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Introduction

Almost any decision we take involves uncertainty regarding future states of the world. If

we consider buying a season pass for the open air swimming pool, there is a chance of a very

cool and rainy summer that leaves us going to the spa rather than the swimming pool. Or

consider a farmer who needs to decide what crops to grow and where, how many livestock

to put on his pasture next year, and whether or not to buy insurance. All such decisions

are uncertain on multiple dimensions: weather conditions, political circumstances, the

price of labor, fodder, insurance, and so forth. Uncertainty is ubiquitous in everyday life,

and understanding uncertainty is of considerable importance in good decision making,

for individuals as well as for companies and countries. Uncertainty is also a big issue in

sustainability science, where much of the focus is on uncertain future states of the world.

Because economics deals with human behavior, uncertainty is thus one of the pivotal

issues in economic theory. In recent years, this role has become more and more evident

in environmental and resource economics in general (e.g., Brown 2000, Weitzman 2007)

and ‘sustainability economics’ (Baumgärtner and Quaas 2010)1 in particular. Some of the

most urgent questions in these fields involve massive uncertainties, and there has been

relatively little progress in dealing with these uncertainties in recent years (Stern 2013,

Gollier et al. 2014). These uncertainties relate both to physical changes in the environ-

ment and to the impact on human welfare of those changes. For example, the latest report

of the Intergovernmental Panel on Climate Change (IPCC) stated that ‘no best estimate

for equilibrium climate sensitivity can now be given because of a lack of agreement on

values across assessed lines of evidence and studies.’ (IPCC 2013: 16). Closely related is

the debate about the social cost of carbon, which struggles with uncertainty in at least

three different ways: (1) uncertain impact of atmospheric CO2 level on the economy,
1As Baumgärtner and Quaas have put it, ‘Any study in the field of sustainability economics has to take
uncertainty seriously’ (Baumgärtner and Quaas 2010: 449).
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globally as well as locally, (2) the question of which discount rate to use, which involves

somehow numerically quantifying uncertainty on the one hand, and choosing between

different ethical approaches to pick the ‘right’ discount rate on the other, (3) the question

of modeling these uncertainties in a balanced and analytically tractable way. This quan-

tification of uncertainty is further complicated by the heterogeneity of the systems under

investigation.

The concept of heterogeneity2 refers to the nonuniformity in a set. In colloquial

language, heterogeneity and uncertainty are used quite differently. Usually, any kind of

uncertainty is perceived as rather negative, for example by focusing on ‘downside risks’ and

the like while heterogeneity is perceived rather positive, for example in relation with liberal

societies and individual freedom. However, under closer scrutiny the distinction between

uncertainty and heterogeneity may not be so clear. First of all, even though most people

generally dislike uncertainty, they still tend to react very differently when confronted with

it. Uncertainty preferences are very individual and thus heterogeneously distributed in

any sample. On the other hand, if one thinks about the nature of uncertainty, its source

is heterogeneity: it is the heterogeneity of things that might happen and of options to act

that we have to choose from that creates uncertainty. Seen this way, we may even say that

uncertainty is a cause for heterogeneity as much as it is a consequence of it. This knotty

relationship is further complicated by the potential to use heterogeneity – diversification

– as a means of reducing uncertainty in economic decision making (Markowitz 1952),

typified by the popular phrase ‘don’t put all your eggs in one basket’. The relationship

between these two concepts is thus a very intriguing one.

In this thesis, I discuss uncertainty and heterogeneity in economic theory from different

theoretical perspectives and at at different levels of abstraction. The research questions of

this thesis develop from two main foci: First, I consider the methodological implications

of the heterogeneity of scientific theories when these are confronted with empirical data

(Paper 1). Second, I consider different forms of economic uncertainty created by hetero-

geneity: environmental risk (Paper 2) and Knightian uncertainty (Paper 3). Origin of the

first question, that is dealt with in Paper 1, is the seemingly unspectacular observation

that there is usually a wide selection, if not a plethora, of theories to explain any given

2The term ‘heterogeneity’ is derived from the two Greek words ‘heteros’ (‘other’, ‘another’, ‘different’),
and ‘genos’ (‘kind’).
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empirical finding. The resulting heterogeneity of theoretical models to describe empirical

data creates uncertainty regarding the question ‘Which model fits best?’, and therefore

the need for a framework that helps answering this question. I identify and discuss a key

example of the lack of such a framework in the academic literature: the debate about

which model best describes the distribution of city sizes in urban economics. The first

question I address in this thesis takes this up in a very general way: Is there a general

framework based on statistics, economics and philosophy of science for choosing between

models in a systematic and informationally optimal manner? As a side result, the paper

establishes a link between the rather abstract concept of a heterogeneous model set and

heterogeneity on the subject level – in Paper 1, this is the economic heterogeneity of in-

dividual farms and the environmental risk they are exposed to. From this rather general

approach concerning heterogeneity in scientific theories and its implications, the other two

questions take the natural step to consider individual decision making in the face of uncer-

tainty. The second question is concerned with individual decision making in the presence

of environmental risk: What are the relationships between farm size, environmental risk

and individual risk preferences in a sample of 399 commercial cattle farmers in Namibia’s

semi-arid rangelands? The final question of this thesis deals with individual decision

making under Knightian uncertainty (Keynes 1921, Knight 1921), that is, when deciding

between different possible acts when possible future states of the world are known, but

their probabilities are unknown. Specifically, the question of which fundamental axioms

a binary Knightian uncertainty preference relation must satisfy to ensure the existence

of a numerical representation of these preferences is investigated. The paper provides

definitions of the notions of uncertainty aversion and uncertainty premium, which makes

interpersonal comparison of uncertainty attitudes possible. Finally, it provides some il-

lustration of the concepts developed and compares them to other approaches commonly

found in the literature.

By investigating these research questions, this thesis makes a contribution to the fol-

lowing research foci of sustainability economics (cf. Baumgärtner and Quaas 2010: 449):

relationship between humans and nature, long-run uncertainty, and system understanding

and management. It also contributes to all three levels of abstraction of inter- and trans-

disciplinary research on sustainability problems as defined by Baumgärtner et al. (2008):

(1) it works out, refines and reflects on economic concepts, such as rational choice under
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Knightian uncertainty and goodness-of-fit, (2) it develops and discusses abstract models

of human preferences under Knightian uncertainty and farm growth under environmental

risk, and (3) it uses data on Namibian commercial cattle farming to test some hypotheses

from the literature (Figure 1).

The following section gives an overview of the three papers that my thesis is comprised

of. Each paper is reviewed in the following manner: first, I will briefly summarize key

questions, the methodological approach and central results. Second, I discuss limitations

and possible further steps. In section 2, I draw specific and overarching conclusions from

this research.

1 Research papers

This thesis contains three research papers that look at heterogeneity and uncertainty

from different theoretical, methodological and empirical perspectives and at different lev-

els of abstraction (cf. Figure 1). In Paper 1, we develop a new approach to model choice

problems, i.e. the problem of selecting one specific theoretical model from a set of mul-

tiple candidates, given the actual data. We combine aspects from statistics, economics

and philosophy of science to obtain a framework that is able to tackle the heterogeneity

of candidate models, while also establishing a productive link to the individual entities

studied. We illustrate our framework with a data set of Namibian commercial cattle

farms. In Paper 2, we take up this illustration and delve more into the aspect of economic

heterogeneity of these farms, and study its relationship to environmental risk. Particu-

larly, we investigate the interdependencies of farm size, environmental risk and individual

risk preferences in the data set. In Paper 3, we focus on the special case of decision

making under Knightian uncertainty. We show which assumptions on preferences under

Knightian uncertainty warrant existence of a numerical preference representation, how

different attitudes towards Knightian uncertainty can be modeled, and discuss differences

and connections to existing approaches in economic theory.
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Figure 1: Relationship between papers and levels of abstraction as defined by
Baumgärtner et al. (2008). Paper 1 deals with the concept of goodness-of-
fit and how one can use it for inference to economic models. Illustration of the
method uses case study data from Namibia. Paper 2 tests various hypotheses
regarding farm management for the case of Namibian commercial cattle farm-
ing. Finally, Paper 3 deals with the concept of rational choice under Knightian
uncertainty and provides the concrete model of a Rényi decision maker.

1.1 Paper 1: Model choice and size distribution: a Bayequentist

approach

In the paper Model choice and size distribution: a Bayequentist approach, we provide a

new methodological framework for statistical model choice problems that combines statis-

tics with economics and philosophy of science concepts. In statistics, model choice refers

to the problem of selecting the best fitting model from a heterogeneous set of candidates

given some empirical data set. In the paper, we look at the specific model choice problem

of fitting theoretical size distribution models to empirical size distribution data. Hetero-

geneity in the model set creates the model choice problem as well as the further underlying

question of how the observed economic heterogeneity of sizes can be explained with the

candidate models. In economics, this very problem has been a longstanding source of
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controversy. For example, many different competing models have been proposed over the

years to describe and explain the distribution of city sizes in a country or region (e.g.

Auerbach 1913, Zipf 1935, Zipf 1949), the distribution of income and wealth (e.g. Pareto

1897b, Champernowne 1953, Fisk 1961, Dagum 1977, Reed and Jorgensen 2004) and the

distribution of firm sizes in an economy (e.g. Gibrat 1931, Mansfield 1962, Evans 1987).

Quite recently, starting with a paper by Eeckhout (2004) that reported evidence for the

lognormal distribution in the 2000 U.S. city size distribution, a rather vivid debate has

been ongoing about the ‘best’ model for city size distributions, most prominently between

proponents of the lognormal and the Pareto distributions (Lévy 2009, Eeckhout 2009, Bee,

Riccaboni and Schiavo 2013, Ioannides and Skouras 2013). The economic question under-

lying this debate is one about the most plausible microeconomic model given the observed

macroscopic outcome.

Inspired by this discussion, we propose a novel three-step ‘Bayequentist’ model-

selection framework that aims at reconciling this debate. We argue that the very specific

problem of fitting size distributions to empirical data has some peculiarities that have

not been addressed so far, and that require a methodological fix. Beyond these method-

ological issues, we also provide a discussion of philosophical principles underlying any

model selection procedure and how some of these principles are incorporated into our

framework. Specifically, we first generalize a frequentist hypothesis test for probing data

for the Pareto distribution (Clauset, Shalizi and Newman 2009) to accommodate any size

distribution hypothesis and demonstrate that it works with suitable numerical tests. We

complement this first step of our framework with the standard Bayesian method to calcu-

late model weights based on Akaike’s information criterion (AIC, Akaike 1973, Schwarz

1978). We argue that, among all statistical measures, the AIC is the preferred option,

because it strikes a balance between two well-known principles in philosophy of science:

the principles of parsimony and diversity. In the last step, we introduce the criterion of

model microfoundation, which is, all other things being equal, to select the model that

comes with an economic micromodel that explains, from the perspective of the individual

constituent, the genesis of the observed overall size distribution. Finally, we illustrate our

framework with size distribution data on commercial cattle farms in Namibia (Olbrich,

Quaas and Baumgärtner 2012). We find that a combination of lognormal and Pareto
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known as double-Pareto lognormal (Reed and Jorgensen 2004) performs best according

to our ‘Bayequentist’ framework.

The method proposed and illustrated in the paper has at least two limitations. First

of all, compared to any of the other methods used so far, it requires more preliminary work

in terms of software implementation, number of steps, choice of an appropriate candidate

set, and qualified judgment of results. It is certainly not a ”‘black box’ device”, where the

scientist puts some data in on one side and a tailor-made result pops out on the other.

While some will see this as a serious limitation, this paper was specifically written to pro-

vide an alternative to exactly these unsatisfactory ‘black box’ one-step methods that have

created the confusing situation laid out above and in the paper. Secondly, our framework

is generally very selective. That is, situations where no candidate distribution passes

all tests might occur. However, we think that this reflects that fitting size-distribution

models to empirical data is not an easy task to accomplish, and inference from such fits

should not be done prematurely. While we would not go as far as saying that premature

inference is the ‘source of all evil’3, it has caused quite some confusion for sure. Our

framework might offer a remedy to such premature inference. For example, if applied to

the city size data sets that are so abundant in very good quality nowadays, and which

was a precondition for the debate about the ‘right’ distribution and the ‘right’ theory of

city growth in the urban and regional economics community, we think that our framework

might help to unify the major strands in the literature, that, at first sight, seem very hard

to reconcile.

1.2 Paper 2: Farm size, environmental risk and risk preferences: the

case of Namibian commercial cattle farming

The paper Farm size, environmental risk and risk preferences: the case of Namibian

commercial cattle farming takes up the data analysis started in Paper 1. It studies the

correlations of different forms of economic heterogeneity – farm size and risk preferences –

and environmental risk. The commercially grazed semi-arid cattle rangelands of Namibia

form a perfect subject for a study on how people practically deal with environmental risk.

The main reason for this is that environmental risk, which comes in the form of inter-
3In programming, there is the famous bonmot that ‘premature optimization is the source of all evil’.
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annual variability in rainfall, is generally the farmers’ main source of income risk. This

income risk greatly varies with farm location and is thus spread very hetereogeneously.

Of course, each farmer has his personal risk preferences, which have been elicited in the

survey by Olbrich, Quaas and Baumgärtner (2012). Based on these risk preferences, we

conduct statistical group comparisons with regard to the key farm parameters such as

the stocking rate, the coefficient of variation of inter-annual precipitation, and regarding

inequalities in farm sizes.

In agricultural economics, there are quite a few theories concerning optimal rangeland

management that can be tested with our data. For example, various works suggest the

stocking rate4 (e.g., McArthur and Dillon 1971, Karp and Pope 1984, Torell, Lyon and

Godfrey 1991) to play a crucial role as management parameter. Rodriguez and Taylor

(1988) suggest that high stocking rates may be optimal if the farmer is risk neutral, and

Quaas et al. (2007) stress the importance of land acquisition in the presence of large

rainfall variability. However, empirical tests of these theories are largely missing so far,

due to the fact that, for reasons of privacy protection, commercial cattle farming data is

usually very hard to obtain. Apart from the description of patterns that we find in the

data, another aim of the paper is thus to take a look at evidence for these theories in our

sample. Lastly, we also take a look at the implicit hypothesis from urban economics that

the larger economic entities – the ones in the ‘Paretian tail’ of the overall distribution –

are, in some way, special or different from the rest. We take this hypothesis as starting

point for further analysis.

The paper contains a rich variety of findings. First, using the method proposed by

Clauset, Shalizi and Newman (2009), we find that the Pareto distribution is a statistically

plausible description of herd size distribution, but not of stocking rate and area distri-

butions. The group comparisons based on this fit yield that larger farms in the sample

are, on average, exposed to less environmental risk than the smaller ones, and farmers of

larger farms choose, on average, significantly smaller stocking rates. There is, however,

no difference in average risk attitude. With regard to the group comparison based on risk

preferences, we do not find differences in key farm parameters such as size characteristics

and precipitation, but observe that a more risk-loving attitude comes with larger inequal-

ity in the distribution of farm sizes in the sample. Overall, our findings support the central
4The stocking rate is the ratio of cattle and rangeland area, its unit is usually heads per hectare.
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role of the stocking rate as a crucial management parameter because we consistently find

the largest correlations when stocking rates are involved. However, we do not find any

evidence for the hypothesis that risk-neutral farmers actually choose higher stocking rates

than others. There is also no evidence that larger environmental risk comes with larger

farm area.

Our practical and data-driven approach naturally comes with a few limitations. First

and foremost, participation in the survey that resulted in the database we used was vol-

untary. Therefore, the sample is self-selected, however, we have no reason to believe that

any self-selection criteria should be related to the variables relevant to our study. Sec-

ond, the nature of the data did not allow to study spatial diversification strategies or

‘opportunistic grazing’ strategies (Beukes, Cowling and Higgins 2002), which would have

also been interesting hypothesis tests. In general, the paper illustrates that ‘theoretically

preferable’ strategies for farm management are not necessarily the ones employed in prac-

tice. For future research, it would be essential to collect additional data sets like the one

utilized in this research, to find and attempt to explain further areas of deviation between

theory and practice.

1.3 Paper 3: An axiomatic foundation of preferences under

Knightian uncertainty

In the paper An axiomatic foundation of preferences under Knightian uncertainty, we

contribute to one of the most central questions of economics: what to do when confronted

with a choice between fundamentally uncertain options? Here, heterogeneity manifests

itself in three different ways: (1) there are at least two mutually exclusive options to act,

(2) there are at least two mutually exclusive possible future states of the world, whose

probabilities are unknown, and (3) decision makers have different preferences regarding

choice under Knightian uncertainty. All three aspects together constitute the decision

problem, while (2) can be seen as an abstract form of environmental uncertainty, as

opposed to the concrete form of environmental risk seen in Paper 2.

Having its roots in early probability theory (Bernoulli 1738, Laplace 1820), choice un-

der risk and uncertainty has been on the research agenda for a long time. While Keynes
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(1921) and Knight (1921) expressed the distinction between risk and uncertainty, it was

only in 1944 that John von Neumann and Oscar Morgenstern succeeded in providing an

axiomatic treatment of Bernoulli’s solution to the St. Petersburg Paradox5. von Neu-

mann and Morgenstern’s success triggered a new interest in economics regarding choice

under risk and uncertainty (e.g. Savage 1954, Anscombe and Aumann 1963). Experi-

ments suggest that people tend to prefer completeness to incompleteness of probabilistic

information (Ellsberg 1961), i.e. risk to ambiguity. This finding has led to the devel-

opment of the so-called ‘ambiguity aversion literature’ (Al-Najjar and Weinstein 2009:

249), but also to an increased messiness with respect to conceptual clarity and descriptive

or normative direction of contributions (cf. e.g. Al-Najjar and Weinstein 2009, Gilboa

2010). Against this background, we go ‘back to the roots’ in our paper in that we do

not assume any availability of probabilistic information to the decision maker. Specifi-

cally, we provide conceptual clarifications and ask which axioms are required to warrant

a self-contained decision-making framework in situations of Knightian uncertainty, and

how uncertainty-averse decision makers can be modeled.

The results of our paper are manifold. First, we show how the notions of uncertainty

aversion and uncertainty premium can be defined within our non-expected utility setting.

Based on these definitions, we establish the possibility of comparing uncertainty attitudes

interpersonally. Second, we use a recent result from theoretical thermodynamics on the

concept of entropy (Lieb and Yngvason 1999) to provide and discuss a set of seven axioms

on preferences under Knightian uncertainty. We subsequently show how these axioms

imply the existence of a function from the set of Knightian acts to the real numbers

that represents uncertainty preferences. We show that this function is monotonous on

the subset of acts with fixed positive sum of payoffs over all possible states of the world

(referred to as fixed ‘payoff volume’), additive, extensive and unique up to linear-affine

transformations. Finally, we illustrate one possible such function – Rényi’s generalized

entropy (Renyi´1961) – with the problem of deciding between three sample Knightian acts,

and compare the result to well-established approaches from the literature. In this example,

the resulting ranking of acts coincides with a risk-averse expected utility maximizer with

5The St. Petersburg Paradox refers to the following: Suppose a fair coin is tossed k times, and you are
offered 2k−1 monetary units the first time it shows heads. Expected payoff of this game diverges to
infinity, since E(y) =

∑∞
k=1 p(k) · y(k) =

∑∞
k=1 2−k · 2k−1 = ∞. However, nobody would actually pay

an infinite amount of money to participate in this game, which obviously cannot be explained by the
expected payoff rationale.
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uniform subjective prior, while the most preferred option coincides with the maximin rule

(Wald 1949) and a pessimistic Hurwicz individual (Arrow and Hurwicz 1977).

The very general approach that we pursue in this paper comes at the price of some

limitations. The class of functions that can represent preferences under Knightian uncer-

tainty in our approach are analytically not as tractable as the ones from other approaches.

This might result in rather cumbersome arithmetics in actual optimization applications,

which are for the moment left for future investigation. Closely related is the question about

incompleteness of preferences. In our paper, this implies that acts may in general only be

compared for one specific and fixed payoff volume. This is indeed rather restrictive, but

it can be seen as a direct consequence of Knightian uncertainty, which is informationally

much more restrictive than ambiguity. In a nutshell, it means that less knowledge about

a situation implies less clear statements overall. The approach to Knightian uncertainty

developed here as a number of potentially useful applications. For example, the approach

could be applied to concrete economic models from the literature to see how and where

it gives different results than other methods. Concretely, one might think of an exten-

sion and generalization of the concept of economic insurance value (Baumgärtner 2007,

Baumgärtner and Strunz 2014) with our approach. On the behavioral side, it is possible

to think of studies that investigate uncertainty attitudes experimentally in a multitude of

settings. The stage for such endeavors is all set.

2 Conclusion

This thesis consists of three research papers that explore and illustrate some of the con-

sequences of the complex and multifaceted interrelationship between heterogeneity and

uncertainty in economics. The first paper, Model choice and size distribution: a Bayequen-

tist approach, demonstrates how heterogeneity of theories can be dealt with in the context

of size distributions in economics. It establishes a link between the concept of ‘goodness-

of-fit’ of a theoretical size distribution model and economic models describing the size

distribution constituents. For the specific case of Namibian commercial cattle farming,

we learn how environmental risk might be a major factor in explaining the observed

economic heterogeneity. The second paper, Farm size, environmental risk and risk pref-
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erences: the case of Namibian commercial cattle farming explores further the aspect of

individual farms in this data set and tests some theories that have been brought up in

the context of farm management under environmental risk that have not been empirically

tested so far. The paper provides empirical evidence for the crucial role of environmental

risk in shaping economic heterogeneity. Lastly, the paper titled An axiomatic foundation

of preferences under Knightian uncertainty leaves the realm of quantifiable risks and pro-

vides a way to model human preferences regarding choice under Knightian uncertainty,

based on a set of seven axioms. It develops the notions of uncertainty aversion and

uncertainty premium, so that uncertainty attitudes can be interpersonally compared.

As Baumgärtner and Quaas (2010: 449) have put it, ‘any study in the field of sus-

tainability economics has to take uncertainty seriously’. While this is most certainly true

for long-term issues such as sustainability problems that involve intergenerational issues

and complex human-nature relationships, the need to take uncertainty seriously applies

to economics in general. The inconvenient fact about this insight is that it implies more

complex theoretical methods and concepts, and it makes firm statements and general

conclusions more difficult to arrive at. Both of these effects can be observed in the papers

in this thesis. At the same time, the present thesis also provides methods and tools to

productively wrestle with different forms of uncertainty (Papers 1 and 3), and puts theo-

ries regarding behavior under risk to empirical test (Paper 2). Such ‘productive wrestling’

may be cumbersome, and we may not yet fully understand everything, but this is no rea-

son to worry. As Frank Herbert6 once said, ‘The beginning of knowledge is the discovery

of something we do not understand’. And so, in light of the gradual process of science

towards insight and knowledge, the papers in this thesis may help set the stage for further

ambitious endeavors regarding uncertainty and heterogeneity in economics and beyond.
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Lieb, E. and J. Yngvason (1999), The physics and mathematics of the second law of

thermodynamics, Physics Reports 310, 1–96
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1 Introduction

The identification of size distribution models in empirical data has been a topic of con-

siderable debate in economics since Vilfredo Pareto’s seminal works on the distribution of

wealth in Italy (Pareto 1895; Pareto 1897). The correct identification of size distribution

models has remained a contentious issue that has continued to resurface in the economic

literature (Gibrat 1931; Champernowne 1953; Fisk 1961; Dagum 1977; Bandourian, Mc-

Donald, and Turley 2002; Eeckhout 2004) and is still generating lively discussions (Lévy

2009; Eeckhout 2009; Ioannides and Skouras 2013; Bee, Riccaboni, and Schiavo 2013).

The relevance of this field comes from the fact that any theory of, for example, income

or firm size dynamics implies a certain income or firm size distribution. It has therefore

been a longstanding research interest to identify empirical evidence for these theories.

Entities that are usually described by their size distribution over a population include:

individual income or wealth in a society, population numbers of cities in a certain region

(country, continent, world) or firm sizes1 in an economy. To date, the two most influential

theoretical concepts related to size distribution models are Pareto’s Law (Pareto 1895),

which implies a power law distribution, and Gibrat’s Law of Proportionate Effect (Gibrat

1931), which implies a lognormal distribution.

There are a number of methodological problems specific to size-distribution fitting

and related model choice problems. First, as pointed out by Clauset, Shalizi, and New-

man (2009), ordinary least-squares (OLS) regressions do not work reliably in the context

of fitting theoretical size distribution models to empirical data, primarily because OLS

regressions do not account for the crucial characteristic of a probability density function

that the integral over its support is normalized to one. Second, while high values of R2 do

explain what fraction of the variance in the data is explained by the model, they cannot

confirm or rule out the hypothesis that the data actually follow a certain distribution.2

One cannot easily fix this by employing the Kolmogorov-Smirnov test since it has been

shown to produce biased p-values in case of distribution fitting (Clauset, Shalizi, and

Newman 2009; Bubeliny 2011). Third, a p-value of any frequentist hypothesis test cannot

be interpreted as probability that the hypothesis actually holds true which is impractical

1This entity can be measured by business volume or staff numbers, for example.
2Nor do low values of sum of squared errors (SSE) or sum of absolute errors (SAE).
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in the case of several unrejected models from which the researcher would like to choose the

‘best’ one. For actual model comparison and selection, the likelihood ratio and χ2 tests

are frequentist methods that have been proposed to compare the relative performance

of two models at a time (cf. Neyman and Pearson 1933; Greenwood and Nikulin 1996).

However, as pointed out by Raftery (1986), the likelihood ratio and χ2 tests are subject

to the large-sample error of the first kind,3 let alone that comparing only two models at

a time seems rather impractical.

In this paper, we address these three problems. Our major contribution is the for-

mulation of a three-step statistical model-selection framework for size distributions in

empirical data. Inspired by the remark by Efron (2005) who observed a division between

‘Bayesians, frequentists and scientists’, we offer a combination of frequentist (Step 1) and

Bayesian (Step 2) statistical methods unified into one framework, together with a formal-

ization of the notion of microfoundation (Step 3). By microfoundation, we refer to the

existence of a micro model that leads to the observed overall size distribution. We will

hence refer to our framework as ‘Bayequentist’.

Step 1 is a generalization of the plausibility-of-fit algorithm by Clauset, Shalizi, and

Newman (2009) which they have proposed and tested in the context of identifying Pareto’s

Law in empirical data. We take up their algorithmic structure, generalize it to the case

of arbitrary size distributions and test its performance with synthetic data drawn from

a known population. We combine this in the second step with Akaike’s Information

Criterion (Akaike 1973), AIC for short, from which it is possible to calculate model weights

to obtain a model ranking (Burnham and Anderson 2004) to complement the results from

Step 1. In the third step, we propose an additional criterion into the model selection

process that goes beyond purely statistical criteria (‘not just the numbers’, Burnham

and Anderson 2004). This third criterion asks the ‘So what?’ question, namely what

additional information a good fit has to offer other than being descriptively precise. We

argue that out of two candidate models that pass the minimum statistical requirements,

one should prefer the one that comes with a microfoundation.

We illustrate our Bayequentist framework with a sample of 399 commercial cattle

farms from Namibia’s semi-arid rangelands (Olbrich, Quaas, and Baumgärtner 2009).

3This refers to a systematic rejection of even a good model in large enough samples.
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This sample is very well-suited for this purpose for several reasons: (1) It is a sample of

Namibian firms and as such, its analysis contributes to the literature on firm size, firm

size distribution and firm growth from an original and fresh perspective. (2) The data

set is unique and of excellent detail. (3) It happens to be a very illustrative example

for the functioning of all three steps of our framework and thus demonstrates how the

framework might help to unify the discourse between Gibrat’s Law and Pareto’s Law that

dominates the literature. (4) As for illustration of Step 3, Namibian commercial cattle

farming is a rain-fed business making the high variability in annual rain fall the farmer’s

main source of income risk. Hence, environmental risks and the farmer’s risk preference

are key micro-determinants of the size distribution observed at the macro-level. There is

thus a microscopic theory allowing us to test for a macroscopic model in the data.

2 Relation to the literature

One finds two types of papers concerned with size distributions in the literature. The

first type of paper deals with one particular size distribution model, either presenting

empirical evidence for the validity of that model, or presenting a theoretical derivation of

the steady-state size distribution from plausible economical assumptions, or a mixture of

both. The second type of paper focuses on comparing the goodness-of-fit of at least two

- and often more - theoretical size distribution models in empirical economic data. We

start by reviewing works from the former group.

The works of Vilfredo Pareto (on wealth distribution) and Robert Gibrat (on firm

sizes), have subsequently been a foundation for further research. Mansfield (1962) inves-

tigated the validity of Gibrat’s Law on firm size using U.S. firm size data over different

time periods and concluded that Gibrat’s law did overall not hold up well under empirical

scrutiny. To the contrary, Hart and Oulton (1996) found Gibrat’s Law to hold well for

U.K. firm data which led them to conclude that the role of random stochastic events was a

major factor in firm growth. Studies with U.S. manufacturing data (Evans 1987; Dunne,

Roberts, and Samuelson 1988) focused on the age-size independence implied by Gibrat’s

Law and reported evidence that larger firms grew more slowly than smaller firms.
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In contrast to the work on firm sizes, contributions from urban economics – beginning

with Auerbach (1913) and Zipf (1935, 1949) – have mainly focused on overall distributions,

typically of city sizes in a country or region. Ever since, there has been an implicit rivalry

between the Pareto distribution, Zipf’s ’rank-size rule’4 and the lognormal distribution

as predominant models of city size distributions.5 Lately, Gabaix (1999) resurrected

this long running debate with his theory of city growth behind Zipf’s law. In response,

Eeckhout (2004) presented his model of city growth leading to the lognormal distribution,

graphically substantiating this theory with plots of model predictions against actual U.S.

city size data. Lévy (2009) challenged Eeckhout’s conclusions on the grounds of a graphical

re-examination of Eeckhout’s logarithmic rank-size plots, a Q-Q plot and a χ2-test of the

lognormal hypothesis for the largest 150 U.S. cities. He concluded that the upper tail

was Pareto while the rest of the distribution was lognormal. In his response, Eeckhout

(2009) maintained that his conclusions were still correct stressing again the importance

of considering the whole data set rather than just the upper tail while also pointing out

the problems of purely graphical reasoning in model selection. Nonetheless, it seems that

the debate is still far from being resolved (see, for example, Ioannides and Skouras 2013;

Bee, Riccaboni, and Schiavo 2013).

Papers proposing models specifically for income and wealth distributions for one or

more countries are numerous. While Champernowne (1953) and Mandelbrot (1961) in-

troduced a discrete Markov chain model leading to the Pareto distribution, Fisk (1961),

Singh and Maddala (1976), Dagum (1977), McDonald and Xu (1995) and McDonald and

Ransom (2008) all introduced models that differed from the established ones and were well

received. More recent examples that look specifically at empirical evidence for one model

are Chotikapanich et al. (2012), Toda (2012), and the study on world income distribution

over time by Pinkovskyi and Sala-i-Martin (2009) that draws its conclusions based on fits

of the lognormal to world income data sets from 1970 to 2006.

Regarding the goodness-of-fit model comparison papers, perhaps the most encom-

passing study of this kind for income is Bandourian, McDonald, and Turley (2002) which

compares eleven distributions models. As for city size, recent model fit comparisons in-

clude Giesen, Zimmermann, and Suedekum (2010) and Giesen and Suedekum (2012) who
4This rule is actually a special case of the Pareto distribution.
5Interestingly, this is the case even though, for example, Richardson (1973) remarked that ’the three
distributions are so similar that it is difficult to choose between them’ (Richardson 1973: 240).
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report a relative underperformance of the lognormal compared to the double Pareto log-

normal (dPlN, cf. Reed and Jorgensen 2004) in fitting city size distribution data of several

European countries and the U.S. Recently, González-Val et al. (2013) find that the dPlN

outperforms the Fisk, q-exponential and lognormal in 87% of cases when investigating

Italian city size data from 1900 to 2010 and data sets from the U.S. and Spain.

Virtually all these papers can be criticized for their lack of proper hypothesis testing

and model selection, i.e. they lack a common statistical framework that does not suffer

from the problems laid out in the introductory section and that is able to tell whether

some theoretical distribution describes the data plausibly and which does so best. Clearly,

the Lévy-Eeckhout debate boils down to a lack of such a framework. Similarly, the

papers that compare several models compare only their relative goodness-of-fit, which falls

short of actually investigating the much more crucial question of whether the hypotheses

underlying the models are statistically reasonable. We believe that one possible source of

the disagreement in the literature are the methodological issues that we have summarized

in the introductory section. In this paper, we propose a remedy for these issues which

could possibly unify some of the major literature strands.

3 Bayequentist model choice for size distributions

After definition of notation and introduction of the relevant size distribution models from

the literature in the next section, we detail the three steps of our proposed statistical

model-selection framework for size distributions.

3.1 Notation and candidate size distributions

To establish notation, for a data sample x = {x1, . . . ,xN} where xi denotes the size

of entity i and N is the total number of entities in the sample, and a candidate size

distribution model p(Θ1, . . . ,ΘM |x) with parameters Θk where k = 1 . . .M , the associated

likelihood function is obtained by

L(Θ1, . . . ,ΘM |x) =
N∏
i=1

p(Θ1, . . . ,ΘM |xi). (1)
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We denote the parameter values that maximize this likelihood function given the observed

data x by Θ̂1, . . . ,Θ̂M . The logarithm of the likelihood function (Equation 1) is called

loglikelihood for short and is denoted by L(Θ1, . . . ,ΘM |x). The set that contains the

candidate size distribution models is referred to as M and its cardinality is denoted by

|M|. After any step in the selection procedure, the set of remaining models is denoted by

an extra prime so thatM′′ means the set of candidate size distribution models remaining

after Step 2 and so on. We assume that, initially, |M| > 1 as there would not be a

model choice problem otherwise. However, as will be discussed throughout this section,

a singleton, e.g. |M′| = 1, or even an empty set may occur at some later point in the

process.

From the literature, we identified seven different size distribution models that have re-

peatedly been proposed to describe empirical data. Kleiber and Kotz (2003) classify these

size distribution models commonly found in the economics literature into three functional

superforms: the generalized beta distribution of the second kind (GBII), the generalized

Gamma distribution (GG) and the lognormal group. GBII contains the generalized beta

distribution of the second kind (McDonald 1984), the Dagum (Dagum 1977) and the

Fisk (Fisk 1961) distribution, GG contains the Weibull (Bartels and van Metelen 1975)

and the Gamma distribution (Ammon 1895) and the lognormal supergroup contains the

lognormal, the Pareto (Pareto 1895), the double Pareto lognormal and the generalized

double Pareto lognormal distribution (GdPlN, Reed and Wu 2008). We do not include

the GdPlN in our analysis since there is no closed-form expression of its density functions

which would add to computation time considerably if the ML fitting problem could be

solved at all. A minor reason is that, unlike the dPlN, the GdPlN is not part of the

literature discourse and therefore certainly not ‘commonly found’. In figure 1, we give

exemplary plots of these models while their explicit functional forms are detailed in table

1. Kleiber and Kotz (2003) show the interrelations of the distributions.

3.2 Step 1: Plausibility-of-fit

We assess the statistical plausibility of the fit generalizing the method proposed by Clauset,

Shalizi, and Newman (2009). The intuition behind their method is as follows: any sam-

ple randomly drawn from a power-law distribution will feature deviations from a true
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Table 1: The Size Distribution Models Most Commonly Used in Economics

model no. of parameters probability density function first used in

lognormal 2 1
σx
√

2π exp
(
− (ln x−µ)2

2σ2

)
Gibrat (1931)

dPlN 4 αβ
α+βx

−α−1e(αν+α2τ2
2 )Φ

(
ln(x)−ν−ατ2

τ

)
+ Reed and Jorgensen (2004)

αβ
α+βx

β−1e(−βν+ β2τ2
2 )Φc

(
ln(x)−ν+βτ2

τ

)
Pareto 2 1

α−1 ( x
xmin

)−α Pareto (1895)

Weibull 2 k
λ

(
x
λ

)k−1 exp(−(xλ )k) Bartels and van Metelen (1975)

Dagum 3 ap
x

(
(x/b)ap

(( xb )a)+1)p+1

)
Dagum (1977)

Fisk 2 δ
γ (xγ )δ−1/

[
1 + (xγ )δ

]2
Fisk (1961)

Gamma 2 xκ−1 exp(− x
Θ )

ΘκΓ(κ) Ammon (1895)

GBII 4 axap−1

bapB(p,q)[1+( xb )a]p+q McDonald (1984)

Note: Φ denotes the cumulative density function of the standard normal distribution and
Φc(x) its complementary function 1−Φ(x). B(p,q) is the incomplete beta function which
is defined as B(p,q) =

∫ x
0 u

p−1(1 − u)q−1du for 0 ≤ x ≤ 1. For ease of reading, each
parameter has been given a distinct Greek symbol.

power-law distribution. Moreover, the smaller the sample size N , the larger the expected

deviations. Hence, even if we knew for sure the population followed a power-law distri-

bution, we would nonetheless find deviations from a true power law in any finite random

sample from this population. Thus, the question is how to distinguish these ‘natural’

deviations from those that make the power-law hypothesis highly unplausible.

Clauset, Shalizi, and Newman (2009) have suggested and numerically tested their pro-

cedure with the power-law distribution specifically in mind. Yet, the power-law (Pareto)

distribution is a very special model. While they remark that their test should in principle

be suitable for any distribution – as long as there exist methods to create random num-

bers from that distribution – a generalized version of their plausibility-of-fit test has not

been used or investigated so far. In this paper, we take up this point and generalize the

algorithm as follows:
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Figure 1: The seven most common size distributions in economic literature

Note: Parameter values: (a) δ = 2, γ = 2, (b) µ = 0.7, σ = 0.8, (c) λ = 1.5, k = 2.5, (d)
a = 3, b = 3, p = 0.5, (e) α = 10, β = 3, ν = 1, τ = 0.5, (f) Θ = 2, κ = 1.5, (g) a = 3,
b = 2.75, p = 0.5, q = 0.85

1. ML estimate the parameters Θ̂1, . . . ,Θ̂M of the hypothesized distribution (H0) based

on the data sample x = {x1, . . . ,xN}.

2. Compute the KS test statistic of the obtained fit. Jitter6 the empirical data if ties

are present.

6‘Jittering’ is a standard procedure to break ties in empirical data samples. It refers to adding very small
random numbers from a uniform distribution with very small support symmetric to the origin to each
sample element (e.g. Mease, Wyner, and Buja 2007).
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3. Generate Z synthetic data samples of length N drawn from the hypothesized distri-

bution with parameters Θ̂1, . . . ,Θ̂M and calculate their respective KS statistic using

distribution parameter values that have been ML re-estimated for each synthetic

sample.

4. Obtain the p-value of H0 as fraction of the number of synthetic data samples that

have a KS statistic greater than the data sample x and the number of synthetic

data sets Z.

5. Reject H0 if p < 0.1, do not reject else.

The absolute error estimate of the obtained p-value decreases with the number of synthetic

data sets Z as given by

ptrue = p±
√

1
4Z . (2)

Our algorithm departs from the original one in stages 2 and 3. In stage 2, we have

added the jittering component to avoid conservative7 p-values that may result from tied

data. In stage 3, we have removed the explicit reference to the Pareto distribution in

favor of the general expression ‘hypothesized distribution’. Note that it is crucial for this

method to ML re-estimate in Step 3 the parameter values for each synthetic data set to

avoid conservative p-values (cf. Capasso et al. 2009). It is also in principle not a problem

to test for truncated data as long as one formulates the hypotheses accordingly. Hence,

this modified test can in principle be applied to any statistical size distribution model

since it is always possible to construct random numbers based on a known probability

density function, truncated or not.8

The significance level of the test should of course not be carved in stone. The threshold

p-value of 0.1 is the value recommended by Clauset, Shalizi, and Newman (2009), and

we take up their suggestion here. Of course, one could also think of other levels, like for

example 5% which is usually the standard value in the literature. However, the nature

of the test should be kept in mind: we are asking ‘Given that the data actually follow

distribution X, how likely is it to observe an outcome at least as extreme as observed?’.

7Here, ‘conservative’ means that the p-values returned by the test are too optimistic, hence implying
erroneous results.

8Two major methods exist for this: the acceptance-rejection method and the inversion method (von
Neumann (1951) and Devroye (1986), respectively).
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Hence, a lower p-value threshold would actually be a less powerful criterion – and not a

more strict one – when testing for H0 and this is also the reason why we stick to p = 0.1

here.

For performance assessment of this generalized algorithm, we run two numerical tests:

First, we draw 100 numerical random samples of constant length N from a lognormal

distribution with randomly changing parameters at each draw. For each such sample,

we test the following distribution hypotheses: lognormal, dPlN, Weibull and Dagum, so

that we end up with four arrays of 100 p-values. For each array, we calculate the average

p-value. We then repeat the same exercise for another length value of synthetic samples

N . The procedure has thus a ‘loop in a loop’ structure where we vary N between 75

and 10’000. Second, we repeat the very same procedure for synthetic samples from dPlN

distributions. We plot the results of the testing procedure in figure 2 semi-logarithmically,

and we omit nested distributions.9 The reason for this is that we cannot expect – on

average – to be able to rule out such nested hypotheses. For example, because the

lognormal is contained in the dPlN, the average p-value of both hypotheses would behave

quite similar in figure 2. And hence, by construction, one could on average not expect

the dPlN to be ruled out for synthetic lognormal samples.
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Figure 2: Results of numerical tests

The results demonstrate that the method is in principle suitable to identify a true

lognormal (figure 2a) or true dPlN distribution (figure 2b) in finite data samples as the
9That is, we omit the curve for the dPlN hypothesis in figure 2a, and the curve for the lognormal
hypothesis in figure 2b.
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average p-value remains above the threshold of p = 0.1 only for the distribution that the

samples were actually drawn from. On the other hand, figure 2 also reflects the fact that

it gets generally much harder to rule out a distribution the more parameters it has and

the lower the sample size.10 The two parameter Weibull distribution is easily rejected in

both cases since the average p-value remains slightly above 0.1 for very small samples only

(N = 75 for synthetic lognormal data, N = 100 for synthetic dPlN data, figure 2a and b,

respectively). In contrast, the three parameter Dagum distribution generally provides a

much better fit to the data and is in consequence much harder to reject (N ≥ 1000, figure

2) although the sampling population does not follow a Dagum distribution. Positively put,

the true distribution is not ruled out, even for larger samples (N ≥ 1000). Compared to

the original version of the test, our numerical results suggest that the generalized version

may need greater data samples – depending on the competing hypotheses – to reliably

rule out incorrect alternatives.

3.3 Step 2: Model ranking

Suppose |M′| > 1. To infer a model ranking based on the sample data, we propose to

make use of the ‘weights of evidence’ (Burnham and Anderson 2004) which are based

on the Akaike Information Criterion (AIC, Akaike 1973). To recall, the AIC relies on

the likelihood function L(Θ̂1, . . . ,Θ̂M) at the likelihood optimum and the number M of

parameters of the respective candidate size distribution model:

AIC = −2 lnL(Θ̂1, . . . ,Θ̂M) + 2M. (3)

Since low AIC scores are better in terms of less Kullback-Leibler information loss from data

to model (Kullback and Leibler 1951), the criterion penalizes additional model parameters

by having their number M entering Equation 3 as a positive summand. The intuition

behind this is that, out of two candidate models with the same likelihood based on the

data, the more parsimonious one is selected, a principle known as Occam’s razor.11

10There is of course always a possibility that we get a close resemblance to other distributions than the
’true’ one by pure chance. Such issues become more likely, the smaller the sample. On the other hand,
if an hypothesis is rejected in spite of a small sample, that is very valuable information, too.

11It is not possible to clearly ascribe this term to the mind of one person: In 1852, English philosopher
Sir William Hamilton coined the term after 14th century English logician William of Ockham (cf.
Kaye 2007) although Ockham never actually wrote the well-known phrase ‘shave away all but what is
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Based on the AIC scores, it is possible to infer a ranking of the different candidate

models according to their ‘Akaike weights’ (cf. Burnham and Anderson 2004) which make

a statement for each candidate model about the relative strength of evidence (‘weight of

evidence’, Burnham and Anderson 2004) in favor of one specific model given the data and

given the other elements ofM′. In Bayesian statistics, these weights reflect the posterior

model probability, i.e. the model probability given some prior and given the actual data.

Burnham and Anderson (2004) suggest the following scheme to find these weights: take

the model with the lowest AIC score and rename that score AICmin. For every other

candidate model j where j = 1 . . . |M′|, calculate the number

∆j = AICj − AICmin. (4)

The so-defined ∆j are a measure for relative strength of evidence.12 By construction, the

model with the smallest AIC score has ∆ = 0 and, hence, the strongest support based on

the data and given the other elements of M′. From this, one obtains the Akaike weights

as

wj = exp(−∆j/2)∑
l exp(−∆l/2) (5)

where l = 1 . . . |M′|. These weights give a relative ranking of size distribution models

based on the data and the other size distribution models contained in the setM′. These

model weights wj have two essential interpretations, one from information theory (1) and

one from Bayesian statistics (2): (1) the higher the numerical weight value wj of some

model j, the smaller its information loss in the Kullback-Leibler sense; (2) as demonstrated

by Burnham and Anderson (2004), the Akaike weight wj of model j is equal to the

Bayesian posterior model probability Pr(j|x) conditional on the data x. Either way,

the Akaike weights imply a relative ranking, and we recommend to use this ranking to

complement the analysis from Step 1. As result, we get the ordered set M′′. It contains

the same elements as M′, now ordered according to their relative weights of evidence.

necessary’ (Vogel Carey 2010). In fact, the roots of this principle can be traced back to the works of
Ptolemy (90− 168) and Aristotle (384− 322 BC) (Baker 2011).

12It has been suggested to use the ∆js as stand-alone model selection criterion using the following
classification (Burnham and Anderson 2004): ∆j ≤ 3: substantial support, 4 ≤ ∆j ≤ 7: moderate
support, ∆j ≥ 10: essentially no support. We disagree with this view since the ∆j values critically
depend on the composition of the set of candidate size distribution models. Therefore, using only this
criterion for model selection might result in a choice from a set out of which all elements are overall
implausible – in the sense of Step 1 – descriptions of the original data.
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Philosophically, there is a lively debate on whether one should select the more par-

simonious or the more complicated out of two competing models. Methodologically, the

two extremes are the Bayes Information Criterion (BIC, Schwarz 1978), which penalizes

additional model parameters more drastically than the AIC,13 and the likelihood crite-

rion (as advocated by Edwards 1972), which favors the model with the highest likelihood,

hence generally the one with most parameters. While there is no final consensus yet, the

literature on model selection seems to favor the ‘principle of parsimony’ over the ‘principle

of diversity’ (Leibniz 1968 [1710]). We do not share this view. Rather, we think that a

more complicated model that lies in M′ is not necessarily worse than a simpler model

within M′, because it could have deeper explanatory power. In our Bayequentist frame-

work, we therefore advocate the use of the AIC in Step 2 because it provides a formal

compromise between a ranking based solely on the likelihood and the BIC. In other words,

the AIC formally strikes a balance between the principle of parsimony and the principle

of diversity. Moreover, using numerical simulations, it has been argued in the statistical

literature that there are considerable performance advantages of the AIC over the BIC

(Burnham and Anderson 2004; Yang 2005).

3.4 Step 3: Microfoundation

Is there any good reason not to stick to the statistically best-fitting model out ofM′′, but

to actually choose only number 2 or 3 from the ranking? Yes, we argue in this section,

there is.

We maintain that a size-distribution model should achieve both, a good fit to empirical

data (in the sense of Steps 1 and 2) and it should come with a plausible microfoundation.

By microfoundation, we refer to any microscopic model that can be shown to generate

the overall size distribution model. For example, Gibrat’s Law which states that the

individual size of a firm and its growth rate are independent can be analytically shown

to give rise to, in the steady state, an overall lognormal firm size distribution (cf. Sutton

1997). In fact, our criterion of microfoundation is a relaxation of a proposition already

made in the context of income distributions: a good overall income size distribution model

should be based on a plausible stochastic model (Dagum 1983; Reed and Wu 2008). This

13BIC = −2 lnL(Θ̂1, . . . ,Θ̂M ) +M lnN
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very particular understanding of microfoundation means that there exists a stochastic

differential equation14

dXt = f(Xt,t)dt+ g(Xt,t)dWt (6)

that describes the size evolution increment dXt of the individual parts of the economic

system in question15 between two neighboring time instants t and t − dt. dWt is the

increment of a standard Wiener process with expected value E [Wt] = 0 and variance

Var [W 2
t ] = t for t > 0. Thus, the entirety of these individual parts constitute the overall

distribution at any time instant t. The actually observed size distribution in a random

sample from a population can be explained as the steady-state size distribution resulting

from the microscopic stochastic growth process undergone by the individual constituents

of the population.

This stochastic differential equation understanding of microfoundation is what can be

mostly found in the literature. It has the appeal of being able to analytically establish a

relation between the dynamic behavior of individual parts of the system and the overall

size distributive outcome while also accounting for stochasticity. However, this is only

one out of many possible microfoundations. In a broader sense, this could be any agent-

based, rule-based, or other type of microscopic model that generates the macroscopic

distribution. For example, coming back to income distributions in economics, there are

microscopic stochastic models such as in Champernowne (1953) or Reed (2003) and de-

terministic models such as in Parker (1999) and one can sensibly disagree about their

merits. We should not and will not engage in this debate here since which microfoun-

dation is ‘good’ and which ‘bad’ depends on the system one considers, on the research

question and on one’s preferences.16 Therefore, this question can naturally not be resolved

on this general level, it is on the researcher to make a well-informed judgment. Our point

is that – given statistical significance – a size distribution model with microfoundation

should be selected rather than one without.

14We refer to stochastic differential equations in the Itō (and not Stratonovich) sense of stochastic inte-
gration (cf. e.g. Higham 2001). Yet, our argument does not depend at all on this specification.

15These may for example be individual wages of laborers or city sizes in a country.
16While Dagum maintained that any good income distribution model should be stochastic (Dagum 2006),

others criticized stochastic models for not being derived from basic economic principles as ‘ad hoc’
(Sahota 1978).
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To answer the question whether a certain model not having an analytical closed-form

solution provides a microfoundation for a certain size distribution model, we suggest to

use the following criterion: Calculate the p-values using the plausibility-of-fit algorithm

from Step 1 for sufficiently many17 runs of the microscopic model separately. If the

resulting p-values are greater than 0.1 more often than not, then it cannot reliably be ruled

out that the microscopic model in question does indeed provide a statistically plausible

microfoundation for a certain size distribution model.

The bottom line here is that the identification of a particular size distribution in em-

pirical data allows for inference about the underlying individual growth dynamics if and

only if the size distribution comes with a suitable microfoundation. Our argument here is

that we suggest to deselect the size distribution models that do not have a microfounda-

tion. This may even imply that the statistically best-fitting size distribution models from

M′′ get deselected and are therefore not contained inM′′′ anymore. IfM′′′ is empty, the

best fitting model is the one ranked highest in M′′. However, in this case, there is no

inference about the system and its constituents possible and the whole fitting exercise is

devoid of any insight other than the descriptive findings. On the other hand, if |M′′′| > 1,

there are two possible positions. From a strictly mechanistic viewpoint, one could select

the size distribution model from M′′′ that is ranked highest in M′′ because the relative

ranking in M′′′ remains the same as in M′′ conditional on the fulfillment of the micro-

foundation criterion. However, there are good reasons to follow Burnham and Anderson

(2004) in arguing that, rather than selecting one particular model, it might be better

scientific practice to keep all the models alive and engage in ‘multimodel inference’.18 We

agree with them since it is clearly unrealistic that there exists one single ‘true’ model.

Rather, there is data evidence that supports one or several models sufficiently plausible

and this evidence allows for inferences.

17We consider 100 runs as the absolute minimum.
18They write ‘[to select only one model] . . . begins a flawed inference scenario; in particular, the implicit

assumption that inference must be based on a single model is not justified by any philosophy or
mathematics’ (Burnham and Anderson 2004: 298).
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3.5 The framework at a glance

We provide a graphical summary of our three-step Bayequentist model selection frame-

work in figure 3. It addresses three key aspects of goodness-of-fit: (1) statistical plausibil-

ity (Step 1), (2) performance relative to the competing size distribution models (Step 2)

and (3) model microfoundation allowing for inferences about the underlying process that

generated the observed distribution (Step 3). Overall, frequentist Step 1 and Bayesian

Step 2 test for statistical significance and descriptive power, Step 3 explores explanatory

power which we see as a proxy for scientific significance (cf. McCloskey 1995).
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deselect

if |M′| = 1
ranking

wj
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statistical significance scientific significance

Figure 3: The proposed Bayequentist model selection framework

There are also situations where alterations of our scheme might become necessary.

This may be due to the researcher’s motivation or by procedural reasons. As to motivation,

it may not be of interest by what mechanism the size distribution was actually generated

on the micro level at all. Instead, only the best possible description of the data might be

relevant.19 In this case where the interest in the data is of purely descriptive origin, Steps

1 and 2 are sufficient. However, most of the time when fitting theory to data, it seems

that the underlying question is not only ‘Which model fits best?’ but also ‘What does a

good fit tell us most likely about the population that the sample was drawn from?’ In

this case, Step 3 needs to be included into the framework.

19Such an interest may accrue from the need to (re-)evaluate effectiveness of some policy, or to assess
possible extreme events based on a given data sample through extrapolation, and so forth.
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As to procedural reasons, something might happen that is – for the sake of clearness –

not included in figure 3 concerned with Step 3: no model may be left in the end, |M′′′| = 0.

In that case, one can either resort to the ranking from Step 2 which yields at least to the

best possible fit in statistical terms. It could however also be the case that the setM was

misspecified, which means that one would need to reconsider the choice of the candidate

size distribution models in M in general and possibly start over again.

While it may seem challengeable to place such a fundamental principle like the crite-

rion of microfoundation last rather than first, we advocate the succession of steps proposed

in figure 3, and we do so for several reasons. First, placing what is Step 3 here as first

step would mean to only admit models with microfoundation into the statistical analysis.

However, this would introduce a strong bias towards models with microfoundation since

models without it would not be admitted to subsequent analysis. Second, it would neglect

from the outset the case that the researcher is only interested in descriptive results rather

than microfoundation, i.e. in the genesis of the observed outcome and its general dynam-

ics. However, an as-good-as-possible description without microfoundation might just be

what the researcher is looking for. Lastly and most importantly, we would, in general,

produce a less-than-optimal result in terms of information. Consider the case that we

propose here where we admit both, models with and without microfoundation, into the

candidate setM. If, at the end of the three-step procedure, it turned out that none of the

models with microfoundation fits the data well, but one without does, then this finding

would be a valuable one, because it would show that none of the existing theories was

supported by the data at hand. This could subsequently become even more useful if this

finding was consistent with other data as well. Yet, all this potential information would

be discarded if Step 3 was conducted first rather than last, and there would not be any

starting grounds for the germination of new theories.

4 Illustration: commercial cattle farms in Namibia

We illustrate our Bayequentist framework with size data of Namibian commercial cat-

tle farms (Olbrich, Quaas, and Baumgärtner 2009; 2012). For illustrative purposes, we
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slightly deviate from the proposed procedure in that we present the results in every step

for every model in the original candidate set M.

4.1 Data

We use a 2008 data sample of 399 Namibian commercial cattle farms (Olbrich, Baumgärtner

and Quaas 2012).20 As to the operationalization of farm sizes, it contains two specifica-

tions of ‘size’: the number of cattle held on the farm and area in hectares. The former

has been hypothesized to be a ‘proxy for wealth’ (Olbrich, Quaas, and Baumgärtner 2009:

19). Namibia’s semi-arid climate with a dry and a wet season in each year causes cattle

numbers on each farm to vary over the course of one year, for example due to pasture

and herd management. Therefore, each record contains entries about the cattle count in

November and in April. We take the average of these two values to measure the farm size

in terms of cattle number, thereby correcting for seasonal effects.

Deviations from the total sample size of N = 399 occur in our analysis and are due

to incomplete data records: For example, the fits of different size distribution models to

the cattle-number data in this section is based on N = 351 data points, and fits to the

area data are based on N = 391 data points.21 Table 2 shows descriptive statistics of the

data set while figure 4 plots histograms of the cattle-number and area distributions.

4.2 Step 1: Plausibility-of-fit

Table 3 shows the results of Step 1 of our framework including standard errors. Although

the Pareto distribution does not have the same support as the other size distribution

models and although it is nested within the dPlN distribution, we include it here as a

robustness check for the plausibility-of-fit method. We base our estimations for each p-
20The data set, and its generation from a survey that consisted of a mail-in questionnaire sent to some

2100 commercial cattle farmers, is described in detail by Olbrich, Baumgärtner and Quaas (2009). They
also discuss methodological issues and data quality. Based on their discussion and the comparatively
high response rate of the survey, there may be a self-selection bias, but most likely no systematic
truncation, and particularly no truncation in distributions.

21We used the R programming language (version 2.13.0) for statistical data analysis and visualization
as well as Python(x,y) (version 2.6.5) for the graphs in figure 4. For ML estimation of the dPlN,
we employed the R code provided by Lu and King (2009), for the Pareto distribution, we used the
original Python code of Clauset, Shalizi and Newman (available online at http://tuvalu.santafe.
edu/˜aaronc/powerlaws/.)
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Table 2: Descriptive Statistics of The Namibian Commercial Cattle Farm
Sample

descriptive statistics cattle [number] area [ha]

sample size 351 391
minimum value 1 200
maximum value 3200 42244

mean 450 7970
median 369 6800

standard deviation 361 5504
skewness 2.37 2.50
kurtosis 10.48 11.00

Gini coefficient 0.394 0.336

0 500 1000 1500 2000 2500 3000 3500
cattle count

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

re
la

ti
v
e

fr
eq

u
en

cy

(a) cattle number

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
farm area [ha]

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

re
la

ti
v
e

fr
eq

u
en

cy

(b) area

Figure 4: Sample farm size distributions

value on Z = 2500 synthetic data sets so that the resulting p-values are accurate up

to approximately 1% (cf. Equation 2). For the cattle-number data, we find that four

size distribution models pass the plausibility-of-fit test, the dPlN (p = 0.15), the Pareto

(p = 0.33), the Dagum (p = 0.39) and the GBII (p = 0.30) while none of the candidate

size distribution models pass the plausibility-of-fit test for the areal data. Because of

nestedness, results for Pareto and dPlN are akin. Regarding parameter estimation, we

find similar parameters for the lognormal, the Pareto and the dPlN distributions which

reflects again the nestedness of the Pareto and lognormal within the dPlN. Indeed, we

find a so-called Pareto coefficient of α = 3.22 that resembles the tail index of the dPlN

of α = 3.53 for the cattle data. For the areal data, we find α = 3.25 for the Pareto

distribution and a tail index of the dPlN of 3.28. Similarly, the parameters describing the
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dPlN’s lognormal main body22 – ν and τ – resemble the estimates that we find for the

lognormal fits (cattle number: ν = 6.22 compared to µ = 5.80 and τ = 0.42 compared to

σ = 0.89, area: ν = 8.96 compared to µ = 8.78 and τ = 0.35 compared to σ = 0.68).

Table 3: Results of Step 1

model cattle number parameter estimates p area parameter estimates p

lognormal µ = 5.80 (0.10), σ = 0.89 (0.06) 0.00 µ = 8.78 (0.08), σ = 0.68 (0.04) 0.00
dPlN α = 3.53 (3.46), β = 1.41 (0.18), 0.15∗ α = 3.28 (2.23), β = 2.05 (0.82), 0.00

ν = 6.22 (0.11), τ = 0.42 (0.10) ν = 8.96 (0.08), τ = 0.35 (0.08)
Pareto α = 3.22 (0.39), xmin = 460 (49) 0.33∗ α = 3.25 (0.39), xmin = 7000 (746) 0.02

Weibull k = 1.36 (0.05), λ = 494.85 (20.63) 0.00 k = 1.59 (0.06), λ = 8965.36 (301.18) 0.00
Dagum a = 3.16 (1.10), b = 559.65 (1.10), 0.39∗ a = 3.32 (1.09), b = 8366.58 (1.08), 0.00

p = 0.45 (1.18) p = 0.63 (1.18)
Fisk γ = 351.45 (1.04), δ = 2.14 (1.04) 0.04 γ = 6665.40 (1.04), δ = 2.74 (1.03) 0.02

Gamma Θ = 254.1 (20.28), κ = 1.77 (0.12) 0.00 Θ = 3000.00 (215.43), κ = 2.64 (0.17) 0.00
GBII a = 3.25 (1.46), b = 554.24 (1.16), 0.30∗ a = 3.39 (1.41), b = 8303.62 (1.11), 0.01

p = 0.433 (1.57), q = 0.957 (1.76) p = 0.95 (1.55), q = 0.35 (1.66)

Note: Maximum likelihood estimates of the model parameters are given with standard
errors in brackets and p-values. p-values significant at the 10% level are marked with ∗
and accurate up to 1%. Models with a p-value smaller than 0.1 are deselected. In spite of
having a smaller support than the other candidate models, we also report the estimates
for the Pareto distribution here as a robustness check. Definitions of models can be found
in table 1.

Thus, in this case, M′ contains three models, namely the dPlN, the Dagum and the

GBII distribution for the cattle-number data while in case of the area data,M′ is empty.

4.3 Step 2: Model ranking

In table 4, we list the results of Step 2 of our Bayequentist model selection framework.

We document every important number in the ranking process from left to right, and

for each farm size data set (cf. table 4): loglikelihoods Lj, AIC scores and resulting

Akaike weights wj. Loglikelihoods Lj of Dagum, dPlN and GBII are almost identical

with slight advantages for the Dagum and GBII models for the cattle data (LdPlN =

−2462.85 compared to LDagum = LGBII = −2462.70) and the dPlN in case of the area
22Being a crossover of double Pareto and lognormal distribution, the dPlN roughly behaves like a Pareto

distribution (i.e. like a power law) in its tails and like a lognormal distribution else (Reed and Jorgensen
2004).
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data (LdPlN = −3817.57 compared to LDagum = LGBII = −3818.04). The AIC scores

reflect this finding as these three two models rank first (1.Dagum, 2.GBII, 3.dPlN for

cattle numbers and 1.Dagum, 2.dPlN, 3.GBII for area data). Using the definition of the

model weights wi (Equation 5), we find substantial evidence for all three of these models

(cattle number: wdPlN = 18.3%, wDagum = 57.9%, wGBII = 21.4%, area: wdPlN = 29.4%,

wDagum = 50.1%, wGBII = 18.4%). With a cumulative Akaike weight of about 3% for both

data sets, the other size distribution models play no role. Note that the area data nicely

illustrates why Step 2 alone is not sufficient: it yields a relative ranking, but without

any qualification of whether the fits are statistically plausible. The quality of fit of the

Table 4: Results of Step 2

cattle number area

model loglikelihood AIC weight [%] loglikelihood AIC weight [%]

lognormal -2492.21 4988.42 <0.00 -3836.59 7677.18 <0.00
dPlN -2462.85 4933.71 18.31 -3817.57 7643.15 29.39

Weibull -2470.72 4945.43 0.04 -3841.32 7686.63 <0.00
Dagum -2462.70 4931.41 57.90 -3818.04 7642.08 50.13

Fisk -2473.82 4951.64 <0.00 -3822.21 7648.41 2.12
Gamma -2466.91 4937.83 2.33 -3827.67 7659.35 0.01

GBII -2462.70 4933.40 21.40 -3818.04 7644.09 18.35

Note: Loglikelihoods (logarithm of Equation 1), AIC scores (Equation 3) and Akaike
weights (Equation 5) are displayed. The resulting model ranking is Dagum, GBII, dPlN,
Gamma, Weibull, Fisk, lognormal (cattle number) and Dagum, dPlN, GBII, Fisk, log-
normal, Weibull (area).

Dagum, the dPlN and the GBII distribution to our data is illustrated in figure 5, where

we use for computational convenience that the logarithm of a dPlN distributed variable

is Normally Laplace (NL) distributed (cf. Reed and Jorgensen 2004).23

23Note that – exploiting Reed and Jorgensen (2004) – we plot the Normal Laplacian over ln x and not the
dPlN over x in figure 5. For the sake of readability, we do not explicitly state this in the graph but we
remark here that these plots feature logarithmic distortion, i.e. the data are compressed and outliers
therefore seem less drastic, hence the apparent differences in fit quality (see also Eeckhout (2009) for
a longer discussion of log-log plotting). Along the way, this nicely illustrates the danger of judging the
statistical goodness-of-fit by the look of the plot.
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(c) Dagum: Q-Q plot
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(g) GBII: PDF and data
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Figure 5: Best fitting theoretical distributions (black) versus kernel density
regressions (red), and Q-Q plots, for the Dagum (top), NL (center)
and GBII (bottom) distributions

4.4 Step 3: Microfoundation

Camillo Dagum (1977) defined the distribution of his name by an ordinary differential

equation which features the income elasticity of the cumulative distribution function as

parameter. The solution function of this equation is the cumulative density function of

the Dagum distribution. Insofar, it is aimed at describing these distributions well but does

not come with any stochastic or other kind of micro model to explain how the observed
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overall distribution might have been generated from an underlying individual microscopic

evolutionary process. Dagum did provide Kolmogorov forward equations describing the

dynamic behavior of the overall probability density function of incomes under certain

assumptions about the instantaneous mean and variance at time t. However, this is not

a microfoundation in the sense that we define it here and therefore we deselect it.24

On the other hand, there exist microfoundations for the GBII and dPlN distributions.

The GBII can be shown to result from a model in which there is a representative firm

that maximizes profits under certainty (Parker 1999). The firm is assumed to have a

production function F (n(y),ψ(y)) where n(y) is the number of workers earning income

y and ψ(y) the level of human capital available at y so that the firm’s total output is∫∞
0 F (n(y),ψ(y))dy. Writing total labor cost at y as c(y), the firm’s problem is then to

maximize
∫∞

0 [F (n(y),ψ(y))− c(y)n(y)] dy with respect to n(y). If one assumes a standard

cost function, constant elasticity of income returns with respect to human capital and

F = ψ(y) · n(y)α with α ∈ (0,1), the GBII distribution solves the firm’s optimal control

problem. As to the dPlN, Reed and Jorgensen (2004) have shown that it results from a

combination of Gibrat’s Law with two assumptions about the entities under consideration:

(1) the initial size distribution is lognormal and (2) the entities under consideration are

not equally old and have an overally exponential age distribution. That means, if we

have a set of economic entities that follow a lognormal distribution initially and that

have an exponential age distribution and that individually grow according to a geometric

Brownian motion, then that these elements will be dPlN distributed.

Therefore, in spite of the worse relative goodness-of-fit statistics from Step 2, we select

the dPlN and the GBII as the best size distribution models out of the seven candidates. In

light of the research question about the influence of environmental risk on the overall dis-

tribution, Parker’s (1999) model is however not very satisfying. Since variation in annual

precipitation plays a key role for farms in our sample, it seems therefore unrealistic to infer

from a model that does not incorporate any kind of risk or uncertainty. In the following,

we will therefore concentrate on possible inferences from the dPlN microfoundation.

24Dagum promoted an understanding of ‘model foundation’ that is quite different to our understanding
of model microfoundation: ‘By model foundation, we understand the extent to which the mathematical
form of an ID [income distribution] model is derived from realistic elementary assumptions. [. . . ] It
has formal stochastic foundation when the mathematical form of an ID model is the outcome of an
a priori set of probability assumptions that are advanced by pure reason (rationalism) without being
substantiated by factual observations.’ (Dagum 2006: 3382, remark in brackets added by the authors).
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The good fit of the dPlN to the farm size data contains several messages. First,

we may infer that Gibrat’s Law holds in our farm sample, albeit with two modifying

crucial assumptions: (1) exponentially distributed farm age structure and (2) lognormal

initial farm size distribution. In general, Gibrat’s Law states that the size of a firm and

its growth rate are independent (Gibrat 1931). Mathematically, this translates to the

following stochastic differential equation:

dS
S

= µdt+ σdW, S(0) = S0, t ≥ 0 (7)

where the sign of the drift term µ determines the behavior of the expected value of

S(t) and where W (t) is the standard Wiener process as introduced above under ‘Step 3:

Microfoundation’. Thus, if µ > 0, then E [S(t)] > S0, and vice versa. The parameter σ

models the influence of randomness on the overall process S and the larger the absolute

value of σ, the higher the impact of randomness on the behavior of S(t).

In the following, we give an interpretation of Gibrat’s Law in the context of Namibian

commercial cattle farms. Equation 7 is equivalent to25

S(t) = S0 · exp
[(
µ− σ2

2

)
t+ σW (t)

]
. (8)

That is, the finding of the dPlN in our data suggests that individual farm sizes evolve

according to a stochastic exponential growth process. S0 is the initial size of the farm

and it holds that S(t) > 0 for every positive t. If σ = 0, Equation 8 reduces to simple

exponential growth with growth rate µ. Thus, µ reflects the deterministic growth rate of

the farm which the farmer can influence through his management decisions such as buying

or selling cattle, acquisition of new machinery, hiring or laying off staff and so forth.

Consequently, the expected farm size at any positive time instant is E [S(t)] = S0eµt. The

absolute value of σ thus determines the influence of randomness on the overall growth

process. For the semi-arid rangelands in Namibia, a huge part of this randomness comes

from variation in annual rainfall (Olbrich, Quaas, and Baumgärtner 2009). Other sources

of randomness mainly include (Olbrich 2012: 23–29): diseases, cattle theft, bush fires,

25This follows by solving the stochastic differential equation (Equantion 7) with help of the substitution
X(t) = lnS(t) combined with Itō’s lemma.
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wildlife predation, price volatilities and labor legislation. The farmer cannot influence

any of these risks, they are thus externally given.

Does it matter, one might object, theoretically or practically for this explanation

that cattle inventories are integer figures whereas land area holdings are real numbers?

Although biological dynamics and cattle fecundity do play a role for the farmer in Namib-

ian commercial cattle farming since cattle reproduces on farm (cf. Olbrich 2012), this fact

does not imply that changes in cattle numbers on a particular farm are smooth. First

and foremost, it is common practice for a farmer to buy and sell cattle at one of the

numerous auctions, ‘hundreds of which take place year around at various locations across

Namibia’ (Olbrich 2012: 21). Furthermore, there are several serious risks that also foster

the possibility of sudden lumpy changes in cattle numbers that have been given in the

previous paragraph. On a more theoretical remark, we have Donsker’s Invariance Princi-

ple (Donsker 1951). It establishes that any random walk in discrete time converges under

certain conditions to a standard Wiener process, which is what we use in our stochastic

model of farm growth. This result means that any random walk process - which is integer

in both, domain and codomain - converges to a standard Wiener process - which is not

integer but real in domain and codomain. Hence, one can in general always rescale a

random walk so as to converge to a Wiener process and this is why stochastic differential

equation models such as Equation 8 are valid.

Overall, our findings imply two things: (1) larger farms do not grow faster or slower

than smaller farms and (2) the growth (rate) of a farm in one period is independent

of the growth (rate) in the preceding period. While the first conclusion is the core of

Gibrat’s Law, the second one is a direct consequence of the fact that the stochastic

process (Equation 8) is a Markov chain. If a policy was concerned with optimally fast job

generation in Namibia’s large agricultural sector, a recommendation to focus on certain

subgroups of farmers would not follow from our analysis.

5 Discussion and conclusion

We critically reflect on limitations of, and possible objections to, our framework before

we conclude.
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Robustness. In our paper, we understand ‘robustness’ in the context of errors of

first and second kind. As Kass and Raftery (1995) remark, frequentist hypothesis testing

often suffers from the occurrence of large-sample errors of the first kind which means that

any correct hypothesis will be rejected at some point if one only chooses a large enough

sample. In our numerical simulations, we do not find any support for a greater error

of the first kind with larger samples (figure 2). On the other hand, with small or very

small samples, there is a natural tendency towards making an error of the second kind

(i.e. erroneous acceptance of H0) with any frequentist test that we know of, and the one

proposed here is no different. In such an instance, the Bayesian Step 2 of our framework

still allows for valid relative model comparison, since a Bayesian test compares relative

goodness-of-fit of competing models irrespective of sample size (Kass and Raftery 1995;

Burnham and Anderson 2004). With small samples, one might thus not be able to rule

out many models in Step 1 but one still gets a relative ranking of hypotheses in Step 2.

There is hence no reason to assume that sample size might systematically alter the results

obtained with our framework.

Justification of Step 3. Step 3 could obviously be challenged for being a some-

what vague criterion in an otherwise quite specific framework. Yet, we would rather see

this as an asset than as a shortcoming. First and foremost, it incorporates the notion

of ‘scientific significance’ (cf. McCloskey 1995; Johnson 1999) as an additional feature

into our framework and therefore complements the statistical concepts from Steps 1 and

2 naturally aiming at statistical significance. The ‘So what?’ question is however not

touched by asking about statistical significance alone. Step 3 of our framework addresses

this problem in a general way. Second, it prevents Occam’s razor from shaving away not

only ‘all but what is necessary’ but possibly from shaving away more than that. Further-

more, Step 3 leaves the possibility of conducting a multimodel inference, as advocated by

Burnham and Anderson (2004).

We have stated above that we prefer the AIC to the BIC for providing a better quanti-

tative compromise between the principle of parsimony and the principle of diversity. The

same argument seems even more striking for Step 3. Consider the relationship between

theory of special relativity26 and classical mechanics in physics. The former is far more

26Special relativity explains the movement of bodies in space and time for velocities close to the speed of
light.
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complicated than the latter while they have the same subject matter, the movement of

bodies in space and time under the influence of external forces. Describing and under-

standing these movements, classical mechanics will do for the most part. However, it

would be wrong to reject special relativity per se for being overly complicated because

special relativity has more explanatory power than classical mechanics. Hence, while Oc-

cam’s razor may in general be a justified principle of science, it may only be applied to

situations where several theories or models are on a par in terms of explanatory power.

Third, as Steps 1 and 2 are purely statistical criteria, it inevitably suffers from the limita-

tions common to this approach (we have discussed them in the paragraph ‘Robustness’).

As qualitative criterion, Step 3 circumvents these limitations and tackles the problem from

a completely different angle, effectively lowering the danger of systematic misjudgments.

In summary, Step 3 serves at least three purposes: (1) it integrates the notion of scientific

significance into the selection process, (2) it prevents Occam’s razor from becoming ‘too

sharp’ and (3) it does not face the same limitations as the quantitative methods from

Steps 1 and 2 and therefore can serve as corrective for these shortcomings.

Conclusion. In this paper, we have proposed and illustrated a new statistical frame-

work for identifying theoretical size distribution models in empirical data. Its main in-

novation is the three-step combination of frequentist and Bayesian statistical methods

(Steps 1 and 2) with the criterion of microfoundation (Step 3). We have generalized the

frequentist test for Pareto’s rank-size rule by Clauset, Shalizi, and Newman (2009) to

arbitrary distributions and numerically demonstrated its functioning. For direct compar-

ison of competing size distribution hypothesis, we have combined this in Step 2 with the

Bayesian method of calculating Akaike weights that can be interpreted as relative model

probabilities given the data. Lastly, we have proposed to include Step 3 which demands

to also take into account possible inferences from the overall size distribution to indi-

vidual dynamics. Altogether, we have argued that our framework captures, in its three

steps, the following three key aspects of goodness-of-fit: statistical plausibility compared

to mere chance (Step 1), relative outperformance of other size distribution models in the

candidate set (Step 2) and possibility for inferences about the underlying process that

generated the observed outcome (Step 3).

We have illustrated our framework analyzing a unique data set of 399 Namibian

commercial cattle farms. We have found that the Dagum, dPlN and GBII distributions
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fit the data best in terms of statistical plausibility and relative goodness-of-fit. Yet, we

have selected the dPlN model because of its superiority in explanatory depth, which is

– to the best of our knowledge – the first finding of the dPlN in firm data.27 Thus, we

were able to infer that commercial cattle farms in Namibia follow a stochastic exponential

growth process which implies that Gibrat’s Law of Proportionate Effect holds and that

exogenous risk is a key driver for farm size growth rather than just a minor parameter.
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University of Lüneburg. Available online at

http://opus.uni-lueneburg.de/opus/volltexte/2012/14208/.

51



Pareto, V. 1895. ”La Legge della Domanda.” Giornale degli Economisti 10:59–68,

English translation in Rivista di Politica Economica 87. 1997.

Pareto, V. 1897. Cours d’Economie Politique. London: Macmillan.

Parker, S.C. 1999. ”The Generalized Beta as a Model for the Distribution of Earnings.”

Economics Letters 62:197–200.

Pinkovskyi, M., and X. Sala-i-Martin. 2009. ”Parametric Estimations of the World

Distribution of Income.” The National Bureau of Economic Research Working

Paper Series No. 15433.

Raftery, A. 1986. ”Choosing Models for Cross-Classifications.” American Sociological

Review 51(1):145–146.

Reed, W.J. 2003. ”The Pareto Law of Incomes – an Explanation and an Extension.”

Physica A: Statistical Mechanics and its Applications 319:469–486.

Reed, W.J., and M. Jorgensen 2004. ”The Double Pareto-Lognormal Distribution – A

New Parametric Model for Size Distributions.” Communications in Statistics 34:

1733–1753.

Reed, W.J., and F. Wu 2008. ”New Four- and Five Parameter Models for Income

Distributions.” In: D. Chotikapanich, ed., Modeling Income Distributions and

Lorenz Curves 211–223.

Richardson, H.W. 1973. ”Theory of distribution of city sizes: Review and prospects.”

Regional Studies 7(3):239–251.

Sahota, G. 1978. ”Theories of Personal Income Distribution: A Survey.” Journal of

Economic Literature 16:1–55.

Schwarz, G. 1978. ”Estimating the Dimension of a Model.” The Annals of Statistics

6:461–464.

Singh, S.K., and G.S. Maddala. 1976. ”A Function for Size Distribution of Incomes.”

Econometrica 44:963–970.

Sutton, J. 1997. ”Gibrat’s Legacy.” Journal of Economic Literature 35:40–59.

Toda, A.A. 2012. ”The Double Power Law in Income Distribution: Explanations and

Evidence.” Journal of Economic Behavior and Organization 84(1):364–381.

52



Vogel Carey, T. 2010. ”Parsimony (in as Few Words as Possible).” Philosophy Now (UK)

81, January/February. Retrieved on 10/27/2012 from

http://philosophynow.org/issues/81/.

von Neuman, J. 1951. ”Various Techniques Used in Connection with Random Digits.

Monte Carlo Methods.” National Bureau of Standards 12:36–38.

Yang, Y. 2005. ”Can the Strengths of AIC and BIC Be Shared?” Biometrika 92:937–950.

Zipf, G.K. 1935. The Psycho-Biology of Language. Cambridge, MA: The M.I.T. Press.

Zipf, G.K. 1949. Human Behavior and the Principle of Least Effort. An Introduction to

Human Ecology. Cambridge, MA: Addison-Wesley Press.

53





Paper 2

Farm size, environmental risk and risk

preferences: the case of Namibian

commercial cattle farming

55





Farm size, environmental risk and risk preferences: the
case of Namibian commercial cattle farming

John-Oliver Engler a,c∗, Henrik von Wehrden c, and Stefan Baumgärtner a,b
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Abstract: Utilizing a data set of 399 Namibian commercial cattle farmers, we test sev-

eral hypotheses from the literature regarding self-selection according to risk preferences

and optimal farm management under environmental risk. We focus on the relations be-

tween inter-annual variability in rainfall (environmental risk), risk preferences, farm size

and stocking rate. We demonstrate that the Pareto distribution – which separates the

distribution into two parts – is a statistically plausible description of the empirical farm

size distribution when ‘farm size’ is operationalized by herd size, but not by rangeland

area. A statistical group comparison based on the two parts of the Pareto distribution

shows that large farms are on average exposed to significantly lower environmental risk.

Regarding risk preferences, we do not find any significant differences in mean risk attitude

between the two branches. Our analysis confirms the central role of the stocking rate as

farm management parameter, and shows that environmental risk and the farmer’s gender

are key variables in explaining stocking rates in our data.

JEL-Classification: D22, Q12, Q56, R11, R12

Keywords: risk preferences, environmental risk, semi-arid rangelands, cattle farming,

stocking rate, farm size, Pareto distribution, range management
∗Corresponding author: Center for Methods, Leuphana University of Lüneburg, Scharnhorststr. 1, D-
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1 Introduction

One third of our planet’s land surface is covered by semi-arid regions. Central climatic

characteristic of these regions is low precipitation combined with typically high inter-

annual variability in rainfall. The predominant land use in semi-arid regions is livestock

farming, which often is the only economically sensible use for these areas (Quaas et al.

2007), and therefore often provides the only livelihood for the local populations. What

is more, significant parts of the world’s commercial livestock farming also take place in

these regions (Millennium Ecosystem Assessment 2005). Grazed semi-arid rangelands are

tightly coupled ecological-economic systems (Perrings and Walker 1997, Janssen, Anderies

and Walker 2004, Olbrich, Quaas and Baumgärtner 2009) as precipitation levels directly

influence the farmer’s income, because they determine the amount of forage available

for livestock farming. Consequently, precipitation variation may be seen as main income

risk to the farmer (Rodriguez and Taylor 1988, Quaas et al. 2007, Olbrich, Quaas and

Baumgärtner 2009). One can thus treat the coefficient of variation1 (Cv) of inter-annual

precipitation at a specific farm location as a proxy for environmental risk at that location,

which also links to rangeland health (von Wehrden et al 2012). Other factors, such as

long-term variability trends (Miehe et al. 2010) may add complexity to the pattern, yet

our understanding of these dynamics is smaller compared to the studies examining inter-

annual precipitation variability. Variability of precipitation during the growing season

might lead to more realistic patterns of precipitation variability (von Wehrden et al J

Arid Enviro), yet no coherent data set on these dynamics exists to date.

Precipitation data is often available from official local and national meteorological

offices and where it is not, there are reliable methods to generate such data based on

calibrated regional climate models (e.g. Jacob and Podzun 1997). In contrast, it is consid-

erably harder to obtain high resolution commercial livestock farming data. If data policy

allows at all, national statistics offices can usually only provide classified and anonymized

data which does not allow for any detailed analysis of the relationship of farm sizes and

environmental risk. Consequently, empirical studies on the role of environmental risk in

commercial livestock farming in semi-arid regions are, to the best of our knowledge, largely

1The coefficient of variation of a series of numbers is defined as ratio of standard deviation σ and mean
µ of the series: Cv = σ

µ .
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missing from the literature. Moreover, because of this lack of empirical data, there are

plenty of theoretical studies regarding optimal farm management (see Section 3.2), but

largely no empirical tests. Since rangeland management is highly relevant for rangeland

health as well (Quaas et al. 2007, Miehe et al 2010), our analysis also aims at informing

long-term sustainable management.

The major contribution of the present paper is threefold. One, we provide a detailed

empirical analysis of the interrelationships of farm size, stocking rates, environmental

risk and the farmer’s risk preferences using a unique and highly-detailed 2008 data set of

399 Namibian commercial cattle farmers (Olbrich, Quaas and Baumgärtner 2009, 2012).

Commercial cattle farming in Namibia takes place almost exclusively in its semi-arid

rangelands (Olbrich 2012), and these are among the ones with the most inter-annually-

variable rainfall conditions worldwide (Figure 1). This first part of our contribution is

about exploring the following general key questions: (1) What is the correlation between

farm size and environmental risk, (2) Are there significant differences between different

subgroups of farmers (risk-loving compared to risk-averse and ‘small’ compared to ‘large’)

regarding these correlations, and (3) Are there significant differences in mean values of

key variables when comparing these subgroups? These questions are inspired by long-

standing discussions in both, economics and ecology, about the role of environmental risk

in land management (McArthur and Dillon 1971, Torell, Lyon and Godfrey 1991, Illius

and O’Connor 1999, Vetter 2005, Quaas et al. 2007). Two, we put some of the theories

concerning optimal farm management that have developed over the years to an empirical

test. And three, we provide and test a wide array of econometric models aimed at ex-

plaining the role of various personal, legal and environmental characteristics of farm and

farmer for the choice of the actual stocking rate.

Methodologically, we use an innovative twist to distinguish between ‘small’ and ‘large’

farms: we employ fits of the Pareto distribution (Pareto 1895). The Pareto distribu-

tion is widely used for description of wealth and income in economics (cf. Engler and

Baumgärtner 2015), and a wide variety of natural phenomena (Sornette 2003, Clauset,

Shalizi and Newman 2009). For our purposes, it seems like a natural approach for the fol-

lowing reasons: (1) It has economic microfoundation (Champernowne 1953, Mandelbrot

1961) in a sense that these models treat the evolution of wealth over time as a stochastic

process, i.e. it has a random component. Because of the characteristics of the ecological-
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Figure 1: The global map of inter-annual variation of precipitation (Namibia high-
lighted), re-printed from Fatichi, Ivanov and Caporali (2012).

economic system laid out above and the hypothesis that farm size is a proxy for wealth

(Olbrich, Quaas and Baumgärtner 2009), this formal incorporation of randomness is a

very good fit; (2) It contains a parameter, the cutoff value xmin, that yields a non-random

division of the data set into two parts. It is a longstanding and often implicit hypothesis

in the literature that economic entities described by the Pareto distribution (i.e. x ≥ xmin)

are different from the rest, or special in some way (e.g. Auerbach 1913, Champernowne

1953, Mandelbrot 1961). Another question here is thus whether we find any evidence

for this hypothesis in our sample by joining results from the distribution analysis with

the continuous environmental and economic variables (see research questions (2) and (3)

above).

Our paper is organized as follows. In Section 2, we provide a condensed overview

on commercial cattle farming in Namibia. Section 3 describes the data set and its key

variables as well as a short description of the Pareto distribution. In Section 4, we present

our results before we discuss them in Section 5. Section 6 conludes and gives a brief

outlook.

2 Namibian commercial cattle farming

At the beginning of the South African administration in Namibia (1920–1990), the com-

mercial cattle farming system was put in place that has basically persisted until today
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(Mendelsohn 2006). In the following condensed description of the commercial cattle farm-

ing sector in Namibia, we follow Olbrich (2012). Commercial cattle farming contributes

37% to Namibia’s agricultural output and approximately 1–2% to its GDP. Consequently,

farmlands cover close to one fifth of the country’s surface and cattle is farmed extensively.

There are an estimated 2’500 commercial cattle farmers that typically run their farm in

one of the following three production systems: (1) rearing of calves resulting from on-farm

reproduction up to the age of eight months before selling them as so-called ‘weaners’ at

auctions; (2) Further rearing of weaners to ages between 18 and 24 months with subse-

quent sale to the slaughterhouse (as oxen) and (3) buying weaners at the age of eight

months and raising them for about 10 to 16 months before selling them to the slaugh-

terhouse. Auctions take place frequently all over Namibia. Although, of course, output

prices may vary over time, this risk is spread homogeneously over the farmers since there

are practically monopsonies in the Namibian market: almost all oxen are purchased by

MeatCo of Namibia and almost all weaners sold at auctions go to a very limited number

of South African buyers which are feedlot corporations.

In extensive cattle farming, the sheer area of farmland is absolutely crucial. Because

Namibia’s commercial cattle farming takes place in its semi-arid regions almost exclusively,

precipitation risk (i.e. the inter-annual variation of precipitation), which is effectively a

‘grass production risk’ (cf. Obrich 2012: 23), is by far the most prominent income risk

to the farmer (Quaas et al. 2007). Farming practices such as large-scale irrigation of

rangelands or chemical fertilizing do not play a role in Namibia, in sharp contrast to

commercial cattle production systems in the U.S. or Australia, which feature otherwise

very similar climatic characteristics. Moreover, due to the lack of sufficient data, the

precipitation risk is moreover not financially insurable and thus, farmers have to manage

this risk through means other than financial insurance. On-farm risk management includes

– but is not limited to – spatial diversification of farmland, choice of stocking rate and

production system and herd organization (cf. Obrich 2012: 30ff). For example, it is

standard farming practice to divide the area of farmland into small paddocks that are

grazed for short periods (10 to 14 days) and subsequently rested for a minimum of two

months (rotational grazing). One focus of this paper will thus be to investigate the

interrelation of stocking rates and environmental risk since the choice of stocking rate

has been established as the farmer’s central element of risk management in the literature
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(McArthur and Dillon 1971, Karp and Pope 1984, Rodriguez and Taylor 1988, Torell,

Lyon and Godfrey 1991 and Quaas et al. 2007).

In summary, Namibia features a few peculiarities that make it unique compared to

other extensive commercial cattle farming regions, such as, for example, some regions

in Australia and the United States. For example, irrigation or chemical fertilizing is

absent, which makes production technology far less important than in other commercial

cattle farming regions. Lastly, outlet markets are practically monopsonies, so the usual

assumption of perfect competition does not hold.

3 Methods

We review the methods used in this paper. We start by introducing the data set and its

peculiarities in Section 3.1. Section 3.2 lists the hypotheses we extracted from the litera-

ture for a test against our data. In Section 3.3, we briefly review the Pareto distribution

and the intricacies involved when fitting it to empirical data, before we explain the setup

of our regression analysis in Section 3.4.

3.1 Data

We use a unique and highly detailed data set of 399 Namibian commercial cattle farmers

that have been surveyed in 2008 and 2009 by a mail-in questionnaire and field experiments.

Approximately 19% of the 840,000 (cf. Olbrich, Quaas and Baumgärtner 2012) heads

of cattle commercially farmed in Namibia belonged to farmers that participated in our

survey. In terms of rangeland area, our survey covers 21.5% of all rangeland that is

officially designated as commercial cattle farming region.2 The details of the complete

survey and its methodology, including the data acquisition process and limitations, can

be found in Olbrich, Quaas and Baumgärtner (2012). A complete copy of the survey

questionnaire can be found in Olbrich, Quaas and Baumgärtner (2009). In the following,

we give a brief overview of those variables of the survey relevant to the present paper.

2These figures are based on numbers given in Olbrich (2011)
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Farm size is operationalized in two ways, number of cattle held on the farm and area in

hectares. Each cattle number record consists of two numbers, one for the number of cattle

at the beginning of dry season (April/May) and one for cattle number at the beginning

of wet season (November). We refer to the average value of these two numbers when we

speak of ‘herd size’ or ‘cattle number’ which serves the purpose of correcting for possible

seasonal effects. In addition, we constructed the stocking rates from the so-obtained herd

sizes and rangeland areas as stated in the questionnaire answers by the farmers.

In Namibia’s semi-arid regions, meteorological stations are rare at best and records

often have considerable gaps (Olbrich 2012). Therefore, the data set uses simulated pre-

cipitation data from the calibrated REMO model3 (Jacob 1997, Jacob and Podzun 2001).

These simulated data contain rainy-season (November–April) precipitation in millimeters

and its standard deviation at the farm location as 30-year average from 1978–2008. We

take the coefficient of (inter-annual) variation following from these data as a measure for

the environmental risk unique to each farm. We illustrate the spatial distribution of the

coefficient of inter-annual variation in precipitation in Figure 2.

Figure 2: Spatial distribution of the inter-annual coefficient of variation of total rainy
season precipitation for the period 1978–2008 and Namibia’s main commercial
cattle farming area (dashed line), re-printed from Olbrich (2012).

Risk preferences were elicited using the well-established adapted price list format (cf.

Binswanger 1980, Holt and Laury 2002, Andersen et al. 2006). Concretely, Olbrich, Quaas

and Baumgärtner (2009) offered each farmer the hypothetical choice between participating

in a cattle auction with uncertain payoffs and selling a certain number (50 weaners) of

their cattle to a trader who offered secure payments in each round. The auction scenario
3This is a model developed particularly for simulation of regional climates.
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was to sell all of the 50 weaners for either N$ 90’000 (1’800 N$ per head) or N$ 130’000

(2’600 N$ per head) with equal probabilities p1 = p2 = 0.5 each, so that expected payoff

was N$ 110’000 (2’200 N$ per head).4 Conversely, the trader scenario consisted of six

secure offers for the cattle that started at N$ 100’000 and increased in steps of N$ 2’500

to bring the last offer to N$ 112’500. The actual item from the questionnaire that the

farmers had to consider can be seen in Figure 3. Essentially, the setup means that the

‘switchpoint’ at which each farmer switched from selling at the auction to selling to the

trader characterizes his risk attitude: the later he switches from the uncertain auction to

the trader, the larger his certainty equivalent given the lottery, and the more risk loving

he is. In this paper, we use the following conversion from switchpoint to risk attitude: 1

through 4 – risk-averse, 5 – risk-neutral, 6 and 7 – risk-loving, where a switchpoint of 7

means that the trader was never chosen and hence the auction always preferred. In other

words, a switchpoint from one to four means a positive risk premium, at five, the risk

premium is zero, and six or seven (no switchpoint) means a negative risk premium.

Figure 3: The six scenarios of the lottery choice experiment. Re-printed from Olbrich,
Quaas and Baumgärtner (2012)

Not every data record is complete in every variable. Depending on the research

question, we have the following population sizes: In Section 4.2, we have N = 391 for the

fit of the Pareto distribution to the area data, N = 351 for the fit of the cattle data and

N = 347 for the fit of the stocking rates. In Section 4.3, we base our calculations on 258

records containing complete data for cattle count as well as environmental risk and on

N = 156 whereever switchpoints are involved. Finally, we have N = 244 in Section 4.4.

Despite the very good quality and unique contents, a few facts limit the extent of the

analysis presented here. Because participation in the survey was on a voluntary basis, our
4On 2008 average, N$ 1’000 corresponded to US$ 121.07 (World Bank 2013), and the average per kilogram
price for weaners was 11.88 N$ (The Namibian 2010). Hence, a 180 kg weaner could roughly fetch 2’140
N$.
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sample is self-selected. However, we have no reason to believe that criteria for self-selection

should be related to the variables used in this analysis. Another limitation is caused by

the nature of our precipitation data. Precipitation data is based on 30-year period of

precipitation in the rainy season from 1978–2008 while cattle number, rangeland areas

and therefore stocking rates are a snap-shot of basically two points in time (November

2007 and April 2008). This naturally limits the potential in the data to investigate whether

farmers use the ‘opportunistic grazing’ strategy as recommended by Beukes, Cowling and

Higgins (2002), because one would need data on actual precipitation in the rainy season

2007/08. Lastly, we add that cattle and rangeland figures in the data set are aggregates,

possibly over multiple different locations (cf. Olbrich, Quaas and Baumgärtner 2009: 29).

3.2 Hypotheses from the literature

We present the hypotheses that we extracted from the relevant literature on farm manage-

ment from agricultural and ecological economics in Table 1. In Section 5, we will discuss

these hypotheses in light of our data.

Table 1: Hypotheses regarding optimal farm management from the literature.
source hypothesis

McArtur and Dillon (1971) The crucial parameter for farm management is the stocking rate.
Rodriguez and Taylor (1988) Risk-neutrality implies optimality of higher stocking rates.

Olbrich (2012) Risk-averse farmers self-select by operating farms with lower environmental risk.
Quaas et al. (2007) Myopic and sufficiently risk-averse farmers will on average choose low stocking rates.

3.3 The Pareto distribution

The Pareto distribution is one of the most well-known theoretical approaches to model

empirical size distributions in economics, and also one of the oldest. Italian economist,

engineer and sociologist Vilfredo Pareto introduced it in several works as a possible the-

oretical description of the wealth distribution in Italy (Pareto 1895, Pareto 1896, Pareto

1897a and Pareto 1897b). Although many alternatives have been proposed over the years

(see e.g. Kleiber and Kotz 2003 for an overview on this), it is still frequently used today

(Reed 2001, Reed 2003, Lévy 2009, Ioannides and Skouras 2013). The key characteristic

of the Pareto distribution, is that there is no ‘typical’ value around which observations
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cluster. That is, a mean value can be computed for a Pareto-distributed sample, but this

mean value conveys less information than in the case of a normally-distributed variable.

Moreover, the sample mean value converges much slower to the expected value of the

sample than in the normal case (Boisot and McKelvey 2010).

The probability density function (PDF) of the Pareto distribution reads

p(x) = 1
α− 1

(
x

xmin

)−α
(1)

with x > 0. The strictly positive parameter α is called Pareto coefficient, and describes

the behavior of the graph of the PDF for large x, which is usually referred to as ‘the tail’

of the distribution. It holds that the smaller the value of α, the more observations will

be found for large x, a situation also referred to as ‘long’ or ‘heavy’ tail. xmin > 0 is

the cutoff value above which the distribution actually follows a power law, i.e. a Pareto

distribution such that a double-logarithmic plot of power-law data follows a straight line.

The straight line appearance of power laws in double-logarithmic plots has quite

often been used as a graphical diagnostic criterion. However, telling whether empirical

data follow a certain distribution in a more satisfactory way is a pretty tricky question

(cf. Clauset, Shalizi and Newman 2009, Engler and Baumgärtner 2015). Here, we use the

method proposed by Clauset, Shalizi and Newman (2009) to fit the Pareto distribution

to our data and to see whether it provides a plausible description of the it. This method

has three advantages: (1) It employs the method of maximum likelihood, which performs

better than the method of least squares (White, Enquist and Green 2008, Clauset, Shalizi

and Newman 2009), (2) It is a valid test for the power-law hypothesis where other tests

such as Kolmogorov-Smirnov or Cramér-von-Mises have been known to run into problems

(cf. Bubeliny 2011, Engler and Baumgärtner 2015), and (3) at the same time, it provides

an objective method to determine the cutoff value xmin.

3.4 Regression analysis

In the last step of our analysis, we analyze the response of the stocking rate to three

groups of variables related to different aspects of the farm using generalized linear models

with Gaussian error structure. Based on our data set, we hypothesize that different site-
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specific variables might explain the choice of stocking rate, and we therefore group our

explanatory variables as follows: personal characteristics of the farmer (P); environmental

factors (E); and farm characteristics (F).

Variables grouped as ‘personal characteristics of the farmer’ include his experience

in years in commercial cattle farming, which includes experience as operator or manager

as well as other experience such as being hired on a farm as worker. Other variables

in this group are education level, gender and risk preference. Environmental variables

include the inter-annual coefficient of precipitation variation and the average on-farm

precipitation as described above in Section 3.1. Lastly, variables included in the group

‘farm characteristics’ are legal status of farm and farmer and the pasture quality as given

by self-assessment in the questionnaire.

Prior to statistical modelling, we normalize variables where appropriate to guarantee

optimal possibility to interpret regression coefficients. For model selection, we use the

information theoretic approach (Burnham and Anderson 2004), which is implemented in

the R package ‘AICmodavg’. From the three groups of explanatory variables and the null

model, we construct eight candidate models (Null, P, E, P+E, F, F+P, F+E, F+P+E).

To correct for a possible small-sample bias, we base our model selection on AICc values

and AICc weights rather than just the AIC.

4 Results

This section lists and discusses our results. In Section 4.1, we provide descriptive statistics

for the data set, along with some illustrative comparisons. Section 4.2 gives a short

introduction to the Pareto distribution and how we can use it as a starting ground for

further analysis and group comparisons, before actually displaying our fitting results.

Section 4.3 then reports the results of the group comparisons.

4.1 Descriptive statistics

Tables 2 and 3 list some descriptive statistics of the data with Table 2 focusing on farm

size, cattle numbers and the stocking rate, which is the ratio of these two, and Table 3 on
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precipitation and risk attitude data. The average farm from our sample had 450 cattle on

farm with a standard deviation (SD) of 369, and a size of 7970 ha (SD = 5504 ha). For

comparison, in 2010, the average U.S. cattle farm contained 44 cows on a land area of 169

hectares (U.S. Department of Agriculture 2010). The U.S. state with the largest average

acreage per farm, Wyoming, reported an average of 1112 hectares per farm (U.S. Census

2012). The largest farm from our sample has with 42244 hectares (approx. 422 km2)

roughly the same size as Barbados while the median farm is with 68 km2 still roughly as

big as San Marino (61 km2). The smallest farm in our sample is still as big as Monaco

(2 km2). The values for skewness and kurtosis indicate that the distributions are all

comparably right-skewed and leptokurtic. The Gini coefficients in the present sample for

the variables cattle number (G = 0.39) and area (G = 0.34) are roughly half the size

of the numbers reported by Eastwood, Lipton and Newell (2010) for the distribution of

farm sizes in the United States in the 1990s (G = 0.78) and slightly smaller than what

they report for Sub-Saharan Africa (G = 0.50). Figure 4 presents histograms of overall

distributions for all three variables.

Table 2: Descriptive statistics of the overall sample of Namibian commercial cattle farms
for the two size characteristics cattle number and area, and for the stocking rate.
LSU = livestock units.

descriptive statistic cattle [number] area [ha] stocking rate [LSU/ha]

sample size 351 391 347
minimum value 1 200 0.00013
maximum value 3200 42244 0.357

mean 450 7970 0.063
median 369 6800 0.058

standard deviation 361 5504 0.037
skewness 2.37 2.50 2.84
kurtosis 10.48 11.00 17.08

Gini coefficient 0.394 0.336 0.282

The average annual precipitation in the Namibian sample is 271 mm (Table 3) which

compares to cities such as Phoenix, AZ (211 mm) or San Diego, CA (274 mm). The

driest farm in the sample received only 63 mm of rain per year which roughly corresponds

to the driest city in the U.S., Yuma, AZ. On the other hand, the wettest farm in the

sample received on average 460 mm of precipitation per year. The very high variability
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Figure 4: Distribution of commercial cattle farm sizes in Namibia as measured in cattle
number (a), rangeland area (b) and stocking rates (c).

Table 3: Descriptive statistics of the data set concerning precipitation and risk attitudes.
Statistics are reported along with 95% confidence intervals in brackets where
applicable.

descriptive statistic value

average precipitation [mm] 270.70 (10.76)
Gini (precipitation) 0.179

median precipitation [mm] 281.54
minimum/maximum precipitation [mm] 63.35 / 460.02

average variation coefficient 0.285 (0.005)
Gini (variation coefficient) 0.073

median variation coefficient 0.280
minimum/maximum variation coefficient 0.213 / 0.475

average switchpoint 4.79 (0.14)
Gini (switchpoints) 0.117
median switchpoint 5

in inter-annual precipitation is reflected by an average coefficient of variation of 0.285

over all farms. In contrast, most places in North America and Europe have a climate

characterized by Cv values from 0.10 to 0.15 (Figure 1).

4.2 Pareto distribution

In Table 4, we list the results of the fitting procedure and the hypothesis test. We have

used the originally proposed significance level, which is 10%, and estimates are based

on 2500 Monte Carlo replications, so that p-values are ±0.01 accurate (cf. Clauset,

Shalizi and Newman 2009). The test rejects the power-law hypothesis for the farm area
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and stocking rate data (p = 0.01 each), but does not reject it for the average cattle

data (p = 0.33). In what follows, we will focus on the average cattle number data

set. Overall, the test suggests that the Pareto distribution is a statistically plausible

description for 42.5% of the data (149 out of 351 farms) with an estimated minimum farm

size of x̂min = 436. Figure 5 illustrates these findings with a double-logarithmic histogram

and the corresponding survival function, along with the best Pareto fit in each figure.

Table 4: Fitting results of the Pareto distribution to our data (from left to right): data
set, sample size N , the cutoff value of the Pareto distribution x̂min, estimated
‘tail index’ α̂ along with 95% confidence interval, number of farms in Pareto
branch of distribution n ≥ xmin and p-values. p-values significant at the 10%
level are marked with an asterisk.

data set N x̂min α̂ n ≥ xmin p-value

avg. cattle count 351 436 3.22 (0.02) 149 0.33∗

rangeland area 391 7000 3.25 (0.02) 190 0.01
stocking rate 347 0.051 3.42 (0.02) 215 0.01
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Figure 5: Best fit of the Pareto distribution to the average herd size data: panel (a) shows
a log-log histogram along with the best fitting Pareto distribution including
an extra marking of the cutoff value xmin while panel (b) shows the so-called
survival function and the best Pareto fit.

While the Pareto distribution is not the only plausible probability distribution for

this data set (cf. Engler and Baumgärtner 2015 for a detailed take on this issue), it does

separate the farms into two groups with respect to the cutoff value xmin. Since this

distinction seems fairly neutral and objective, we consider this as one possible starting

point that calls for further investigation concerned with the relation of environmental risk
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and the farmers’ risk attitudes in Section 4.3.2. Moreover, we will refer to farms in the

Pareto branch of the distribution (x ≥ xmin) as ‘Paretian’ and accordingly, we will call

the other farms ‘non-Paretian’ (x ≤ xmin).

Based on our findings so far, we organize our investigations into three sections that

reflect the farmer’s affiliation to the following groups: (1) overall sample, (2) affiliation

to the two branches of the distribution (Paretian, non-Paretian) and (3) affiliation to the

risk preference group. We report the findings in the following section.

4.3 Farm size, environmental risk and risk preferences

We take up the results obtained so far in the following manner: Section 4.3.1 investigates

the correlations between precipitation data and farm sizes for the overall sample, before

we look at the same question for the two branches of the distribution resulting from the fit

of the Pareto distribution in Section 4.3.2. Finally, we compare the subgroups of farmers

that result from their risk preferences in Section 4.3.3.

4.3.1 Overall sample

In Table 5, we present the Spearman correlations between herd size and precipitation data

(upper section of table), mean farm size with precipitation data (middle section of the

table) and stocking rates with precipitation data (lower section of table). The effect sizes

classify the strength of effect for each pair of correlatives after Cohen’s scale (cf. Cohen

1988: 82). For further illustration, the associated scatter plots can be found in Appendix

A, and a principal component analysis of the full data set in Appendix B.

While we do not find any significant correlation between area and any of the precip-

itation variables (ρ = −0.01, p = 0.81 and p = 0.89), we do find significant correlations

between herd size and mean annual precipitation (ρ = 0.24, p < 0.001) and herd size

and variation coefficient (ρ = −0.29, p < 10−5), albeit with small effect sizes. We find

the strongest correlation coefficients when looking at the stocking rate: there is again a

positive correlation with mean annual precipitation (ρ = 0.34) and a negative one with

variation coefficients (ρ = −0.34). Both correlations have a medium effect size and are

statistically highly significant as p < 10−7.
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Table 5: Spearman correlation coefficients of the different size measures with precipita-
tion variables. p-values are reported for the null hypothesis ‘true ρ is equal to
zero’, and effect sizes are classified according to Cohen’s scale : 0.1 ≤ ρ < 0.30:
small, 0.30 ≤ ρ < 0.50: medium, ρ ≥ 0.50: large.

herd size correlated with Spearman’s ρ p-value effect size

mean precipitation 0.24 < 0.001 small
coefficient of variation −0.29 < 10−5 small

area correlated with

mean precipitation −0.01 0.81 none
coefficient of variation −0.01 0.89 none

stocking rate correlated with

mean precipitation 0.34 < 10−7 medium
coefficient of variation −0.34 < 10−7 medium

4.3.2 Distribution branches

Table 6 lists the correlation coefficients for the same pairs of correlatives as in the previous

section, but this time ordered according to the fitting results of the Pareto distribution

to the data. This is to say that we compare farms larger than the cutoff value xmin with

the ones smaller than this cutoff value. We base this distinction on the sole statistically

plausible fit of the Pareto distribution to our data, which was to the average herd size

data. Thus, we use xmin = 436 in what follows.

In terms of direction of correlations, their strengths and significance, we roughly

recover the results from the overall sample. Because of reduced sample sizes (N = 110 and

N = 148 as compared to N = 258 in the previous section), effect sizes are slightly smaller.

Overall, there are no significant correlations in the ‘Paretian’ subgroup (i.e. for farms with

herd size x ≥ 436). However, we do find significant correlations for all pairs of correlatives

in the ‘non-Paretian’ subgroup (i.e. for farms with herd size x < 436), the strongest one

being again the one between stocking rate and variation coefficient (ρ = −0.42, p < 10−6).

All correlations in this branch are very unlikely to result from pure chance as p-values

are consistently less than or equal to 0.01. These results suggest that there is indeed a

difference between Paretian and non-Paretian farms, but the question remains what kind

of difference that might be. We look at this in more detail in Table 7.
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Table 6: Spearman correlation coefficients of size with precipitation variables: Compar-
ison of the two branches suggested by the fit of the Pareto distribution. The
alternative hypothesis H1 was ‘true ρ is not equal to zero’.

Paretian farmers (N = 110)

correlatives Spearman’s ρ p-value effect size

mean herd size – precipitation 0.00 0.99 none
mean herd size – coefficient of variation −0.01 0.91 none

stocking rate – precipitation 0.13 0.17 none
stocking rate – coefficient of variation −0.06 0.53 none

non-Paretian farmers (N = 148)

mean herd size – mean precipitation 0.24 < 0.01 small
mean herd size – coefficient of variation −0.23 < 0.01 small

stocking rate – mean precipitation 0.43 < 10−7 medium
stocking rate – coefficient of variation −0.42 < 10−6 medium

Table 7 lists our results concerning mean values of switchpoints (i.e. risk attitudes),

farm sizes and coefficient of variation of inter-annual precipitation. Since we do not make

any assumption about the distribution of these variables, we used the Mann-Whitney U-

Test to test for significant differences in these mean values. Because average herd size and

rangeland area differ significantly in the two branches by construction, we do not report

p-values for differences in these variables. We find that farmers in the two branches have

roughly the same risk preferences (mean of non-Paretian farmers: 4.65 as compared to

4.83 for Paretian farmers) as 95% confidence intervals overlap quite a bit. Consequently,

we cannot reject the possibility that the data would realize as observed by mere chance

(p = 0.20). However, we find that Paretian farmers face quite different environmental risks

(in terms of Cv-values) than non-Paretian farmers and this difference is very unlikely to

result from pure chance as neither the 95% nor the 99% confidence intervals of the average

coefficients of variation overlap 0.274 (0.006) for Paretians compared to 0.294 (0.007) for

non-Paretians), in addition to a p-value smaller than 10−4 and a medium effect size of

0.55. Moreover, average stocking rates are higher for Paretian farms than for non-Paretian

ones (0.073 compared to 0.047), an effect which not only is highly significant (p < 10−13)

but also features a large effect size (Cohen’s d = 0.96), while Paretian farmers face
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environmental conditions with significantly (p = 0.003) more mean annual precipitation

(296.2 mm compared to 263.9 mm), which is a moderately strong effect (Cohen’s d = 0.37).

Table 7: Paretian and non-Paretian branches of the empirical distribution in compari-
son. p-values have been calculated with the Mann-Whitney U Test with H0
being ‘true shift in location is equal to 0’. Where meaningful, we provide 95%
confidence intervals in brackets and effect sizes (Cohen’s d) to supplement the
results of the statistical hypothesis tests. Classification of effect sizes follows
Cohen’s original suggestion (0.2 ≤ d < 0.5: small; 0.5 ≤ d < 0.8: medium;
d ≥ 0.8: large).

variable Paretian non-Paretian p Cohen’s d (effect size)

average switchpoint 4.65 (0.26) 4.83 (0.26) 0.20 0.15 (none)
average herd size 752 (73) 236 (18) N/A N/A

average rangeland [ha] 10845 (1091) 5517 (430) N/A N/A
average stocking rate [LSU/ha] 0.073 (0.020) 0.047 (0.033) < 10−13 0.96 (large)

average precipitation [mm] 296.2 (14.0) 263.9 (15.4) 0.003 0.37 (small)
average variation coefficient 0.274 (0.006) 0.294 (0.007) < 10−4 0.55 (medium)

4.3.3 Risk preference groups

In Table 8, we list the variables describing the risk-preference subgroups together with 95%

confidence intervals and effect sizes (upper part), together with Spearman correlations of

size and precipitation variables (lower part). Overall, we find that the risk-preference

groups are fairly similar in terms of the key characteristics such as herd size, rangeland

area, stocking rates and coefficient variation of variation of inter-annual precipitation. In

fact, 95% confidence levels always overlap (Table 8). Regarding correlations of size and

precipitation variables (lower part of Table 8), we find slightly negative correlations of herd

sizes and variation coefficients, but effect sizes are small or medium by only a very slim

margin (ρ = −0.34 for risk-neutral and ρ = −0.23 risk-loving subgroup). We do not find

any correlation at all for the risk-averse subgroup regarding herd size-related correlations.

These values are very similar to the effects observed in the overall sample (cf. Table 5).

The correlations of stocking rates and variation coefficients have the same direction, but

are slightly stronger which gives small effect sizes for the risk-averse (ρ = −0.29) and the

risk-loving subgroups (ρ = −0.44). As to correlations of herd size or stocking rate with

mean annual precipitation, the only subgroup with statistically significant correlations
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is the risk-loving one, except for herd size and mean precipitation, where we also find a

statistically significant value (ρ = 0.30) with medium effect size. The risk-loving subgroup

features a moderately positive correlation of herd size and precipitation (ρ = 0.34) and a

large positive correlation between stocking rates and precipitation (ρ = 0.58).

Table 8: Key characteristics of risk preference groups. Effect size classification and 95%
confidence intervals are given in brackets. Spearman correlation coefficients are
additionally marked with an asterisk when statistically significant at the 5%
level.

risk preference group

variable risk-averse risk-neutral risk-loving

sample size 52 64 40
average switchpoint 3.50 (0.26) 5.00 (0.00) 6.08 (0.08)

average herd size 507 (99) 434 (74) 461 (122)
median herd size 451 392 368

average rangeland [ha] 8705 (1448) 7804 (1070) 7412 (1253)
median rangeland [ha] 8000 6824 6535

average stocking rate [LSU/ha] 0.066 (0.009) 0.058 (0.006) 0.063 (0.010)
average precipitation [mm] 267.8 (26.2) 284.3 (19.3) 269.5 (27.6)

average variation coefficient 0.286 (0.012) 0.280 (0.008) 0.286 (0.013)

Spearman’s ρ (herd size – precipitation) 0.00 (none) 0.30∗ (medium) 0.34∗ (medium)
Spearman’s ρ (herd size – variation coeff.) 0.00 (none) -0.34∗ (medium) -0.23∗ (small)

Spearman’s ρ (stocking rate – precipitation) 0.22 (small) 0.24 (small) 0.58∗ (large)
Spearman’s ρ (stocking rate – variation coeff.) -0.29∗ (small) -0.18 (small) -0.44∗ (medium)

Table 9 compiles the results of the Mann-Whitney U test for mean value comparisons

for the relevant variables from Table 8. We do not find a single pair of subgroups where

differences in mean values of any of these variables are somewhat close to the 5% level.

4.4 Regression analysis

We report the results of our model selection procedure in Table 10. The model P+E,

which combines the farmer’s personal characteristics (P) and environmental factors (E)

performs best by far (model weight = 89.53%), and there is no other model within the

range of ∆AICc ≤ 2, which is usually recommended as maximum acceptable threshold

in the literature (Burham and Anderson 2004). The model parameters of the single best-
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Table 9: p-values for mean-value comparisons of the risk preference groups, which have
been calculated with the Mann-Whitney U Test with H0 being ‘true shift in
location is equal to 0’. The leftmost column shows which groups are compared,
while the top row of the table specifies the variable for which the comparison
is done. We do not find significant differences in any of these mean values.

groups compared . . . with respect to mean values in . . .

herd size area stocking rate precipitation variation coeff.

risk-averse – risk-neutral 0.373 0.488 0.311 0.257 0.629
risk-loving – risk-averse 0.312 0.277 0.697 0.747 0.829

risk-neutral – risk-loving 0.794 0.543 0.591 0.432 0.572

ranked model are given in Table 11. Based on this analysis, the only parameters that

seem to have a significant influence on stocking rates are gender of the farmer (p = 0.024),

where the negative regression coefficient indicates that the stocking rate is smaller if the

farmer is female, and the variation coefficient of inter-annual precipitation (p < 0.001).

The response of the stocking rate to larger variation in precipitation is negative. All other

variables do not have a significant impact on the stocking rate.

Following up on these findings, we also provide the results of an analysis of covariance

(ANCOVA) to look at these effects in more detail using precipitation variation and gender

as explanatory variables (Figure 6). The two regression lines for males (blue) and females

(red) are clearly not coinciding, which means that the two gender groups are statistically

distinct (gender effect, p = 0.017). Moreover, there is a negative response of the stocking

rate to an increase in the variation coefficient, and this effect is highly significant (risk

effect, p� 0.001).
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Table 10: Full summary of the eight different possible model specifications. Best-ranked
models (∆AICc ≤ 2) are marked with ∗. Model terms are variables grouped
according to the following scheme: (P) farmer’s personal characteristics; (E)
environmental factors; (F) farm characteristics.

model parameters AICc ∆ AICc model weight [%] log-likelihood R2

P+E∗ 11 −1085.32 0 89.53 554.23 0.205
E 4 −1080.32 5.00 7.35 544.25 0.137

F+P+E 20 −1077.61 7.71 1.90 560.69 0.246
F+E 16 −1076.73 8.59 1.22 555.56 0.213

P 9 −1058.12 29.20 0.00 537.44 0.088
null 2 −1048.50 36.82 0.00 526.28 0.000

F+P 18 −1045.74 39.58 0.00 542.39 0.124
F 11 −1040.53 44.80 0.00 531.83 0.045

Table 11: Model coefficients of the best-fitting generalized linear model from the candi-
date set, together with standard errors and p-values. Levels of significance are
indicated in the usual way, i.e. ∗∗∗ for p < 0.001, ∗∗ for 0.001 ≤ p < 0.01, and
∗ for 0.01 ≤ p ≤ 0.05.

variable group variable estimate std. error p-value

(Intercept) none 0.0594992∗∗∗ 0.0016755 � 0.001
experience with this particular farm P 0.0026932 0.0029359 0.360

experience as owner of a farm P 0.0008763 0.0031591 0.782
experience as manager of a farm P −0.0033087 0.0018446 0.074

other experience in farm business P 0.0013796 0.0017301 0.426
level of eductation P −0.0029965 0.0017726 0.092

gender P −0.0175704∗ 0.0077243 0.024
risk preference P −0.0008752 0.0016982 0.607

variation coefficient E −0.0075055∗∗∗ 0.0021398 < 0.001
average precipitation E 0.0030896 0.0021592 0.154

5 Discussion

We discuss our results in the same order as just reported: Section 5.1 looks at the results

for the overall sample, Section 5.2 discusses the results for the distribution branches, and

Section 5.3 looks at the group comparisons based on risk preferences. Finally, Section 5.4

interprets our results from the regression analysis.
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Figure 6: ANCOVA graph using gender and the variation coefficient as explanatory vari-
ables for the stocking rate. The analysis confirms that there is a highly signifi-
cant effect of gender on stocking rate implemented on a farm when controlling
for the variation coefficient, F (1,241) = 8.49, p = 0.004. There is no interac-
tion effect of gender and variation coefficient (p = 0.845), i.e. there are two
non-coinciding regression lines with distinct negative slopes.

5.1 Overall sample

The correlations that we find for the precipitation and herd size pairs of variables are in

agreement with intuition: The more precipitation a farm gets on average per year, the

more cattle the farm can support because there is higher grass production resulting from

this higher precipitation. The positive and highly significant correlation with small effect

size provide solid evidence for this feedback possibly underlying our data. On the other

hand, the more uncertain the precipitation, the more uncertain it is how much cattle the

land can support. One possible strategy to deal with this situation would be to choose a

lower amount of cattle to be reared on the farm. Based on our data, it seems that this

is what farmers predominantly do when faced with high precipitation risks. The same
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effect can be seen in the correlations of stocking rates and precipitation variables, which

substantiates the crucial role of the stocking rate in farm and rangeland management as

already suggested in various other works (McArthur and Dillon 1971, Karp and Pope

1984, Rodriguez and Taylor 1988, Westoby, Walker and Noy-Meir 1989, Torell, Lyon and

Godfrey 1991).

There are no correlations whatsoever for the area-precipitation pairs of variables. This

is surprising because it would have been possible that farmers confronted with high inter-

annual variation of precipitation and low mean annual precipitation try to gain access to

larger areas of land that are also spatially diversified (cf. Quaas et al. 2007). This would be

possible because there is a quite well-developed and functioning land market in Namibia

(Olbrich 2012). Thus, we would have expected a positive correlation between area and

coefficient of variation of inter-annual precipitation. However, there is no evidence for

such an effect showing in our data. We find this striking because a strategy that seeks

to hedge and diversify downside risks resulting from excessive variability in precipitation

would be optimal at least for risk-averse farmers, given reasonable transaction costs.

5.2 Distribution branches

In Table 7, we have seen that Paretian farmers face on average significantly less inter-

annual variability in rainfall, i.e. environmental risk. One possible explanation for our

these findings could be that more stable environmental conditions reduce the Paretian

farmers’ income risks so that less resources and financial capital had to be spent on

financial insurance, self-insurance and possibly self-protection. This capital could then

be invested in additional cattle to be reared on farm. As a result of these effects –

more certainty regarding forage production and general rangeland quality leading to less

financial strain on the farmer – farms had, ceteris paribus, more opportunities to augment

cattle production. On the other hand, confronted with greater environmental uncertainty,

non-Paretian farmers might have a greater need for diversification of this larger risk. They

might either tend to opt for various small farms at different locations or choose to become

part-time farmers more often than the Paretian farmers. Both of these mechanisms would

foster smaller herd sizes and less rangeland area in the non-Paretian branch.
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The data give us no reason to assume that risk preferences might be distributed

inhomogeneously over the two groups. This seems surprising because two ways of arguing

seem a priori plausible: On one hand, one could have reasoned that non-Paretian farmers

were less willing to take risks than their Paretian colleagues and so would tend to refrain

from expanding their businesses, because expansion usually comes with higher financial

risks. On the other hand, it would have also been imaginable that a ’no risk no gain’

mentality could have led to the numbers that we found because it is possible that some of

the farmers owning farms smaller than xmin today could have been forced to sell substantial

parts of their herd in the aftermath of a risky strategy gone wrong at some earlier point

in time. Both of these explanatory models would suggest at least some inhomogeneity

regarding risk preferences in the two subgroups. However, it seems that our data does

not support this view.

The strongest effect based on our mean value comparison between the two subgroups

from the Pareto distribution is the difference in stocking rate mean value. Smaller farms

(in terms of average herd size) have on average considerably (51%) more cattle per hectare

than the larger ones. The average stocking rate of the non-Paretian farms is 0.077 LSU/ha

which is only slightly below what Olbrich, Quaas and Baumgärtner (2013) report as

average grazing capacity (0.080 LSU/ha5) for the sample. We interpret this as a possible

fixed-costs effect: small farms in terms of herd size usually also have less rangeland. In

order to be profitable in any given year, farms need to have a certain minimum herd size

and this minimum herd size might be larger than actually suggested by grazing capacity.

In the short term, this could be a viable strategy which might explain the much higher

average stocking rates with smaller farms. It has also been suggested that risk-neutrality

might imply optimality of higher stocking rates (Rodriguez and Taylor 1988). While there

is no significant difference in average switchpoints here, we will consider this theory again

in the next section.

As robustness checks, we performed multiple ANCOVAs to also account for other

possible branching approaches in the distribution (Appendix C). Particularly, we checked

three different distinctions between ‘small’ and ‘large’ farms, the sample mean, sample

median and cutoff value of the Pareto distribution xmin to see whether the branching

method has any impact on the results. Our analysis shows that the general result remains
5This value is based on the information provided by the farmers in the questionnaire.
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the same when branching according to the sample mean value instead of the cutoff value of

the Pareto distribution, but not when branching is done according to the sample median.

Given that sample mean and cutoff value are almost identical, which yields to almost

identical branches (only 4 farms ‘switch’ branches when going from Pareto cutoff value

to sample mean as threshold value), this is not surprising. Statistical significance of

the variation coefficient as explanatory variable for the stocking rate of large farms was

practically identical (p = 9 · 10−6 and p = 6 · 10−6). Large farms according to these

two definitions do not significantly react to larger variation coefficients (p = 0.073 and

p = 0.076). For the sample median distinction, we do not recover this effect as farms in

both parts of the distribution show the same regression coefficient (−0.181 and −0.182)

and both are statistically significant at or even below the 1% level.

Apart from the statistical evidence, we do maintain that fitting the Pareto distribution

is methodologically preferable to using the sample mean value as a criterion to distinguish

between small and large farms. There are two main reasons for this: (1) the sample mean

value has to be handled with care when the data are clearly not normally distributed

(Clauset, Shalizi and Newman 2009, Boisot and McKelvey 2010); and (2) it is certainly

more robust to consider a parameter from a distribution that provides a statistically

plausible fit to the data than one from a distribution that can be rejected beyond any

reasonable doubt (cf. Engler and Baumgärtner 2015 for explicit tests of normality in our

data).

5.3 Risk preference groups

We did not find any detectable difference in any of the average size and precipitation

variables between the three risk preference groups. Our finding contradicts the hypothesis

from Olbrich (2012) according to which more risk-averse farmers tend to self-select by

operating farms with on average lower environmental risk. This apparently missing self-

selection might be explained by several factors. If a farmer buys or leases an already

existing farm from someone else, the location is externally given and there is nothing the

farmer can do except for accepting or not accepting the offer of buying or leasing that

particular farm at the price named. That means, the most important parameters that

characterize the farm (location, rangeland area, environmental conditions and the like)
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are preset. Furthermore, factors such as proximity to hometown or close relatives might

play a large role in these decisions, but these are not captured in the data. It is also

not uncommon that farms are passed on within the family. Lastly, we have used the

full sample regarding switchpoints here (N = 156), while Olbrich (2012) had to exclude

certain farmers for econometric reasons reducing their sample size to N = 99.6

There is no difference in mean stocking rates between the three risk preference groups

(Table 9). In the light of existing theories of rangeland management under uncertainty,

this finding seems especially striking. For example, in their 2007 model, Quaas et al. show

that a myopic and sufficiently risk-averse farmer will have a very conservative strategy

– i.e. low stocking rates – as optimum. For our data, this would imply that our risk-

averse subgroup should have at least the smallest stocking rate among all subgroups if

they actually were risk-averse non-satiated expected utility maximizers. For risk-neutral

farmers, Rodriguez and Taylor (1988) suggest that high stocking rates may have larger

expected net present values than low stocking rates. However, we cannot find evidence for

the presence of such effects in our data. Altogether, it seems that risk preferences do not

make a statistically detectable difference in any of the size and precipitation variables.

It is quite striking that we find the strongest effects in terms of correlations of size and

precipitation variables in all but one case in the risk-loving subgroup (cf. Table 8). It seems

that a good part of the correlations observed for the overall sample (cf. Section 4.3.1)

comes from the risk-loving farmers. Particularly the stocking rates are strongly correlated

with precipitation (ρ = 0.58) and inter-annual coefficient of variation of precipitation

(ρ = −0.44). We find the latter observation puzzling, because we would have expected to

see the strongest negative correlation between size variables and coefficient of variation

in the risk-averse subgroup, not in the risk-loving one. On the other hand, the risk lovers

should in theory have featured a positive correlation, not a negative one. Again, there is

no evidence for self-selection of farmers into locations that suit their risk preference.

6Olbrich’s study focused on the determinants of risk preferences of the farmers in the sample. One key
hypothesis was that risk preferences are critically influenced by life-history factors such as environmental
risk experienced prior to age 18 and number of years living on the current farm. Thus, they had to
remove all those farmers for which these data were not complete.
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5.4 Regression analysis

The hypothesis that farm characteristics such as the quality of pasture land and legal

status of farm and farmer might play a role in explaining the choice of actual stocking

rate is not supported by our analysis (Table 10). Instead, it is the individual farmer’s

personal characteristics and environmental factors that matter. Surprisingly, within the

group of variables describing the farmer’s personal characteristics, neither the farmer’s

experience in commercial cattle farming nor his level of education or his risk preference

have a significant impact on stocking rate (Table 11). That being said, it is also true that

the explanatory variables ‘level of education’ and ‘experience as manager of a farm’ are

close to the standard significance threshold level of 5%, and also contributed to the best

model as identified by our information theoretical approach. The variables that clearly

make a significant contribution to explaining stocking rate are ‘variation coefficient’ and

‘gender’, and these effects seem to be pretty robust as shown by our analysis of covariance

(Figure 6). The negative impact of the variation coefficient on the stocking rate is as

expected from our previous analyses, and well in agreement with intuition.

On the other hand, the actual choice of stocking rate seems to be strongly influ-

enced by the farmer’s gender (Table 11). The central result here is that female farmers

choose a smaller stocking rate than their male colleagues at any level of the variation

coefficient (Figure 6). That is, they seem to be more conservative regarding their farm

management than men, and this conservative management cannot be explained by dif-

fering risk preferences. Gender differences in commercial farming have been reported

particularly for the U.S. (Zeuli and King 1998, Hoppe and Korb 2013, van Rieper 2013),

while most other studies concerned with gender seem to focus on smallholders rather

than commercial farmers (e.g. Moock 1976, Doss and Morris 2000, Adeleke et al. 2008,

Koru and Holden 2008, Puspitawati 2013) or use ‘dated’ data (Petermann, Behrmann and

Quisumbing 2014: 145). Particularly, Zeuli and King (1998) report some gender-related

differences in a sample of 2888 U.S. commercial farmers (112 of which were female) such

as an on-average higher acreage in farms operated by women, they do not report numbers

for stocking rates in cattle farming, nor can they be inferred from what they report. We

also tested whether women in our sample had a higher acreage here as well, which might

have been one explanation for their observed lower stocking rates all other things being

83



equal, but had to reject this (p = 0.136). Hence, while we clearly find a gender effect

in the observed stocking rates, we have to leave the question regarding the cause of this

effect for future research.

Concerning robustness of our results, we checked for multicollinearity in our variables

using the variance inflation factor, which did not return any problematic values as all factor

values were well below 5. In addition, because of the obvious potential of correlations

between the variable ‘experience with this particular farm’ and the other experience-

related explanatory variables in the model, we also double-checked our results with model

specifications that explicitly excluded these sources of multicollinearity. While there were

some slight changes regarding AICc weights and in the general ranking, the best-fitting

model remained always the same. Moreover, there also were no changes in terms of

parameter significance and direction or strength of relationships. Finally, we maintain

that the small size of the female subsample (N = 12) does very likely not impair our

results regarding the gender effect. In order to check whether sample size might pose a

problem here, we conducted a t-test, which is suitable and powerful for small samples,

with the stocking rates of male and female farmers, which confirmed the effect (p = 0.002).

Therefore, based on our analysis, we maintain that the evidence for the central roles of

environmental risk and the farmer’s gender for the choice of stocking rate is fairly robust.

6 Summary and conclusion

In this study, we have investigated the relationship between farm size, environmental risk

and risk preferences using a sample of 399 Namibian commercial cattle farmers. With the

help of a recent statistical test, we have demonstrated that the Pareto distribution is a

statistically plausible description of the tail of the herd size distribution, but not of stock-

ing rate and area distributions. We have used this finding to check for differences between

Paretian and non-Paretian farms, and have found the only significant difference to be the

average inter-annual variability in rainfall, which is smaller for Paretian farms. Compar-

ing the risk preference groups of farmers, we have not found any supporting evidence for

the hypothesis that farmers generally self-select according to their risk preference, i.e. that

more risk-averse farmers operate less risky farms. Moreover, we have found that, on aver-
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age, size and precipitation characteristics of the farms are evenly distributed over the risk

preference groups. Overall, we found correlations to be consistently strongest if stocking

rate is a correlative, which supports its importance as key parameter in farm management,

in agreement with the literature. However, we had to reject several other hypotheses from

the rangeland management literature. Our regression analysis has clearly fleshed out that

inter-annual precipitation variability is central to explaining stocking rates in our sample

as is the farmer’s gender, while other factors such as a farmer’s experience or level of

education do not seem to play a major role.

Altogether, we have provided solid evidence for the crucial role of environmental risk

in extensive commercial cattle farming in semi-arid rangelands. Moreover, our analyses

have shown that the stocking rate is indeed the central farm management parameter as

suggested by many theoretical contributions in agricultural economics, while other the-

ories do clearly not hold up that well, at least not in this particular case. The central

other parameter explaining the stocking rate in our sample is the farmer’s gender. This

finding suggests that future research should explicitly focus on gender as an important

explanatory variable for farm management and possibly also for other economic variables.

Most research – and the present paper is no exception – has focused on the role of edu-

cation, experience or risk and time preferences as explanatory variables for management

decisions. Our results here suggest that we will be well-advised to broaden this focus in

future studies.
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Appendix

We provide scatter plots in Appendix A and the principal component analysis together

with a correlation table for the full data set in Appendix B. Appendix C provides a

detailed statistical test of alternative distinctions between ‘small’ and ‘large’ farms, as

discussed in the main text.

A Scatter plots
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Figure 7: Scatter plots for all pairs of variables listed in Table 5, based on N = 258 (cf.
Section 3.1). The upper row of graphs (Figs. a through c) shows scatter plots
of annual precipitation and all size variables herd size, area and stocking rate.
The lower row of graphs (Figs. d through f) shows scatter plots of coefficient
of variation of inter-annual precipitation and all size variables.
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B Principal component analysis

We provide the biplot associated with the principal component analysis of our data set

in figure 8. The two principal components together explain 33.7% of total variance in the

data. The corresponding full correlation table can be found in Table 12. Because only

data records complete in every variable can be used here (N = 244), some values may

slightly differ from those reported in Section 4.3.1, where we could use a larger data set

(N = 258).
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Figure 8: PCA biplot for our data set based on N = 244 data points, colors are intro-
duced for better readability only and do not convey additional information.
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Table 12: Correlation table of the Namibian commercial cattle farmer survey using all variables relevant for the present paper.
stocking rate exp. (this farm) exp. (manager) exp. (other) experience (owner) Cv avg. precip. edu. level gender risk pref. land q. legal (farmer) legal (farm)

stocking rate 1.00 0.18 −0.12 0.01 0.19 −0.36 0.30 −0.14 −0.17 0.01 −0.05 −0.15 −0.12
experience (this farm) 0.18 1.00 0.01 −0.07 0.79 −0.07 0.07 −0.29 −0.03 0.06 −0.04 −0.09 −0.20
experience (manager) −0.12 0.01 1.00 −0.01 −0.25 0.03 0.07 −0.01 0.03 −0.09 0.00 0.06 0.21

experience (other) 0.01 −0.07 −0.01 1.00 −0.22 0.08 −0.06 0.10 −0.06 −0.09 0.10 0.06 0.24
experience (owner) 0.19 0.79 −0.25 −0.22 1.00 −0.09 0.08 −0.29 −0.07 0.16 −0.10 −0.13 −0.36

variation coefficient −0.36 −0.07 0.03 0.08 −0.09 1.00 −0.63 0.00 0.09 −0.10 0.20 −0.05 0.01
avg. precip. 0.30 0.07 0.07 −0.06 0.08 −0.63 1.00 −0.11 −0.13 0.03 −0.31 0.02 −0.03

education level −0.14 −0.29 −0.01 0.10 −0.29 0.00 −0.11 1.00 −0.09 0.11 0.01 −0.03 0.00
gender −0.17 −0.03 0.03 −0.06 −0.07 0.09 −0.13 −0.09 1.00 −0.04 0.13 −0.03 0.02

risk preference 0.01 0.06 −0.09 −0.09 0.16 −0.10 0.03 0.11 −0.04 1.00 −0.12 −0.11 −0.06
land quality −0.05 −0.04 0.00 0.10 −0.10 0.20 −0.31 0.01 0.13 −0.12 1.00 −0.02 0.04

legal status (farmer) −0.15 −0.09 0.06 0.06 −0.13 −0.05 0.02 −0.03 −0.03 −0.11 −0.02 1.00 0.17
legal status (farm) −0.12 −0.20 0.21 0.24 −0.36 0.01 −0.03 0.00 0.02 −0.06 0.04 0.17 1.00
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C Test of alternative distribution branches

For comparison of the different possible thresholds to distinguish between ‘small’ and

‘large’ farms, we conduct one-way ANCOVAs to determine whether there is a statistically

significant difference between the distribution branches on stocking rate controlling for

the variation coefficient. Specifically, we already know that there is such an effect when

looking at the branches of the Pareto distribution (Paretian and non-Paretian farms) from

our main analysis, and we now test if this result changes using other branching thresholds.

The results are illustrated in Figure 9.

Overall, we find a significant effect of distribution branch on stocking rate after con-

trolling for the variation coefficient with every branching method. Specifically, Pareto

branching yields a slightly higher significance level (F (1,241) = 73.96, p = 10−15) than

branching according to the sample mean value (F (1,241) = 63.77, p = 6 · 10−14). Regard-

ing effect sizes, results for Pareto and sample mean branches are almost identical: there

are significant differences between small and large farms in both cases in that stocking

rates of large farms are not significantly explained by the variation coefficient (Pareto:

p = 0.073, mean: p = 0.076), but small farms are (p ≈ 10−6 for both). In contrast,

when we use the sample median as threshold, there is no significant difference between

small and large farms in terms of how well the variation coefficient explains the stocking

rate, we only recover a significant and equally negative impact of variation coefficient on

stocking rates in both branches. This can be seen in Figure 9: in panels (a) and (b), there

are two distinct slopes and intercepts, but two intercepts and one slope in panel (c), i.e.

regression lines are parallel.
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Figure 9: ANCOVA using different ways to separate small and large farms (a) Pareto,
sample mean (b) and sample median (c).
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Olbrich, R., M.F. Quaas, and S. Baumgärtner (2009), Sustainable use of ecosystem

services under multiple risks – a survey of commercial cattle farmers in semi-arid

rangelands in Namibia.” University of Lüneburg Working Paper Series in
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University of Lüneburg. Available online at

http://opus.uni-lueneburg.de/opus/volltexte/2012/14208/
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1 Introduction

In 1921, John Maynard Keynes and Frank Knight simultaneously coined the distinction

between situations of risk and situations of uncertainty (Keynes 1921, Knight 1921).1

The distinction is based on knowledge (risk) or nescience (uncertainty) of probabilities

of possible future states of the world. For risk, there is the well-studied and established

von Neumann-Morgenstern approach leading to the expected utility model (von Neu-

mann and Morgenstern 1944). Nonetheless, there are compelling reasons to care about

Knightian uncertainty as well, for it may be outright impossible to assign probabilities

to outcomes at all. For example, the system creating the outcomes may be too complex2

and the time horizon involved too long to warrant any reasonable probabilistic assess-

ment. An arguably striking example is our planet’s climate where we do not even fully

understand every single part of the system yet, let alone all feedback loops contained

(Mehta et al. 2009). As a matter of fact, recent climate predictions have been remarkably

off (Fyfe, Gillett and Zwiers 2013). Moreover, the fundamental disagreement of expert

groups on a certain issue alone, for whatever reason, might invoke situations of Knightian

uncertainty (Feduzi and Runde 2011). In such cases, one might be tempted to attach

subjective probabilities (‘beliefs’) to the scenarios, but there are catches: (1) existence of

such probabilities cannot be guaranteed (Ellsberg 19613, Halevy 2007), even when experts

are asked for their educated guesses (Millner et al. 2013), and (2) especially experts tend

to be overconfident regarding their results (Alpert and Raiffa 1982), which introduces yet

another intricacy. And, aside from all this, it seems also justified to ask – at least from

time to time – whether any probability is really better than no probability.

A number of decision criteria have been suggested, non-probabilistic and probabilistic,

and there are irrefutable problems with both. First and foremost, the probabilistic ones

1The term ‘Knightian uncertainty’ has prevailed in the literature though.
2Here, ‘complex’ refers to the system consisting of many interacting parts that are interconnected via
multiple nonlinear feedback loops (cf. Sornette 2003).

3Ellsberg’s anomaly or paradox refers to the following: Assume there is an urn that contains 120 balls
in total, 40 of which are blue (b) and the other 80 yellow (y) and red (r), but with unknown color
frequency ratio. Experiment participants are offered the following two bets: f1 = ‘win 10$ if the ball
drawn from the urn is blue’ or f2 = ‘win 10$ if the ball drawn from the urn is red’ and f3 = ‘win 10$
if the ball drawn from the urn is either blue or yellow’ or f4 = ‘win 10$ if the ball drawn from the urn
is either red or yellow’. Ellsberg’s finding was that the vast majority of participants preferred f1 to f2
and f4 to f3 which would imply for a probability measure underlying these choices that P (b) > P (r)
and P (r) + P (y) > P (b) + P (y), a direct contradiction.
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like the ‘maxmin expected utility’ approach (Gilboa and Schmeidler 1989), the ‘smooth

ambiguity’ model (Klibanoff, Marinacci and Mukerji 2005) or ‘variational preferences’

model (Maccheroni, Marinacci and Rusticchini 2006) require probabilistic information

which – as we have just argued – may be unavailable or misleading. Second, these papers

rationalize Ellsberg choices by incorporating an axiom of ‘ambiguity aversion’ into their

framework. Yet, it is doubtable whether Ellsberg choices are a desirable feature of any the-

ory of rational decision making, because they imply things such as aversion to information,

updating of information based on taste or sensitivity to sunk costs (Al-Najjar and Wein-

stein 2009). Moreover, as Halevy (2007) has shown in his experimental re-examination of

Ellsberg’s findings, whether a test person expresses ambiguity aversion is correlated with

that person’s incapability to apply basic probability calculus. Hence, while these models

are successful from a descriptive point of view, they are normatively unsatisfactory. Non-

probabilistic models, which seem more in line with Keynes and Knight, naturally tend

to be minimalistic in terms of informational requirements, but this comes at the price of

taking a somewhat narrow perspective on possible states of the world. For example, the

maximin criterion (Wald 1949) only focuses on the worst outcome and evaluates actions

accordingly, the Hurwicz rule (Arrow and Hurwicz 1977) evaluates actions according to

weighted average of worst and best possible outcome, clearly an unsatisfying limitation

as Gravel, Marchant and Sen (2012) have pointed out. Other rules like the principles of

minimum regret (Niehans 1948, Savage 1954) and insufficient reason (Laplace 1820) take

all possible states of the world into account, but they lack a formal concept of ‘uncertainty

aversion’.

The contribution of the present paper is to address these points by providing a con-

ceptually new and original approach to decision making under Knightian uncertainty. In

the spirit of Knight (1921), we do not a priori incorporate the concept of probability.

Instead, we focus on Knightian income lotteries – or, equivalently, Knightian acts – which

are distributions of monetary payoffs over different possible outcomes with completely

unknown objective probabilities. We start from a set of seven axioms about the prefer-

ence relation � over Knightian acts, and prove that there exists a real-valued, additive

and extensive function which numerically represents the uncertainty preference relation.

Moreover, this function is unique up to linear-affine transformations. We propose Rényi’s

generalized entropy (Rényi 1961) as one possible such function. It contains a positive
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real-valued parameter which we interpret as the decision maker’s degree of uncertainty

aversion. Conceptually, this implies that uncertainty aversion is a measure of how strong

an individual dislikes spreads, i.e. unevenness, in monetary payoffs. We do not assume

from the start that individuals are uncertainty averse, but much rather, it turns out,

a very cautious attitude towards Knightian uncertainty is a natural consequence of our

axiomatization. Moreover, unlike most approaches so far, we do not relax the Sure Thing

Principle4 (Savage 1954), instead we show that a Knightian version of it follows from the

set of our base axioms.

Our paper is organized as follows: Section 2 clarifies some key concepts and points to

open questions from the literature. In Section 3.1, we explain setting and notation. In

Section 3.2, we state the seven base axioms and the main result, which is an existence

and uniqueness of a numerical uncertainty utility index (cf. Proposition 1). In Section

4.1, we propose a particular function – Rényi’s generalized entropy (Rényi 1961) – as one

possible functional representation of the preference relation � on Knightian acts before we

illustrate this utility index in Section 4.3 with a choice problem between three Knightian

acts. We also compare the result with other decision rules that have been proposed in

the context of Knightian uncertainty (cf. Polasky et al. 2011): maximin, maximax, the

Hurwicz criterion, Laplace’s principle of insufficient reason and the principle of minimum

regret. Section 5 briefly discusses our findings and concludes.

2 Conceptual clarifications

We present some critical reflections on key concepts of decision theory and related litera-

ture in the following.

Risk, uncertainty and ambiguity. Zweifel and Eisen (2012) state that ‘the risk

of an activity is represented by the probability density p(x) defined over possible conse-

quences x’ where consequences may mean utility levels or monetary payoffs. p(x) may

be exogenously specified or scientifically calculable objective probabilities (cf. Machina

and Rothschild 2008). If we apply this definition to the Keynes-Knight definition of un-

certainty, Knightian uncertainty would then just amount to the non-existence of such an
4The Sure Thing Principle is sometimes also referred to as ‘independence of irrelevant alternatives’ and
states that A+ C � B + C implies A � B.
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objective probability density function (PDF), whereas ambiguity would imply that there

is at least incomplete knowledge concerning chances of outcomes or more than one PDF,

and the decision maker is not sure about the ‘true’ distribution. In other words, if in-

formation concerning probabilities is partly missing or if there are several non-identical

PDFs over consequences, possibly even weighted by some subjective weighting factors

(2nd order probability distributions), then we face an ambiguous situation (cf. Gravel,

Marchant and Sen 2012). It is worth noting that even though ambiguity and Knightian

uncertainty are in principle very distinct concepts, they are often used interchangeably.

According to Machina and Rothschild (2008), there are two major theory strands

concerning choice under Knightian uncertainty: the state-preference approach (Debreu

1959, Arrow 1964, Hirshleifer 1965, Hirshleifer 1966, Yaari 1969) and the hypothesis of

probabilistic sophistication. The state-preference approach starts from a set of states of

the world S = {sa, . . . ,sn} and constructs a theory of choice with state-payoff bundles

(c1, . . . ,cn) as objects of choice. Individuals are assumed to have preferences over state-

payoff bundles just like regular commodity bundles. L.J. Savage’s 1954 contribution was to

define an ‘act’ as a mapping from states to consequences and that there exists a subjective

belief, derived from preferences, which substitutes for objective probabilities. Much later,

this framework was fortified by the hypothesis of probabilistic sophistication (Machina

and Schmeidler 1992) which clarified the notion of subjective probabilities. It states that

individuals entertain subjective probabilities which take the form of additive subjective

probability measures µ(·) over the state space S. Anscombe and Aumann (1963) refined

Savage’s framework by assuming consequences to be risky lotteries rather than simple

outcomes. Within this Anscombe-Aumann framework, Bewley (2002) introduced the

assumption that individuals may assert that two alternatives are incomparable and that

they may only accept an alternative when it is actually preferred to their current status

quo. Bewley thus assumes that Knightian preferences are incomplete, an idea that we

will revisit in this paper.

The literature strand that has spawned from the impact of the Ellsberg experiment

has been subsumed under the umbrella term ‘ambiguity aversion literature’ (Al-Najjar and

Weinstein 2009). Gilboa and Schmeidler (1989) and Schmeidler (1989) both expanded the

Anscombe-Aumann framework to accommodate Ellsberg-type behavior, i.e. the preference

of risk to uncertainty. Gilboa and Schmeidler (1989) provided an axiomatic foundation
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of ‘maximin expected utility’ (MEU) with multiple priors over the state space, so that

the utility of an act is the minimal expected utility resulting from the priors. Schmeidler

(1989) introduced the mathematical concepts of capacities and Choquet integration to

model ambiguity aversion. Finally, Klibanoff, Marinacci and Mukerji (2005) and Nau

(2006) modeled ambiguity via second order probability distributions and ambiguity aver-

sion over the concavity of some second order utility function, i.e. a utility of expected

utilities. It is especially this approach that has been applied frequently in climate change

economics and related policy analyses (Millner, Dietz and Heal 2010, Traeger 2011, Heal

and Millner 2013).

Descriptive and normative decision theory. There is, it seems, a dichotomy of

approaches in decision theory. On the one hand, there are descriptive approaches that try

to incorporate behavioral findings into existing theories to ‘bring theory closer to reality’

(Gilboa 2010: 4). Such approaches will be helpful whenever one is interested in descriptive

prediction of behavior under ambiguity or uncertainty. On the other hand, the normative

approaches treat behavioral peculiarities in conflict with some of their axioms such as

famously reported by Allais (1953) and Ellsberg (1961) as errors of human reasoning.

The ultimate aim is thus to ‘bring reality closer to theory’ (ibid.) by pointing out these

errors of reasoning to decision makers to make better decisions possible in the future.

Such theories can help determining what ought to be done, given that the decision maker

agrees with the theory’s premises. Obviously, one can have problems with the inherent

paternalism of such theories. On the other hand, proponents usually stress that only

normative decision theories can help overcoming human thinking biases that irrefutably

exist.

Risk and probability. Closely related to the notions of risk and ambiguity are

issues of measurability of risk (‘riskiness’) and probability. These notions are ubiquitous

in economics, and yet it seems that their usage can be problematic. Consider the decision

of investing in asset A or asset B. The standard way of arguing here is that investment

A is said to be riskier than B if the standard deviation of its market price trajectory is

larger. This does not seem entirely convincing. As an illustrative example, assume that

the choice is between Microsoft stocks and Greek state bonds. Following the standard

argument would lead to the conclusion that Microsoft stocks are riskier than Greek state
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bonds. From recent history, this statement seems questionable. The underlying issue

however is whether and to what extent risk can be quantified, possibly even objectively.

If one worries about risk quantification, it entails thinking about probability quantifi-

cation as well. Many approaches in economic theory require at some point the existence

of probabilities that are objectively ‘true’. Philosophical details with the concept of truth

aside, such probabilities are unlikely to exist in most practical applications. And even if

data is abundant, de Finetti’s circularity critique5, which argued that in order to define

probabilities the classical or frequentist way, one needs to know the meaning of ‘equally

probable’ first, seems valid (ibid.). De Finetti made these arguments in favor of Bayesian

statistics, which states that in principle ‘any uncertainty can and should be quantified’

(cf. Gilboa 2010: 6). While this is arguably the predominant paradigm in economics to

date, there is a catch here as well: Bayesian reasoning requires priors, which are highly

subjective, leading to highly subjective results. As Feduzi and Runde (2011) have pointed

out, the consequence might be to face a decision problem under Knightian uncertainty.

3 Uncertainty preferences and uncertainty aversion

In this section, we introduce our setting and notation and provide some basic definitions

(Section 3.1), before we state a set of seven base axioms that can be shown to constitute an

axiomatic foundation of a numerical preference index under Knightian uncertainty (Sec-

tion 3.2). In Section 3.3, we provide a definition of uncertainty aversion and clarify how

we can compare two persons’ uncertainty attitudes. Finally, we provide some illustration

for the special case of just two possible future outcomes in Section 3.4.

3.1 Setting, notation and basic definitions

We employ the framework of Savage (1954), where a simple act f : X → Y maps one

particular vector of n states of the world x ∈ X to monetary consequences y ∈ Y ⊆ Rn
+.6

Let F denote the set containing all simple acts for given n. Moreover, denote by yf =
5“Therefore, these two ways of defining probability [. . . ] are airy-fairy, unless one states beforehand what
‘equally probable’ means” (de Finetti 2008 [1979]: 4).

6If X is measurable, we have a situation of risk, if it is not, we have a situation of (Knightian) uncertainty.
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(yf1 , . . . ,yfn) ∈ Rn
+ the monetary payoff distribution resulting from a specific act f ∈ F and

let yf = ∑n
i=1 y

f
i be the total payoff volume associated with f . Then, we denote by G(y)

the subset of F , the elements of which have a sum of payoffs over all states of the world of

y > 0, so that G(y) =
{
f ∈ F|∑n

i=1 y
f
i = ȳ

}
⊆ F . We denote by f c a constant act which

yields the same payoff in every state of the world. Moreover, sfi = yfi /y
f is the payoff

share act f yields in state of the world i with respect to the total payoff volume yf so

that, by construction, 0 ≤ sfi ≤ 1 for all i = 1 . . . n and ∑n
i=1 s

f
i = 1 for any given f ∈ F .

Furthermore, denote by Sn ⊆ [0,1]n the set containing all possible such distributions s

over n states of the world i, with any particular element s = (s1, . . . ,sn) ∈ Sn. Lastly,

denote by 1 the vector (1, . . . ,1) ∈ [0,1]n, so that 1
n
·1 is the uniform distribution of shares

over n states of the world.

We are concerned with decision problems under Knightian uncertainty here. Precisely,

in our setting, an act f is equivalent to a Knightian income lottery since a vector of states

of the world is assigned a vector of monetary payoffs yf via f where the probabilities

pi of the outcomes yi are unknown. In the literature, the terms ‘act’ and ‘(Knightian)

lottery’ are often used interchangeably. Here, we will stick to ‘act’ in the following. Fur-

thermore, we employ the usual notation for preferences over acts: f � g where � means

‘is at least as good as’. If f � g and g � f , then we write f ∼ g and say that ‘f is as

good as g’ (indifference). Lastly, if f � g and not g � f , we write f � g and say that

‘f is strictly preferred to g’. Before we state axioms about the preference relation � on

uncertain income lotteries in the following Section 3.2, we introduce some basic definitions.

Definition 1 (scaled Knightian act). For all β > 0 and all Knightian acts f ∈ F with

yf = (yf1 , . . . ,yfn), we define the corresponding scaled Knightian act βf as the act with

payoffs βyf = (βyf1 , . . . ,βyfn).

The positive scaling parameter β is hence a scalar multiplier that modifies the payoffs

in each state of the world. The scaled act βf features the same relative distribution of

payoff shares as f , sf = sβf , while it holds for the total payoff volumes that yβf = βyf .

One of the work horses of decision theory under risk is the idea of a compound act.

Usually, compounding is interpreted as a multi-stage act, i.e. an act that has again acts

as payoffs, such as flipping a coin to determine which act to play next. In this paper, we
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provide a different definition similar to a concept that was introduced by Luce (1972) as

‘concatenation’.

Definition 2 (compound Knightian act). For any two simple acts f,g ∈ F with yf =

(yf1 , . . . ,yfn), yg = (yg1 , . . . ,ygn) ∈ Y and associated sf , sg ∈ Sn the compound act f⊕g is de-

fined as the act with yf⊕g = yf+yg and sf⊕g =
(
sf1s

g
1, . . . , s

f
1s
g
n, s

f
2s
g
1, . . . , s

f
2s
g
n, . . . , s

f
ns

g
1, . . . ,

sfns
g
n

)
∈ Snn.

We write a⊕ sign between two acts to be compounded to distinguish the compounding

operation from standard addition. Note that our compounding operation implies two

things: (1) pathwise multiplication of payoff shares, and (2) addition of payoff volumes

of acts that are compounded. Our definition of a compound act therefore deviates from

the usual definition, because we cannot use probabilities, which are a key ingredient when

compounding risky acts.

While the algebraic structure resulting from Definition 2 mirrors the algebraic struc-

ture resulting from the classic compounding definition under risk, the economic interpre-

tation is quite different. Classically, compounding is interpreted as a two-stage act, where

prizes of the first stage – for example flipping a coin – are again acts – for example drawing

a colored ball from one out of two different urns, and receiving prize money according to

the urn and color of the ball drawn. In other words, the outcome of the first stage – for

example ‘heads’ or ‘tail’ – determines which act is played in the second stage – for exam-

ple, urn 1 or urn 2. In contrast, here, the compound act f⊕g represents a situation where

both simple acts f and g are played for sure one after the other, but prize money is paid

out only after the second act is played. Moreover, prize money payoffs over compound

states are determined by adding up total payoff volumes of both acts, and distributing

them over the set of compound states of nature, the shares of which are obtained by mul-

tiplying shares of the simple acts pathwise.7 While the compound states have formally

the same Cartesian product structure as in the standard compounding operation in risk

theory, the interpretation of how prize money is paid out is different here.

7Technically, it is not imperative that the dimensions of the acts that are compounded are equal. Defi-
nition 2 could easily be generalized to admit for yf ∈ Y f ⊆ Rn+ and yg ∈ Y g ⊆ Rm+ with n 6= m.
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3.2 Axioms and main result

Our formulation here makes use of what is known as the Lieb-Yngvason formulation of

statistical thermodynamics (Lieb and Yngvason 1999). We transfer their main result

and its proof and reinterpret it within a setting of decision-making under Knightian

uncertainty. This leads to a proposition on the existence and uniqueness of a general

preference representation under Knightian uncertainty.

In the following, we state the axioms that we impose on the preference relation � on

the set of acts F . Recall that F denotes the set of acts mapping from X to Y ⊆ Rn
+.

Hence, when we talk about the preference relation ‘�’, this is a preference relation on

(some) acts in a particular dimension n. This entails that the formalism presented here is

only applicable within one specific set of acts F where the dimension of F is necessarily

inherited to its subset G(y).

We henceforth understand a decision maker faced with Knightian uncertainty as ‘ra-

tional’ as someone agreeing on the following seven axioms. We give explanations and

illustrations where we deviate from what can safely be regarded as standard in economic

theory (cf. e.g. Savage 1954, Anscombe and Aumann 1963, Gilboa and Schmeidler 1989).

Axiom 1 (Reflexivity). For all f ∈ F , f ∼ f .

Axiom 2 (Transitivity). For all f , g, h ∈ F , f � g and g � h implies f � h.

Axiom 3 (Completeness on G(y)). For all y > 0 and all f , g ∈ G(y), either f � g or

g � f , or both.

The completeness axiom might look at first sight more innocent and standard than

it actually is. In fact, by assuming completeness of the preference relation � on the set

G(y) rather than the entire set F , we in fact implicitly drop the completeness assumption

for the whole act set, and only assume completeness for the subset G(y), a notion of

‘bounded rationality’ in the presence of Knightian uncertainty already put forward by

Bewley (2002). Of course, this axiom does not state that a decision maker is generally

unable to express his relative preference of any two acts from F . For example, if a ∈ F

dominates b ∈ F , the decision maker will certainly be able to express his preference of a

over b.

Axiom 4 (Consistency). For all f,f ′,g,g′ ∈ F , f � f ′ and g � g′ implies f ⊕ g � f ′⊕ g′.
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The consistency assumption means that preferences over simple acts carry over to

their respective compounds. That is, if some act f is weakly preferred to f ′ and another

act g is weakly preferred to g′, then the compound act f⊕g is also weakly preferred to the

compound act f ′ ⊕ g′. Hence, the compound act obtained from two acts that are weakly

preferred individually over two other acts will also be weakly preferred to the compound

act of these other two acts.

Axiom 5 (Scaling invariance). For all β > 0 and all f , g ∈ F , f � g implies βf � βg.

While the consistency assumption (Axiom 4) refers to consistency in terms of com-

pound acts, the scaling invariance assumption refers to consistency over scales. This is

to say that a statewise proportional change in payment levels and, hence, total payoff

volumes does not alter the preference ordering. For example, if the act (1$,2$) is at least

as good as (0.50$,2.50$) to an individual, then, taking for example β = 50, the very same

individual should also prefer (50$,100$) to (25$,125$).

Axiom 6 (Splitting and recombination). For all f ∈ F and 0 < β < 1 : f ∼ βf ⊕ (1−

β)f .

Hence, it should not matter to the rational decision maker whether she plays some act

f or the compound act consisting of some scaled-down versions of f , where the scaling

factors add up to one. In terms of economic intuition and in light of how we have

defined compounding (Definition 2), this means that we assume the decision maker to be

indifferent between a two-stage Knightian act where prizes are scaled versions of some

Knightian act f , with scaling factors adding up to one, and the one-stage act f itself.

Axiom 7 (Continuity). For all f,g,h0,h1 ∈ F and a sequence εk with lim
k→∞

εk = 0,

f ⊕ εkh0 � g ⊕ εkh1 for k →∞ implies f � g.

The continuity assumption guarantees that there are no discontinuities in the prefer-

ence relation which means that the presence of ‘perturbation acts’ with small scales (in

the sense of Axiom 5) tending to zero does not induce some sort of spontaneous preference

reversal. The formulation here is essentially the same as given in Rubinstein (2006), for

example.
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A notable point of our axiomatic framework is that we do not assume what is com-

monly referred to as the ‘Sure Thing Principle’ (Savage 1954). We establish this, that is

to say its Knightian equivalent, in the following lemma.

Lemma 1 (Knightian independence). Let f,g,h ∈ F . Then it follows from Axioms 1,2

and 4 through 7 that

f ⊕ h � g ⊕ h implies f � g .

Proof. See Appendix A.

Lemma 1 states that six out of our seven axioms – i.e. all but completeness – imply

Knightian independence, but not vice versa. In other words, our axioms here are more

restrictive than the independence assumption alone. Lemma 1 could be interpreted as

‘things occurring anyway do not affect one’s preference ordering’. This property is gen-

erally considered a very important feature of theories of rational choice. However, it has

been pointed out by Al-Najjar and Weinstein (2009) to pose a problem to the ambiguity

aversion literature as a normative theory, since ambiguity averse agents can be shown to

violate this principle. On the descriptive level, people have been shown to systematically

violate this principle under certain conditions which is known as Allais paradox (Allais

1953).

We have now gathered all ingredients to establish our main result in Proposition 1.8

Proposition 1 (Existence and uniqueness of an uncertainty preference index). Let � be

a binary relation on F . Then, for all y > 0 and for all f1 . . . fN , f
′
1 . . . f

′
M ∈ G(y) the

following statements are equivalent:

1. � satisfies Axioms 1–7.

2. There exists a continuous function Hn
y : Sn → R that characterizes � in the follow-

ing sense: for all N ≥ 1, M ≥ 1, βi ≥ 0 and β ′j ≥ 0 with β1+. . .+βN = β′1+. . .+β′M ,

β1f1 ⊕ . . .⊕ βNfN � β′1f
′
1 ⊕ . . .⊕ β′Mf ′M (1)

8On a technical side remark, Lieb and Yngvason (1999) argue that the completeness axiom can be shown
to follow from a number of more basic principles. However, this would mean that completeness would
have to be established in a separate line of argument, and using additional axioms, first. The number
of axioms needed altogether would then come to 15 instead of just the seven presented above.
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holds if and only if
N∑
i=1

βiH
n
y (sfi) ≥

M∑
j=1

β′jH
n
y (sf ′j) . (2)

Hn
y is unique on G(y) up to linear-affine transformations Ĥn

y (s) = aHn
y (s) + b where

a, b ∈ R and a > 0.

Proof. See Appendix B.

The imposition of Axioms 1 through 7 on the preference relation � hence implies the

existence of a function that maps from the set of relative payoff share distributions Sn

associated with G(y) to the real numbers such that the most preferred Knightian act out

of G(y) is assigned the greatest real number (Appendix B, Lemma 6 – 8), and this function

is unique up to linear-affine transformations (Appendix B, Lemma 9). We therefore call

the function Hn
y : Sn → R the uncertainty utility index on G(y) of the decision maker.

Note that such an index exists for all sets G(y). In the following, we state some additional

properties of every function Hn
y that follow immediately from Proposition 1.

Corollary 1 (Properties of uncertainty utility index). Every function Hn
y in the sense of

Proposition 1 has the following properties for all f,f ′,g ∈ G(y), sf , sf ′ , sg ∈ Sn:

1. Simple act representation: f � f ′ if and only if Hn
y (sf ) ≥ Hn

y (sf ′).

2. Additivity: Hnn
yf⊕g

(sf⊕g) = Hn
yf

(sf ) +Hn
yg(sg).

3. Extensitivity: Hnn
yf⊕f

(sf⊕f ) = Hn
yf

(sf ) +Hn
yf

(sf ) = 2Hn
yf

(sf ).

4. Maximality: Hn
y ( 1

n
1) > Hn

y (sf ) for all f 6= f c.

Proof. Monotonicity: follow directly from Proposition 1 by setting N = M = 1 and

β = β′. Additivity and extensitivity also follow directly from Proposition 1. Maximality

is a consequence of the central postulate of statistical physics (cf. Lieb and Yngvason

1999).

Monotonicity is the usual understanding of preference representation through an index

function. It is included as a special case in the more general understanding of preference
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representation of Proposition 1. Additivity states that the utility derived from a com-

pound act is the sum of utilities of corresponding simple acts. The additivity property

must be seen in light of our definition of compounding as playing the simple acts consec-

utively (Definition 2). Thus, following the logic of consequentialism, there is no loss or

gain in terms of utility to be made from the process of compounding itself.9 Formally,

the extensitivity property is thus a special case of additivity within our framework. Both

properties, additivity and extensitivity, reflect the Cartesian product structure of the state

space of compound systems. Lastly, maximality implies that the constant act is always

the most preferred act on any set G(y).

In statistical physics and information theory, a function with these properties is called

additive entropy. Essentially, the uncertainty utility function Hn
y is, thus, an additive

entropy function. As entropy is a statistical measure of the homogeneity of a distribution,

the interpretation of our representation of uncertainty preferences is quite simple and

intuitive: of two acts with equal total payoff volume over all potential outcomes, the one

with the more homogenous distribution (i.e. higher entropy) of relative payoff shares is

preferred.

3.3 Definition of uncertainty aversion

We now formalize the notion of aversion to Knightian uncertainty and clarify how to

compare two individuals in terms of their degree of uncertainty aversion.

Definition 3 (uncertainty aversion). A decision maker is said to be uncertainty averse

for given y > 0 if and only if f c � f for all f, f c ∈ G(y) with f 6= f c.

Definition 3 defines an uncertainty-averse individual with respect to a specific set G(y)

as someone who always prefers certainty to even the slightest uncertainty as expressed

by the non-uniform distribution of the total payoff volume y over possible states of the

world. For example, if n = 2 and y = 10$, an uncertainty-averse individual would always

prefer the constant act f c = (5$,5$) to any other element from G(y), such as (3$,7$) or

9Luce et al. (2008) have used an entropy-based modelling approach to account for the utility drawn from
the process of compounding itself (which they refer to as gambling), but their approach takes place
within expected utility.
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(1$,9$). The cases of uncertainty neutrality and an uncertainty-loving attitude can then

be defined in the obvious way.

In risk theory, the maximum willingness to pay for certainty in the context of a

given act is captured by the risk premium of that act, which is the difference between

expected payoff from the act and the individual’s certainty equivalent. Here, we can

define the concept of an uncertainty premium in a similar manner using the idea of a

uniformly-distributed equivalent developed by Atkinson (1970) in the context of social

welfare theory.10

Definition 4 (uncertainty premium). Assume that for any f ∈ F there exists exactly one

uniformly-distributed equivalent act fUDE = ηf · 1 ∈ G(yfUDE) with ηf := yf
UDE

/n such

that fUDE ∼ f . Then the uncertainty premium Πf of act f is

Πf := 1
n

(
yf − yfUDE)

. (3)

The crucial assumption here is that such a uniformly-distributed equivalent act fUDE

exists for any f ∈ F , i.e. there always exists a positive amount of money that leaves the

decision maker indifferent between playing f and receiving ηf for sure. Thus, fUDE is a

special constant act, which also fulfills this indifference condition. A person is uncertainty

averse (neutral, loving) with regard to act f if and only if Πf > 0 (= 0, < 0).11 These

observations naturally allow us to compare uncertainty attitudes of different persons.

Definition 5 (Interpersonal comparison of uncertainty aversion). For given y > 0 and

two individuals A and B with uncertainty preference relations �A and �B, A is said to

be more uncertainty averse than B if and only if Πf
A > Πf

B for all f ∈ G(y).

This means that for A to be more uncertainty averse than B for given y, A’s un-

certainty premium needs to be greater than B’s for every act from G(y). It is of course
10Atkinson (1970) speaks of egalitarian equivalence. When transferring his formal idea from the context

of income distribution within a society to the context of decision-making under uncertainty and, hence,
distribution of payoffs over different potential outcomes, the notion of “egalitarian” does not fit any
more. Hence, we have replaced it by “uniform distribution”.

11While uncertainty-neutral and uncertainty-loving preferences are perfectly well conceivable, we cannot
model these within our formal framework, because each entropy function becomes maximal for the
constant act from any given G(y) (cf. Corollary 1). That means, entropic uncertainty utility functions
as given by Axioms 1–7 always represent uncertainty aversion. See Sections 3.4 and 4 for details.
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possible that for some y, A is more uncertainty averse than B, while for some other y′,

it is the other way round. Uncertainty aversion and particularly its magnitude are thus

local characteristics of a person (i.e. depending on the level of payoff) rather than global

ones.

3.4 Special case: n = 2

As an instructive special case, we consider a two-state world (n = 2). Instead of analyzing

H2
y (s1,s2) subject to the constraint s1 + s2 = 1, we may as well equivalently analyze the

function H̃2
y (s) ≡ H2

y (s,1− s), where s1 = s and s2 = 1− s so that the explicit constraint

is implicitly contained. As any function Hn
y is only defined where ∑i si = 1 holds, the two

functions H2
y and H̃2

y are fully equivalent and have the same characteristics. For ease of

notation, we will refrain from indexing utility functions in the remaining part of this sec-

tion. For n = 2, it is possible to transfer some concepts of risk aversion from risk theory,

and to conveniently illustrate them with two-dimensional graphs. For example, we can

suggest an inverse measure of absolute uncertainty aversion similar to the Arrow-Pratt

measure of absolute risk aversion (Pratt 1964, Arrow 1965):

Definition 6 (inverse measure of absolute uncertainty aversion). For n = 2 and any un-

certainty utility function H(s1,s2) in the sense of Proposition 1, we employ the equivalent

utility function H̃(s) ≡ H(s,1 − s) with s1 = s and s2 = 1 − s, which we assume to be

strictly increasing on [0,0.5], to define on [0,0.5]

Λ(s) := −H̃
′′(s)

H̃ ′(s)
(4)

as an inverse measure of absolute uncertainty aversion for H̃(s).

As shown in Pratt (1964), this measure is invariant under linear-affine transformations,

a feature which makes it attractive for our theory as well. However, two remarks seem

appropriate: First, while the measure Λ of uncertainty aversion can be nicely illustrated

and interpreted for n = 2, it is unclear whether a similar measure exists for n > 2. Formal

generalizations to higher dimensions have been proposed and discussed (e.g. Duncan 1977,

Levy and Levy 1991), but so far only for certain special cases. Second, just like the utility
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function Hy(s), the measure Λ(s) is a function of relative payoff shares s and not absolute

payoffs y.

Consider the following thought experiment. For given y > 0, two uncertainty-averse

persons A and B are offered a sequence of choices. In each round, A and B can choose

between playing an act from the set G(y) or to accept a payment of η with 0 ≤ η < y/2

for sure. In the first round (‘base scenario’), the act offered is the constant act (y/2, y/2),

which corresponds to certainty. In each subsequent round, the uncertain act offered

becomes continuously more uncertain by featuring a more unequal payoff distribution

over the two potential states, that is, an increased possible win over the base scenario

in case of the good outcome and an accordingly increased loss in the bad outcome. The

certain payment η remains the same in all rounds. As both persons are uncertainty averse

and η is strictly smaller than the payoff from the constant act in the base scenario, y/2,

in the base scenario both persons will choose playing the act rather than accepting η for

sure. They will continue choosing the uncertain act, depending on the exact level of the

certain payment η, while the uncertainty is still small. But as the offered act becomes

continuously more uncertain from round to round while the certain payment η remains

constant, there will eventually be a level of uncertainty, where one person, say A (without

loss of generality), is just indifferent between playing the uncertain act and accepting the

certain payment η. For all subsequent rounds, this person will then choose the certain

payment η over playing the uncertain act.

If the switching-level of uncertainty at which a person switches from playing the un-

certain act to accepting the certain payment η is different between persons A and B, say

A switches already at a smaller level of uncertainty than B, and this holds for every ad-

missible level of η, then this can be used to label person A as more uncertainty averse (in

the sense of Definition 5) than B. The following lemma states that the measure Λ (from

Definition 6) provides such an interpersonal comparison.

Lemma 2 (Interpersonal comparison of uncertainty aversion for n = 2). Let A and B be

two uncertainty-averse individuals that are offered the choice of either playing uncertain

acts from G(y) for given y > 0, or to accept a certain payment of η with 0 ≤ η < y/2
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instead. Denote by yH and yL the two outcomes of uncertain acts offered, where yL+yH =

y and yH > yL. Assuming the correspondence Π ∝ yH − yL, it holds that

ΛB(s) ≥ ΛA(s) ⇐⇒ ΠB(s) ≤ ΠA(s) ∀s ∈ [0,0.5] .

Proof. See Appendix C.

Lemma 2 thus establishes Λ as an (inverse) measure of the degree of uncertainty

aversion of a decision maker for the case n = 2: the larger Λ, the smaller the degree of

uncertainty aversion. Because of its invariance under linear-affine transformations, it can

be used for interpersonal comparison of uncertainty aversion.

We illustrate Lemma 2 and the underlying thought experiment in Figure 1. At first

sight, the figure looks much like the well-known graph from risk theory, but there are some

important differences. First and foremost, the horizontal axis displays s and thus, each

point on it fully represents an act, rather than money values or wealth levels. Second, be-

cause both individuals are uncertainty-averse, both utilities become maximal for sc = 1/2,

which of course represents the constant act. For drawing the graph in a handy manner,

we exploit invariance of the utility function H(s) up to linear-affine transformations, so

that H̃A(0) = H̃B(0) = 0 and H̃A(sc) = H̃B(sc) without loss of generality. Third, a

change of sign in Λ does not mean a change from uncertainty-averse to uncertainty-loving

preferences, which is an important difference to the case of risk. Instead, a change in Λ

only means a change in the degree of uncertainty aversion. Generally, smaller values of Λ

reflect more uncertainty-averse preferences, and negative values of Λ mean an even higher

uncertainty-aversion than positive values.

Furthermore, if we denote by si∗ the act at which person i is just indifferent between

uncertain act and certain payment η, then we know that H̃A(sA∗) must be equal to the

utility drawn from the certain payment η.12 At this point sA∗ however, and at the level

of the certain payment η offered, person B still prefers the uncertain act to the certain

payment η. For given η, it is only at a higher level of uncertainty, sB∗ < sA∗, that B

is just indifferent between the uncertain act represented by sB∗ and the certain payment

η. What’s more, in order for person B to be just indifferent between the uncertain act
12We may assert this because Definition 5 warrants such a statement even though it is naturally true

that the certain payment η belongs to G(2η) 6= G(y).
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represented by sA∗ and some certain payment, it would take a certain payment larger

than just η, say η + ξ. The extra amount of money ξ is equivalent to the difference in

utility levels HB(sA∗)−HB(sB∗). Hence, B’s uncertainty premium at the act represented

by sA∗ is smaller than A’s. Because person B’s utility curve lies above person A’s utility

curve for all s ∈ [0,sc] and therefore, for all acts from the specific set G(y), B’s uncertainty

premium will be smaller for all acts from G(y). Thus, according to Definition 5, B can

be said to be less uncertainty averse than A.

Figure 1: Uncertainty utility curves for two uncertainty-averse individuals, A and B,
with differing degrees of uncertainty aversion. Every point on the s axis rep-
resents a different act from one particular set G(y). sA∗ is the point at which
A is just indifferent between the uncertain act represented by sA∗ and the
certain payment η. Individual i’s uncertainty premium Πi for any act on the
s axis cannot be directly drawn into the graph, but it is proportional to the
difference in utility from H(sc), as indicated for the point sA∗ in the figure.
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4 Example: A one-parameter function

We propose a generalized one-parameter entropy measure known from statistical physics

and information theory – Rényi’s (1961) generalized entropy – as one possible functional

representation of preferences satisfying Axioms 1–7 (Section 4.1). The positive, real-

valued parameter represents the individual’s degree of uncertainty aversion. We subse-

quently illustrate the behavior of the proposed preference index with a stylized simple

decision problem between simple acts and compare it to other decision criteria such as

the maximin, maximax, minimum regret rules, the Hurwicz criterion and the Laplace

Principle in Section 4.3. In this section, we are concerned with decisions between simple

acts. That means, we have n states of the world and a given value for y. We therefore

omit the subscript y in the following.

4.1 Properties of Rényi’s generalized entropy

We start by technically introducing Rényi’s (1961) generalized entropy function, before

we elaborate on its interpretation in the context of modeling preferences and decision

making under Knightian uncertainty.

Definition 7 (Rényi entropy). For n ∈ N, s ∈ Sn and α > 0, the Rényi entropy of order

α is the function Hn
α : Sn → R with

Hn
α(s) =


1

1−α ln (∑n
i=1 s

α
i ) : α > 0, α 6= 1

−∑n
i=1 si ln si : α = 1

. (5)

The expression for Hn
1 (s) is the continuous extension of the general expression of Hn

α

for the limit α→ 1. It has been proposed independently by Shannon (1948) and Wiener

(1948). It is sometimes referred to as Shannon-Weaver-entropy because it has been pop-

ularized by Shannon and Weaver (1949).13 Other notable special cases are Hn
0 (s) = lnn,

the Hartley entropy (Hartley 1928), and Hn
∞(s) = mini{− ln si} = − ln (maxi{si}), which

13The base of the logarithm used to calculate the entropies can be arbitrarily chosen. Rényi (1961)
introduced his generalized entropy using the ld function, i.e. log2. Naturally, the choice of a particular
base does not affect any result as long as the same base is used consistently.
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is also known as min-entropy. The following lemma connects the decision framework from

Section 3 with Rényi’s generalized entropy.

Lemma 3 (Numerical representation of Axioms 1–7). Rényi’s generalized entropy is one

possible representation of uncertainty preferences satisfying Axioms 1–7.

Proof. Using Definitions 1 and 2 as well as Lemma 4, this is an insertion exercise.

Thus, because Rényi’s generalized entropy fulfills Axioms 1–7, we can interpret it as

one possible representation of an individual’s preferences under Knightian uncertainty.

Being one particular such function, it has all the properties that additive entropy func-

tions have in general: continuity, monotonicity, additivity and extensivity (Proposition 1

and Corollary 1). The next lemma states some specific properties of Rényi’s generalized

entropy.

Lemma 4 (Properties of Rényi’s generalized entropy). In addition to the properties stated

in Proposition 1 and Corollary 1, Rényi’s generalized entropy (Equation 5) has the fol-

lowing properties for all α > 0, n ∈ N, s ∈ Sn and for every permutation matrix P :

1. Symmetry: Hn
α(s) = Hn

α(Ps).

2. Maximality: Hn
α( 1

n
1) = lnn > Hn

α(s) for every s ∈ Sn\
{

1
n
1
}

.

3. Minimality: Hn
α(Ps) = 0 for s = (1,0, . . . ,0).

4. Dependence on α: d
dαH

n
α(s) < 0.

Proof. Symmetry simply carries over from the underlying functions, ln and the summa-

tion. Minimality can be verified by insertion, and the maximality statement directly

follows from solving the associated optimization problem. The proof of the dependence-

on-α property can be found in Beck and Schlögl (1993).

The formal properties of Rényi’s generalized entropy stated in Lemma 4 can be in-

terpreted in terms of uncertainty preferences. The symmetry property states that the

sequence of the payoff shares that result from an act does not affect the value of Hn
α so

that it does not matter in what sequence these shares are numbered. With regard to de-
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cision theory, this is a central assumption with regard to the decision maker’s preferences,

which will be discussed in greater detail in Section 5. For now, we just note that it implies

that the Rényi individual is probabilistically sophisticated (Machina and Schmeidler 1992)

with uniform subjective beliefs, i.e. the decision maker implicitly applies the Laplacian

Principle of Insufficient Reason (Laplace 1820). The maximality property tells us that

Hn
α reaches its unique maximum for a completely uniform distribution. This maximum

value is equal to lnn and hence independent of α. As discussed in the context of Corollary

1 in Section 3.2, maximality represents a strict preference of certainty to uncertainty on

any set G(y). Conversely, acts where the payoff volume is concentrated in just one state

are always least preferred (minimality). The last property, dependence on α, is directly

relevant for modelling uncertainty aversion. It means that, for any given act f ∈ G(y)

of arbitrary dimension n, it holds that Hn
0 (sf ) > Hn

1 (sf ) > . . . > Hn
∞(sf ). That is, for

given act and, thus, uncertainty, the greater the parameter α in the utility function, the

smaller the resulting value of the utility function. This leads to the following statement.

Proposition 2 (Uncertainty-aversion parameterization in Rényi’s generalized entropy).

The parameter α in Rényi’s generalized entropy (Equation 5) measures uncertainty aver-

sion: the greater the parameter α in the utility function, the smaller – ceteris paribus –

the resulting value of the utility function.

Proof. Assume that two individuals, A and B, who accept Axioms 1–7 have Rényi’s

generalized entropy as representation of their uncertainty preferences. Lemma 4 then

holds, especially Property 4, dependence-on-α. Then, for all n ∈ N, y > 0, and all

f ∈ G(y), Hn
αA

(sf ) < Hn
αB

(sf ) is equivalent to αA > αB. Hence, for all s ∈ Sn the graph

of utility function of individual A is below that of individual B if and only if αA > αB.

Arguing along the same line as in the thought experiment from Section 3.4 (illustrated

graphically in Figure 1), based on a suitable generalization of “more uncertain” from

n = 2 to any n, this means that A is more uncertainty averse than B.
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4.2 Special case: n = 2

As previously, we employ the special case of a two-state world (n = 2) to provide a neat

illustration. Hence, we plot in Figure 2 the fully-equivalent function

H̃2
α(s) ≡ H2

α(s,1− s) = 1
1− α ln [sα + (1− s)α] ; α > 0 6= 1. (6)

It can easily be verified that H̃2
α(s) has all characteristics stated in Lemma 4. It is

thus still an entropy function, but with effectively reduced number of arguments.

Figure 2 illustrates that the numerical utility that a decision maker attaches to a

Knightian act critically depends on the parameter α. Observe that utility curves are

symmetric to s = 0.5 by construction (cf. Lemma 4, Property 1). For 0 < α < 2, we

observe that H̃ ′α(s) > 0 and H̃ ′′α(s) < 0 for every s ∈ [0, 0.5], while for α > 2, it holds

that H̃ ′α(s) > 0 and H̃ ′′α(s) > 0 for s smaller than some threshold value sT , for which

H̃ ′′α(sT ) = 0 holds, and H̃ ′′α(s) > 0 for s > sT . Our measure of absolute uncertainty

aversion from Definition 6 then becomes

Λ(s) =
sαα
s
− (1−s)αα

1−s
sα + (1− s)α −

sαα2

s2
− sαα

s2
+ (1−s)αα2

(1−s)2 − (1−s)αα
(1−s)2

sαα
s
− (1−s)αα

1−s

, α > 0 6= 1. (7)

We plot Λ(s) in Figure 3 for different values of the parameter α. We observe that the

value of Λ at any point s is determined by α and s and that, for all s, smaller values of

α imply greater values of Λ (cf. Lemma 4, Property 4). This boils down to the following

statement.

Lemma 5 (α as measure of uncertainty aversion). For any two individuals A and B with

Rényi preference representations, it holds that ΛB(s) > ΛA(s) if and only if αB < αA.

That is, the greater α, the greater the degree of uncertainty aversion.

Proof. Follows directly from Lemma 2 and Proposition 2.
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Figure 2: Graph of uncertainty averse preferences represented by Rényi’s generalized
entropy (Equation 5) for various parameter values α > 0 and only two possible
outcomes, n = 2, such that s1 = s and s2 = 1− s. Note that, by construction,
the plot is symmetric to the vertical axis at s = 0.5.

Lemma 5 is thus a confirmation of the general Proposition 2 for the special case n = 2.

As before, the sign of Λ(s) may change without implying a switch from uncertainty averse

to uncertainty-loving preferences (cf. Section 3.4).

4.3 Comparison of decision rules

In this section, we review well-established decision criteria under uncertainty from the

literature and compare these to our framework using a stylized and static sample deci-

sion problem. The criteria from the literature include the maximin rule (Wald 1949) and

its optimistic counterpart, the maximax rule, Laplace’s principle of insufficient reason

(Laplace 1820), the rule of minimum regret (Niehans 1948, Savage 1951) and the Hur-

wicz criterion (Arrow and Hurwicz 1977) which is a linear combination of maximin and

maximax which weighs possible maximum and minimum payoffs in each state according

to the decision maker’s optimism. The latter rule is sometimes also called α-maximin.

Concise overviews can be found in Luce and Raiffa (1989) and Heal and Millner (2013).
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Figure 3: Graph of the coefficient of absolute uncertainty aversion Λ(s) (cf. Equation 7)
for various values of α > 0.

In the following, we take a closer look at these rules. While terms such as maximin

(‘maximize the minimum over all possible acts’) and maximax (‘maximize the maximum

over all possible acts’) are self-explanatory, this is less true for the other three decision rules

mentioned. Pierre-Simon Laplace’s 1820 principle of insufficient reason14 states that there

is no reason to assume that one specific state of the world is more probable than another

one when probabilities are unknown. Hence, they should all be given equal probability

weight. Strictly speaking, Laplace’s principle is thus a rule for assigning probabilities to

outcomes and not a decision rule in itself. However, the wording ‘Laplace principle’ is

often used synonymously with ‘Laplacian expected utility’, which refers to an expected

utility maximizer applying the Laplace principle to calculate expected utility. The rule

of minimum regret is based on the idea to minimize the maximum possible ‘regret’: for

each possible state of the world, the act that leads to the highest payoff is set as reference

point relative to which the ‘regret’ is calculated as possible payoff that would potentially

be foregone if the respective state of the world materialized. So, in the optimal case

regret is zero. The alternative that minimizes possible regret over all states of the world

is considered the best choice in this decision framework. Thus, ‘regret’ is quite similar to

14The principle was renamed ‘the principle of indifference’ by Keynes (1921).
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the concept of opportunity cost, but unlike its well-known sibling, it can attain a value

of zero. Moreover, focusing on minimizing a negative quantity rather than maximizing a

positive one, the rule expresses a very cautious, if not pessimistic attitude of the decision

maker towards uncertainty. Mathematically, the rule of minimum regret – sometimes also

referred to as ‘Savage-Niehans rule’ – is to choose the act k from G(y) which minimizes

possible ‘regret’, i.e. which minimizes the expression

n∑
i=1

[
(max

k
u(yki ))− u(yki )

]
. (8)

Eventually, the Hurwicz rule generalizes the maximin and maximax criteria: for each

alternative k, the function

Φ(yk) = λmax
i
{u(yki )}+ (1− λ) min

i
{u(yki )}, 0 ≤ λ ≤ 1 (9)

is evaluated and compared to the function values of the alternatives. The associated

decision rule is maxk Φ(yk). λ thus reflects the individual’s optimism as a greater λ gives

more weight to the maximum payoff of one particular act k and hence less weight to the

minimum. Similarly, Heal and Millner (2013) give an interpretation of 1−λ as representing

‘aversion to a lack of knowledge’. Hence, with λ = 1, we recover the maximax rule while

λ = 0 leads again to the maximin criterion.

As exemplary decision problem, we look at the following textbook example: an in-

dividual has to take a decision between three acts, f , g and h. The acts are known to

generate the following payoffs (in monetary units):

yf = (300, 150, 250, 300) ,

yg = (60, 60, 60, 820) ,

yh = (15, 280, 340, 365) .

Act f is very even but does neither have an especially large maximum payoff nor a

particularly low minimum possible payoff. In fact, it guarantees the maximal minimum

payoff out of the three alternatives. Hence, the maximin criterion would select act f . Act

g offers the potentially highest possible win out of all three uncertain prospects but it

only does so in one out of four possible states of the world whereas in the other three
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states, we end up having only 60 monetary units. Obviously, the maximax criterion would

rate g highest and f lowest. Act h features the smallest minimum but otherwise it offers

three potentially large payoffs as compared to f and g. A risk-neutral Laplace individual

would be indifferent between the three acts, while a risk-averse one would prefer f . The

rule of minimum regret would lead to the choice of f while h and g would be tied. The

advice that the Hurwicz criterion gives us critically depends on the choice of λ. A rather

pessimistic individual (λ = 0.1) would choose act f while for any λ ≥ 9
61 , act g would be

preferred. This choice is made by any sufficiently optimistic individual – i.e. λ ≥ 9
61 – and

as λ is further increased, we can observe a change of the second most preferred act from

g to h. The complete rankings of acts are given in Table 1.

Table 1: Orderings over the Knightian acts f , g and h that result from different decision
rules from the literature.

decision criterion choice ordering

maximin f � g � h

maximax g � h � f

risk-neutral Laplace EU f ∼ g ∼ h

risk-averse Laplace EU f � h � g

minimum regret f � g ∼ h

Hurwicz, λ = 0.1 f � g � h

λ = 0.2 g � f � h

λ = 0.8 g � h � f

In Table 2, we illustrate our proposed index H4
α(sk) for the three Knightian acts

f , g and h for different parameter values of uncertainty aversion α. In our framework,

a comparison of differences in the uncertainty utility index is meaningful for the same

individual due to Proposition 1 (uniqueness up to linear-affine transformations). We see

that, although the preference over the acts always remains f � h � g, the overall level

of well-being attached to a single act drastically depends on the degree of uncertainty

aversion α. For example, an individual with a very low level of uncertainty aversion

(α = 0.1), the respective index values of H provided by the three uncertain prospects

are within a range of 0.077 from act f (best) to act g (worst), whereas at high levels of

uncertainty aversion (e.g. α = 50), the difference is 1.016. Thus, an individual relatively

uncaring towards Knightian uncertainty would gain relatively little in terms of preference
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satisfaction when swapping from prospect g to prospect f . On the other hand, the very

same swap would mean an over six times higher level of preference satisfaction to a highly

uncertainty-averse decision maker.

Table 2: H4
α scores of the three Knightian acts f , g and h for different degrees of uncer-

tainty aversion α. The resulting preference ordering is f � h � g.

uncertainty aversion uncertainty utility

α H4
α(sf ) H4

α(sg) H4
α(sh)

0.1 1.383 1.306 1.338
0.5 1.369 0.983 1.215
1 1.354 0.660 1.151
3 1.309 0.291 1.103
5 1.283 0.243 1.090
10 1.252 0.216 1.070
20 1.230 0.204 1.048
50 1.214 0.198 1.025

In summary, combining the results from Tables 1 and 2, we find that the overall

ranking of acts from our method is different from the other criteria. However, the most

preferred option is the same as with the maximin rule and a pessimistic Hurwicz individ-

ual. That being said, a risk-averse Laplacian individual would arrive at the very same

ranking as our Rényi individual, but this comes with the above disclaimer.

5 Discussion and conclusion

We discuss some key points of the paper and provide a conclusion and some outlook in

the following.

Summary. Based on a set of seven axioms on a preference relation over Knightian

acts, we have provided a proof that there exists a real-valued, additive and extensive

representation of these preferences on any set G(y), which contains all Knightian acts

with positive total payoff volume y. Moreover, we have shown that this representation is

monotonous on G(y) and unique up to linear-affine transformations. Within our frame-

work, we have furthermore provided a new and very parsimonious definition of the notion
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of uncertainty aversion, based on which we also formalize the concept of an uncertainty

premium, which makes interpersonal comparison of uncertainty attitudes possible.

We have illustrated our approach with a suitable function from information theory

fulfilling our axioms – Rényi’s generalized entropy (Rényi 1961) – which we have demon-

strated to contain a parameter that captures the degree of an individual’s aversion to

Knightian uncertainty. Finally, we have compared our approach in a static sample deci-

sion problem to other methods from the literature. We have found that our preference

index produces a ranking different from the other decision rules considered. However,

the most preferred act coincides with the one preferred by an individual with maximin

preferences and with the choice a very pessimistic Hurwicz individual would make.

(In-)Completeness of preferences. The arguably strongest assumption required

to bring our framework to life is Axiom 3. It assumes completeness only on the subset

G(y) of all simple acts F . Thus, for two arbitrary Knightian acts from F , we do not

globally assume that the individual will be able to state her preferences, i.e. they may

be incomparable. Much rather, we require her to have complete preferences only locally,

that is, on the subset of Knightian acts with payoff volume y, G(y). Indeed, we think that

this kind of locally complete preferences is in fact normatively much more compelling

than assuming completeness on F , even more so in the case of Knightian uncertainty.

In fact, the implications of the completeness assumption for economic theory have been

vividly discussed from the outset. von Neumann and Morgenstern (1944) themselves

considered it ‘very dubious whether the idealization which treats this postulate as a valid

one, is appropriate or even convenient’ (ibid.: p. 630). Others like Luce and Raiffa

(1957) criticized the possibility of intransitivities if individuals exacted decisions between

alternatives that might be ‘inherently incomparable’. In the same vein, R.J. Aumann

(1962, 1964) doubted the normative appeal of an an a-priori exclusion of the possibility

of an individual to be unwilling or unable to arrive at preference statements for at least

some acts. In our view, Aumann’s point was that the inability to state one’s preferences

regarding a decision might be the result of rational thinking and judgment, so there is

no reason to make completeness of preferences a standard of any rational choice theory,

an argument ultimately very similar to Putnam (1986). Despite all this, the only other

contribution we know of that discusses and uses incompleteness of preferences in the

context of Knightian uncertainty is Bewley (2002). He replaces completeness with an
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inertia assumption, which states that an alternative is only accepted if preferred to the

status quo. Moreover, an individual may assert that two alternatives are incomparable.

The main difference to our approach however is that Bewley works within the Anscombe-

Aumann framework, which relies on subjective and objective probabilities, a concept we

have deliberately avoided here for reasons laid out earlier in this paper.

The role of y and its intuitive appeal. The sum of payoffs y over all possible

states of the world plays a central role in our theory. One might wonder about desirability

and intuitive appeal of this feature. First and foremost, the issue is closely related to the

above question of whether or not to assume incomplete preferences. We argue in favor of

incompleteness here, but it is clear that it naturally comes at a price. From a technical

point of view, the problem with incomplete preferences is that one cannot have a complete

representation either, so one might run into issues with dominance. On the other hand,

for each y > 0, G(y) is the largest possible set of acts which cannot possibly dominate

each other, so it seems natural to build a theory around this. As to intuition, consider

the possibility that you are promised a slice of your favorite pie tomorrow, but the size of

the slice will depend, for some reason, on (1) what you do today, and (2) what state of

the world materializes tomorrow. Even before you worry about your options to act and

single outcomes, the most natural question seems ‘How large is that pie anyway?’. Only

as a second step will you probably think about what is best to do given the possible –

fundamentally uncertain – states of the world.

Probabilistic sophistication. A central feature of the Rényi preference represen-

tation from Section 4 is the symmetry of H(s) (cf. Lemma 4), which implies that the

sequence of payoffs in any given payoff distribution does not matter to the individual.

She only cares about payoffs, not about the state of the world which causes the payoff.

This property has been termed ‘event exchangeability’ (Chew and Sagi 2006: 771), and

it interestingly implies the individual to be probabilistically sophisticated (Machina and

Schmeidler 1992) with uniform subjective beliefs. That is, because any two outcomes of

any act are exchangeable for a Rényi individual, the concrete choice of the Rényi func-

tion implies that the decision maker follows Laplace’s principle of insufficient reason in a

non-expected utility framework. In that respect, our result might be one step towards a

result that parallels the contribution of Gravel, Marchant and Sen (2012), who provided

a complete axiomatic foundation of Laplace’s principle in the expected utility setting.
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Connection to Laplacian expected utility. In the following, we compare the

standard expected utility (EU) framework to our approach. Starting from expected utility

with concrete utility function u(y) = ln y, and assuming that we have an individual that

applies Laplace’s principle, we can generally say that the ranking of acts will coincide

with a ranking done by our Rényi individual. We make this explicit in Appendix D.

In that particular case, the connection between Laplacian EU and our framework can

be established, because a strictly increasing monotonous transformation from the EU

functional to the Rényi functional can always be constructed. The situation is however

not clear for general utility functions u(y) or representations of H other than the one

presented here, so a general correspondence between these two frameworks cannot be

established here, and its existence seems questionable to us. However, the positive message

to be learned from this observation is that the theory developed here is not completely

detached from other theories, but much rather shares a boundary point with them.

(Non-) Additive entropies in economics. We have seen that our axiomatic

foundation of preferences allows for the existence of an additive preference representation,

and that such functions are called additive entropies in physics and information theory.

For completeness, we should say that entropies have been used before in economic theory.

Luce, Ng and Marley (2008) have proposed to use entropies to model the utility which

individuals derive from the process of gambling itself. This approach seems interesting,

because it departs from the typical consequentialist setting in economics, in that it matters

to the decision maker how an outcome is obtained rather than just caring about what

outcome is obtained. However, this is quite a different use of the concept of entropy, and

unrelated to our concept presented here. Second, there are also non-additive entropies,

such as the Tsallis entropy (Tsallis 1988). Non-additivity is interesting from the point

of view of ranking and valuing compound acts. With additivity, any compound act is

just as good as the sum of preference satisfaction obtained from its constituents (cf.

Corollary 1). Non-additivity would enable us to model situations where compound acts

are better (worse) than just the sum of its constituents. While such preferences would be

an interesting object of study, we do not know of a formal axiomatization that could be

transferred in a way similar to the one presented here.

Practicability. One might think that it is highly unlikely that in any real-world

decision problem, every option to act will live in the same subspace G of F . But then, one
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might as well wonder whether the theory presented here was practically of any relevance.

After all, we cannot hope that nature will give us problems taylor-made to the tight

frame of our theories. But we can assure the critical reader that there is some hope.

since it is almost always possible to approximate elements of F through elements of some

subspace G. An example should clarify the matter: Suppose we want to compare the

acts f1, f2, g3, g4 where, unfortunately, f1 and f2 live in F whereas g3, g4 ∈ G. We cannot

directly compare these options, but we can find the elements closest to f1 and f2 in the

subspace G. Linear algebra teaches us that this is possible for any act space F with

finite dimension (cf. Schönhage 1971), which should easily be the case for any real-world

problem. The question then is if the price that we pay in terms of approximation errors is

reasonably low or too high. This necessarily depends on the problem at hand and should

be judged on a case-by-case basis.

Conclusion and outlook. In a nutshell, we have shown how a parsimonious set of

axioms leads to a special preference representation under Knightian uncertainty, which

is additive and extensive. We have illustrated how our setup could be used to model

and inter-personally compare different attitudes towards such uncertainty. From here,

several research fields seem open: First, there is the problem field of measuring uncer-

tainty aversion, theoretically as well as experimentally. Theoretically, one could think of

a transfer of concepts from general relativity, where measuring curvature that is invariant

under certain coordinate transformations in high dimensional spaces is formalized. Exper-

imentally, it would be interesting to assess uncertainty attitudes in different settings and

contexts. Moreover, our ideas might find applications in measuring product and techno-

logical diversity, in institutional design, or in generalizing the concepts of (self-)insurance

and protection (Ehrlich and Becker 1972) to situations of Knightian uncertainty.
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Appendix

The calculation rules for the compounding of acts are basically given by the rules that un-

derlie the compounding operation, i.e. standard addition and multiplication (cf. Definition

2).

A Proof of Lemma 1

Assume f ⊕ h � g ⊕ h (see premise of Lemma 1). Let furthermore ε = 1
n

where n ∈ N.

Then, we have by Axioms 1 and 6

f ⊕ εh ∼ (1− ε)f ⊕ εf ⊕ εh (10)

From Axiom 1, we know that

(1− ε)f ∼ (1− ε)f (11)

From our premise and Axiom 5, we moreover know

εf ⊕ εh � εg ⊕ εh (12)

Equations 11 and 12 can be combined via Axiom 4 to yield

(1− ε)f ⊕ εf ⊕ εh � (1− ε)f ⊕ εg ⊕ εh (13)

which we may combine with Equation 10 so as to read

f ⊕ εh � (1− ε)f ⊕ εg ⊕ εh ∼ (1− 2ε)f ⊕ εf ⊕ εg ⊕ εh (14)

Using again Equation 12 together with Axioms 1 and 4, we may write

f ⊕ εh � (1− 2ε)f ⊕ 2εg ⊕ εh (15)
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Repeating this succession of steps n times yields

f ⊕ εh � (1− nε)f ⊕ nεg ⊕ εh (16)

which can be rewritten as

f ⊕ εh � g ⊕ εh (17)

And from here, we may conclude by Axiom 7 that f � g indeed.

�

B Proof of Proposition 1

While this proof follows Lieb and Yngvason (1999) in terms of argumentation and layout,

we transfer it from thermodynamics to our setting of preferences over Knightian acts. It

consists of three main steps, which we sketch briefly in the following: First, we show in

Lemma 6 that for any act f ∈ G(y) there exists at least one real number, which serves

as ‘utility scale’, and which can be defined as mixture parameter of two other arbitrary

acts from G(y). We define the supremum of all possible such mixture parameters as the

‘canonical utility’ on G(y). Here, ‘canonical’ is to be understood in the sense of a stan-

dardization, which is achieved by the supremum operation. Economically, this can be

seen as calibration of the utility scale. In Lemma 7, we demonstrate the equivalence of �

on G(y) and ≤ on R. Third, we show in Lemma 8 that Hy(sf ) is unique on G(y). These

ingredients allow for a brief formulation of the proof, which we subsequently provide.

Finally, Lemma 9 establishes uniqueness up to linear-affine (cardinal) transformations.

Lemma 6. Suppose that f0 and f1 are two acts in G(y) with f0 ≺ f1. Define for λ ∈ R

Hλ = {f ∈ G(y) : (1− λ)f0 ⊕ λf1 � f}

Then

1. ∀f ∈ G(y), there is a λ ∈ R such that f ∈ Hλ

2. ∀f ∈ G(y), sup {λ : f ∈ Hλ} <∞
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In words, (1) for every Knightian act, or equivalently act f , there exists a real number

such that f ∈ Hλ and (2) this real number is bounded above.

Proof. 1. If f0 � f ⇒ f ∈ H0 by Axiom 2. For general f , we claim for some α ≥ 0

(1 + α)f0 � αf1 ⊕ f (18)

and hence

(1− λ)f0 ⊕ λf1 � f with α = −λ

If Equation 18 were not true, then αf1⊕ f � (1 +α)f0 ∀α > 0 and so, by Axioms

5 and 6

f1 ⊕
1
α
f � f0 ⊕

1
α
f0

By Axiom 7, this would imply f0 � f1, in contradiction to the assumption

2. This is essentially the same argument, i.e. proof by contradiction: If sup {λ : f ∈ Sλ} =

∞, then we would have for some sequence of λ’s tending to ∞

(1− λ)f0 ⊕ λf1 � f

which would imply by Axioms 4 and 6 that

f0 ⊕ λf1 � f ⊕ λf0

and by Axiom 5
1
λ
f ⊕ f1 �

1
λ
f ⊕ f0

which would imply by the continuity axiom (Axiom 7) that f1 � f0.

In the next step, we assume Knightian acts f0, f1 ∈ G(y) with f0 � f1 and define for

arbitrary f ∈ G(y)

Hy(sf ) := sup {λ : (1− λ)f0 ⊕ λf1 � f} (19)
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the canonical utility on G(y) with reference points f0 and f1 in the space G(y). Then

Lemma 6 guarantees that H(y)(sf ) is well-defined and bounded above.

Lemma 7 (Equivalence of � and ≤). Assume f0 � f1 as before and a0, a1, a
′
0, a
′
1 ∈ R

with a0 + a1 = a′0 + a′1. Then the following are equivalent

1. a0f0 ⊕ a1f1 � a′0f0 ⊕ a′1f1

2. a1 ≤ a′1 (and hence a0 ≥ a′0)

Furthermore, ∼ holds in 1. if and only if a1 = a′1 and a0 = a′0.

Proof. Assume that a0 + a1 = a′0 + a′1 = 1 and that all a’s are strictly positive.

1. ⇒ 2.: We write λ = a1 and λ′ = a′1. We deliberately assume that λ > λ′ which violates

2. above to show that this assumption leads to a contradiction. If indeed λ > λ′, then we

have

(1− λ)f0 ⊕ λf1 � (1− λ′)f0 ⊕ λ′f1

and by Axioms 4 and 6, we get

(1− λ)f0 ⊕ λ′f1 ⊕ (λ− λ′)f1 � (1− λ)f0 ⊕ (λ− λ′)f0 ⊕ λ′f1

From this, applying Axioms 4 and 6 again, we arrive at (λ − λ′)f1 � (λ − λ′)f0 which

yields by Axiom 5 that f1 � f0 which is the contradiction we were looking for.

2. ⇒ 1.:

(1− λ)f0 ⊕ λf1
A4/A6∼ (1− λ′)f0 ⊕ (λ′ − λ)f0 ⊕ λf1
A4/A5
� (1− λ′)f0 ⊕ (λ′ − λ)f1 ⊕ λf1

A4/A6∼ (1− λ′)f0 ⊕ λ′f1 (20)

which only holds for λ′ > λ.

Lemma 8. (Uniqueness of canonical utility Hy) Let Hy denote the canonical utility from

Equation 19 on G(y) with respect to the reference acts f0 � f1. If f ∈ G(y), then

λ = Hy(sf )
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is equivalent to

f ∼ (1− λ)f0 ⊕ λf1

Proof. First, if λ = Hy(sf ), then by definition of the supremum, there is a sequence

ε1 ≥ ε2 ≥ . . . ≥ 0 converging to zero such that

(1− (λ− εn))f0 ⊕ (λ− εn)f1 � f ∀n

By Axiom 6

(1− λ)f0 ⊕ λf1 ⊕ εnf0 ∼ (1− λ+ εn)f0 ⊕ (λ− εn)f1 ⊕ εnf1

� f ⊕ εnf1 (21)

By Axiom 7, we get

(1− λ)f0 ⊕ λf1 � f

On the other hand, since λ is the supremum we have by Axiom 3

f � (1− (λ+ ε))f0 ⊕ (λ+ ε)f1 ε > 0

which means

f ⊕ εf0 � (1− λ)f0 ⊕ λf1 ⊕ εf1

and so, by Axiom 7 again

f � (1− λ)f0 ⊕ λf1 =⇒ f ∼ (1− λ)f0 ⊕ λf1 when λ = HG(y)(f)

If, conversely, λ′ ∈ [0,1] is such that

f ∼ (1− λ′)f0 ⊕ λ′f1

then by Axiom 2

(1− λ)f0 ⊕ λf1 ∼ (1− λ′)f0 ⊕ λ′f1

and thus λ = λ′ by Lemma 7.
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Hence, for every f ∈ G(y), there is a unique λ ∈ R, namely λ = Hy(f), such that

f ∼ (1− λ)f ⊕ λf ∼ (1− λ)f0 ⊕ λf1 (22)

Put differently, any Knightian act f ∈ G(y) is always representable by a linear mixture of

two arbitrary, non-identical acts from G(y) with mixture parameter λ.

The proof of Proposition 1 can now be provided.

Proof of Proposition 1:

Proof. 1. ⇒ 2.: Let λi = Hy(sgi) and λ′i = Hy)(sg
′
i). By Lemma 8, we know that

gi ∼ (1 − λi)f0 ⊕ λif1 and g′i ∼ (1 − λ′i)f0 ⊕ λ′if1. By the consistency axiom (Axiom 4)

and Axiom 6, we know – if t1 + . . .+ tN = t′1 + . . .+ t′M (for all N ≥ 1 and M ≥ 1) – that

t1g1 ⊕ . . .⊕ tNgN ∼
∑
i=1

ti(1− λi)f0 ⊕
∑
i

tiλif1

and

t′1g
′
1 ⊕ . . .⊕ t′Ng′N ∼

∑
i=1

t′i(1− λ′i)f0 ⊕
∑
i

t′iλ
′
if1

Statement 2 now follows from Lemma 7. The implication 2. ⇒ 1. is obvious.

In the following last Lemma, we demonstrate that HG(y) is unique up to cardinal

transformations.

Lemma 9 (Cardinality of Hy). If H∗y is a function on G(y) satisfying

(1− λ)f ⊕ λg � (1− λ)f ′ ⊕ λg′

if and only if

(1− λ)H∗y (sf ) + λH∗y (sg) ≤ (1− λ)H∗y (sf ′) + λH∗y (sg′) ∀f,g,f ′,g′ ∈ G(y)

then H∗y (sf ) = aHy(sf ) + b with a = H∗y (sf1) −H∗y (sf0) > 0 and b = H∗y (sf0). Hy is the

canonical utility on G(y) with reference acts f0 and f1.
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Proof. From Equation 22, we have by hypothesis on H∗y and λ = Hy

H∗y (sf ) = (1− λ)H∗y (sf0) + λH∗y (sf1)

=
[
1−Hy(sf )

]
H∗y (sf0) +Hy(sf )H∗y (sf1)

=
[
H∗y (sf1)−H∗y (sf0)

]
Hy(sf ) +H∗y (sf0) (23)

The last line implies that a = H∗y (sf1) −H∗y (sf0) > 0 since f0 � f1 by assumption. This

establishes cardinality of the Knightian utility index Hy on G(y) and thus completes the

proof.

C Proof of Lemma 2

Let y > 0 be given. Consider acts from the set G(y) ⊂ F and two individuals, A and B,

accepting Axioms 1–7. By Proposition 1, we can attach H̃-values properly to all acts from

G(y) for both individuals. Without loss of generality, we may use uniqueness of H̃ up to

linear-affine transformations and normalize H̃A(0) = H̃B(0) = 0 and H̃A(sc) = H̃B(sc) =

1. Recall from Definition 5 that if A is more uncertainty averse than B for some act from

G(y), then this will also be the case for any other act from G(y). We start by proving ‘⇒’

before we prove ‘⇐’.

‘⇒’: Assume ΛB(s) ≥ ΛA(s) for all s ∈ I = [0, 0.5], i.e. H̃B(s) is curved more steeply

towards the s axis than H̃A(s) on the entire interval I. H̃i(s) are continuous (Propo-

sition 1) and strictly monotonically increasing on I (Definition 6), so that the only

possibility for the constant act sc = 0.5 from G(y) to be the utility maximum for

both individuals is that H̃B(s) lies above H̃A(s) for all s ∈ I. By assumption, it

holds for both individuals that Π ∝ yH−yL, which directly translates to Π ∝ sc−s.

We may then conclude that the uncertainty premium of person i depends on the

corresponding difference in utilities, so that Πi(s) ∝ H̃i(sc)− H̃i(s), where of course

H̃A(sc) = H̃B(sc) = 1. From there, utilizing H̃B(s) > H̃A(s) for all s ∈ I, it follows

that ΠB(s) < ΠA(s) for all s ∈ I.

‘⇐’: Assume ΠB(s) < ΠA(s) for all s ∈ I = [0, 0.5], i.e. the uncertainty premium of B

is smaller than that of A for every act s ∈ I. Because of the normalization of Hi

and because we know – by the same argument as above – that Πi(s) ∝ 1 − H̃i(s),
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it follows that HB(s) > HA(s) for all s ∈ I. But then, because of H̃i(0) = 0 and

H̃i(0.5) = 1, it is then necessarily true for every s ∈ I that H̃B(s) is curved more

steeply towards the s axis than H̃A(s), and therefore ΛB(s) ≥ ΛA(s) for every s ∈ I.

�

D Connection to expected utility

If u(y) = ln y, then there is a direct correspondence between a Laplace-EU individual and

a Rényi individual. To see this, consider a two-state act with one good outcome, yH and

one bad outcome yL. The Rényi functional then reads

H = 1
1− α ln

[(
yL

yL + yH

)α
+
(

yH
yL + yH

)α]
(24)

while the Laplacian expected utility reads

EU = 1
n

(ln yL + ln yH) = 1
n

ln(yL · yH) (25)

For the relative ranking of any two acts, the ln functions matter. The question is thus,

whether there exists a strictly monotonous, i.e. order preserving, transformation

T : yL · yH 7→
(

yL
yL + yH

)α
+
(

yH
yL + yH

)α
(26)

At least one such transformation exists:

T : x 7→
( x
yH

)α + ( x
yL

)α

( x
yL

+ x
yH

)α (27)

It holds that T ′(x) > 0 for all α > 0 and such a transformation can be constructed for

all n > 2 as can be seen by complete induction. It is however unclear whether such a

transformation can be found for any u(y) and any H.
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