈఱ 	Ɛ       (3.15) 

where ܳ௠ is the IF of each ungauged site in the clustered region in m3 s-1. α0, α1, α2, α3, α4 and α5 

are the regression coefficients. Ɛ is the multiplicative disturbance term. L, S, E, CN and R 

represent basin length, basin slope, mean basin elevation, soil conservation curve number and 

mean annual rainfall respectively. By a logarithmic transformation, the above equation was 

linearized to find the parameters. However, the estimates of flow statistics from the linearized 

models via log transformation may be biased in the real domain (Pandey and Nguyen 1999; Eng 

et al. 2007). In this thesis, this shortcoming is overcome by using a neural network in searching 

relationship between index flood magnitude and catchment descriptors in a real domain (Fig. 

3.7). ANN-based regional IF models are trained (calibrated) according to the concepts described 

in the section (3.2.2.1). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7 Configuration of the feedforward ANN (multilayer perceptron) network for IF regional 

models 

 

3.5 GIS Application for Catchment Parameterization 

The central role of the GIS in the hydrological modeling process suggested by Maidment (1993) 

is (a) spatial representation in hydrological assessment; (b) hydrological parameter 

determination; (c) hydrological modeling within GIS; and (d) linking the GIS and hydrological 
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models to utilize the GIS as an input. In this thesis, spatial representation and catchment 

parameterization using GIS are extensively focussed. 

Initially, raw digital elevation model (DEM) data of the study area are corrected to create a 

depressionless DEM by filling the sinks. Then watershed characterization was done by using the 

ArcHydrol Tools function in ArcGIS which processes and analyzes the corrected DEM data to 

characterize topography, measure basin parameters, identify surface drainage, subdivide 

watersheds, and quantify the drainage network. Catchment parameters with respect to the five 

gauging stations on the Chindwin River are used in the flood risk assessment (section 3.1). 

Major clustering variables for regionalization are derived using spatial analysis and raster 

calculator functions in GIS in accordance with the associated hydrological concepts. For spatial 

interpolation in preparing a gridded map for each clustering variable, the geostatistical ordinary 

Kriging method is used. Afterwards, the spatial distribution of the catchment and climatic 

parameters was extracted for each subbasin and used for flood regionalization (section 3.4). 
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CHAPTER 4 

OVERVIEW OF THE RESULTS 

 

This thesis has focused on the assessment of flood risk in term of flood probability and the trend 

of annual maximum flows in a monsoon dominated basin, and further provided scientific 

messages on developing black-box models with different aspects in order to suit the forecasting 

requirement of developing countries where hydrometric data are scarce. All kinds of flood 

studies have been carried out in the Chindwin River basin in northern Myanmar, which was also 

treated as a case study in the development of the forecasting models. The major 

accomplishments in this thesis are summarized as follows: 

• In article I, hydrologic aspects of monsoon floods in the Chindwin river basin are 

analyzed using statistical and frequency analyses, as high rainfall intensities with spatial 

and temporal variation during the southwest monsoon causing severe floods are 

threatening the region. It was found that flood responses vary due to the complex 

topography and rainfall distribution over the catchment. In the Chindwin basin, mean 

annual flood rises with the increase of the catchment areas, and coefficient of variation of 

annual maxima series is changing with increasing catchment size. At five gauging 

stations along the main river, time series of annual maxima showed no trend of the mean 

value. However, according to the linear regression statistics, the deviation of annual 

peaks from their means (regardless of positive or negative) showed increasing trends 

with positive slopes at all stations in the last decades (1991-2011). Deviation trends at 

Hkamti and Mawlaik stations are highly significant at the 5% level with the p value of 

0.001 and 0.05 respectively. In addition, flood quantiles are determined for return 

periods of 2 to 1000 years using the data covering the period 1966 to 2011. Comparing 

the expected floods with the highest observed floods, suggests that these correspond in 

the upper mountainous catchment (Hkamti and Homalin) to about 100-year events. In the 

central flat terrain with medium elevations (Mawlaik) maximum observed flood has a 

statistical return interval of about 50 years, while in the lower part of the dry zone area 

(Kalewa and Monywa) it is about 15 years. Time series and flood probability analyses 

showed that the upper and middle parts of the basin have particularly high flood risks. To 

analyze the changes in flood values of different return periods, the relative differences of 

flood quantiles in two time phases, 1966-1990 (TP-1) and 1991-2011(TP-2), with respect 
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to the entire observation period are compared. Overall, the year 1990 was considered the 

trend change year for the Chindwin watershed because the deviations of annual maxima 

series of all stations are getting larger around this year. Beyond the 5-year return period, 

expected floods are 2.5% to 26% higher for the data of TP-2, compared to that of TP-1. 

In comparisons of relative differences in flood values of two series with respect to the 

entire series, flood values are increasing 3% to 15% at different stations in the TP-2, 

while the flood values of the TP-1 are decreasing up to 13% with the exception of 

Homalin station. The highest difference (either high or low values) was found at the 

Hkamti station, followed by Mawlaik, Monywa and Kalewa respectively. This 

significance shows that the change in flood quantiles of the Chindwin River is decreasing 

from upstream to downstream. Without having significant evidences of anthropogenic 

effects, the cause of the increasing variability in annual peaks is probably due to the 

interannual structure of regional climate and changes in monsoon intensity. The result 

gives a motivation for further analysis of flood forecasting approaches by paying more 

attention to the area with relatively high probability floods in this poorly gauged basin. 

(Appendix 1) 

• Due to limited data sources, practical situations in most developing countries favor 

black-box models in real time operations. Therefore, in article II, performances of 

stepwise multiple regression (SMLR) and artificial neural network (ANN) models, as 

tools for multi-step forecasting Chindwin River floods, are investigated in a simple and 

robust approach. Future river stages are modeled using past water levels and rainfall at 

the forecasting station as well as at the hydrologically connected upstream station. The 

forecasting models are developed for the Mawlaik station, which has been defined as the 

flood prone station in the first article. The developed models are calibrated with flood 

data from 1990 to 2007 and validated with data from 2008 to 2011. Correlation analyses 

suggest antecedent water level and rainfall data up to 5 lags could be considered as the 

input vector. Since the dependent water level series is almost normally distributed and 

the autoregressive process is dominant, the most recent antecedent data have a greater 

impact on the regression models. With a high accuracy of R2 values ranging from 0.8 to 

0.99, both SMLR and ANN models provided satisfactory results in a forecasting water 

level up to five days ahead during the monsoon flood season. In a comparison of 

forecasting performances, the ANN models are superior to the SMLR models, 
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particularly in predicting the extreme floods. In the model development, at-site rainfall 

could not much contribute to the model performance in terms of R2. Nonetheless, 

involvement of the rainfall reduced the prediction errors in the ANN models, which have 

the inherent ability of capturing nonlinearity. The contribution of upstream data to both 

models can improve the forecasting performance with higher R2 values and lower errors. 

Overall, the ANN models can predict high floods with less than 1% error for one step 

ahead forecast. Considering the commonly available data in the region as primary 

predictors, the results would be useful for real time flood forecasting, avoiding the 

complexity of physical processes. (Appendix 2) 

• The third article examines the application of ANN in the Muskingum flood routing as an 

alternative black-box approach in case of no climatic and catchment parameters. The 

feedforward multilayer perceptron (FMLP) models are developed according to the 

Muskingum equation and their performances are investigated in two case studies. The 

first case study is based on the well-known Wilson’s benchmark data, which has only a 

single peak and is reported to present a nonlinear relationship between weighted 

discharge and storage. The performance of the proposed FMLP Muskingum model is 

compared to that of the previously reported methods, which have been used in the 

parameterization of nonlinear Muskingum routing. Using the sum of squared deviation 

(SSQ), coefficient of efficiency (CE), error of peak discharge and error of time to peak, 

the FMLP model shows a clear-cut superiority over other methods in flood routing of 

well-known benchmark data. The best SSQ values of previously reported methods for 

the three-parameter and four-parameter nonlinear Muskingum models were 36.77 m3s-1 

and 7.67 m3s-1 respectively. The FMLP model in this research can reduce the SSQ value 

up to 4.05 m3s-1. In the second case study, the FMLP model is also proven to be a 

promising tool for routing real flood hydrographs with multiple peaks of the Chindwin 

River. The best structure of FMLP mode in this case is 3-3-1, which provides CE values 

of 0.99 in calibration and 0.98 in validation. This article presents a successful attempt to 

validate the prediction of real flood events in this natural river via hydrologic routing 

enhanced by ANN technique. Unlike other parameter estimation methods in Muskingum 

routing, the FMLP models directly capture the routing relationship based on the 

Muskingum equation, showing its robustness and predictability in real flood cases. 

(Appendix 3) 
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• In the second and third articles, the applications of data driven models are dedicated only 

to gauged sites. Therefore, through the example of the Chindwin River basin, article IV 

presents the application of principal components and clustering techniques for detecting 

hydrological homogeneous regions, and a neural network-based regionalization approach 

for estimating index floods (IF) at ungauged catchments. Based on catchment 

physiographic and climatic attributes, the principal component analysis yields three-

component solutions with 79.2% cumulative variance. The Ward’s method is used to 

search initial cluster numbers prior to k-means clustering, which then objectively 

classifies the entire catchment into four homogeneous groups. Mean annual rainfall, 

basin elevation and basin slope have the greatest contribution to classifying the 

hydrological similarities of the Chindwin watershed. Overall the entire Chindwin 

catchment is likely to have moderate to high flood potential. For each homogeneous 

region clustered by the leading principal components, the regional IF models are 

developed via the ANN and regression methods using the longest flow path, basin 

elevation, basin slope, soil conservation curve number and mean annual rainfall, which 

have lower inter-correlation with each other. The ANN based IF models for each region 

explore more consistency in all performance indices, providing CE value higher than 

0.95 in both calibration and validation, whereas the regression model has the least 

efficiency in validation although it has a higher performance with a CE value of 0.9 in 

calibrating. The result shows that the ANN approach captures the nonlinear relationships 

between the IF and the catchment descriptors for each cluster, showing its superiority 

towards the conventional regression method, for which the bias of parameter estimation 

via log transformation is concerned. As a result, better understanding of similar flood 

response areas and knowing IF for the entire Chindwin river basin would ease the flood 

management in Myanmar. (Appendix 4) 

Overall, this thesis explores a better understanding of flood causative factors and the trends of 

hypothetical floods in the monsoon dominated river. Furthermore, the main contribution of the 

thesis is to improve the current flood forecasting system of Myanmar by introducing the black-

box methods whose versatility have been proven in flood prediction at gauged and ungauged 

sites using available data, and whose predictability is quite satisfactory and meets the regional 

requirements. In particular, the main advantages of ANN models to be explored in this thesis is 

less data requirement, suitability of any data type in the model development, avoiding physical 
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meaning of the model structure and free from any statistical prerequisites. The overall results 

would contribute to national water resources planning and management in Myanmar. The 

methodology can lend itself to other similar regions where catchment data are scarce. 
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CHAPTER 5 

CONCLUSIONS AND PERSPECTIVES 

 

5.1 Conclusions 

To cope with the situation of data deficiency in developing countries, one must develop 

predictive models that may use one or few of the available hydrometric data to issue a reliable 

forecast of good quality, which are a decisive factor for a successful early warning. In this 

context, this thesis had been inspired by the robustness of black-box forecasting approaches that 

originates from data driven methods and hydrologic routing. For the scientific community to 

benefit more from thesis, it is important to convey a message about how their capabilities are 

effective in flood forecasting in general, and particularly how these approaches help the 

practitioners in flood assessment in case of data scarcity in Myanmar i.e. regional context. 

Driven by these situations, a number of studies have been undertaken with flood cases of the 

meso-scale Chindwin River in northern Myanmar. 

In terms of probability, flood risks in the upper half of the basin are higher, especially in the 

recent decades. Strong trends in standard deviation and probability curves along the main stream 

suggest more extreme events are likely to happen in coming years. Despite a weak evidence of 

urbanization and substantial changes in land management in the catchment, the cause of the 

increasing variability in annual peaks is, however, probably due to the interannual structure of 

regional climate and changes in monsoon intensity. This finding also leads to a conclusion that 

compared to other factors, hydroclimate parameters likely influence more on the generation of 

floods in the region and become a key input to the flood forecasting model in the context of 

Myanmar rivers.  

On the other hand, multiple flood characteristics (e.g. shape, volume and peaks of hydrograph) 

cannot be modeled by the probability of flood peaks, and the risk estimation for a flood event of 

a certain dimension depends strongly on hydrological forecasts. Therefore, the core of the 

research deals with the proper design of a river flood forecasting model for the flood prone 

region of the Chindwin River. The application of SMLR and ANN models in multi-step river 

stage prediction (Appendix 2), ANN application in Muskingum flood routing (Appendix 3) and 

neural network based regionalization for ungauged catchment (Appendix 4) demonstrate the 

robustness of such data models in the context of predicting any desired flood magnitude based 

on the existing hydro-meteorological conditions and data availability. This implies an 
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introduction of the simple and robust forecasting approach for a monsoon-dominated river basin 

in a sustainable manner.  

As an improvement of current forecasting approaches, when developing multi-step ahead 

forecasting models under two conditions: (a) using at-site data only and (b) using upstream data, 

both regression and ANN models provide reliable forecasts up to 5-day lead time which is 

sufficient for flood warning and evacuation. The developed ANN models achieved by no means 

their best performances via a parallel comparison with SMLR models. Nonetheless, the neural 

network approach has shown consistently better performances than the conventional MLR 

technique in both conditions, especially for extreme flood prediction. The result not only shows 

the relevance of using ANN in flood forecasting with limited data types, but also reveals the 

clear-cut superiority of ANN models to regression models using the same input data, for the 

conditions under which the regression technique has the best performance. This study would be 

a remedy to the shortcoming of previous studies due to unfair comparison between these two 

approaches. For more lead times, performances of the models can be further improved by adding 

other prediction variables such as rainfall and temperature not only from hydrologically 

connected stations, but also nearby stations in the catchment.  Although using more information 

is challenging for linear regression models, ANN models can incorporate different predictors 

and would provide better forecasts.  

In case of no meteorological data, the outflow hydrograph from a stream channel can be 

predicted by routing methods. In chronological order, better solutions for parameter estimation 

of Muskingum routing were proposed in minimizing the SSQ value with respect to the 

benchmark Wilson’s data. Very few studies reported the applicability and performance of the 

proposed method in real flood cases with a successful validation. The fact that even nonlinear 

Muskingum models may not be applicable to every flood event is likely because the inflow-

outflow relationship in natural rivers depends not only on the storage characteristics, but also on 

other external influences. As a remedy for such a shortcoming, the FMLP network with error 

back propagation was applied for Muskingum flood routing, and its performance was assessed 

for the benchmark data in comparison with previous methods as well as for real flood cases of 

the Chindwin River. In both cases, the performance of the FMLP models was found to be quite 

satisfactory in terms of all performance indices. The ANN approach can disregard any external 

disturbances and successfully capture the inflow-outflow relationship of the real flood cases on 

the basis of the Muskingum formula which is sensitive to high disturbances by lateral inflows 
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into the system. With a set of inflow-outflow records for a river reach, the proposed approach 

has been further shown to be a promising tool for routing of real flood events in natural rivers.  

Despite the spatial distribution of flood response units is essential for the effective flood 

management, gauging all streams is neither possible nor desirable especially in developing 

countries. In case of deficiency in flood statistics, different climatic and physiographic attributes 

across the Chindwin catchment suggested that it is possible to generalize the effects of climatic 

and catchment attributes on floods within the defined homogeneous regions. Mean annual 

rainfall, basin elevation and basin slope have the greatest contribution to classifying the 

hydrological similarities of the Chindwin watershed. In the development of regional IF models, 

the conventional power form (regression) models did not show reliable results in the validation 

stage although the calibration result was quite satisfactory. In a comparison using real data in the 

power form models, the model performance is slightly lower than that of the linearized models 

via log transformation. The regression based IF model has its statistical assumption and the log-

transformed solution of the conventional power form (regression based) model for the parameter 

estimation could be biased in a real domain. The neural network approach, with the inherent 

ability of capturing nonlinearity, has shown better results in both calibration and validation. 

In addition to the issue of model performance, the presented approaches are also found to be 

data efficient and worked well. The data-driven models, once trained correctly, yield the reliable 

results from the limited or desired input and output data, which can be either linear or non-

linear. This quality is very useful to water resources management with limited resources. These 

models are flexible to use, and computationally fast and reliable. Further, the data models need 

only pruned input data from the stations, which have a higher correlation. Extrapolation 

capability of ANN, formerly regarded as its disadvantage, is no longer a problem and it can be 

overcome by using the appropriate data scaling in model training. Traditionally, simplified 

modeling techniques like statistical methods have been used to solve the problems posed by lack 

of data as long as the relationship between applied variables shows a strong linearity. However, 

real world situations never guarantee such conditions. Therefore, nonlinear data driven 

techniques like ANNs are particularly useful for application involving complicated nonlinear 

processes that are not easily modeled by traditional means. Although this study used for large 

data set (1990-2011) for five days ahead flood level prediction, these models can also be trained 

with little data. In IF regionalization, such a merit of requiring less data has also been confirmed 
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by ANN models. The proposed methodology is believed to be employed to emulate the role of 

simplified forecasting techniques in Myanmar and similar regions.  

 

5.2 Perspectives for Further Research 

In the flood assessment, interannual variation of streamflow should further be validated with the 

detail spatial precipitation data at the regional level. Attention should also be paid to human 

activities which alter regional hydrologic regimes, affecting long-term changes in streamflow at 

both seasonal and regional scales. Flood extents should be analyzed with finer spatial scale. 

As this study has shown, estimating future floods of a river system is possible by the data driven 

models using commonly available data in the region, without any comprehensive data 

requirements. However, a number of potential areas of future research with regard to river flood 

prediction still remain in the context of data driven modeling. One of the most important aspects 

is to complete a detailed quantitative sensitivity analysis and uncertainty assessment of the 

models, in order to examine the relative contribution of the model parameters, initial conditions 

and input variables to the model’s overall predictive uncertainty. Further investigations should 

be conducted to identify other significant predictors that are commonly available in the region, 

and build more accurate forecasting models using various relevant methods. In regionalization 

processes, spatial flood data must have a sufficient density to cover the entire catchment. 

Therefore, modifications of the regional IF models are required from time to time using more 

available flood data and catchment attributes. Even if the observed flood data will not be 

expected in the near future, it is recommended that synthetic annual maximum discharge series 

of ungauged basins would be generated using available climatic data. For further improvement 

of the models, relevant analysis and data from regional networks and adjacent territories as well 

as from international sources should be acquired. Further, the ANN approach could be adapted 

to the distributed modeling of watersheds, using multiple precipitations as inputs for a finer 

analysis.  

There is no doubt that black-box modeling will be a key feature in the management of flooding 

over coming decades, especially in developing countries where catchment monitoring is 

extremely limited and flooding is the most critical issue in countries’ socioeconomic 

development. 
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Hydrology and flood probability of the monsoon-

dominated Chindwin River in northern Myanmar

Zaw Zaw Latt and Hartmut Wittenberg
ABSTRACT
As the third largest river of Myanmar, the Chindwin River has great importance as a water resource

and transport artery. At 113,800 km2 the basin is comparable in size to the Elbe basin in Europe,

although with higher rainfall and runoff. During the southwest monsoon high rainfall intensities with

spatial and temporal variation causing severe floods are threatening the region. The study aims to

analyze the hydrologic aspects of monsoon floods using statistical and frequency analysis. Flood

responses vary due to the complex topography and rainfall distribution over the catchment. Time

series of annual maximum floods shows no trend of the mean value. The deviation of annual maxima

from the respective mean values, however, has increased significantly in recent decades. Flood

quantiles are determined for return periods of 2 to 1,000 years using the data covering the period

1966 to 2011. Flood probability analysis shows that the upper and middle parts of the basin have

particularly high flood risks. To analyze the change in flood values, the relative differences of flood

quantiles in two time phases, 1966–1990 and 1991–2011, with respect to the entire observation

period are compared. The expected floods of the latter period are the highest.
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INTRODUCTION
Many regions of the world are experiencing an intensifica-

tion of floods caused by changing land use and climate.

Consequently, risks to human life and possessions are

increasing, made worse by population growth, urbanization,

settlement in flood plains and development (Huntington

; Marchi et al. ). Global warming has caused greater

climatic volatility shown by changing precipitation patterns,

increased frequency and intensity of extreme weather events

including flooding and has led to a rise in global mean sea

level (Parry et al. ; ADB ). Streamflow variability

is not only highly dependent on anthropogenic activities,

but also on seasons and climate (Daniel & Daniel ).

With their dynamic nature, floods may develop at any

space and time scales that conventional rainfall and dis-

charge observation systems are not able to monitor

(Marchi et al. ). Consequently the atmospheric and

hydrological generating mechanisms of flash floods in
many regions are poorly understood (Borga et al. ).

Hence, understanding the hydro-meteorological processes

of flash flooding is extremely important, from both scientific

and societal perspectives.

Most Asian countries have suffered from flood disasters

frequently. As stated by Dutta & Herath (), out of the

total number of flood events in the world during the past

30 years, 40% occurred in Asia. The regional distribution

shows that South Asia is the most affected region with

39%, followed by Southeast Asia with 30%, East Asia with

25% and with 6% the West Asia region is the least affected.

Sharma () observed that the flood events across Asia

have increased threefold and sixfold between 2000 and

2009, in comparison with the events in the 1980s and

1970s, respectively. In humid tropical and subtropical cli-

mates, especially in the realms of the monsoon, river

flooding is a recurrent natural phenomenon (Sanyal & Lu

mailto:zawzawlatt@khalsa.com
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). The southwest monsoon, the seasonal change of

winds caused by the reversal of the land–ocean temperature

gradient, brings high rainfall over large areas of Asia

especially in the South and Southeast Asian countries.

Hydrological processes related to land surface and water

resources management are strongly affected by the regional

characteristics (Kondoh et al. ). The Intergovernmental

Panel on Climate Change (Parry et al. ) reported that

the mean surface air temperature in Southeast Asia

increased at the rate of 0.1–0.3 WC per decade between

1951 and 2000. Consequently, the frequencies of extreme

weather events such as heavy precipitation and tropical

cyclones have increased considerably in Southeast Asia

along with an increase in the interannual variability of

daily precipitation in the Asia summer monsoon. These cli-

matic changes have brought massive flooding, landslides,

and droughts in different regions and have caused extensive

damage to property, assets and human life. Studies on the

Bagmati watershed in Nepal by Sharma & Shakya ()

and Dhital & Kayastha () explained that the frequency

and duration of monsoon floods have increased since 1991

while their magnitudes have already reached the statistical

100-year flood. Delgado et al. () described that in the

Mekong River, likelihood of extreme floods has increased

during the last decades although the probability of an aver-

age flood decreased.

Over global land monsoon regions, monsoon rainfall

intensity showed a downward trend during 1950–2004

(Zhou et al. ). However, a regional study by Yao et al.

() showed that frequent extreme precipitation events

are found over South and Southeast Asia, with the exception

of a narrow zone over the Indo-China peninsula along

100 WE. At low latitudes, there are both regional increases

and decreases of rainfall over land areas, and increased rain-

fall intensity, particularly during the summer (southwest)

monsoon, could increase the extent of flood-prone areas in

temperate and tropical Asia (Houghton et al. ; Yao

et al. ). Myanmar’s location in the transition zone

between the South Asian and East Asian monsoon systems

results in a particularly complex spatial pattern of precipi-

tation variability which is not very well understood

(D’Arrigo et al. ). With a distinct nature, Myanmar’s

rainfall has no significant relationship with the contiguous

area of India and Bangladesh, even though all of them are
under a similar weather system (Sen Roy & Kaur ).

According to the study of the Association of Southeast

Asian Nations Disaster Risk Management Initiative

(ASEAN DRMI ), a catastrophic 200-year flood (0.5%

annual probability of exceedance) would have a major

impact on ASEAN countries’ economies, which are already

fragile. In a comparative analysis of social vulnerability to

disaster risks, among ASEAN countries Myanmar is the

second worst-affected country after Indonesia, with 3,480

killed per year from natural hazards.

To the knowledge of the authors, few works on the

hydrologic characteristics of the large-scale basins in Myan-

mar have been reported and particularly the Chindwin

catchment has received relatively little attention. Further

motivation is the public consensus on an increase in flood

damage and risk in recent decades. This paper is intended

to assess the hydrologic aspects of monsoon floods along

the Chindwin River in northern Myanmar. An attempt was

also made to identify the flood probability of the mesoscale

Chindwin River Basin in the tropical monsoon country. As

floods are complex and dynamic processes characterized

by spatial and temporal variations, in this paper special

attention was paid to the understanding of runoff behavior

and its changes which play a crucial role in operational

flood assessment.

Regional situation and monsoon floods

Myanmar is located in the northwestern part of the Indo-

China peninsula, between 9W320N and 28W310N latitudes

(with most of the area between the Tropic of Cancer and

the Equator) and between 92W100E and 101W110E longitudes.

Based on topographic conditions, Myanmar is divided into

three parts – the western ranges (Himalayan ranges that

divide India and Myanmar), the central plains (Ayeyar-

waddy delta and other river basins) and the eastern hilly

regions (Shan Plateau). River basin characteristics in Myan-

mar are quite variable due to the physiographic differences

(Ti & Facon ).

Myanmar is the second biggest country in Southeast

Asia, which is characterized by tropical rain forest and mon-

soon climates with a high and constant seasonal rainfall

(Parry et al. ). Due to the diverse topographic conditions

the climate varies across the country. As stated by Htway &
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Matsumoto () the southwest monsoon advances in

southern Myanmar and onset date is end of May, though

the onset date may differ year to year. The monsoon periods

with their areal average monthly rainfalls and temperatures

(1960–2009) are shown in Figure 1. There is the southwest

(summer) monsoon (June to September) with a cloudy,

rainy, hot, humid summer and the northeast (winter) mon-

soon (December to April) with less clouds, scanty rainfall,

lower humidity and moderate temperatures. Annual rainfall

ranges from as high as 4,000–6,000 mm along the coastal

reaches and in the western mountainous region to as low

as 500–1,000 mm in the central dry zone. Two-thirds of

the country lies in the tropics and one-third in the temperate

zone. Lying within the tropics and the great Asiatic conti-

nent to the north and the wide expanse of the Indian

Ocean to the south, Myanmar furnishes one of the best

examples of a monsoon country. Extreme events in Myan-

mar such as heavy precipitation during the southwest

monsoon vary across the country, depending on the mon-

soon intensity in the Bay of Bengal, while droughts are

related to El Niño and El Niño Southern Oscillation on a

global scale as well as to the regional monsoon trough and

synoptic situations (Houghton et al. ; Myint et al. ).

The complex topography of this mountainous country,

high rainfall intensities and the large number of glaciers

mean that Myanmar is highly exposed to flood hazards.
Figure 1 | Typical monsoon seasons of Myanmar.
While the contrast between the Asian continent and the sur-

rounding oceans drives the large-scale swing of the

monsoon, the regional distribution of monsoon rain is gov-

erned, to a large part, by orography (Liu et al. ).

According to the Department of Meteorology and Hydrol-

ogy (DMH) Myanmar, flood occurrence in Myanmar can

be generally recognized as 6% in June, 23% in July, 49% in

August, 14% in September and 8% in October. Recorded

data by the DMH reveals that several severe floods have

occurred in major rivers in Myanmar during recent decades:

for example 2004 Ayeyarwaddy; 1991, 2002, 2011 Chind-

win; 2002, 2011 Thanlwin; 1997, 2011 Sittaung and 1995,

2011 Bago. In the public’s perception, there seems to be a

trend of frequent hydrological extreme events, leading to a

high risk of flood hazards. Floods usually occur every year

in one river system or another during the southwest mon-

soon. The number of recorded floods with significant

impacts continues to rise, making floods one of the most

costly natural hazards. A hazard-specific distribution and

the impacts of the various disasters that occurred in Myan-

mar during 1970–2009 are shown in Figure 2. In contrast

to the prevailing flood hazards, the present flood manage-

ment system in Myanmar is not satisfactory for most

situations. Moreover, data scarcity still hampers the appli-

cation of distributed hydrological models for predicting

streamflow over a range of spatial scales.



Figure 2 | Disaster impacts in Myanmar during 1970–2009 Source: ASEAN DRMI (2010).
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Study area

The study was conducted for the Chindwin River Basin

with a catchment area of 113,800 km2 and a length of

985 km, in northern Myanmar as shown in Figure 3. It is

the third largest river and one of the principal water

resources of the country. It is comparable in size with

the Elbe River, which has a catchment area of

148,268 km2 and a length of 1,091 km, which is the

fourth largest river in Europe. The Chindwin’s catchment

is a mountainous forested terrain with the exception of

its lowest southern part, which comprises a wide flood

plain. The Chindwin River flows down through the

Hukaung valley, Hkamti, Homalin, and Mawlaik to the

southwest and changes its course at Kalewa in the south-

east, crossing a number of vast plains and finally joins

the Ayeyarwaddy River which is one of the major rivers

in Asia (Figure 4). The Chindwin River is 350 m wide

near Hkamti, and spreading over the meridian direction.

Downstream of the defile the river valley gets wider, with

a width of 1,200 m near Monywa, and flow velocities

slow down when flowing through the central flat terrain.

The main tributaries are: the U Yu River just below the

Homalin with a catchment area of 7,485 km2, the Yu

River above Mawlaik with 6,423 km2 and the largest tribu-

tary, Myitthar River at Kalewa, with a 25,563 km2

catchment. The Chindwin with its major tributaries is the

most convenient means of communication within the
basin connecting it with the main economically developed

areas of the country. The river basin occupies almost the

entire northwestern part of Myanmar and is important to

the development of the country.

Chikamori et al. () reported that the Chindwin

basin is mainly formed by tertiary continental sediments

such as sandstones of different hardness, shale and lime-

stone. There is also exposure of crystalline rocks

(granite, granite-gneisses, diorites, etc.) stretching to the

east of Chindwin and a range of hills to the north of

Monywa station. Closed forest covers 50% of the basin

area. The second dominant land type is degraded forest

including shrubs which covers about 33%. Agricultural

land, alluvial island cultivation and homestead gardening

cover 15% of the basin area while shifting cultivation and

swamp areas represent 2%. Though the social and econ-

omic conditions have changed and the population in the

basin has increased in recent years, urbanization effects

do not seem to have greater impacts on the basin hydrol-

ogy compared with the geomorphic conditions. The

important role of the basin in national socio-economic

development is hampered by flood hazards due to climate

conditions. Severe floods hit the Chindwin basin every

year at one place or another due to high rainfall intensi-

ties during the southwest monsoon. Since 1965 flood

occurrences in the Chindwin basin have been highest in

July and August contributing 72% of the total number of

floods in the basin.



Figure 3 | Location Q5of the Chindwin River Basin.

Figure 4 | Longitudinal profile of the Chindwin River from head to confluence.
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MATERIALS AND METHOD

Data analyzed in this paper mainly consist of daily dis-

charges and rainfall (1966 to 2011) at five gauging stations

and relevant hydro-meteorological data of the basin. The
gauging stations also refer to the outlets of the sub-basins

of the Chindwin catchment along its main course. Geo-

graphic information system (GIS) was used to characterize

catchment parameters. The hydro-meteorological data are

mostly obtained from the DMH in Myanmar and from the
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numerous research articles and published reports which are

cited in the reference list. A simple and straightforward

approach was applied to characterize the rainfall and

flood runoff patterns over the basin based on the analysis

of observed hydro-meteorological records and catchment

characteristics.

Data review and analysis

Through a GIS process, catchment characteristics were

extracted from the global digital elevation model (DEM)

available from the USGS (EROS) Hydro 1 K Asia database

as well as from ground survey data and maps. EsriArcGIS

10 software was used to analyze spatial parameters of the

watershed. First raw DEM data was corrected to create a

depressionless DEM by filling the sinks. Then watershed

characterization was done by using the ArcHydrol Tools

function in ArcGIS which processes and analyzes the cor-

rected DEM data to characterize topography, measure

basin parameters, identify surface drainage, subdivide water-

sheds, and quantify the drainage network. Base flow index

(BFI) program was used for identification of annual base

flow contributions of the total annual runoff. Among several

hydrograph separation methods, the program implements a

deterministic procedure developed by the British Institute of

Hydrology and the method combines a local minimums

approach with a recession slope test (Wahl & Wahl ).

This program was included in the Developments in Water

Science Series, volume 48, edited by Tallaksen & van

Lanen (). Long-term variability of annual maximum

floods in the Chindwin River was studied using flash flood

magnitude index (FFMI), suggested by Kale (), which

is the standard deviation of the logarithms of annual peak

discharge, for defining the interannual variability of mon-

soon floods. A literature review on different aspects of

water resources in Myanmar (Ti & Facon ; ADB

; ASEAN DRMI ; Chikamori et al. ) helps in

understanding the study area and provides some preliminary

conclusions. Particular attention was paid to information on

flood hydrology. Statistical and regional analysis was

applied to the observed streamflow and rainfall data at the

five gauging stations of the Chindwin River. Mean, standard

deviation and coefficient of variation were mainly used to

understand the general hydrology of the watershed.
Statistical analysis was done using SPSS 19 software and

Microsoft Excel 2010.

Time series analysis

Time series analysis involves applying a linear regression to

detect the trends of annual maxima (AM) series and their

deviation trends. The significance of a linear trend was

assessed using a linear regression function in SPSS 19.

The issue of a linear trend is whether the slope value is sig-

nificantly different from zero (i.e. no trend). The slope is the

average rate of change over the years being examined. For

the test of significance, the P-value was determined by refer-

ring to a t-distribution. The test statistic was calculated

dividing the estimated slope coefficient by the estimated

standard error. The null hypothesis of no trend is rejected

if the p value is smaller than the significance level. In this

study, a trend was considered to be significant at 5% signifi-

cance level. If the p value is less than or equal to 0.05, there

is a significant trend. If not, there is not enough evidence of

a meaningful trend at this significance level.

Frequency analysis

Frequency analysis was applied to evaluate the probability

of flood occurrences and possible trends during the obser-

vation period. Having listed a series of annual maximum

floods, they were then ranked in descending order. The

empirical recurrence interval (T) and probability (P) of the

data could be computed using a plotting position and

fitted by Log-Pearson Type III (LP-3) distribution. LP-3 dis-

tribution is mostly recommended in flood frequency

analysis and is used for design purposes. It is determined

by three parameters: mean, standard deviation and the

skewness coefficient. Using the AM of the entire study

period (1966 to 2011), the hypothetical floods were deter-

mined for the return periods of 2 to 1,000 years and then

the flood risks were defined in terms of probability for

each station along the main river. In the next step, the

time series was split into two time phases: TP-1 (1966 to

1990) and TP-2 (1991 to 2011). The moving average

method was used to determine at which year time series

were split best into two periods. The moving average

method smoothes the fluctuations of AM series. The year
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at which an obvious change occurs in the moving average

series was taken as the trend change year. With this, the

time series are also divided into two partial series of similar

length. To detect the changes in flood quantiles, the relative

differences of flood quantiles in two time phases with

respect to the entire observation period were compared.

Based on the flood frequencies, the index flood method

could be applied to derive the regional frequency curve

(Riggs ). The basic premise of this method is that a com-

bination of streamflow records obtained at a number of

gauging stations will produce a more reliable, not a longer,

record, and thus will increase the reliability of frequency

analysis within a region (Jain & Singh ). A dimension-

less frequency curve representing the ratio of the flood of

any frequency to an index flood, which is the mean annual

flood, was generated.
RESULTS AND DISCUSSION

Hydrology

Orographic effects, as a natural barrier to the southwest

monsoon in the meridian direction, cause much greater

precipitation on the west side of the mountains and a

rain shadow on the east side. Further, from the source of

the Chindwin to its mouth the amount of rainfall also

decreases because of the western disturbance and tropical

cyclones in the Bay of Bengal. Assessment of the long-

term average annual rainfall demonstrates that the spatial

variation of rainfall was also influenced by topography.

As a monsoon-dominated catchment, riverine floods and

flash floods are most common to the Chindwin River

when intense rainfall persists at the headwaters of the

basin seasonally and annually. Generally the northern

part of the Chindwin basin receives an average of

3,800 mm per year, while the lower (southern) part of the

basin gets only 760 mm. Nearly 90% of the rainfall in the

northern part and 75% in the southern part of the basin

falls between June and October. In a flood warning context,

floods are expected when critical values are exceeded. The

DMH has defined the threshold discharge for a given cross-

section of the Chindwin River. Threshold runoffs are

13,500 m3 s�1 at Hkamti, 14,200 m3 s�1 at Homalin,
16,200 m3 s�1 at Mawlaik, 16,800 m3 s�1 at Kalewa and

19,000 m3 s�1 at Monywa.

Figure 5 shows the annual rainfall comparison at differ-

ent stations and typical rainfall pattern and streamflow of

the upper Chindwin basin. It can be seen that intense rain

falls almost every day during the southwest monsoon

season. Lag or response time of rainfall to flow is about 1

to 3 days depending on the rainfall distribution. While

single peak floods are characteristic during the southwest

monsoon season especially in the lower basin, sometimes

multiple peak events occur due to rain on successive days

mostly in the upper Chindwin basin. They are imposed on

the annual flood hydrograph, which is unique for any

given year but similar in shape between different years.

Annual cycle and flood season are stable and defined by

monsoon precipitation that arrives approximately at the

same time of the year. The high fluctuation of streamflow

patterns in the Chindwin catchment is influenced by the

extreme variation of rainfall in the region.

Generally monsoon floods display temporal patterns

characterized by long period fluctuations and non-random

behavior in terms of discrete periods of low and high

floods (Kale ). The high rises of water levels and dis-

charges are often noticed in July and August, the mid-

season of the monsoon when soils are saturated with

water concurrently and infiltration during intense rainfall

is less. Nevertheless, early and late monsoon floods should

also be considered as common events. According to past

flood events since 1966, the highest river level reached

4 m above the danger level at the upper Chindwin basin con-

tributing discharges of 19,613 m3 s�1 and 19,400 m3 s�1 at

Hkamti in 1991 and 1997, 26,773 m3 s�1 and 26,443 m3

s�1 at Mawlaik in 1976 and 2002, and 26,220 m3 s�1 at

Kalewa (lower basin) in 2002. The severe floods, which

were over critical levels on 22 July 2004 (17,673 m3 s�1) at

Hkamti, 15 July 1997 (19,470 m3 s�1) at Homalin, 01 Sep-

tember 1999 at Mawlaik (24,093 m3 s�1), 10 July 2008

(23,720 m3 s�1) at Kalewa and 19 August 2002 (23,957 m3

s�1) at Monywa, lead to the assumption that extreme

events have occurred more often in the last two decades.

Duration of floods above the danger levels varied from 9

to 18 days. The danger level corresponds to the crest

height of the levees. Historical flood records indicated that

the middle part of the basin also has a high potential flood



Figure 5 | Annual Rainfall and Typical Rainfall Pattern of the Chindwin River (a) Annual rainfall and (b) typical rainfall and streamflow pattern of the Chindwin River.
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hazard although rainfall is not as high as in the most

upstream catchment. During the southwest monsoon,

flood flows at the middle station (Mawlaik) are moderately

correlated with those of the upstream station, Hkamti

(R2¼ 0.5), but strongly correlated with the lower station,

Monywa (R2¼ 0.8). The latter situation is likely due to the

similar geomorphic condition and rainfall distribution over

these areas.

According to Kondoh et al. () Myanmar belongs to

region B2 of Monsoon Asia where the climate is character-

ized by distinct wet and dry seasons with a large water

deficit in the dry season. Maximum mean annual tempera-

ture at the Monywa station (lower part of the basin) is

29 WC whereas the minimum mean annual temperature

amounts to 25 WC. Average annual evaporation is high with
about 1,400 mm/a in the southern part of the basin to

1,000 mm/a in the north. This causes an average basin

loss of about 45% of total rainfall. From daily streamflow

records, annual base flow contributions were determined

and expressed in BFI, which is the ratio of base flow to

total flow volume for a given year. The average specific dis-

charge at five stations ranges between 0.20 m3 s�1 km�2)

and 0.53 (m3 s�1 km�2). Basin area and slope, river length

and slope are determined using GIS based on the DEM of

1 km2 resolution. All parameters, together with basin prop-

erties, are shown in Table 1.

Figure 6(a) shows the FFMI against the ratios of

observed highest discharge and average annual maximum

discharge at different stations. FFMI values range between

0.08 and 0.1 showing that the interannual variability in



Table 1 | Catchment characteristics of the Chindwin Basin

Parameter Hkamti Homalin Mawlaik Kalewa Monywa

Location N-26W 000

E-95W 420
N-24W 520

E-94W 550
N-23W 380

E-94W 250
N-23W 120

E-94W 180
N-22W 060

E-95W 080

Basin area (km2) 27,210 49,137 69,057 99,072 113,814

River length (km) 347 546 660 741 985

River slope 0.0013 0.0002 0.0004 0.0002 0.0003

Basin slope 0.104 0.122 0.118 0.120 0.114

Mean annual rainfall (mm) 3,830 2,287 1,738 1,685 764

Mean annual max flow (m3 s�1) 14,387 16,243 19,542 20,054 20,603

Specific discharge (m3 s�1 km�2) 0.53 0.33 0.28 0.20 0.18

BFI 0.61 0.69 0.73 0.74 0.77

Figure 6 | Variability of annual floods: (a) FFMI against the ratio of observed largest floods

to mean annual maximum discharges; (b) distribution of standardized AM.
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flood peaks was not very different from station to station.

Figure 6(b) shows the box plot of AM standardized by the

basin area. The annual maximum flood relative to the

basin area is highest at Hkamti followed by Homalin, Maw-

laik, Kalewa and Monywa. Flood generation decreases with

the increase in the catchment area. The standardized AMs

are more variable over time at Hkamti and Mawlaik, with

higher standard deviations than at other stations.
Time series and frequency analysis of floods

The trends in AM and variability of extreme floods were

evaluated. Temporal trends of AM series and their devi-

ations were detected at five stations along the Chindwin

River using a linear regression. Annual maximum discharges

(Qmax) and deviation trends (1967–2011) at two selected

gauging stations are shown in Figure 7. Table 2 shows the

slope factors and p-values as the significance test for a

linear trend.

AM series at all stations show slightly decreasing trends

with negative slopes. But trends were not significant as p-

values are much greater than 0.05. Thus, the AM series of

the Chindwin River can be regarded as stable for the obser-

vation period. The statistical mean value was not changing

with time and there was no significant trend. However, the

deviation of annual peaks from their mean (regardless of

positive or negative) showed increasing trends with positive

slopes at all stations. Deviation trends at Hkamti and Maw-

laik stations were highly significant at the 5% level with p-

values of 0.001 and 0.05, respectively. At Monywa station,

the deviation of AM series showed an increasing trend

with a marginal significance (p¼ 0.068). At Homalin and

Kalewa stations, there was not enough evidence for mean-

ingful trends at the 5% significant level.

The trend to a higher deviation and thus variation of

annual maximum floods is in accordance with the hypoth-

eses of climate change, making the region experience

more extreme events. For example, ADB () reported

that Southeast Asia is one of the world’s most vulnerable



Figure 7 | Linear trends of annual Qmax at (a) Hkamti (b) Mawlaik and deviation of annual Qmax from mean value at (c) Hkamti (d) Mawlaik.

Table 2 | Linear trend statistics of two time series for different stations

AM
Deviation of AM from
the means

Station Slope P-value Slope P-value

Hkamti �21 0.6 55 0.001

Homalin �28 0.4 30 0.150

Malwaik �42 0.5 68 0.050

Kalewa �28 0.6 25 0.320

Monywa �10 0.8 45 0.068
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regions to the impact of climate change in terms of fre-

quency and intensity of extreme weather events which are

projected to increase. Furthermore, frequent extreme pre-

cipitation over Southeast Asia is predicted in the next few

decades due to climate change and that is definitely going

to worsen the flooding situation in the region (Houghton

et al. ; Yao et al. ; Turral et al. ). Statistically,

the time series are thus not homogeneous.
In many cases large rivers with the highest annual varia-

bility may have potential impacts from dams because of

substantial control over downstream hydrology (Graf

). However, flow changes by dam building were not evi-

dent in the Chindwin watershed. According to the collected

data from the Myanmar Irrigation Department, there is no

dam across the main stream yet and only three dams have

been implemented in recent years on the Chindwin’s tribu-

taries. Locations of the dams are on the Neyinsara River

(23W310 N and 94W060 E), on the Manipur River (22W580 N

and 93W580 E), and on the Myitthar River (22W000 N and

94W020 E). But none of these dams is finished yet and regu-

lated controls are not capable of exerting substantial

influence on downstream hydrology. Although their impacts

could not be fully assessed, the damming was not a prime

influencing factor for the variability of floods whose magni-

tudes have increased in the last two decades. Furthermore,

as stated by Bruijnzeel (), it is difficult to evaluate the

effects of land use change on flood peaks in large rivers
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because such changes are rarely fast and consistent with the

exception of high population pressure and thus often com-

pounded by climatic variability. High variability of

streamflow could be expected as an effect of an interannual

structure in regional climate as well as changes in monsoon

intensity. Regarding other monsoon-dominated rivers in

Southeast Asia, Delgado et al. () came to a similar con-

clusion that the variation of extreme floods in the Mekong

River was validated with the precipitation data, which

suggests climatic causes for the increase in variability.

Frequency analysis was then applied to annual maxi-

mum discharges of five stations during 1966 to 2011.

Although not all stations covered the same data length, all

streamflow data used span over 40 years of records. Mean,

standard deviation, skewness coefficients and coefficients

of variation (CV) of the annual maximum series of the differ-

ent stations are shown in Table 3. Probable floods at each

gauging station were computed by using the LP-3 distri-

bution for different return periods of 2 to 1,000 years. The

expected hypothetical floods were compared with the high-

est observed flows in the past 40 years as shown in Figure 8.

Comparing the expected floods with the highest observed

floods, suggests that these correspond in the upper mountai-

nous catchment (Hkamti and Homalin) to about 100-year

events. In the central flat terrain with medium elevations

(Mawlaik) the maximum observed flood has a statistical

return interval of about 50 years, while in the lower part

of the dry zone area (Kalewa and Monywa) it is about 15

years. It is generally assumed that the reliability of statistical

analyses increases with the length of time series or the

number of data. An important precondition for this, how-

ever, is that the set of data is homogeneous, drawn from a

single data population. As found above, this condition is
Table 3 | Statistical parameter of annual maximum series

Mean (m3 s�1) Standard deviation (m3 s

Station Entire period 1966–1990 1991–2011 Entire period 1966–19

Hkamti 14,387 14,582 14,165 2,481 1,404

Homalin 16,243 16,782 15,653 2,715 2,128

Mawlaik 19,542 20,017 19,113 3,931 3,001

Kalewa 20,054 20,504 19,518 4,175 3,663

Monywa 20,603 20,804 20,362 4,103 3,480
not fulfilled for the flood data of the Chindwin River.

There was a rise in standard deviation particularly in the

last two decades caused by outer (most extreme) influences

(Table 3). The most likely effects on this high flood variabil-

ity are the changes in rainfall intensity and pattern in the

region, as discussed above. The standard deviations of AM

series for the data from the last two decades are 2.4, 1.5,

1.5, 1.3 and 1.4 times greater than that of the period 1966–

1990 at Hkamti, Homalin, Mawlaik, Kalewa and Monywa,

respectively.

Taken strictly, the frequency analysis of the entire obser-

vation period was not admissible. Therefore, the AM series

should be analyzed in different time phases. A moving aver-

age with seven spans was used to check the trend change at

all stations. The year when the AM series were split is the

year in which a trend of flood variability changes. Moving

average series for five stations are given in Figure 9.

Although the trend change years for all stations are not iden-

tical, with less fluctuation, the moving average series for all

stations are generally smooth till 1990 and the higher fluctu-

ations occurred in the later periods. In this study, detecting

exact change points using possible statistical tests is not the

main focus. Instead, the authors would like to point out that

the deluge of extreme floods frequently occurred after 1990,

especially concentrated in the last 20 years of the time

series.

In Monsoon Asia, substantial regional features are

associated with the changes in precipitation amounts and

duration, and in southeast China, a sharp increase in

extreme precipitation (>50 mm per day) occurred in 1993

(Yao et al. ). The change point for annual maximum

flood series of the Wijiang River in South China was

found in 1991with an increase in mean of AM by 45% due
�1) Skew coefficient

CV
90 1991–2011 Entire period 1966–1990 1991–2011 Entire period

3,343 �0.31 �0.24 �0.80 0.17

3,189 �0.64 0.32 �0.66 0.17

4,650 �0.31 �0.05 �0.20 0.20

4,750 -� 0.36 �0.40 �0.21 0.21

4,820 �0.02 0.16 0.07 0.20



Figure 8 | Observed maximum floods and expected flows with different return periods.

Figure 9 | Moving average series of annual maxima at five stations.
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to increased rainstorms (Chen et al. ). In Southeast Asia,

extreme weather events associated with El Niño were more

frequent and intense in the past 20 years (Parry et al. ).

Interannual rainfall and temperature variability in Myanmar

is affected by the ENSO (El Niño Southern Oscillation) pat-

terns (Lwin ; Baroang ). With the effects of warmer

temperature, the increased water vapor will possibly result

in an increase in precipitation amount and intensity

(Houghton et al. ; Wang et al. ). Thus extreme

floods in the Chindwin catchment were found not only in

strong La Niña but also in strong El Niño years, and the
extreme floods associated with moderate to strong El Niño

years have been observed since 1991.

A sharp increase in the maximum flood level (4.3 m

above danger level) at Hkamti station occurred in 1991

and the occurrences of extreme floods (>2 m above the

danger levels) are more frequent at Hkamti, Mawlaik and

Kalewa stations from 1991 onwards. These regional and

local situations show that higher interannual variations of

streamflows in the Chindwin catchment are expected in

the past 20 years. Through this reasoning, AM series are ana-

lyzed with two time phases: TP1 (1966–1990) and TP2
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(1991–2011). Overall, 1990 was considered the trend

change year for the Chindwin watershed because the devi-

ations of AM series at all stations are also getting larger

around this year. Modification of the rating curve for the

Monywa station was carried out in 2009 and any changes

of monitoring method which affect the rating curves could

not be observed for all stations. Sometimes human activities

are more important in the regional hydrologic regime (Yang

et al. ); however the variation of extreme floods in the

Chindwin catchment after 1990 is probably due to climatic

causes especially precipitation since the major human-

induced impacts such as damming and land use changes

were not evident in the catchment.

The two respective frequency curves, along with the

plotting positions, for Hkamti and Mawlaik stations are

shown in Figure 10. Parameters are given in Table 3. As

expected, the frequency curves based on 1991–2011 records,

with the exception of Homalin, provided higher floods.

Hypothetical floods of the two frequency curves were then

compared for the return periods. The increase of flood mag-

nitudes in TP-2 with respect to TP-1 was expressed as a

percentage as shown in Figure 11. Beyond the 5-year

return period, expected floods are 2.5% to 26% higher for

the data of TP-2. Only at Homalin station was no significant

difference found.

To analyze the change in flood peak series, relative

differences of flood quantiles in two periods were compared
Figure 10 | Comparison of frequency curves with the most significant differences: (a) Hkamti
with respect to that of the entire period and results are

shown in Figure 12. In the latter period (1991–2011), flood

values are increasing 3% to 15% at different stations while

the flood values of the former period (1966–1990) are

decreasing up to 13% with the exception of Homalin station.

In both comparisons of relative differences in flood values of

two series with respect to the entire series, the highest differ-

ence (either high or low values) was found at the Hkamti

station followed by Mawlaik, Monywa and Kalewa, respect-

ively. This significance shows that the change in flood

quantiles of the Chindwin River is decreasing from upstream

to downstream.

The index-flood method was also applied here as a tool

for regionalization of the basin using five station data.

Dawdy & Gupta () assess this method as unrealistic

with its assumption of simple scaling, that the coefficient

of variation is not changing with the increasing catchment

area. Normally, CV decreases with the increasing catchment

scale due to damping effects (Kuzuha et al. ). In the

Chindwin basin, mean annual flood rises with the increase

of catchment areas and CV is changing with increasing

catchment as shown in Table 3. This agrees with the

former argument. Flood indices (FI) were calculated as the

ratios of expected floods with different return periods (Qe)

to the mean of observed annual maximum series (Table 4).

The regional frequency curve is shown in Figure 13. In aver-

aging the entire basin, the expected floods may range
(b) Mawlaik.



Figure 11 | Percentage increase of flood quantiles in comparison with TP-1 and TP-2 series.

Figure 12 | Comparison of flood quantiles: (a) TP-1 and entire period; (b) TP-2 and entire period.
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between 0.6 and 1.5 times the mean annual maximum dis-

charge. Average FI for all return periods at each station lie

within 1.2 to 1.3, from upstream to downstream. The aver-

age value of the highest expected floods would not be

much different from station to station. It is also noticeable

that the expected floods, even with higher return periods,

are not largely different from the average annual maximum

floods of the basin.
CONCLUSIONS

Severe floods with high rainfall during the southwest mon-

soon are the most serious natural disasters in Myanmar.

Flood risk management, however, is not yet well-developed.

Flood characteristics and trends at five gauging stations

along the Chindwin River are evaluated. Under the regional

climate the Chindwin is a perennial river with high seasonal



Table 4 | FI at different stations

Hkamti Homalin Mawlaik Kalewa Monywa

Average FI
Return period (yr) Qe (m3 s�1) FI Qe (m3 s�1) FI Qe (m3 s�1) FI Qe (m3 s�1) FI Qe (m3 s�1) FI

1 7,759 0.54 10,162 0.63 9,844 0.50 9,929 0.50 11,568 0.56 0.55

2 14,436 1.00 16,438 1.01 19,640 1.01 20,126 1.00 20,130 0.98 1.00

5 16,543 1.15 18,545 1.14 23,088 1.18 23,819 1.19 23,703 1.15 1.16

10 17,520 1.22 19,591 1.21 24,789 1.27 25,659 1.28 25,687 1.25 1.24

20 18,256 1.27 20,423 1.26 26,129 1.34 27,116 1.35 27,393 1.33 1.31

50 18,988 1.32 21,310 1.31 27,530 1.41 28,651 1.43 29,381 1.43 1.38

100 19,425 1.35 21,876 1.35 28,408 1.45 29,618 1.48 30,754 1.50 1.42

200 19,783 1.38 22,371 1.38 29,159 1.49 30,450 1.52 32,042 1.56 1.46

500 20,175 1.40 22,949 1.41 30,017 1.54 31,406 1.57 33,654 1.64 1.51

1,000 20,411 1.42 23,328 1.44 30,555 1.56 32,019 1.60 34,807 1.69 1.54

Average FI 1.20 1.21 1.29 1.27 1.31

Figure 13 | Flood regionalization of the Chindwin River Basin.
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variation in discharge and rainfall, since up to 90% of rain-

fall occurs during the southwest monsoon. In the past flood

levels have reached up to 4 meters over the bank level at

Hkamti in 1991 and 1997, at Mawlaik and Kalewa in

2002, resulting in relatively large inundations. Duration of

most floods generally lasts over 10 days and such long-last-

ing floods are frequent occurrences in the basin seasonally

and annually.

Statistical analysis shows that there are no trends of the

mean values of annual maximum discharges but strong
trends in standard deviation and probability curves along

the main stream. Particularly at the upper station (Hkamti)

and the middle station (Malwaik), over the last two decades

the standard deviations of AM have significantly increased

2.4 and 1.5 times, respectively, compared with the period

1966–1990. The study pointed out the remarkable increase

in flood occurrence as well as the increasing trend of devi-

ation of annual maximum floods with time since 1990.

Frequency analysis of the entire observation period indicates

that the river has already experienced a 100-year flood in the
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upper part, 50-year flood in the middle and a 15-year flood in

the lower part. The paper also concludes thatflood risk is high

in the upper and middle regions of the basin. To detect the

changes in flood quantiles, two distinct phases were studied:

1966 to 1990 with small deviation of annual maximum dis-

charge and 1991 to 2011 with increasing trend of high

floods. As the basin is not well industrialized and urbanized,

except in Monywa, any substantial changes in land manage-

ment were not evident in the catchment. However, the

cause for the increasing variability in annual peaks is prob-

ably the interannual structure of regional climate and

changes in monsoon intensity. It is recommended that inter-

annual variation of streamflow should be validated with the

detailed spatial precipitation data at the regional level. Atten-

tion should also be paid to human activities which alter

regional hydrologic regimes, affecting long-term changes in

streamflow at both seasonal and regional scales.

As a result better understanding of monsoon flood

characteristics of the Chindwin River Basin would contrib-

ute to improved flood hazard management because an

effective mitigation plan could never be realized without a

proper understanding and assessment of the regional

characteristics. The study also gives motivation for further

analysis of flood extents in this poorly gauged basin with

finer spatial scale. It also suggests that flood management

could benefit by paying more attention to the area with rela-

tively high probability floods with the application of reliable

forecasting methods coupling with inundation assessments.
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Fig. S1  Maximum Flood Levels of the major Rivers in Myanmar  
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Fig. S2 Mann-Kendall Statistics for streamflow and rainfall series at five stations along the 

Chindwin River 

 

Fig. S2 shows the Mann-Kendall (MK) trend analysis, indicating the test statistic for each variable 

at five stations. The results show that Qmax at all stations and Rmax at four stations, excluding 

Hkamti, has a slightly decreasing trend with negative values. Other rainfall parameters (1-D, 3-D 

and 7-D Rmax) show an increasing trend at four stations, excluding Monywa. Neither positive or 

negative trends are highly significant at 5% as test statistics are less than Zc. 3-D Rmax at Hkamti 

station and 1-D and 7-D Rmax at Mawlaik station shows significant increasing trend with 90% 

probability. Sen’s slope values also indicate increasing and decreasing trends in correspondence 

with MK tests. Overall, both linear regression and MK tests suggested that Qmax and monsoon 

rainfall series are stable as the slightly decreasing trends are not much significant. The remaining 

parameters anyhow show increasing trends with marginal significant level. According to trend 

analysis, there is an evidence of increasing trends in moving average rainfall series with different 

daily spans, except for the Monywa station, where all series show a decreasing trend. 
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Fig. S3 Simulated water level profiles for 2-Yr floods by one-dimensional (MIKE 11) hydraulic 

model for flood prone reaches (a) Hkamti to Homalin (b) Homalin to Mawlaik  

 

Water levels with respect to 2-year flood discharges at each station are approximately close to the 

danger levels at the respective stations. Therefore, water level profiles for 2-year floods are 

calculated using one-dimensional MIKE-11 hydraulic model for the flood prone reaches of the 

upper Chindwin basin, and the results are shown in Fig. S3. As evidenced by the results, the 

simulated discharges spill over the some portions of bank levels along the reaches, despite low 

inundations. As a supplement, the hydraulic simulation results also agree that the upper half of the 

basin has a higher potential flood risk, even if streamflows with small return periods will come. 
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Abstract Due to limited data sources, practical situations in most developing countries favor
black-box models in real time operations. In a simple and robust approach, this study examines
performances of stepwise multiple linear regression (SMLR) and artificial neural network
(ANN) models, as tools for multi-step forecasting Chindwin River floods in northern Myan-
mar. Future river stages are modeled using past water levels and rainfall at the forecasting
station as well as at the hydrologically connected upstream station. The developed models are
calibrated with flood season data from 1990 to 2007 and validated with data from 2008 to
2011. Model performances are compared for 1- to 5-day ahead forecasts. With a high accuracy,
both candidate models performed well for forecasting the full range of flood levels. The ANN
models were superior to the SMLR models, particularly in predicting the extreme floods.
Correlation analysis was found to be useful for determining the initial input variables.
Contribution of upstream data to both models could improve the forecasting performance
with higher R2 values and lower errors. Considering the commonly available data in the region
as primary predictors, the results would be useful for real time flood forecasting, avoiding the
complexity of physical processes.

Keywords Artificial neural network . Flood forecast . Rainfall . Real time operation . Stepwise
regression .Water level

1 Introduction

As a non-structural measure, flood forecasting (such as discharge, water level, or flow volume)
is a crucial part of flow regulation and water resources management. Worldwide, flood
disasters account for about one-third of all natural disasters in terms of number and economic
losses (Berz 2000). As stated by Dutta and Herath (2004), out of the total number of flood
events in the world during the past 30 years, 40 % occurred in Asia and Southeast Asia
countries stood for the second worst region in Asia. ASEAN Disaster Risk Management
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Initiative (2010) reported that a catastrophic 200-year flood (0.5 % annual probability of
exceedance) would have a major impact on the economies of the Southeast Asian countries,
including Myanmar, which are already fragile. The process of floods is basically complex,
uncertain and unpredictable, due to its nonlinear dependency on meteorological and topo-
graphic parameters (Thirumalaiah and Deo 1998). While distributed hydrological modeling
involves multidisciplinary and complex issues, simple, robust and sustainable approaches in
flood forecasting system are needed, without much effort in continuous updating such models.
For flood forecasting to be effective, it must provide flood warnings with a reasonable lead
time. Furthermore, for real time operation, the authorities may require to access the gauges of
significant predictors (Corani and Guariso 2005), thus saving considerable costs, a critical
issue in developing countries.

Since a flood warning and forecast system does not primarily aim at providing explicit
knowledge of rainfall–runoff processes, black-box models have been widely used in addition
to the physical based models (Abudu et al. 2010; Magar and Jothiprakash 2011). The main
focus of this paper is on the application of data driven models in the context of real time
forecasting for developing countries, with the example of Myanmar. As real time flood
forecasting systems of Myanmar still provide river stage forecasts for 1-day lead time,
provision of more lead times is an interest of this study. Myanmar is one of the tropical
countries characterized by the monsoon climate and river flooding is a recurrent natural
phenomenon, particularly during monsoon (Sanyal and Lu 2004). Severe floods have occurred
in major rivers in Myanmar during the last decades and there seems to be a trend of frequent
hydrological extreme events, leading to a high risk of flood hazards. When implementing a
flood forecasting system in a developing country, special attention should be paid to the
sustainability of its operation (Shamseldin 2010) and availability of hydrometric data which
are commonly monitored in the region. While conceptual or physically based models are vital
for the understanding of hydrological processes, there are practical situations where the main
focus is to provide accurate predictions at specific locations, especially for the river basins
where catchment properties are not fully monitored. Sometimes, a model is valued for its
simplicity and robustness in solving the local problems. In the Myanmar context, such a strong
predictive model would benefit to the key flood management actions.

In recent years, a great deal of work has been done in applying data driven models like
multiple regressions and neural networks for water resources research. Conventional multiple
linear regression (MLR) methods and time series models have been widely used in real time
flood forecasting and warning. MLR (deterministic) and autoregressive integrated moving
average models, which are stochastic and special cases of MLR, perform well if the data length
is sufficiently long with a high persistence (Magar and Jothiprakash 2011). National flood
forecasting centers, especially those in developing countries such as Myanmar and the Mekong
River Commission in Southeast Asia still widely use MLR methods for daily water level
forecasting at most gauging stations. Linear regression models are quite applicable to fore-
casting, however, they require a prior assumption about the type and consistency of the relation
between dependent and independent variables. In the real world, temporal variations in data do
not always exhibit simple regularities and may not always satisfy this assumption. Thus, the
complexity and nonlinear problems make it attractive to try artificial neural network (ANN)
approaches. There are a number of reasons why ANN applications solve one or more specific
problems. ANNs neither presuppose a detailed understanding of a river’s physical character-
istics, nor do they require extensive data pre-processing (Dawson et al. 2002). Over the last
decade, ANNs have been increasingly used in water resources management, such as rainfall-
runoff modeling (Minns and Hall 1996; Dawson and Wilby 2001; Rajurkar et al. 2002;
Shamseldin 2010; Sattari et al. 2012), stream flow forecasting (Thirumalaiah and Deo 1998;
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Cigizoglu 2003; Haddad et al. 2005), and reservoir inflow prediction (Othman and Naseri
2011; Sentu and Regulwar 2011). Recent studies have also supported application of different
ANN techniques as an efficient alternative tool for real time forecasting of river stages and
discharges (Chang et al. 2007; Kisi 2007; Dawson and Wilby 1999; Dawson et al. 2002).
Cigizoglu (2003) examined the forecasting and the extrapolation ability of ANN for multi-step
forecast using daily flows and proved that multilayer perceptron network could capture the
nonlinear dynamics and generalize the structure of the whole data set. Concepts of ANN
application have been extensively reviewed, and ANN was shown to be an alternative
modeling tool in hydrology (ASCE Task Committee 2000a; b).

In addition, several researchers have also considered ANNs as a competitive
alternative to conventional statistical methods. For example, Asati and Rathore
(2012) compared the ANN with autoregressive (AR) models and multiple-linear
regression (MLR) for short-term flow prediction. In their study, the AR models
provided the best performance beyond one-step lead time. Furthermore, Dawson and
Wilby (1999) demonstrated that multi-layered perceptron has a better performance
than MLR method in one-step ahead river flow predicting, using past rainfalls and
discharges. Bisht et al. (2010) also presented that multilayer feed-forward ANN
models are superior to MLR models in forecasting one-step ahead discharge, using
past river stages and discharges. In this comparison, however, benchmark regression
models did not seem to have the best performance because the criteria of input data
selection were not explained, and the ANN and the regression models were solely
developed using different inputs from the river stage and discharge data series, whose
first few antecedent data were believed to have a strong correlation to output
discharges in regression models. Since performances of different models differ for
different rivers and the choice of input vector has a significant impact on model accuracy
(Rezaeianzadeh et al. 2013), the superiority of the ANN approach towards benchmark regres-
sion methods could not be expected in every forecasting case. Islam (2010) developed a
feedforward ANN with a high accuracy in river stage forecasting of the Buriganga River in
Bangladesh, but the regression model outperformed the ANN model in the validation. More-
over, there was a mixed fortune of model performance in multi-step forecasting for both ANN
and regression models (Tareghian and Kashefipour 2007; Daud et al. 2011). Despite several
efforts in comparing forecasting models, a conclusive comparison could not be achieved
because different input data were used for different types of model, which makes the compar-
ison unfair (Wang 2006).

Keeping the above scenario of real time flood forecasting, the present study aims
to develop multi-step river stage forecasting models using past water levels and
rainfall. A further motivation is that ANN is well suited for problems whose under-
lying process cannot be fully specified, but for which there are sufficient observations.
This study has not only presented the robustness of ANN models in multi-step flood
forecasting with limited data types, but also assessed their clear-cut superiority to
regression models, for the conditions under which the regression technique has the
best performance. To establish the true merits of ANNs relative to conventional
statistical techniques, comparisons are made between the forecasting performance of
ANN and stepwise multiple linear regression (SMLR) models. Two conditions are ad-
dressed in the comparison of forecasting skills: (a) using a-site data only and (b) using at-
site and upstream data. This paper is an effort to improve national flood forecasting systems
in Myanmar by applying ANN models which offer more advantages than the conventional
regression models. Additionally, the results of this study can be applied to similar basins
and further researches.
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2 Study Area

All forecasting models were applied to the Chindwin river basin in northern Myanmar, located
between the latitudes 22° and 26° north, and the longitudes 94°and 96° east. It is the largest
tributary of the well-known Ayeyarwaddy River, which is one of the principle water resources of
Asia. As the third largest river of Myanmar, the Chindwin River has a catchment area of
113,800 km2 and a length of 985 km. The average slope of the basin is 13 % and the flow slope
is 0.05 %. Along the main river, there are five hydro-meteorological stations namely Hkamti,
Homalin, Mawlaik, Kalewa and Monywa as shown in Fig. 1. All gauging stations are hydrolog-
ically connected which means that the flow from upstream stations directly affect the flow at
downstream stations. The Chindwin’s catchment is a mountainous forested terrain with the only
exception of its lowest southern part which comprises a wide flood plain. The catchment receives
average annual rainfall between 760mm (in the lower basin) to 3,800mm (in the upper basin), out
of which 80 % falls during monsoon season i.e. June to October. Mean annual maximum flows
vary from 14,000 m3 s−1 in the upstream region to 20,000 m3 s−1 in the downstream. During the
southwest monsoon, severe floods mostly occur in July and August when the intense rainfall hits
the basin seasonally and annually at one place or another. The river is an important water resource
and transport artery of the country. However, challenging reason against to its important role in the
country’s socio-economic is flood hazard due to climate conditions. In the last two decades, severe
floods along the Chindwin River occurred on 15 July 1997, 1 September 1999, 19 August 2002,
22 July 2004 and 10 July 2008.

In this study, multi-step river stage forecast models were developed for the Mawlaik station (N
23° 38′and E 94° 25′), whose elevation is 102 m abovemean sea level. In recent years, flood prone
effects on this station have been more critical than other stations. The reason for using water level
instead of discharge is that they are more practical and useful indicators as they directly reflect the
expected flood levels with which the community is more familiar. The drainage area and the river
length at this site are 69,339 km2 and 660 km, respectively. Observed daily water level and rainfall
data (1990 to 2011) at Mawlaik (forecast station) and Homalin (upstream station) were used in
model development. The distance from Homalin station to Mawlaik station is 114 km.

Upstream station 

Forecasting  station 

±

Myanmar 

China 

India 

Thailand 

Laos 

Andaman Sea 

0 40 80 12020
KilometersMonywa 

Hkamti 

Homalin 

Mawlaik 

Kalewa 

Elevation (m)

1 - 400

400 - 800

800 - 1,200

1,200 - 1,600

1,600 - 2,000

2,000 - 2,400

2,400 - 2,800

2,800 - 3,200

3,200 - 3,600

!( Gauging Station

Drainage Line

Fig. 1 Location of the Study Area
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3 Data Processing and Selection of Predictor Variables

For water level forecasting especially in the flood period, the data were selected only from July to
October which is a regular monsoon flood season inMyanmar and most Asian countries. In order
to characterize the variation of water level at Mawlaik station, descriptive statistics were calcu-
lated. As shown in Fig. 2, the frequency distribution exhibits almost a normal distribution,
although the data was slightly skewed. The Kolmogorov-Smirnov test was also used to numer-
ically check the normality of the data whose size is 2706. The null hypothesis of normality is
rejected if the probability (p) value is smaller than the significance level of 0.05. Since the p value
associated with the normality test is 0.001, the test statistically detected a non-normal distribution
of the large data set. However, with a low skewness (0.3) and small kurtosis (−0.56), there seem to
be trivial departures from normality for the water level series at Mawlaik station and the
distribution is reasonably close to the normality. For large sample sizes, significant results would
be derived even in the case of a small deviation from normality, but detecting non-normality
would not affect any statistical analysis (Ghasemi and Zahediasl 2012). It is also imperative that
the training and validation sets are representative of the same population. In the model develop-
ment 80 % of the flood season data (1990–2007) were used for calibration while 20 % (2008–
2011) were used for validation. For ANN models, the calibration data were further randomly
divided into 80 % for training set and 20 % for the testing set. Before applying the ANNmodels,
the calibration data sets of river stage and rainfall were standardized in a linear scale subtracting
the mean and divided by the standard deviation in order that numerical difficulties, such as slow
convergence of optimization algorithms and getting stuck in local minima, during the calculation
could be overcome. Standardization of the data in the training process can remove the scale
dependence problem of initial weights and improve the model accuracy. The input variables used
in models included various combinations of two major variables: daily water levels and rainfalls
at the forecasting station (Mawlaik) as well as at the hydrologically connected upstream station
(Homalin). For accurate model development, the selection of appropriate input variables is
important. The addition of unnecessary variables would create a more complex model than
required and is susceptible to over fitting of training (Wu et al. 2008). Determining the number of

Fig. 2 Frequency distribution of water level data at Mawlaik station
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input parameters involves finding the lags of water level and rainfall that have a significant
influence on the predicted next day’s water levels. In order to reduce the dimensionality of inputs,
auto- and partial correlation functions (ACF and PACF) on water level series were generated. At
the Mawlaik station on the Chindwin River, cross correlations (CCF) between the water levels
and rainfalls were determined at several lags in order to detect the relationship between data
values. In case of using upstream data, water levels at the forecasting station were cross correlated
with water levels and rainfalls at the upstream station to detect the significant correlation. After the
initial selection of input variables from PACF and CCF, stepwise regression models were used in
determining optimal inputs from a view point of the linear relationship. While the ANN models’
performances depend on network structure, learning method, and training procedure, the perfor-
mances of the SMLR models will be by any means the best in a parsimonious manner since the
regression models use the inputs, which have a strong correlation with the output, decided by the
ACF, PACF and CCF. Therefore, significant predictors defined by the SMLR models constitute
the inputs for the ANN models to have a conclusive comparison via a parallel assessment.

4 Multiple Linear Regression

Multiple linear regressions are the extended forms of simple linear regressions applied to the
case of multiple explanatory variables. The purpose of MLR is to explain as much as possible
of the variation observed in the response variable, leaving as little variation as possible to
unexplained “noise” (Helsel and Hirsch 2002). The general form of a regression model for k
independent variables is given by

Y ¼ β0 þ β1X 1 þ β2X 2 þ………þ βkX k þ ε ð1Þ

Where, Y is the response variable. β0, β1, β2, …, βk are the regression coefficients. ε is the
error, and X1, X2,….,Xk are the independent variables. Based on least squares criterion, the
regression coefficients are estimated by minimizing the sum of the squares of the vertical
deviations of each data point to the best-fitting line.

An important step in choosing the best model is to determine howmany variables and which
particular variables should be in the final model. Stepwise regression permits re-examination, at
every step, of the variables in previous steps. Avariable that enters at an early stagemay become
superfluous at later stages because of its relationship with other variables subsequently added to
the model (Kleinbaum et al. 1998). To check this possibility, at each step a partial F test is
checked for each variable currently in the model, regardless of its actual entry point into the
model. The variable with the smallest non-significant partial F statistic is removed, and the
model is refitted with the remaining variables by checking the partial Fs. The whole process was
repeated until no more variables can be added or removed. In this way, SMLR models were
developed using statistically significant predictors.

5 Artificial Neural Network

Haykin (1994) defines a neural network as a massively parallel distributed processor that has a
natural propensity for storing experiential knowledge and making it available for use. The
black-box type flood forecasting can be classified under the category of pattern mapping
(Sajikumar and Thandaveswara 1999). A feed-forward multi-layer perceptron (MLP) network
(Rumelhart et al. 1986) is usually used for pattern mapping problems. As shown in Fig. 3, an
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MLP network used in this study consists of a set of sensory units that constitute the input layer,
one or more hidden layers of computational nodes (neurons), and an output layer of compu-
tational nodes. A neuron consists of multiple inputs and a single output. The sum of the
product of inputs and their weights (w) minus bias (b) leads to a net as follows:

net ¼
X

xi⋅wi−b ð2Þ
Then the output of a neuron, f(net) is decided by an activation function that determines a

response of the node to the input signal it receives. The sigmoid and hyperbolic tangent
functions, given as Eqs. (3) and (4) respectively, are mostly used in the hidden layers.

f xð Þ ¼ 1

1þ e−x
ð3Þ

f xð Þ ¼ tanh xð Þ ¼ ex−e−x

ex þ e−x
ð4Þ

In order to generate an output vector Y=(y1, y2,……,yn), a training (learning) process is
employed, making network outputs closer to the targets, to find optimal weight matrices and
bias vectors that minimize a predetermined error function given as follows.

E ¼
Xp

p¼1

XN

i¼1
yi−tið Þ

2
ð5Þ

Here, ti and yi represent target (observed) and ANN output at the ith node respectively; N is
the number of output nodes and p denotes the number of training patterns. Most hydrological
applications have used a supervised learning that requires large number of inputs and
corresponding outputs. The most frequently used learning rule in many ANN applications is
error back propagation, which is essentially a gradient-descent algorithm that minimizes the
network error function. Each input pattern of the training set is passed forward through the
network. The network output is compared with the desired target, and the error is propagated

i = input node
h = hidden node
o = output node
b = bias
X = network input
y= network output
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Fig. 3 Configuration of feed forward ANN (multi layer perceptron) network
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backward through the network to each node. Based on Eq. (6) (ASCE 2000a), the network
weights and biases are adjusted by moving a small step in the direction of a negative gradient
of the error function during each iteration (Thirumalaiah and Deo 1998). The iterations
continue until a specified convergence or number of iterations is achieved.

WhereΔwij(n) andΔwij(n−1) are weight interconnections between node i and j during the
nth and (n-1)th pass or epoch. η and α denote learning rate and momentum, respectively.

In model building, various ANNmodels with one hidden layer were considered to the same
data set. The different architectures of three-layered fed forward ANNmodels were trained with
a gradient descent learning algorithm, looking for optimal performance by trial and error.
Different learning rates were applied while momentum was set at 0.9. The number of hidden
layer neurons was changed up to 20 through the training process. Through a trial and error
process, the appropriate neuron number was selected depending on minimum standard error. In
the training stage, an early stopping method was applied in order to avoid over fitting. By
evaluating the objective function at each iteration on training and testing sets, the training
process was stopped in correspondence with the minimum validation error. Sigmoid and
hyperbolic tangent functions were applied in the hidden layer as well as in the output layer.
The linear function (identity), given as f(x) = x, was used at the output layer, making the network
take any values as predicted outputs may be distorted by non-linear activation functions.

6 Assessment of Model Performance

Judging the effectiveness of flood forecasting models is unavoidable in selecting the best
models. Obviously, the selection criterion should be liberal to avoid missing useful predictors
when reliable prediction of future observations is required (Kleinbaum et al. 1998). In selecting
the best candidate models from each method, R2 and error measures were used for the
assessment of the selected models from the same approach during calibration. In validation,
the performances of the best ANN and SMLR models were compared using four performance
indices, namely coefficient of determination (R2), root mean-square error (RMSE), coefficient
of variation (CV) and mean absolute percent error (MAPE).

R2 =

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
yi−byi� �2

r
ð8Þ

CV ¼ RMSE

ȳ
*100 ð9Þ

MAPE ¼ 1

n

Xn

i¼1

yi−byi��� ���
yi

*100 ð10Þ

(6)

(7)
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In above equations, y represents the observed water level,by the forecasted water level, y and
the average observed water level and average predicted water level, respectively and the

number of observation in both calibration and validation stages.
R2 provides the strength of linear relationships between observed and predicted values.

RMSE represents the prediction error in the model. CV is an average error ratio. MAPE yields
the relative error, providing how close the predicted values are to the respective observed ones
and it is a measure of accuracy in a fitted series, expressed in percentages. A higher R2, a lower
RMSE, CV and MAPE imply good performance. Through these criteria, the ability of each
candidate model can be properly understood. The unit of RMSE is the same as that of the
predicted variable in the model.

7 Results and Discussion

7.1 Forecasting Models Using at-Site Data

Table 1 shows the statistical parameters of calibration and validation data. The maximum value
of calibration period was larger than that of the validation range while the minimum value was
less than that of validation. Thus extrapolation problems may not exist in this data set. The
skewness in both calibration and validation data sets are not drastically different. At the
forecasting station, the autocorrelation and partial autocorrelation functions of water level with
corresponding confidence limits were estimated up to 20 lags as shown in Fig. 4. The ACF for
many successive lags was quite high in the water level series as a signal of high persistence.
The PACF indicates a significant correlation up to lag 4. Thereafter, correlations fell within the
confidence limits. In this case, five delay water levels at times (t-1) to (t-5) were considered as
inputs.

The cross correlations between water levels and rainfalls during flood season were also
determined to estimate the degree to which two variables are correlated. It was found that the
water level was less correlated with its at-site rainfall although the positive relation was shown
up to 8 previous rainfalls. The CCFs of five antecedent rainfalls are 0.16, 0.17, 0.16, 0.15, and
0.13, respectively, and considered as predictor variables. The number of input was directly

Table 1 Descriptive Statistics for
dependent water level (cm) at
Mawlaik station

Parameter Calibration
(1990–2007)

Validation
(2008–2011)

Number of observation 2214 492

Mean 864 842

Median 839 849.50

Mode 827 729

Standard Deviation 261 228

Variance 67916 52128

Skewness 0.30 0.22

Kurtosis −0.60 −0.49
Range 1384 1124

Minimum 204 391

Maximum 1588 1515
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determined by the number of lagged values to be used for forecasting of the next value. The
general function of input–output relations for both SMLR and ANN models are as follows:

Case—1 Ht to Ht+4=f[Ht−1,Ht−2,Ht−3,Ht−4,Ht−5]
Case—2 Ht to Ht+4=f[Ht−1,Ht−2,Ht−3,Ht−4,Ht−5,Rt−1,Rt−2,Rt−3,Rt−4,Rt−5]

Where t = time (day), H = water level and R = rainfall
The output water levels (H) at time step t to t+4 were mapped with only past water levels of

five lags as inputs in the case (1). For case (2), five previous rainfalls are considered in addition
to the water levels to map with the output water levels. On the basis of R2 and RMSE in
calibration stages, the selected candidate models from each method were evaluated.

Initially simultaneous regression method was performed, taking five previous water levels
all of which must be included in the model to forecast future water levels. Since over-fitting is
a concern, only the variables explaining additional variance are required, without decreasing
model performance. Consequently stepwise regression technique was applied to determine
optimal inputs in the order of their explanatory power by linear relationships. The stepwise
regression models with significant variables are shown in Table 2. In the 1- to 5-day forecast

Fig. 4 Autocorrelation (a) and partial autocorrelation (b) functions of water level at the forecasting station
during flood season

Table 2 SMLR Models using at-site data

Data Used Lead
Time
(day)

SMLR models Calibration

R2 RMSE (cm)

Water level 1 Ht=21.14+1.56Ht-1-0.52Ht-2 -0.07Ht-3 0.98 36

2 Ht+1=50.69+1.99Ht-1-1.06Ht-2 0.93 67

3 Ht+2=88.87+2.19Ht-1-1.3Ht-2 0.86 97

4 Ht+3=119.01+2.27Ht-1-1.25Ht-2 -0.31Ht-3+0.15Ht-5 0.78 124

5 Ht+4=152.77+2.27Ht-1-1.31Ht-2 -0.36Ht-3+0.21Ht-5 0.70 149

Water level
and rainfall

1 Ht=22.57+1.56Ht-1-0.5Ht-2 -0.09Ht-3 -0.17Rt-3 0.98 36

2 Ht+1=53.35+1.95Ht-1-0.84Ht-2 -0.22Ht-3-0.05Ht-5-0.2Rt-2-0.22Rt-3 0.93 67

3 Ht+2=90.83+2.15Ht-1-1.02Ht-2 -0.34Ht-3+0.1Ht-5-0.34Rt-2-0.38Rt-3 0.86 97

4 Ht+3=137.16+2.31Ht-1-1.46Ht-2 -0.35Rt-2-0.49Rt-3-0.3Rt-5 0.78 124

5 Ht+4=165.26+2.27Ht-1-1.19Ht-2 -0.49Ht-3+0.22Ht-5-0.6Rt-2-0.49Rt-3 0.70 148
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models, the most significant predictors are two successive past water levels. R2 values ranged
from 0.70 to 0.98 and RMSE was between 36 and 149 cm. In addition to the water level data,
five antecedent rainfalls were applied as input variables. After several runs using a different
combination of variables, it was found that the incorporation of rainfall data of the respective
station did not significantly improve the model in terms of R2 and RMSE. The range of R2 was
0.70 to 0.98 and RMSE could not be reduced. The model performances remain the same. As a
result the models using water level and rainfall data did not provide better results than the ones
applying water level only.

ANN models were also trained using the input vectors that were identified by the SMLR
models for 1- to 5-day ahead forecasting. After testing the sigmoid and hyperbolic activation
functions in the hidden layer, the results suggest that hyperbolic tangent was preferable in this
forecasting case, providing less prediction error and high performance than sigmoid function.
In addition, using the same function in both hidden and output layers was not heuristic and
could not minimize the errors. Thus, the linear (identity) function was used in the output layer
to ensure that target values have no bounded range. The combination of hyperbolic tangent in
the hidden layer and identity function in the output layer provides the better performance in
this case.

The best-fit network architectures were determined on the basis of the least errors produced
during calibration. The performance statistics of selected ANN models are shown in Table 3.
According to the ANN structures, there is only one predicted value by each model for every
lead time. The number of hidden layer nodes in the models varies from 2 to 7, depending on
the complexity of the input–output relation to be captured by the models. For all ANN models,
the number of input data is same as that of the SMLRmodels given in Table 2. For example, in
the ANN structure of 3-3-1 for 1-day lead time, input data refers to Ht-1, Ht-2 and Ht-3, which
have been used in the SMLR model for same lead time. R2 for 1 to 5-day forecast was
decreasing from 0.98 to 0.72 while RMSE increased from 36 cm to 143 cm. To improve the
model performance, antecedent rainfalls at the forecasting station were included in the input
patterns successively. Within ANN models, the performance of models would not be better as
both R2 and the RMSE did not consistently show a better indication with increasing lead times.
However, ANN models showed their superiority to SMLR models in the calibration stage.
Rainfall contribution in the ANN models slightly reduced RMSE while the models provided
the same R2.

Table 3 ANNmodels using at-site
data Data Used Lead

Time (day)
ANN
Structure

Learning
Rate

Calibration

R2 RMSE (cm)

Water level 1 3-3-1 0.6 0.98 36

2 2-7-1 0.6 0.94 66

3 2-2-1 0.3 0.87 97

4 4-4-1 0.7 0.80 120

5 4-4-1 0.8 0.72 143

Water level
and rainfall

1 4-4-1 0.8 0.98 34

2 6-7-1 0.3 0.94 65

3 6-3-1 0.8 0.87 93

4 5-2-1 0.2 0.80 120

5 6-5-1 0.2 0.72 142
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7.1.1 Performance Comparison

In this experiment, the addition of station rainfall data to ANN and SMLR models could not
improve the model performance as the aforementioned results have shown. Thus, performance
of best SMLR and ANN models using only water level were compared in a parsimonious
manner. As shown in Fig. 5, both SMLR and ANN models provided satisfactory performance
in forecasting river stages throughout the flood season (July to October). Table 4 shows the
performance statistics of candidate modes to judge the forecasting abilities. In both types of
models, coefficients of determination (R2) decreased from 0.99 to 0.7 for 1 to 5-day forecasts.
The RMSE in these two models ranged from 28 cm for the 1-day forecast to 134 cm for the 5-
day forecast. MAPE values were between 2.5 and 13.5 % for 1- to 5-day lead times. CVs of
residuals range from 3 to 16 %. In general, no significant improvement could be observed for
ANNmodels over SMLRmodels. This may be due to the fact that past water levels are used as
inputs in the comparison of both models. With a high persistence in the water level data,
SMLR models could capture linear relationships and provide forecasting performance as well
as ANNs. Although the forecasting performances of SMLR and ANN models were not very
different in this case, the results showed that ANN models were slightly superior to the
conventional MLR models, providing higher R2 and a lower RMSE, MAPE, and CV for 4
and 5-day forecasts.

To get an impression on extreme event forecasting, high floods over critical level (1,200 cm
at the Mawlaik station) were selected during the validation period and compared with the
predicted values by the models using at-site water level for 1-day lead time. The results of the
SMLR model using the water levels at times t-1, t-2 and t-3 were compared with that of the
ANN model with 3-3-1 structure as shown in Fig. 6. In the validation period, high flood over
the critical level occurred four times, in every July and August of 2008 and 2011 respectively.
These four flood events altogether took 32 days. For each severe event, both models provided
satisfactory forecasts for the observed floods in July 2008 and 2001 while the predicted values
marginally agreed with the observed ones in Aug 2008 and 2011. Overall, their performances
are not very different in terms of R2. It was found that both models slightly under predicted the
high floods in rising limb while over predicted the falling limbs, caused by the effects of
antecedent water levels. The models could not fully capture the underlying mechanism of the
rising and falling rates of high floods. In the case of extreme events, the MAPE is 1.5 % for
SMLR and 1.4 % for ANN models. Minimum and maximum percent errors ranged between
0.09 and 7.4 % in the SMLR models while 0.05 and 6.7 % in the ANN models, respectively.
Thus, particularly ANN models have a lower error range than the SMLR in predicting high
floods. It seems that ANN models better generalize the variability of high floods in the
observation period than SMLR models.

7.2 Forecasting Models using Upstream Data

The second application was to predict the water level at the downstream station using upstream
data. The existence of a strong correlation between downstream and upstream data can be
useful for stream flow forecasting at downstream sites. Following the similar methodology in
the previous section, SMLR and ANN models were developed and their abilities to forecast
flood levels were compared. The current water level at the forecasting station (Mawlaik) was
considered as a function of its past water level as well as previous water levels and rainfall of
the upstream station (Homalin). In this part, at-site water level data, which were shown to be
significant in the previous condition, were used again. In addition, appropriate input variables
from the upstream station were initially selected using CCF. Figure 7 shows the correlation
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SMLR 1-D Forecast ANN 1-D Forecast

ANN 2-D ForecastSMLR 2-D Forecast

SMLR 3-D Forecast

SMLR 4-D Forecast

ANN 3-D Forecast

ANN 4-D Forecast

SMLR 5-D Forecast ANN 5-D Forecast

Fig. 5 Performance comparison of SMLR and ANN models using at-site water levels
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between Mawlaik and Homalin stations. Water levels at Mawlaik are strongly correlated with
its upstream river stage at Homalin station up to several lags as shown in Fig. 7a. Only lagged
upstream water levels with CCF greater than 0.8 were taken. In this case, CCFs of past water
levels between the upstream and downstream stations at t-1 to t-5 were 0.94, 0.94, 0.91, 0.87
and 0.81, respectively and thus considered as input. According to CCF in Fig. 7b, the water
level at Mawlaik was less correlated with upstream rainfall at Homalin station. CCFs of five
antecedent rainfalls from upstream station considered in the model are 0.19, 0.22, 0.24, 0.24,
and 0.23.

Hence to predict the water level at the downstream station, all possible inputs consisted of
five past water levels (Ht-1 to Ht-5) and five antecedent rainfalls (Rt-1 to Rt-5) at the upstream

R2_SMLR 0.93

R2_ANN    0.94

R2_SMLR 0.70

R2_ANN    0.71

R2_SMLR 0.83

R2_ANN    0.84

R2_SMLR 0.65

R2_ANN    0.66

Fig. 6 High flood forecasting comparison of SMLR and ANN models using at-site water levels

Table 4 Performance Comparison
of SMLR and ANN models using
at-site water levels

Models Lead Time
(day)

Validation

R2 RMSE (cm) MAPE (%) CV(%)

SMLR 1 0.99 28 2.54 3.33

2 0.94 58 5.47 6.90

3 0.86 88 8.52 10.45

4 0.77 113 11.17 13.42

5 0.68 134 13.47 15.91

ANN 1 0.99 28 2.54 3.33

2 0.94 56 5.46 6.65

3 0.86 87 8.52 10.33

4 0.79 109 10.71 12.94

5 0.70 132 13.45 15.67
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station, incorporating three lagged downstream water levels (Ht-1, Ht-2 and Ht-3) at Mawlaik,
which were the primary predictors in the previous case. These inputs were regressed with the
output water levels using stepwise regression techniques through which only significant
predictors were included in the models. The performances of selected SMLR models with
significant inputs are shown in Table 5. The maximum R2 is 0.99 for 1-day forecast while
minimum R2 is 0.81 for 5-day forecast. RMSE ranged from 27 to 116 cm. Residual variations
varied from 2 to 11 %. The results are quite satisfactory both in terms of R2 and error measures.
Similar to the previous case, the feed forward MLP networks were created using these
significant variables, as inputs, defined by the SMLR models. One hidden layer was used in
the ANN models, which were trained with a gradient descent algorithm. As suggested by the
previous analysis, the hyperbolic tangent function was used in the hidden layer and identity
function in the output layer. Table 6 shows the developed ANN models which used upstream
data. For 1- to 5-day forecasts, R2 values are between 0.83 and 0.99. In the calibration stage,
ANN could generalize the data set, providing higher R2, lower RMSE and MAPE with
increasing lead times, as ANN could identify the nonlinear contribution of upstream rainfall.

Comparing to the performance indicators in the previous section, R2 values of the SMLR
and ANN models increased in a similar pattern, with 1, 4, 8, 13 and 16 % higher than that of
the previous R2 for 1 to 5-day forecasts, respectively. Regarding to the prediction error, SMLR
models reduced the RMSE by 26, 34, 31, 26 and 22 % for 1 to 5-day forecasting periods, over
the errors in the previous cases. In the ANNmodels, the RMSE indices were 29, 34, 34, 28 and
23 % lower than that of previous models through 1 to 5-day lead times, respectively. For 1-D
forecast, ANN reduced the CV 32 % whereas SMLR 28 %. From 2 to 5-D forecasts, CVs in

Fig. 7 Cross correlation function of water levels at Mawlaik and Homalin (a) and Water level at Mawlaik and
rainfall at Homalin (b)

Table 5 Performances of selected SMLR Models using upstream data

Lead Time (day) Input Variables Calibration

R2 RMSE (cm) MAPE (%)

1 ML (Ht-1, Ht-2), HO (Ht-1, Ht-2 Ht-3, Ht-5, Rt-1, Rt-3) 0.99 27 2.14

2 ML (Ht-1, Ht-2, Ht-3), HO (Ht-1, Ht-2, Ht-5, Rt-1, Rt-3) 0.97 44 3.88

3 ML (Ht-1), HO (Ht-1, Ht-2, Ht-4, Rt-1, Rt-2, Rt-3) 0.93 67 6.13

4 ML (Ht-1), HO (Ht-1, Ht-2, Ht-4, Rt-1, Rt-2, Rt-3) 0.88 91 8.70

5 ML (Ht-1), HO (Ht-1, Ht-2, Rt-1, Rt-2) 0.81 116 11.35

ML Mawlaik (forecasting station), HO Homalin (upstream station)
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both models decreased 32, 25, 21 and 18 % relative to the variation of previous models using
at-site water level. The results showed that involvement of upstream data could improve the
performance of SMLR and ANN models compared to using at-site data alone. Although
rainfall data has less influence on the models compared to the water level data, which exhibits
strong linear correlation, the upstream rainfall would enhance the model performance and
explain the variation of the prediction errors as well. It was found that the first lagged water
level of the downstream station and the two past water levels of upstream station are the
primary predictors in the river stage forecasting model through 1 to 5-day forecasting. One
antecedent rainfall from the upstream station could contribute to the prediction for every lead
time.

7.2.1 Performance Comparison

The predicted water levels were compared with observed ones in the validation period for 1 to
5- day lead times, and performance statistics are given in Table 7. It was found that the
predicted values by both models agreed well with the observed ones up to 5 days. R2 of ANN
models varied from 0.99 to as low as 0.79 for 1 to 5-day lead time while that of SMLR models
was between 0.99 and 0.78. The RMSE of ANNmodels varied from 19 to 109 cm compared to
20 to 110 cm in SMLR models.MAPE ranged from 1.62 % for a 1-day forecast to 11.11 % for
a 5-day forecast in ANN and 1.81 to 11.27 % in SMLR models. CV in the ANN models was
lower than that of SMLR models for all forecasts. Figure 8 shows the observed water levels
and the predicted ones with 1- to 5-day lead times for the selected flood season. These plots

Table 6 Performance of ANN
models using upstream data Lead Time

(day)
Structure Learning

Rate
Calibration

R2 RMSE (cm) MAPE (%)

1 8-2-1 0.6 0.99 26 2.19

2 8-6-1 0.4 0.97 43 3.70

3 7-3-1 0.7 0.94 64 3.91

4 7-6-1 0.8 0.90 86 8.25

5 5-5-1 0.7 0.83 110 10.47

Table 7 Performance comparison
of SMLR and ANN models using
upstream data

Models Lead Time
(day)

Validation

R2 RMSE (cm) MAPE (%) CV (%)

SMLR 1 0.99 20 1.81 2.38

2 0.97 39 3.68 4.63

3 0.93 63 6.29 7.48

4 0.86 88 8.92 10.45

5 0.78 110 11.27 13.06

ANN 1 0.99 19 1.62 2.25

2 0.97 38 3.60 4.51

3 0.93 62 6.15 7.36

4 0.86 86 8.72 10.21

5 0.79 109 11.11 12.90
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clearly indicate the relative skills of each model across the full range of flood levels. According
to the performance indicators, ANN models are superior to the SMLR models in the validation
stage, providing lower RMSE, MAPE and CV, whereas R2 in both models were almost the
same. In the validation stage, the standard deviation of the dependent water level series was
228.3 cm while 227.8 cm for ANN and 227.4 cm for SMLR models, respectively. For the 1-
day forecast, the mean value of the observed water level was 842.2 cm and that of the
predicted series was 842 cm for ANN and 843.6 cm for SMLR models. It was observed that
standard deviations of the modeled values were in close vicinity to that of observed ones,
indicating that the models seem to capture the variability of actual phenomenon.

Four extreme flood events during the validation period were compared with the predicted
water levels. Figure 9 shows the forecasting performance of the SMLR and the ANN models
for 1-day forecast in the extreme flood events. Regarding R2, ANN models provided a better
agreement with the observed floods than SMLR models. For July and August floods in 2008,
the relative errors of SMLR forecasts were 1.4 and 1.1 % while ANNmodels reported 1.1 % in
both cases. For the prediction of July and August floods in 2011, ANN models had lower
relative errors with 0.7 and 0.8 % compared to the SMLR models with the relative error of 1.5
and 1.4 %. Accuracy of both models was increased by the contribution of upstream data in
predicting the high floods. Overall, the ANNmodels can predict high floods with less than 1 %
error for one step ahead forecast. In this particular comparison, ANN models clearly
outperformed the conventional regression models.

Fig. 8 Observed and predicted water levels for the flood season in 2008
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8 Conclusions

To cope with the situation of data insufficiency, one must develop predictive models that may
use one or few of the available hydrometric data to issue a reliable forecast. From the
standpoint of avoiding complexity of physical process and providing a reliable forecast, in
this study, ANN and SMLR models were developed using past water levels and rainfalls to
predict the river stage at a specific location. To suggest the appropriate methodology for the
forecasting problem using commonly available data, the performance of the developed models
was evaluated under two conditions: (a) using at-site data only and (b) using upstream data.
The input vector selection of both models involved auto-, partial- and cross-correlation of the
data series. Since the dependent water level series was almost normally distributed and the
autoregressive process was dominant, the most recent antecedent data had a greater impact on
the regression models.

Overall, the SMLR and ANNmodels provided satisfactory results in forecasting water level
up to five days ahead during the monsoon flood season. Station rainfall could not much
contribute to the model performance in terms of R2. Nonetheless, involvement of the rainfalls
reduced the prediction errors in the ANN models, which have the inherent ability of capturing
nonlineariy. It was observed that the upstream data contribution could improve the model
performances significantly with a higher R2 and lower errors. Further, the developed ANN
models in this study achieved by no means their best performances via a parallel assessment,
while the SMLR models exhibit their best forecasts. Nonetheless, the neural network approach
has shown consistently better performances than the conventional MLR technique in both
conditions, especially for extreme flood prediction with less prediction error.

The study suggests that conventional MLR is simple to use, and the results are quite reliable
as long as the relationship between applied variables shows a strong linearity. However, real

R2_SMLR 0.95

R2_ANN    0.96

R2_SMLR 0.79

R2_ANN    0.81

R2_SMLR 0.93

R2_ANN    0.96

R2_SMLR 0.75

R2_ANN    0.93

Fig. 9 High Flood forecasting comparison of SMLR and ANN models using upstream data
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world situations never guarantee such conditions and ANN would be a promising alternative
tool in case of noisy data. The study recommends that the inclusion of other prediction
variables such as areal rainfall and temperature would enhance the model performances.
Although using more information is challenging for linear regression models, ANN models,
on the other hand, can incorporate different predictors and would provide better forecasts.

The results reveal that ANN models, once trained correctly, yield the reliable results from
the limited or desired input and output data, which can be either linear or non-linear. This
quality is very useful to water resources management with limited resources. With consistent
performances under different assessment conditions, there was a conclusive indication of the
ANN models being superior to the regression method. The study would be a remedy to the
shortcoming due to the unfair comparison between these two approaches. Finally, as this study
and others have shown, there is a convincing basis for the application of ANN flood prediction
models in real-time contexts. With this knowledge, estimating future floods of a river system is
possible by using past water levels and station rainfalls, without any comprehensive data
requirements. Further investigations should be conducted to identify other significant predic-
tors that are commonly available in the region, and build more accurate forecasting models
using various relevant methods.
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Abstract 

Due to limited data sources, practical situations in most developing countries favor black-box 

models for real time flood forecasting.  The Muskingum routing model, despite its limitations, is a 

widely used technique, and produces flood values and the time of the flood peak. This method has 

been extensively researched to find an ideal parameter estimation of its nonlinear forms, which 

require more parameters, and are not often adequate for flood routing in natural rivers with 

multiple peaks. This study examines the application of artificial neural network (ANN) approach 

based on the Muskingum equation, and compares the feedforward multilayer perceptron (FMLP) 

models to other reported methods that have tackled the parameter estimation of the nonlinear 

Muskingum model for benchmark data with a single-peak hydrograph. Using such statistics as the 

sum of squared deviation, coefficient of efficiency, error of peak discharge and error of time to 

peak, the FMLP model showed a clear-cut superiority over other methods in flood routing of well-

known benchmark data. Further, the FMLP routing model was also proven a promising model for 

routing real flood hydrographs with multiple peaks of the Chindwin River in northern Myanmar. 

Unlike other parameter estimation methods, the ANN models directly captured the routing 

relationship, based on the Muskingum equation and performed well in dealing with complex 

systems. Because ANN models avoid the complexity of physical processes, the study’s results can 

contribute to the real time flood forecasting in developing countries, where catchment data are 

scarce. 

 

Keywords: artificial neural network; flood routing; multilayer perceptron; multiple-peaked 

hydrograph; Muskingum method; nonlinear model 
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1 Introduction 

As floods are the most costly and damaging natural disasters in the world (Berz 2000), the 

determination of streamflow (stage or discharge) at a river station plays an important role in 

environmental and water resources management. Flood routing, a basis for flood forecasting, is the 

process of progressively determining the timing and shape of a flood wave at successive points 

along a river reach. Among two main approaches for flood routing, hydrologic routing (conceptual 

or system approach) is based on the storage concept, and conversely, hydraulic channel routing 

(process approach) is based on the principles of mass and momentum conservation. In predicting a 

particular hydrograph through a river reach, any flood modeling will involve a number of 

assumptions and simplifications. While high demands on the quantity and quality of input data, as 

well as on computer resources, restrict the efficiency of hydraulic models in practical applications, 

approximate models provide satisfactory results in a considerably less expense with a limitation in 

their generality and accuracy depending on the detailed features of the model (Weinmann 1977). 

Therefore, simplified approaches that are reasonably accurate, but do not need extensive 

information on channel reach have been employed in order to compute discharge of relevant sites 

(Reddy and Wilamowski 2000; Tayfur et al. 2007). 

When implementing a flood forecasting system in a developing country, special attention should 

be paid to the sustainability of its operation (Shamseldin 2010). Channel routing for flood prone 

river reaches, which only needs the observation of streamflows, is one of the practical solutions 

for flood forecasting systems in developing countries, where the catchments are not fully 

monitored, and research on hydrodynamic models is extremely limited. The Muskingum model 

(McCarthy 1938) is a popular flood routing method in which storage is assumed to be represented 

by a linear relation of inflow and outflow. In the context of Muskingum routing, flood attenuation 

properties, which are determined by using a set of observed inflow-outflow hydrographs from a 
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river reach remain invariant, and are used for routing of future inflow hydrographs in the same 

reach (Das 2009). Due to its wide applicability in many situations of river flood routing, this 

method has been extensively researched, with an emphasis on estimating its parameters for linear 

and nonlinear forms. In most natural rivers where the nonlinear variations in flows or storage 

between upstream and downstream are predominant, it is desirable to have a model to simulate the 

nonlinear flood processes. 

Several studies on parameter estimation of the Muskingum method have been executed, enabling 

the account for nonlinear characteristics of the flood wave. To solve the nonlinear forms of the 

Muskingum approach, mathematical techniques include segmented least squares method (S-LSM) 

(Gill, 1978), nonlinear least squares (NL-LS) (Yoon and Padmanabhan 1993), Lagrange multiplier 

(LM) (Das 2004), and the Broyden-Fletcher-Goldfarb-Shanno method (BFGS) (Geem 2006). 

Barati (2013) demonstrated the use of the Excel solver in which the generalized reduced gradient 

(GRG) and evolutionary methods are applied for parameter estimation of a nonlinear model. On 

the other hand, there are more direct methods of deriving the routing coefficients, namely by using 

a linear programming from a known pair of inflow-outflow hydrographs, without first deriving 

routing parameters (Stephenson 1979). Moreover, various heuristic algorithms such as genetic 

algorithm (Mohan 1997; Sivapragasam et al. 2008), simulated annealing and shuffled frog leaping 

algorithms (Orouji et al. 2013), harmony search (HS) (Kim et al. 2001), particle swarm 

optimization (PSO) (Chu and Chang 2009), immune clonal selection algorithm (ICSA) (Luo and 

Xie 2010), and Nelder-Mead Simplex (NMS) algorithm (Barati 2011) have been developed in 

order to search optimum parameters in nonlinear models. 

In the light of improving parameter estimation for nonlinear models, several approaches have been 

successfully demonstrated, but only for the well-known benchmark data by Wilson (1974). 

However, three-parameter nonlinear models may not be appropriate for every flood case. As a 
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result, a Muskingum model with more parameters or a novel black box model is required to 

achieve a close match between observed and routed flows (Geem 2013). Easa (2013) proposed an 

improved four-parameter nonlinear Muskingum model, which is superior to any three-parameter 

nonlinear models, and its applicability has been proven in real flood cases with a double-peaked 

hydrograph. However, even the four-parameter nonlinear Muskingum model may not be sufficient 

for flood forecasting in the case of natural rivers with multiple peaks. 

A natural monsoon river has high external influences on the relationship between storages and 

inflow-outflow patterns that could not be fully explained by conventional flood routing 

procedures. Therefore, the complexity and nonlinear problems in predicting a flood hydrograph of 

natural river systems motivated the author to try artificial intelligence (AI) approaches, which have 

the inherent ability of capturing nonlinearity. Due to its success in dealing with complex problems, 

artificial neural networks (ANN) have been applied to a wide range of hydrological problems such 

as rainfall-runoff relationships (Minns and Hall 1996; Sattari et al. 2012), stream flow forecasting 

(Thirumalaiah and Deo 1998; Latt and Wittenberg 2014a), and reservoir inflow prediction 

(Othman and Naseri 2011). There have, however, been relatively few applications of ANNs to 

flood routing. For example, Mohan (1997) demonstrated the objective approach of genetic 

algorithm, without demanding any initial estimate of parameters, is efficient in searching 

Muskingum routing parameters. Yang and Chang (2001) also applied a multilayer neural network 

and sensitivity analysis for direct estimation of routing coefficients, using the same inputs as the 

Muskingum formula. Additionally, Chu (2009) has proven the superiority of a network-based 

Fuzzy Inference System (FIS), which was designed according to the Muskingum formula for 

direct mapping of outflows and inflows, over conventional methods for the benchmark data. 

However, as stated by Geem (2013), researchers have so far only tackled the benchmark data in 

the parameter estimation optimization of the nonlinear Muskingum model. In earlier studies, the 
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applicability of different methods was not tested in real flood cases. Even in the study by Easa 

(2013), only one complete single set of real flood data was used in the model development, and 

the validity of the model using independent flood data was not reported. 

Over time, researchers have searched for better solutions in order to minimize the observed and 

predicted outflows for the said benchmark data (Geem 2013); however, no conclusive comparison 

could be discerned because there are mixed fortunes of performances of the reported methods in 

terms of well-known performance indices. This paper presents a novel black-box approach based 

on the feedforward ANN network in Muskingum flood routing, in order to further minimize the 

discrepancy between observed and routed flows for benchmark data as well as for developing a 

predictive flood model for a natural river in Myanmar dominated by monsoons. The objectives of 

this study are (1) to investigate the application of ANN in Muskingum flow routing; (2) to 

compare the performance of ANN with the previously documented methods, which have been 

used in the parameterization of nonlinear Muskingum routing for the benchmark data; and (3) to 

assess the applicability of ANN-based Muskingum model for real flood cases of a natural river. 

Assessment of the robustness of the ANN based Muskingum approach in routing of real flood 

events with a successful validation would be a remedy to the shortcoming of previous studies. 

 

2 Muskingum Routing 

The Muskingum flood routing method, first developed in connection with the design of flood 

protection schemes in the Muskingum River basin, performs satisfactorily when linearity is not 

unduly violated. It is the most widely used hydrologic routing method in a lumped system for 

handling a discharge-storage relationship, based on the continuity equation as 

I – O =            (1) 
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Where I = inflow to the reach, O = outflow from the reach, and  = rate of change in channel 

storage with respect to time. To derive the Muskingum routing equation, the continuity equation 

becomes 

-  =          (2) 

where,  is the routing period. While I>O, the flood wave is advancing and a wedge of storage is 

produced in the reach. During the recession, O exceeds I resulting in negative wedge storage. 

Considering wedge and prism storages, a linear storage function of the Muskingum method is 

expressed as a function of both inflow and outflow in the form of 

S = K [xI + (1-x)O]          (3) 

In which S = storage volume; K = storage coefficient; and x = a dimensionless weighting factor. K 

accounts for the translation (or concentration) portion of the routing, as being interpreted as the 

travel time of the flood wave from the upstream end to the downstream end of the channel reach. 

The parameter x accounts for the storage portion of the routing. To get meaningful results from 

this approach, it needs to reasonably specify initial conditions and its parameters that reflect the 

physical realism (Singh and McCANN 1980). x is generally restricted in the range from 0 to 0.5. 

With K=∆t and x =0.5, the outflow hydrograph retains the same shape as the inflow hydrograph. 

For x=0, Muskingum routing reduces to a linear reservoir routing. Values of x greater than 0.5 

result hydrograph amplification (i.e. negative diffusion). In determining x, greater accuracy may 

not be necessary because the results of the method are relatively insensitive to the value of this 

parameter (Chow et al. 1988). 

From the continuity and the storage equations, the outflow yields in finite difference form 

        (4) 
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Since C0+C1+C2 = 1, the routing coefficients can be interpreted as weighting coefficients. These 

three coefficients are functions of K, x and ∆t and constant throughout the routing procedures. 

With sufficient streamflow records, variation of routing parameters can be ascertained through the 

calibration for several flood events to cover a wide range of flood levels. The parameters K and x 

are conventionally estimated using a graphical method (i.e. trial and error). A tentative value of x 

is assumed and the historical data are plotted as S vs. [xI + (1-x)O]. The data generally plot in the 

form of a loop (sometimes there are several loops). The value of x, for which the width of the loop 

is minimized, is taken to be the correct value for the reach. Despite the use of the trial and error 

method for many decades, it is time consuming and likely to be subjective. In addition, such 

estimates tend to be approximate (Oʹ Donnell 1985; Chu 2009).The linear model commonly 

applied to flood routing may be inappropriate when a nonlinear relationship between the flows and 

channel storage exists, as it does in most natural rivers. 

 

2.1 Nonlinear models 

In natural river reaches, it is common to observe the nonlinear storage function and significant 

errors may arise in downstream flood routing with the use of the conventional linear Muskingum 

approach (Barati 2013). Frequently quoted nonlinear (NL) forms of the Muskingum model in the 

literature (Wilson 1974; Gill 1978; Tung 1985; Yoon and Padmanabhan 1993; Papamichail and 

Georgiou 1994; Mohan 1997; Kim et al. 2001) are 

S = K[x  + (1 x) ]    (NL-1)        (5) 

S = K[x  + (1 x) ]   (NL-2)        (6) 

S = K   (NL-3)        (7) 
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Following a similar derivation to that of NL-1, Easa (2013) proposed a four-parameter nonlinear 

Muksingum model as follows: 

S = K    (NL-4)       (8) 

These non-linear models have an exponential parameter n and m, which presumably makes the 

nonlinear relationship between accumulated storage and weighted flow more accurate (Kim et al. 

2001). There are relatively few applications of NL-1 and NL-2 in the literature. For example, Gill 

(1978) stated that NL-1 has seldom been used in flood routing, although the relationship can be 

fitted to the storage curves from a theoretical point of view. The NL-3 model is most commonly 

used in flood routing as it increases the accuracy of the routing (Orouji et al. 2013). For NL-3 and 

NL-4, the parameters x, K, n, and m cannot be estimated through a simple graphical method, and 

the calibration procedure becomes more complicated. Unlike in the linear model, K does not 

describe the travel time of the flood wave in the nonlinear model, and x does not need to have the 

same preconditions (Barati 2011; Easa 2013). 

 

2.2 Objective function  

Parameter optimization of nonlinear models search the best routing parameters using an 

optimization algorithm in order to minimize objective functions. The commonly used objective 

function is the sum of squared deviation (SSQ), which can be calculated via the sum of the squares 

of differences between observed outflows and the routed outflows. This is minimized in terms of 

the variables x, K, n and m by applying different optimization techniques. 

Min SSQ =          (9) 

Where  and  represent the observed outflow and the routed outflow. 
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Therefore, the optimization model for NL-3 and NL-4 may be expressed in Eqs. (10) and (11) 

respectively as 

SSQ =       (10) 

SSQ =      (11) 

The value of the parameter x may range theoretically from -  to 0.5 (Strupczewski and 

Kundzewicz 1980) while the parameters K, n and m have no specific constraints. As a measure of 

wedge storage, the negative value of x appears physically unreasonable; nonetheless, negative x is 

acceptable from the view of mathematical modeling (Dooge 1973). 

 

3 ANN Approach 

ANNs have been used as black-box simplified models in several water resources problems. The 

black-box type flood forecasting models can be considered as pattern mappings for input-output 

data sets. Multilayer perceptron (MLP) network (Rumelhart et at. 1986) is usually used for pattern 

mapping problems and consists of an input layer, one or more hidden layers of computational 

nodes (neurons), and an output layer of computational nodes. In a feedforward structure, data flow 

only in one direction. A neuron in a particular layer receives all input from the preceding layer and 

transmits the values to the succeeding layers of processing element. The schematic representation 

of the feedforward MLP network designed according to the Muskingum equation (Eq. 4) is shown 

in Fig. 1. It has one input layer, one hidden layer and one output layer. Each node in a layer is 

connected to all nodes in the successive layer, and the neurons in the same layer are not connected 

each other. The data transferred from one neuron to another through the connections are controlled 
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by the weights. The sum of the product of inputs (x) and their weights (w) minus bias (b) leads to a 

net as follows: 

net =  - b          (12) 

Then, the output of a neuron, f (net) is decided by an activation function that determines a 

response of the node to the input signal it receives. In order to generate an output vector, a training 

(learning) process is used to find optimal weight matrices and bias vectors that minimize a 

predetermined error function (E) which is the sum of squares error given as follows. 

E =          (13) 

Here, ti and yi represent the target (observed outflow, ) and output (predicted outflow, ) 

at the i
th

 node, respectively; N is the number of output nodes; and p denotes the number of training 

patterns. Three-layered feedforward MLP models with a single hidden layer were trained with 

error back propagation, which is essentially a gradient-descent algorithm, to look for optimal 

performance by trial and error. Each input pattern of the training set was passed through the 

network from the input layer to the output layer. The network output was compared with the 

desired target. Then, the error was propagated backward through the network to each node, and the 

weights are optimally adjusted. 

Sigmoid and hyperbolic tangent functions, as given in Eqs. (14) and (15) respectively, were 

applied in the hidden layer. The linear function (identity), given as f(x) = x, was used in the output 

layer, making the network take any values because predicted outputs may be distorted by 

nonlinear activation functions. 

f(x) =            (14) 
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f(x) = tanh (x) =          (15) 

In order to overcome numerical instabilities during the training process and to improve the 

generalization ability, the calibration data sets were standardized in a linear scale, subtracting the 

mean, and were further divided by the standard deviation. Different learning rates were applied 

from 0.1 to 0.9, and the momentum was changed in the range of 0.5 to 0.9, as these two 

parameters affect the convergence speed of the algorithm. Using more nodes in the hidden layer 

may improve the MLP performance, but on the other hand, the model might learn the error, i.e. 

noise (Stefanon et al. 2001). The number of hidden layer neurons was changed up to 20 through 

the training process. The appropriate neuron number was selected depending on the minimum 

standard error. In the training stage, an early stopping method was applied in order to avoid over 

fitting. By evaluating the objective function at each iteration on training and testing sets, the 

training process was stopped in correspondence with the minimum validation error. 

 

4 Performance Criteria 

In this study, the performances of various methods were evaluated using four performance indices, 

namely the coefficient of efficiency (CE), the mean relative percent error (MRE), the error of peak 

discharge (EQp) and  the error of time to peak (ETp) given, respectively, as 

CE= 1-            (16) 

MRE =  * 100         (17) 

EQp =           (18) 
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ETp =           (19) 

Where ,  and  represent observed flow, computed flow and the mean of the observed flows 

respectively.  and  are the observed and estimated peak discharge.  and  are the observed 

time to peak and computed time to peak respectively. 

CE provides the strength of the models ‘predictive power. MRE yields the relative error, providing 

how the predicted values are close to the observed ones, and it represents a measure of accuracy in 

a fitted series, expressed in percentages. EQp provides a deviation of computed peak with respect 

to the observed peak. ETp implies how the occurrence of flood peaks is closely estimated. A 

higher CE and a lower value of MRE, EQp and ETp imply a good performance. Through these 

criteria, the ability of each method can be properly understood. 

 

5 Model application in case studies 

In this paper, feed forward multilayer perceptron (FMLP) models were developed according to the 

Muskingum formula for routing benchmark data and real flood cases. Two case studies are 

considered in this study. 

The first case study is based on the well-known Wilson’s benchmark data. The data set is reported 

to present a nonlinear relationship between weighted discharge and storage and has been 

extensively studied by others for the assessment of various parameter estimation approaches (Gill 

1978). In the data set, there is a smooth nonlinear optimization problem. However, the function to 

the objective is nonconvex and thus only locally optimal solutions in parameterization can often 

be expected. The performance of this study’s proposed FMLP Muskingum model was compared 

to that of the previously reported methods, which have been used in the parameterization of 

nonlinear Muskingum routing. 
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The second case study is based on the real flood cases of the Chindwin River in Myanmar, a 

typical natural monsoon river with high external disturbance, and the data set is expected to 

present the nonlinearity of the flood wave. As a natural monsoon-dominated river, significant 

inflows from possible tributaries along the reach considered are likely throughout the entire 

monsoon season of July to October. The FMLP models were trained without filtering out this 

effect or considering it in any form of modeling. Therefore, the true merit of the ANN technique 

on the basis of the Muskingum method could be assessed, upon the flexibility of predictions and 

model structures. The applicability of the developed model was also validated with independent 

flood data. 

 

6 The study area 

A forecasting model based on Muskingum routing was applied to the flood prone reach of the 

Chindwin River in northern Myanmar. Fig. 2 shows the location of the Chindwin River basin and 

the selected reach for flood routing. Myanmar is one of the tropical countries characterized by the 

monsoon climate and river flooding is a recurrent natural phenomenon (Sanyal and Lu 2004). 

With an inadequate density of hydrometric stations in most rivers of the country, estimation of 

floods in poorly gauged basins is a typical issue of water resources management in Myanmar. 

Among the principal rivers of the country, the Chindwin River has experienced frequent and 

severe floods in recent years and the flood risk has increased, especially in the last two decades 

(Latt and Wittenberg 2014b). However, the river receives relatively little attention. The Chindwin, 

with its major tributaries, is the most convenient way of communication within the basin 

connecting it with the main economically developed areas of the country. Due to climate 

conditions, the flood hazard is a challenge to its important role in the country's social economy. 

Severe floods hit the Chindwin basin every year at one place or another due to high rainfall 
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intensities during the southwest monsoon. Since 1965, flood occurrences in the Chindwin basin 

have been the highest in July and August contributing to 72% of the total number of floods in the 

basin. In this study, reported floods of two hydrometric stations, namely Homalin and Mawlaik, 

were considered. Flood estimation by routing the reach between these two stations would be 

valued in the region because these stations have the highest flood risk in terms of probability and 

temporal trend in mean annual maxima (Latt and Wittenberg 2014b). The length of the reach from 

upstream (Homalin) to downstream (Mawlaik) is 114km. According to the basin topography, the 

reach slope is about 0.0003, which is relatively mild. A flood wave is subjected to translation and 

reservoir actions during its passage through natural rivers and hydrologic methods are properly 

used in case the reservoir action dominates the translation action for rivers with a mild slope (Das 

2009). 

 

7 Result and Discussion 

7.1  Study 1: Benchmark Data 

The ANN-based Muskingum routing was applied to the Wilson’s benchmark data, which many 

researchers have tackled, in order to minimize the SSQ and the routing results were compared to 

that of the previously documented methods. According to the Muskingum formula (Eq. 4), the 

FMLP structure was built to produce the outflow at the next time step,  as a function of , 

 and . Therefore, three neurons in the input layer and one neuron in the output layer constitute 

the structure of the developed FMLP model. The number of neurons in the hidden layer depends 

on the complexity of input-output relationships to be captured. In the principle of traditional 

modeling, independent data sets for validation were used, whereas in the earlier studies for 

Muskingum parameter estimation that’s used the single set Wilson data, the complete inflow-
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outflow data were used only for calibration (Das 2009). Therefore, with no exception in this study, 

100% of the data was used for training the FMLP models. Validation with an independent data set 

was not favored. After testing the sigmoid and hyperbolic activation functions in the hidden layer, 

the results suggest that the hyperbolic tangent function was preferable in this case, providing less 

prediction error and higher performance than sigmoid function. Using the same function in both 

hidden and output layers could not minimize the errors. Thus, the linear (identity) function was 

used in the output layer to ensure taking any values without a bounded range. The combination of 

the hyperbolic tangent in the hidden layer and the identity function in the output layer makes the 

models achieve the best performance. Table 1 depicts the best-fit FMLP architectures, determined 

on the basis of the least errors during calibration. Table 2 refers to the associated weights and bias 

of the best FMLP model (FMLP-1). 

As shown in Fig. 3, minimizing SSQ value using various methods in the earlier studies has a 

significant improvement. The conventional parameter estimation techniques (PSO, NL-LS, S-

LSM and LM) have resulted in SSQ values greater than 100 (Gill 1978; Yoon and Padmanabhan 

1993; Das 2004; Chu and Chang 2009), and the other approaches provide relatively lower SSQ. In 

this study, the proposed FMLP model was compared only to the methods that provided SSQ 

values lower than 50. With a routing interval of six hours, Fig. 4 shows the comparison between 

the outflow hydrograph of the Wilson data and the routed outflows by different methods. Table 3 

lists the computed outflows using HJ+DFP (Tung 1985), GA (Mohan 1997), ICSA (Luo and Xie 

2010), HS (Kim et al. 2001), BFGS (Geem 2006), NMS (Barati 2011), the NL-4 model (Easa 

2013), the FIS model (Chu 2009), and the FMLP model. Three decimal places were used in 

calculating the simulated outflows and comparing the performance of the different methods, 

except the FIS model, whose simulated flows are originally presented by Chu (2009) in one 

decimal place. However, the routed flows are mentioned in one decimal place in Table 3 due to 
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the limited space. Although taking different decimal places in performance indices is sensitive to 

the results of model comparison, the rounding off effect was faded beyond three decimal points for 

benchmark data (Barati 2011). Table 4 presents the performance indices of the FMLP model 

compared to recent studies of nonlinear Muskingum routing. It can be seen that routing 

performances by different optimization approaches for the NL-3 model are not significantly 

different from one method to another. In a comparison of different optimization methods, different 

subjects such as number of iterations, convergence time, and algorithm parameters need to be 

considered (Barati 2011). However, the study does not extensively discuss the collective strengths 

and weaknesses of different methods, but compares their performances by using evaluation criteria 

for benchmark data routing. The detailed explanation of the merit of each method can be read in 

the literature cited. Since the occurrence of the predicted peak flows coincide with that of the 

observed maximum outflow, ETp values become zero for all methods. Although HJ+DFP and GA 

methods provide a lower EQp than other algorithms, their SSQ values are far from the optimum 

solution. SSQ values of ICSA, HS, BFGS, and NMS methods are very close to one another. Their 

MRE and EQp values are around 2.5% and 0.01, while the CE values are the same for these four 

methods. Therefore, no significant improvement in model performances among these four 

methods can be detected, although they have their own merits and have been proven promising 

alternatives for the NL-3 routing procedure. The recent development in parameter estimation for 

the NL-3 model has resulted in a smaller improvement in SSQ, namely less than 1% (Easa 2013) 

as well as in CE. Evidently, none of the parameter estimation methods for NL-3 models showed a 

clear-cut superiority over the others in terms of all evaluation criteria. The SSQ value of best 

existing methods for the NL-3 model was 36.77, which was also confirmed using the GRG 

algorithm in this study, and for the NL-4 model, it is 7.67. The SSQ value of the FIS model, one of 

the artificial intelligence approaches, by Chu (2009) is 4.83, and CE value is 0.9996, which is the 
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best performance for benchmark data so far. The NL-4 model and the FIS model significantly 

outperformed the other models in the Muskingum flood routing of the benchmark data. However, 

there was a mixed fortune of performances for the NL-4 model and the FIS model. The FIS model 

has a superior performance over the NL-4 model in terms of SSQ, CE and MRE, whereas the NL-

4 model is superior to the FIS model in terms of EQp. In this study, the best FMLP model 

provides the SSQ value of 4.05, which is the smallest value. The CE, MRE and EQp values of the 

FMLP model are 0.9997, 0.92% and 0.0024. Therefore, it can be shown that FMLP method is a 

promising alternative in Muskingum flood routing. The approach was found superior to other 

previously reported methods that have been used in Muskingum routing for the benchmark data, 

not only in terms of the objective function, but also in terms of all performance criteria. 

 

7.2 Study 2: Real flood cases  

Fig. 5 shows the observed inflow (upstream) and outflow (downstream) hydrographs of the 

Chindwin river reach. In the case of the Chindwin River, the hydrograph really reflects the 

behavior of a natural river with external influences, leading to higher outflows than inflows. 

Instead of first deriving the coefficients  x, K and m by a linear or nonlinear Muskingum equation, 

it is possible to directly search the optimal weights and bias in mapping inflow-outflow, using the 

artificial intelligence approach.. With a routing interval of one day, a FMLP structure was designed 

according to the Muskingum routing equation, since ANN can map any input-output patterns 

either in linear or nonlinear form. In the model development, several flood events during the 

monsoon season (July-October) from the period between 2005 and 2009 were simultaneously used 

for calibration. The calibration data was further randomly divided into a training set to 80% and a 
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testing set with 20%. After a successful calibration, the developed model was subsequently 

validated with the flood data during the monsoon seasons of 2010 and 2011. 

As suggested by the previous analysis in the study-1, the hyperbolic tangent function was used in 

the hidden layer and identity function was used in the output layer. The developed FMLP structure 

in this case is 3-3-1 (three neurons in the input and hidden layers and one neuron in the output 

layer). The optimal objective function was achieved through the learning rate of 0.5 and 

momentum by 0.8. Sum of squares error during the training are 2.278. The computed weights and 

bias of the FMLP model are shown in Table 5. In an objective manner, three popular statistical 

measures (CE, MRE and EQp) were used to describe the performances of the models during 

calibration and validation. For routing real floods in the Chindwin River, the values of CE, MRE 

and EQp of the FMLP model during calibration were 0.99, 4.82% and 0.05, respectively. With 

high values of performance indices, Fig.6 shows a good agreement between the predicted outflows 

by the proposed model and the observed ones in the calibration period. The residuals of the model 

do not show a definite pattern, as seen in Fig. 7. Therefore, it can be expected that the residuals are 

independently distributed. As a result, the developed FMLP model is believed to be satisfactory 

for further prediction. 

Validations of the model results are unavoidable in order to ensure the applicability of the 

proposed methods to this flood prone reach of the Chindwin River. With the optimally adjusted 

weight and bias achieved via the training, the FMLP model was reproduced to predict the 

independent flood events during the validation period. The predicted outflows and the observed 

ones in the validation period were plotted in Fig. 8, which depicts, except for a few flood peaks, 

the higher predictability of the ANN-based Muskingum model. Therefore, it is expected that the 

architecture of the trained network is sufficiently effective to generalize as well as to capture the 

underlying relationships, when validated with the new data. With a CE value of 0.98, the model 
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result is quite satisfactory. The model provides the MRE value of 4.38% in predicting the flows 

through the entire flood season. With the EQp value of 0.04, the error in predicting flood peaks is 

very low. The FMLP model has shown its robustness and predictability in real flood cases. 

Overall, this study presents a successful attempt to validate the prediction of real flood events with 

multiple peaks in this natural river throughout the entire monsoon season. It shows that an ANN 

approach along with sufficient real time data provides a convenient mechanism for routing of river 

flows. 

 

8 Conclusions 

Several studies have focused on improving the performance of the well-known Muskingum 

routing, with an emphasis on recommendation of optimization approaches for parameter 

estimation and direct mapping of input-output relationships, for the benchmark data. In 

chronological order, better solutions were proposed in minimizing the SSQ value. However, one 

method was not clearly superior to other methods because there are mixed fortunes of 

performances for each method in terms of the evaluation criteria. Few studies reported the 

applicability and performance of the proposed method in real flood cases with successful 

validation. The fact that nonlinear Muskingum models may not be applicable to every flood event 

is likely because the inflow-outflow relationship in natural rivers depends not only on the storage 

characteristics, but also on other external influences. 

In this study, the FMLP network with error back propagation was applied for Muskingum flood 

routing, and its performance was assessed for benchmark data in comparison with the previous 

reported methods as well as for real flood cases of the Chindwin River in northern Myanmar. In 

both cases, the performance of the FMLP models was found to be quite satisfactory in terms of all 
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indices. The results have demonstrated that the FMLP model shows the consistency in its 

performance by means of all performance indices.  Due to the ability of capturing nonlinearity and 

complex systems, the ANN approach can disregard any external disturbances and successfully 

capture the inflow-outflow relationship of the real flood cases on the basis of the Muskingum 

formula, which is sensitive to high disturbances by lateral inflows into the system. 

This paper is not primarily interested in extensively discussing the strength and weakness of the 

individual methods for Muskingum routing, but in highlighting the merit of the artificial 

intelligence approach as a powerful competitive tool in solving complex or not-fully identified 

hydrologic systems. While solution algorithms have been studied for nonlinear Muskingum 

methods with more parameters from a mathematical standpoint, the values of fitted parameters are 

likely to lose physical meaning. Therefore, a novel black box approach, namely an intelligence 

method, helps the direct mapping of observed outflows and inflows according to the Muskingum 

formula and minimizes the discrepancy between observed and routed flows, without knowing 

routing parameters. For the flood routing of the benchmark data, a clear-cut superiority of the 

FMLP method over other previously documented methods was discerned. With a set of inflow-

outflow records for a natural river reach, the proposed approach has been further shown to be a 

promising tool for routing of real flood events in natural rivers with high nonlinearity. 
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Table 1 The best FMLP models for Muskingum routing of benchmark data 

 

FMLP models 
Model 

structure 
Learning rate Momentum 

Sum of 

squares error 

FMLP-1 3-2-1 0.62 0.9 0.004 

FMLP-2 3-2-1 0.40 0.7 0.005 

FMLP-3 3-2-1 0.10 0.8 0.005 
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Table 2 The calculated weight and bias of the best FMLP model (FMLP-1) for routing benchmark 

data    

 

Predictor 

 
Target Variable,  

 Hidden layer 
Output layer 

 Node 1 Node 2 

Input layer (bias)  0.682 -0.078  

 
 -0.497 -0.323  

 
 -0.198 0.491  

 
 -0.782 -0.833  

Hidden layer  (bias)    0.278 

Node 1    -0.964 

Node 2    -0.886 
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Table 3 Comparison of routed outflows by the FMLP with other methods for Wilson’s data 
 

 

Observed 

Flows 

(m
3
s

-1
) 

 Computed Outflow (m
3
s

-1
) 

Time 

(hr) 
I O  HJ+DFP GA ICSA HS BFGS NMS NL-4 FIS FMLP 

0 22 22  22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 

6 23 21  22.0 22.0 22.0 22.0 22.0 22.0 22.0 20.9 20.4 

12 35 21  22.4 22.4 22.4 22.4 22.4 22.4 22.3 21.0 21.5 

18 71 26  26.7 26.4 26.6 26.3 26.6 26.6 25.7 26.0 26.0 

24 103 34  34.8 34.2 34.4 34.2 34.5 34.5 33.1 34.0 33.8 

30 111 44  44.7 44.2 44.2 44.2 44.2 44.2 43.6 44.0 44.1 

36 109 55  56.9 57.0 56.9 56.9 56.9 56.9 55.8 57.1 55.2 

42 100 66  67.7 68.2 68.1 68.2 68.1 68.1 66.5 66.2 65.7 

48 86 75  76.3 77.2 77.1 77.1 77.1 77.1 75.2 75.0 75.3 

54 71 82  82.2 83.3 83.3 83.3 83.3 83.3 81.6 82.0 81.7 

60 59 85  84.7 85.7 85.9 85.9 85.9 85.9 84.7 85.4 85.2 

66 47 84  83.5 84.2 84.5 84.5 84.5 84.5 83.8 84.0 84.0 

72 39 80  79.8 80.2 80.5 80.6 80.6 80.6 80.1 80.0 79.9 

78 32 73  73.3 73.3 73.6 73.7 73.7 73.7 73.0 73.0 72.9 

84 28 64  65.5 65.1 65.3 65.4 65.4 65.4 64.3 64.0 64.0 

90 24 54  56.5 55.8 55.9 56.0 56.0 56.0 54.2 54.0 54.0 

96 22 44  47.5 46.7 46.6 46.7 46.7 46.7 44.6 44.0 44.7 

102 21 36  38.7 38.0 37.8 37.8 37.7 37.8 35.8 35.9 35.8 

108 20 30  31.4 30.9 30.5 30.5 30.5 30.5 29.2 29.9 29.1 

114 19 25  25.9 25.7 25.3 25.3 25.2 25.2 24.7 25.3 24.8 

120 19 22  22.1 22.2 21.8 21.8 21.7 21.7 21.7 21.7 22.0 

126 18 19  20.2 20.3 20.0 20.0 20.0 20.0 20.1 19.1 20.2 
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Table 4 Routing parameters and performance statistics of different techniques for the Wilson’s 

data 

Method 
Routing Parameter 

 Objective 

Function 
Performance Indices 

K x m n  SSQ CE MRE EQp ETp 

HJ+DFP 0.0764 0.2677 1.8978   45.61 0.9962 2.974 0.0036 0 

GA 0.1033 0.2813 1.8282   38.24 0.9969 2.604 0.0084 0 

ICSA 0.0884 0.2862 1.8624   36.80 0.9970 2.526 0.0106 0 

HS 0.0883 0.2873 1.8630   36.78 0.9970 2.518 0.0108 0 

BFGS 0.0863 0.2869 1.8679   36.77 0.9970 2.526 0.0106 0 

NMS 0.0862 0.2869 1.8681   36.77 0.9970 2.525 0.0107 0 

NL-4 0.8340 0.2960 4.0790 0.4330  7.67 0.9994 1.531 0.0031 0 

FIS      4.83 0.9996 0.40 0.0047 0 

FMLP      4.05 0.9997 0.92 0.0024 0 
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Table 5 The calculated weight and bias of the FMLP model for routing real flood events of the 

Chindwin River 

 

Predictor 

 Target Variable,  

 Hidden layer 
Output layer 

 Node 1 Node 2 Node 3 

Input layer (bias)  -0.513 1.184 0.473  

 
 -0.126 -0.080 -0.509  

 
 -0.011 -0.075 0.434  

 
 -0.338 -0.352 0.313  

Hidden layer  (bias)     0.599 

Node 1     -1.996 

Node 2     -1.805 

Node 3     -0.071 
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Fig.1. Structure of the MLP model for Muskingum routing 

 

 

 

 

 

 

 

 

 

 

 

i = input node 

h = hidden node 

o = output node 

b = bias 
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Fig. 2. Location of the Chindwin river basin 
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Fig. 3. Performances of the different approaches in minimizing SSQ for routing the 

Wilson’s benchmark data 
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Fig. 4. Comparison of routed outflows by different methods for Wilson’s data 
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Fig. 5. Inflow and outflow hydrographs for the Chindwin River reach for the 2008 flood season 
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Fig. 6. Observed and predicted outflows for the Chindwin river reach during calibration 
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Fig. 7. Residuals vs. predicted plot 
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Fig. 8. Comparison of predicted outflows by the FMLP model and the observed outflows 

during the validation (a) for 2010 flood season and (b) for 2011 flood season  
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Fig. S1 Non-linear relationship between storage and weighted discharge for the Wilson’s 

benchmark data with single flood peak 

 

 

 

 

 
 

Fig. S2 Non-linear relationship between storage and weighted discharge for the Chindwin River 

with multiple flood peaks 
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Abstract A neural network-based regionalization approach using catchment descriptors was
proposed for flood management of ungauged catchments in a developing country with low
density of the hydrometric network. Through the example of the Chindwin River basin in
Myanmar, the study presents the application of principal components and clustering techniques
for detecting hydrological homogeneous regions, and the artificial neural network (ANN)
approach for regional index flood estimation. Based on catchment physiographic and climatic
attributes, the principal component analysis yields three component solutions with 79.2 %
cumulative variance. The Ward’s method was used to search initial cluster numbers prior to k-
means clustering, which then objectively classifies the entire catchment into four homoge-
neous groups. For each homogeneous region clustered by the leading principal components,
the regional index flood models are developed via the ANN and regression methods based on
the longest flow path, basin elevation, basin slope, soil conservation curve number and mean
annual rainfall. The ANN approach captures the nonlinear relationships between the index
floods and the catchment descriptors for each cluster, showing its superiority towards the
conventional regression method. The results would contribute to national water resources
planning and management in Myanmar as well as in other similar regions.

Keywords Artificial neural network .Multivariate clustering . Index flood estimation .

Physiographic parameter . Principal component . Ungauged catchment

1 Introduction

Flood is the most costly and damaging natural disaster among other main catastrophes in the
world in terms of loss of lives and properties (Berz 2000). During the past 30 years, 40 % of
the total number of the flood events in the world occurred in Asia, and Southeast Asia is the
second worst flood-affected region of the continent, after South Asia (Dutta and Herath 2004).
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Therefore, understanding flood response characteristics and flood estimates are required not
only for design and economic appraisal of hydraulic works, but also for efficient flood
management schemes to save human lives and environmental assets. Myanmar, the second
biggest country in Southeast Asia, is highly exposed to flood hazards due to its complex
topography and high rainfall intensities during the southwest monsoon season. Floods are
affected by the spatial distribution of terrestrial and climatic conditions through hydrological
processes and therefore, detecting and mapping similar flood response characteristics can assist
the water resources practitioners in management decision. As flood mitigation measures are
not possible without knowing regional characteristics being an integral part of the flood risk
management, special concern is dedicated to the diverse spatial conditions.

To assess flood risk and adopt control measures, one needs to estimate flood magnitude at
any watershed location. However, direct flood estimations using past flow data are not always
possible due to insufficient flow records, particularly in developing countries like Myanmar.
Moreover, with the use of flood statistics, hydrologic regionalization is not possible for
sparsely gauged or ungauged basins. Due to the substantial costs involved, the density of
hydrometric monitoring stations in Myanmar is 12,000 km2 per station, which is beyond the
minimum adequacy of 1,500 km2 per station recommended by the World Meteorological
Organization (2008). Under these circumstances, regionalization using climatic and catchment
physiographic characteristics is an appropriate solution for flood estimation at ungauged basins
in Myanmar. Identification of hydrological homogeneous regions and the application of a
regional estimation method in identified homogeneous regions plays a major role in any
regional flood frequency analysis (RFFA) (Chokmani and Ouarda 2004; Abdolhay et al.
2012).

Watershed classification is generally based on physiographic characteristics of watersheds
or their flood behaviors or a combination of both (Razavi and Coulibaly 2013). However, there
do not seem to be any specific objective guidelines for identifying homogeneous regions due
to the inadequate understanding flood generating mechanisms (Gingras and Adamowski
1993). The choice of variables for clustering and regional flood models depends on data
availability and influences on flood generation (GREHYS 1996). However, using geograph-
ical proximity alone as surrogate for hydrological similarity might not be satisfactory since the
regionalized areas may be hydrologically heterogeneous (Smith and Ward 1998). Moreover,
classifying homogeneous regions using geographical properties alone is not completely
satisfactory and terrestrial information is needed to be included in the cluster analysis (Hosking
and Wallis 1997; Mishra et al. 2009). In the context of watershed classification, recent studies
have focused on multivariate statistical analysis, such as principal component (PCA) and
cluster analysis (Razavi and Coulibaly 2013). Cluster analysis has been used in numerous
areas of water resources and environmental management (Shaban et al. 2010; Goyal and Gupta
2014). For example, Abdolhay et al. (2012) applied factor analysis together with different
clustering techniques such as Ward, Fuzzy and Kohonen to identify the homogeneous regions.
Similarly Razavi and Coulibaly (2013) have applied PCA to watershed attributes and
streamflow series prior to k-means clustering of watershed classification.

In flood regionalization, index flood (IF) is a primary variable to extrapolate flood
exceedance probabilities via RFFA. Regression techniques are widely used to estimate IF
based on catchment descriptors at ungauged sites (Kohnová and Szolgay 2003; Dawson et al.
2006; Cutore et al. 2007). While this approach is the most consistent and reliable procedure,
the log-transformed solution of the conventional power form (regression based) model for the
parameter estimation may be biased in a real domain (Pandey and Nguyen 1999; Eng et al.
2007). Logarithmic transformation is not possible to linearize the power form model with the
additive error (GREHYS 1996). Moreover, deciding an appropriate model structure in
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mapping relations between flood quantiles and catchment attributes is a complex issue in flood
regionalization. Despite several non-linear optimization techniques for directly estimating the
power formmodel parameters in real domain, the model structure is fixed (Pandey and Nguyen
1999). On the other hand, a nonlinear technique such as artificial neural networks (ANN) can be
used to estimate parameters of such models in a real flood domain as ANNs identify any
complex system during training process. Neural solutions have been applied to a wide range of
hydrological problems such as rainfall-runoff relationships (Sattari et al. 2012), flood forecast-
ing (Sahay and Srivastava 2014), and groundwater level forecasting (Nayak et al. 2006). In
addition, ANNs have been considered as a competitive alternative to conventional statistical
methods in streamflow prediction (Cigizoglu 2003; Latt and Wittenberg 2014a). However,
there have been relatively few applications of ANNs to regional flood models (Dawson et al.
2006). For example, Aziz et al. (2013) have developed ANN-based regional flood frequency
models for Australian catchments. In addition, Besaw et al. (2010) have trained recurrent ANNs
on climate-flow data from one basin for streamflow forecasting at ungauged basin with different
climate inputs. To correct the transformation bias in the regression technique, neural network
approaches would be a robust technique in estimating IF at ungauged sites via catchment
descriptors, while conventional regression method has a limitation in use.

To the knowledge of the authors, in contrast to the demanding flood hazards, no specific
study on flood regionalization for ungauged catchments has been reported in the context of
Myanmar rivers and particularly the Chindwin catchment has received relatively little atten-
tion. Therefore, one of the main goals of this paper is to identify homogeneous regions with
similar flood response characteristics using PCA and clustering techniques. Secondly, as a
measure to overcome the performance inconsistency of the regression technique in a real
domain, this paper proposes the ANN technique to establish regional IF models for predefined
homogeneous regions, and its performances are then compared to that of the conventional
power form model. The flood generating variables and the hydrological homogeneous regions
are derived and visualized by using GIS for quick referencing and decision making in national
water resources management of Myanmar.

2 The Chindwin River basin

The Chindwin River is located between Latitude 22°06′–26°00′ North and Longitude 94°18′–
95°42′ East and covers a catchment area of 113,800 km2 (Fig. 1). With a length of 985 km, it is
the third largest river and one of the principal water resources of Myanmar. With its tributaries,
the Chindwin is a major transport artery, and it also connects the basin with the main
economically developed areas of the country. In the Chindwin catchment, there are key
biodiversity areas such as the Hukaung Valley and the Htamanthi wildlife sanctuaries, as well
as major conservation areas such as the Upper Chindwin Catchment Corridor and the Lower
Chindwin Forest Corridor which are endowed with an important population of critically
endangered animals (NCEA 2009). Overall, the basin is economically and ecologically
important for the development of the country.

With an inadequate density of 20,000 km2 per station, the Chindwin River is experiencing
frequent flood hazards, the challenging natural factor relating to its important role in national
social-economy. According to the Department of Meteorology and Hydrology (DMH), Myan-
mar, since 1965 flood occurrences in the Chindwin basin are the highest in July and August,
contributing 72% of the total number of floods in the basin. Due to high rainfall intensities during
the southwest monsoon, severe floods hit the Chindwin basin every year at one place or another,
and threaten property, assets, human lives and ecological biodiversity in the region. Although the

Clustering Homogeneous Regions and Index Flood Estimation 915

Author's personal copy



stream flows of other tributaries across the entire catchment cannot be monitored, the flood risks
in the ungauged regions of the catchment are critical issues threatening the entire community.

3 Materials and Method

The hydrometric data analyzed in this paper mainly consist of daily flows and rainfalls (1965
to 2011) at five gauging stations along the Chindwin River, which were obtained from DMH.
Digital elevation model (DEM) data with 1 km resolution were available from the USGS
Hydro 1K database (https://lta.cr.usgs.gov/HYDRO1K). Contour maps were provided by the
Myanmar Survey Department. Soil and land use information were obtained from the Myanmar
Land Use Department as well as from the FAO GeoNetwork (http://www.fao.org/geonetwork/
srv/en/main.home). Based on the availability and influences on hydrological responses, five
physiographic properties (area, elevation, slope, length, shape factor), two response variables
(time of concentration and Soil Conservation Curve Number), and one climatic variable (mean
annual rainfall) were considered for pooling homogeneous regions using multivariate
statistical analysis (see Table 1).

The analysis presented in this paper comprises three major steps. First, selected clustering
variables were determined using GIS and statistical methods. Secondly, principal component
and clustering analyses were applied to the derived watershed physiographic and the climatic
attributes in order to detect homogeneous regions. Afterwards regional IF models were
developed for each clustered region using regression and ANN techniques.

3.1 Deriving Catchment Physiographic and Climatic Parameters

Raw DEM data were first corrected to create a depressionless DEM (Fig. 2a) by filling the
sinks. Based on the corrected DEM, ArcHydrol Tools in ArcGIS 10 was used in order to

Fig. 1 Location of the Chindwin River basin
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derive physiographic and climatic attributes for each subbasin. E was calculated as the average
ground elevation above mean sea level from all cells (1×1 km) in the basin. S was calculated
as the ratio of change in rise by change in run. L was defined as the longest flow path from the
outlet to the farthest basin divide. SF was calculated by dividing the squared length by the area
(L2A−1).

TC influences on the shape and peak of the runoff hydrograph and therefore can be
considered a significant factor in runoff generation. TC for the main stream was determined
using the Kirpich (1940) formula given as

TC ¼ 0:0078
Lffiffiffiffiffi
S0

p
� �0:77

ð1Þ

where, Tc is in hours, L is the maximum length of the main watercourse (km) and S0 is its
average channel slope. Based on the flow direction, L and S0 were extracted from the flow
slope and flow length maps (Fig. 2b and c) using a GIS process to calculate the Tc for all
subbasins.

Table 1 Descriptive statistics for selected flood generating factors

Variables Definition Units Min. Max. Mean S.D Skewness Kurtosis

A Basin Area km2 3 11,762 1,990 1,761 3.3 16.4

E Mean basin elevation m 69 1,802 792 519 0.5 −0.9
S Basin slope % 0.7 16.4 6.7 3.6 0.7 0.1

L Basin length km 2 397 90 55 3 16.3

SF Shape factor – 1.3 13.4 4.6 2.3 1.8 3.9

CN Soil conservation curve number – 65 93 81 8 −0.1 −1.1
TC Time of concentration minute 9 1,138 260 174 2.8 11.8

R Mean annual rainfall mm 820 3,710 2,234 733 0.5 −0.5

S.D Standard deviation

Fig. 2 Digital elevation model (a), Flow slope (b) and Flow length (c) of the Chindwin catchment
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Impacts of terrestrial condition such as land cover and soil type were considered in term of
CN, which characterizes the runoff potential of a basin.CN values range from 1 to 100. A higher
CN represents a higher runoff. Through the GIS process, CN for every grid cell in the basin was
determined using land use and soil raster data. In this study, collected soil maps were based on
the FAO soil units (IUSSWorking GroupWRB 2006). Therefore, the entire catchment needs to
be categorized into hydrologic soil groups (A, B, C and D), according to the USDA (1986)
classification. The Chindwin catchment was classified into four major land use types: water,
urban land, forest and agriculture. The treated hydrologic soil groups and the reclassed land use
data were then homogenized. Afterwards the combined data were linked to the CN lookup
table, which is based on the normal condition of the antecedent moisture content. Finally, an
average CN for each subbasin was calculated by intersecting the CN and basin area layers.

The rainfall isohyetal map was prepared by using mean annual rainfall (MAR) data at 34
locations to cover the entire catchment; 11 of these are observed stations. Rainfall data for the
remaining stations were available from theWorldClim-Global ClimateData (http://www.worldclim.
org). An ordinary Kriging method with GIS was applied for spatial interpolation to produce MAR
value at each grid cell in the entire catchment. TheKriging uses weights from surroundingmeasured
values for predicting values at unmeasured locations and is expressed as follows:

F ¼
X n

i¼1
Wi f i ð2Þ

Where F is the prediction of the continuous variable of interest (f), n the number of scatter
points, fi the observed value at the point i, and W is the weighting coefficient to each scattered
point. From the gridded MAR map of the entire catchment, MAR values at the respective cells
of any boundary i.e. subbasin can be extracted and areal weighted value for each subbasin was
calculated.

3.2 Principal Component and Cluster Analysis

The main function of PCA is to reduce the dimensionality of a data set that consists of a large
set of interrelated variables, while retaining most of the variation in the data set (Jolliffe 2004).
This is achieved by transforming variables into a smaller set of variables (principal compo-
nents) which are not correlated, and organized so that the first few components retain as much
as possible the variation in the original variables. For deriving the significant components to be
used in pooling homogeneous regions, seven watershed attributes and one climatic variable (A,
E, S, SF, L, CN, TC and R) are incorporated into the PCA. To check the appropriateness of
PCA, Kaiser-Meyer-Olkin (KMO) statistic is used. KMO is a measure of sampling adequacy,
both overall and for each variable (Cerny and Kaiser 1977). The value of the KMO measure
varies from 0 to 1, and the value below 0.5 is unacceptable for factor analysis. The factors
(components) whose eigenvalues were greater than 1 and whose cumulative variance was
greater than 75 % were selected for subsequent clustering processes using leading principal
components.

The most commonly used measure in clustering is the Euclidean distance defined as

Di j ¼
X n

k¼1
xki−xk j
� �2� �1=2 ð3Þ

where, xki is the value of variable xk in case i and xkj is the value of variable xk for case j. Dij is
the distance between case i and j. Here, a number of cases represented the number of basins.
The variables within Eq. (3) were factor scores of the extracted principal components for each
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basin. For classifying the basins into homogeneous groups, the hierarchical Ward’s method
was first applied to get a possible number of clusters using a screet test. Then, non-hierarchical
k-means clustering (MacQueen 1967) was run with the predefined optimum number in which
all cases were placed. k refers to the number of clusters. The algorithm starts by choosing the
initial k cluster centers and classifying cases based on their distance to the centers. At each
iteration, the centers are repositioned for a better repetition of data and distances actualized.
This procedure is repeated until cluster means do not change much between successive steps.
Finally, this algorithm aims at minimizing an objective function, defined as

J ¼
X k

j¼1

X n

i¼1
Di j

2 ð4Þ
Where Dij is the Euclidean distance between a data point xi and the cluster center xj, n is the

number of data points in ith cluster.

3.3 Regional Index Flood Models

From the daily streamflow series of the gauged sites, mean annual maxima were calculated.
The IF referred in this study is the mean annual maximum floods (Qm). Several researchers
reported that IF at any location of watershed is mostly governed by corresponding catchment
area (Hosking and Wallis 1997; Kohnová and Szolgay 2003; Aziz et al. 2013). The commonly
used relationship between the IF and catchment area of the gauged sites is as follows:

Qm ¼ C0A
C1 ð5Þ

Due to the deficiency in flood data in this study, as an indirect method, the computed
coefficients (C0, C1) from the above relation were used for estimating IF at ungauged sites with
respect to their catchment areas. Chokmani and Ouarda (2004) suggest that knowing flow
quantiles at neighboring gauged sites, one can estimate flow quantiles at an ungauged site by
using an appropriate technique. Flood estimation at a river site should not only take into account
a problem-oriented perspective but also data availability, although IF estimation may be
constrained by the data availability for a particular application (Bocchiola et al. 2003).
Furthermore, in our previous study on the Chindwin catchment, coefficient of variation of
flood series is changingwith increasing catchment, and annual maxima series of all gauged sites
are fitted by the same frequency distribution i.e. Log-Pearson Type 3 (Latt and Wittenberg
2014b). This situation makes the transfer of IF from gauged to ungauged sites plausible and the
precondition of IF regionalization is somewhat satisfied, despite limited flood data.

To determine the relations between IF and catchment descriptors for each homogeneous
region using regression and ANN techniques, the input vector selection was first decided.
While considering several catchment parameters, one variable may have a strong inter-
correlation with other attributes. Therefore, the independent variables influencing on the
dependent variable can be determined using Pearson correlation coefficient, as a measure of
dependencies between variables (Kohnová and Szolgay 2003). Table 2 shows multi-
collinearity among the predictors. In building the regional IF models, L, S, E, CN and R were
selected as independent variables on the basis of inter-correlations lower than 0.5.

3.3.1 Regression Based Regional Models

The most commonly used relation between flood statistics (here IF) and a set of climatic and
catchment characteristics within a region is the power form model (Thomas and Benson 1970;
Cunnane 1988). In this study, the relationship becomes
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Qm ¼ a0L
a1Sa2EasCNa4Ra5ε ð6Þ

whereQm represents IF of each ungauged site in a clustered region, estimated via Eq. (5), in m3

s−1. α0, α1, α2, α3, α4 and α5 are the regression coefficients. ε is the multiplicative error term.
By a logarithmic transformation, the above equation can be linearized, and the ordinary least
square method was used to find the best fitting regression parameters by minimizing the sum
of squared residuals.

3.3.2 ANN Based Regional Models

A feedforward MLP (Rumelhart et al. 1986) is useful for pattern mapping problems for input-
output data sets and consists of the input layer, one or more hidden layers of neurons, and an
output layer of neurons. To perform a comparison with conventional power form models,
ANN structure is based on the Eq. (6) (Fig. 3). The sum of the product of inputs (x) and their
weights (w) minus bias (b) constitutes a net as follows:

net ¼
X

xi⋅wi−b ð7Þ
Then the output of a neuron, f (net) is decided by an activation function that determines a

response of the node to the input signal it receives. In order to generate an output vector Y =
(Qm1, Qm2,……,Qmn), a training (learning) process was used to find optimal weight matrices
and bias vectors that minimize a predetermined error function given as follows.

E ¼
X p

p¼1

X N

i¼1
yi−tið Þ2 ð8Þ

Here, ti represent the target (IF from the regionalization) and yi is the output (predicted IF by
ANN) at the ith node respectively; N is the number of output nodes and p denotes the number
of training patterns. Three-layered feedforward MLP models with one hidden layer were
trained with error back propagation, which is essentially a gradient-descent algorithm, to look
for optimal performance by trial and error.

In the model development, the data set, which consists of IF magnitudes and catchment
descriptors, representing 80 % of the number of subbasins in each clustered region were used for
calibration and 20 % were used for validation. In order to overcome numerical instabilities, such
as slow convergence and getting stuck in local minima, during the training process and to
improve the generalization ability, the calibration data sets were standardized in a linear scale
subtracting themean and divided by the standard deviation. The data set for training and testing of

Table 2 Correlation matrix for independent variables

Variables A (km2) E (m) S (%) L (km) SF CN Tc (min) R (mm)

A (km2) 1.000 0.334 0.158 0.944 0.475 0.094 0.84 0.027

E (m) 0.334 1.000 0.321 0.259 0.001 0.086 0.108 0.322

S (%) 0.158 0.321 1.000 0.126 0.025 −0.346 −0.148 0.498

L (km) 0.944 0.259 0.126 1.000 0.714 0.083 0.864 −0.018
SF 0.475 0.001 0.025 0.714 1.000 0.052 0.561 −0.113
CN 0.094 0.086 −0.346 0.083 0.052 1.000 0.192 0.002

Tc (min) 0.840 0.108 −0.148 0.864 0.561 0.192 1.000 −0.235
R (mm) 0.027 0.322 0.498 −0.018 −0.113 0.002 −0.235 1.000
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ANN models were the same as the calibration and validation data of the power form models to
enable a parallel comparison. Different learning rates were applied while the momentum was set
at 0.9. The number of hidden layer neurons was changed up to 20 through the training process.
The appropriate neuron number was selected depending on the minimum standard error. By
evaluating the objective function at each iteration on training and testing sets, the training process
was stopped in correspondence with the minimum validation error. Sigmoid and hyperbolic
tangent functions were applied in the hidden layer. The linear function (identity), given as f(x) = x,
was used in the output layer, making the network take any values without a bounded range.

3.3.3 Performance Evaluation

The best candidate models of ANN and regression methods were determined based on R2 and
sum of square errors in the calibration. The developed regional ANN models and regression
models were validated and their performances were compared using the Nash-Sutcliffe coeffi-
cient of efficiency (CE), root mean-square error (RMSE), and mean relative error (MRE) given as

CE ¼ 1−

X n

i¼1
yi−by	 
2

X n

i¼1
yi−y

	 
2 ð9Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X n

i¼1
yi−byi	 
2

r
ð10Þ

MRE ¼ 1

n

X n

i¼1

yi−byi��� ���
yi

*100 ð11Þ

Where yi represents the IF from the regionalization, ŷ the modeled IF, y the average IF, and
n the number of observations.

i = input node

h = hidden node

o = output node

b = bias
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Fig. 3 Configuration of the feedforward ANN (MLP) network
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4 Results and Discussion

4.1 Determination of Physiographic and Climatic Parameters

The Chindwin catchment was divided into 57 subbasins (Fig. 4a). The sizes of the basins
ranged from 3 to 11,762 km2. The minimum elevation of the basins was 69 m above mean sea
level in the central flat plain, whereas the maximum elevation was close to 1,800 m in the
mountainous regions. Average slopes of the basins varied from 0.7 to 16.4 %, while the basin
lengths were between 2 and 397 km. Shape factors range from 1.3 to 13.4 as different-sized
basins constitute the entire catchment. With a narrow and elongated shape, basin 24 has the
biggest shape factor and area because it represents the catchment area of the largest tributary of
the Chindwin River. Tc values varied from 9 to 1,138 min, according to the orientation of the
basins.

In the CN calculation, only three hydrologic soil groups (B, C and D) were found in the
Chindwin catchment. As a result, the parent geological material of the watershed may have a
range of water transmission rates between 0 and 8 mm/h according to USDA (1986). Although
the infiltration rate of the soil depends on the depth of impermeable layers, it can be generally
said that the catchment has low to moderate infiltration rates. Group A soil, which mostly
consists of excessively drained sand or gravel, was not found in the catchment. As shown in
Fig. 4b, the CN values ranged from 58 (lower runoff) to 100 (higher runoff) across the
catchment. The results show that the Chindwin territory has three distinct divisions. The areas
with lower CN values (55–65) were found in the upper and northeastern parts of the
catchment. The middle and southwestern parts have moderate CN values (65–80) while the
lowest region shows higher CN (80–100). Area-weighted average CN for each subbasin varied
from 65 to 93. Overall, the Chindwin catchment has a moderate to higher runoff potential.

From the MAR map (Fig. 4c), high variation of rainfall over the catchment was due to the
regional climate pattern and the topography. The rainfall distribution over the Chindwin basin
mostly depends on the disposition of mountainous ridges stretched in the meridian direction
and they are forming a natural barrier to the southwest monsoon. Therefore, the slopes exposed
to the West receive much more rainfall than the eastern and northeastern slopes. Generally, the
rainfall pattern leads to a differentiation of the Chindwin basin into three regions. The upper

Fig. 4 Delinetaed subbasins (a), CN (b) and mean annual rainfall (c) of the Chindwin catchment
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and southwestern parts have high annual rainfalls between 2,400 and 3,800 mm. The middle
part has been hit by annual rainfall of 1,500 to 2,400 mm, while the lowest regions (south-
eastern part) receive the smallest rainfall magnitude per year between 750 and 1,500 mm.
Overall, the Chindwin catchment has different physio-climatic features that influence flood
generating. Such evidence suggests that there might be broad regional differences in either
flood processes or flood types. Therefore, it may be possible to generalize the effects of
climatic and catchment attributes on floods within the defined regions.

4.2 Detecting Hydrological Homogeneous Regions

Prior to clustering, PCAwas first applied in order to reduce the dimensionality of the data set.
Based on the selected flood generating variables (A, E, S, SF, L, CN, Tc and R) of each basin
out of 57 total, the case-variable ratio is 7.1, meaning that the sample size requirement is
satisfied. The KMO measure of sampling adequacy of the set of variable is 0.58. Overall, the
data set was suitable for data reduction using PCA. As shown in Table 3, the first three
components meet the required criteria (the cumulative variance greater than 75 % and
eigenvalues greater than 1). The first three PCs explain 41.5, 23.5 and 14.2 %, respectively,
and their cumulative variance accounts for 79.2 % of the total variance of the data set. L, Tc
and A have a higher correlation with the first principal component while R with the second
principal component. The CN is strongly related to the third principal component. Therefore,
classification is expected to be more affected by these attributes. The first PC provides a
contrast between physical characteristics of the catchment (with positive coefficients) and
mean annual rainfalls (negative coefficients). The main contrast for the second component is
between the mean annual rainfall and the shape factor. The third PC is a trade-off between the
basin slope and the CN.

Using the scores of the first three PCs, the Ward’s method initially suggested four
clusters, since the scree test i.e. the plot of the number of steps against the coefficients of
3PC solutions showed the distinctive break (elbow) started at step 53 out of 57 steps. The
number of clusters obtained by the Ward method was adjusted using the k-means algo-
rithm which then classified the entire basin into four homogeneous groups (Fig. 5). Cluster
1 has only basin 24 that is more significant in size and shape factor than other basins. Due

Table 3 Rotated factor loading matrix and variances of principal components

Original variables Principal components (factor)

1 2 3

L 0.980 0.111 −0.220
TC 0.911 −0.132 0.155

A 0.903 0.217 0.038

SF 0.770 −0.155 −0.137
R −0.175 0.813 −0.035
E 0.159 0.756 0.215

S 0.062 0.660 −0.554
CN 0.013 0.096 0.927

Eigenvalues 3.317 1.884 1.135

Variance (%) 41.47 23.55 14.19

Cumulative Variance (%) 41.47 65.02 79.21
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to its highest heterogeneity, the basin 24 cannot be grouped within other regions. Cluster 2,
3 and 4 consisted of 17, 16 and 23 basins, respectively. The areas of Cluster 1, 2, 3 and 4
are 11,762, 33,611, 37,264 and 30,780 km2, respectively. Cluster 4 shows a greater
dissimilarity to Cluster 1, and equal similarity to cluster 2 and 3. With lower mean square
errors and higher F statistics, the second PC which is strongly related to mean annual
rainfall, was found to be the most influential factor in pooling similar hydrologic regions.
In general, the physio-climatic condition of the Chindwin catchment can be understood
according to the original flood response characteristics with reference to their location as
follows:

With the higher terrain in some parts, Cluster 1 has a moderate rainfall magnitude of
2,000 mm and a moderate runoff potential with average basin CN of 76. The highest shape
factor of the region may influence the flood hydrograph shape. With higher TC, this narrow
and elongated region can generate a flatter peak flow for longer duration.

Cluster 2 is mainly characterized by a flood plain region with lower basin elevations and
comprises a few basins in the northeastern part. The most parts of the region experience lower
annual rainfall of 1,700 mm. With the basin CN values ranging 84 to 93, the region has a
higher runoff potential. Flood hazards may be relatively low in this region due to the low
rainfall. However, the extreme climatic effects from its upstream part may superimpose on
flooding in it.

In Cluster 3, the mountainous regions are dominant with higher mean basin elevation of
1,344 m accompanied by higher basin slopes (3.4 to 16.4 %). The region, which mainly covers
the most upstream parts of the Chindwin catchment to 85 km downstream Hkamti station,
receives the highest mean annual rainfall of 3,000 mm, and can generate moderate to higher
runoff with mean basin CN of 81. Therefore, the region can be regarded as the highest flood
potential zone compared to the other clusters.

Fig. 5 Hydrological homogeneous regions of the Chindwin catchment
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With a mean basin elevation of 470 m, the highland region on the right side of the
Chindwin mainstream constitutes the majority of Cluster 4. The region is characterized by a
moderate annual precipitation of 2,000 mm and has a moderate runoff potential with CN of 74.

4.3 Index Flood Models for Clustered Regions

In regressing IFwith basin areas for gauged sites, the empirical power relation (Qm= 924A0.269) was
found to be the best fit, providing R2 = 0.94. From this relation, IF magnitudes at ungauged sites in
each homogeneous region were estimated with respect to the area. For cluster 2, 3 and 4, the
relationships betweenQm and catchment physiographic properties were derived. Regional IF model
cannot be derived for cluster 1, because sufficient flood and catchment data were not available.

According to Eq. (6), the simultaneous (Enter) regression technique was applied to find the
relationship between Qm and the independent variables because the involvement of all
predictors could decrease the standard error of the estimate of the dependent variable. The
independence of the predictor variables was evident because small degree of inter-correlation
between them suggests they convey little information about each other (see Table 2). The
regression based regional IF models for each homogeneous region are shown in Table 4. Lwas
found to be the most influencing attribute for all clustered regions since it could explain the
most variation of the floods. The coefficients of the power form models in real domain were
derived from the log transformed equations. It should be noted that the R2 values have slightly
decreased in the real domain, compared to R2 in the log domain while calibrating. For each
clustered region, feedforward ANN models were also trained using the same input vectors in
the regression models. After testing different activation functions, the combination of a
hyperbolic tangent in the hidden layer and an identity function in the output layer provides
the best performance in this case. The performance statistics of the selected ANN models are
shown in Table 5. With higher R2 for each pooling group, the ANN models can capture a
complex relationship between a range of catchment descriptors and associated IF magnitudes.

To get the true merits of ANN techniques, the ANN model results were compared with
those of the regression models in the real domain (Table 6). The results of the ANN models for
each region explore more consistency in all performance indices than regression models. For
cluster 2, the ANN model shows the highest performance in both calibration and validation

Table 4 Calibration of regional regression models and performance indices

Region Regional regression models Log domain Real domain

R2 Standard Error R2

Cluster 2 Qm=78 L0.48S−0.01E−0.026CN0.47R0.023 0.97 0.031 0.96

Cluster 3 Qm=959 L0.36S−0.04E−0.004CN0.39R−0.18 0.90 0.026 0.89

Cluster 4 Qm=2588 L0.42S−0.04E−0.06CN−0.59R0.027 0.97 0.045 0.94

Table 5 The structure of regional ANN models in calibration

Region Structure Learning rate R2 Sum of squares error

Cluster 2 5-6-1 0.7 0.99 0.07

Cluster 3 5-2-1 0.1 0.99 0.02

Cluster 4 5-2-1 0.2 0.96 0.32
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with highest CE and least error, whereas the regression model has the least efficiency in
validation, with a CE value of 0.32 although it has a higher performance with a CE value of
0.96 in calibrating. In cluster 3, the regression model shows its highest performance in
validation with higher CE and least relative error, but, the ANN model still outperforms it. In
calibrating, relative percent errors of both ANN and regression models are highest for cluster 4
with 6.2 and 8.4 %, respectively. However, the ANN model can reduce the forecast error in
validation, while the regression one could not. In the validation stage, performances of the ANN
models are very satisfactory with respect to the CE statistics above 0.98 whereas that of the
regression models are just satisfactory to cluster 3 and 4 with CE values of 0.74 and 0.77,
respectively and very poor to cluster 2. Undoubtedly, the ANN models have outperformed the
regression models for IF estimation using catchment descriptors. While ANNs are not sensitive
to the limited data in this study, a larger data set would be needed to enhance the accuracy of the
power formmodel asMyanmar river basins are characterized by a highly variable flood regime.

5 Conclusions

With the diverse physiographic and climatic conditions, understanding the regional character-
istics that reflect hydrological responses play a vital role in water resources management in
Myanmar. The study presented the application of clustering techniques in conjunction with
PCA for detecting hydrologic homogeneous regions, and the ANN approach for developing
regional IF models in ungauged regions. Different climatic and physiographic attributes across
the Chindwin catchment suggested that it is possible to generalize the effects of climatic and
catchment attributes on floods within the defined regions.

Despite the precise understanding of the underlying mechanisms of flood generation, PCA
contributes well to define the significant factors, as clustering variables, which explained
79.2 % of the total variance of the original data set. In clustering with k-means algorithm, the
second principal component, which is mainly affected by mean annual rainfall, basin elevation
and basin slope, has the greatest contribution to classifying the hydrological similarities of the
Chindwin watershed. Cluster 3 represents the highest flood potential area in terms of all
response variables, whereas the lower part of the cluster 2 is the least flood prone region with
lowest annual rainfall. Overall the entire catchment is likely to have moderate to high flood
potential, and flood control management at any location in this watershed is of great impor-
tance to prevent human lives and environment.

In establishing relationships between IF and catchment attributes, the conventional power
form models did not show reliable results in the validation stage although the calibration result
was quite satisfactory. In a comparison using real data, the performance of the power form

Table 6 Comparison between the ANN and regression based regional models in real domain

Calibration Validation

Region ANN Models Regression Models ANN Models Regression Models

CE RMSE MRE CE RMSE MRE CE RMSE MRE CE RMSE MRE

Cluster 2 0.99 108 1.3 0.96 243 2.8 0.99 99.5 1.1 0.32 1,071 12.2

Cluster 3 0.99 88 0.8 0.88 288 3.1 0.98 141 1.7 0.74 638 7.8

Cluster 4 0.95 361 6.2 0.94 439 8.4 0.98 217 3.6 0.77 667 13.5
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models is slightly lower than that of the linearized models via log transformation. Therefore,
consistency in performances of the regression models could not be expected in every case. The
neural network approach, with the inherent ability of capturing nonlinearity, has shown better
results than conventional regression techniques in IF regionalization. The performances of the
ANN models are very satisfactory to all clusters in both calibration and validation. Since, real
world conditions never guarantee a linear relationship between flood magnitudes and catch-
ment properties, ANN approach would be a promising alternative tool for IF estimation from
limited input and output data alone, which can be either linear or nonlinear. This quality is very
useful for water resources management with limited data type and observation.

In regionalization processes, spatial flood data must have a sufficient density to cover the
entire catchment. Therefore, modifications of the regional IF models are required from time to
time using more available flood data and catchment attributes. Even if the observed flood data
will not be expected in the near future, it is recommended that synthetic annual maximum
discharge series of ungauged basins would be generated using available climatic data. As a
result, better understanding of similar flood response areas and knowing IF for the entire
Chindwin river basin would ease the flood management in Myanmar. Further, the methodol-
ogy presented in this study provides a useful tool for water resources planning and design of
hydraulic structures in developing countries where hydrometric data scarce.
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