

Atmospheric Environment 38 (2004) 4859-4868

ATMOSPHERIC

www.elsevier.com/locate/atmosenv

Henry's law constants measurements of the nonylphenol isomer 4(3',5'-dimethyl-3'-heptyl)-phenol, tertiary octylphenol and γ-hexachlorocyclohexane between 278 and 298 K

Zhiyong Xie^{a,b,*}, Stéphane Le Calvé^c, Valérie Feigenbrugel^c, Thomas G. Preuß^d, Ralph Vinken^d, Ralf Ebinghaus^a, Wolfgang Ruck^b

^a GKSS Research Centre, Institute for Coastal Research, Max-planck-str. 1, D-21502 Geesthacht, Germany ^b Institute of Ecology and Environmental Chemistry at the University of Lueneburg, Scharnhorststr. 1, D-21335 Lueneburg, Germany ^c Centre de Géochimie de la Surface, CNRS and Université Louis Pasteur, F-67084 Strasbourg cedex, France ^d Institute for Biology V -Environmental Chemistry, Aachen University, D-52056 Aachen, Germany

Received 26 February 2004; received in revised form 12 May 2004; accepted 26 May 2004

Abstract

Henry's Law Constants (HLC, M atm⁻¹) were determined for the diastereomeric mixture of the nonylphenol isomer 4(3',5'-dimethyl-3'-heptyl)-phenol diastereomers (NP353(+) and NP353(-)), tertiary octylphenol (t-OP) and γ-hexachlorocyclohexane (γ-HCH) in artificial seawater over a temperature range 278–298 K using a dynamic equilibrium system. Trace organic substances present in the gas phase were trapped by tandem XAD-2 cartridges and extracted with a soxhlet extractor. The extracts were derivatived with N,O-bis(trimethylsilyl)-trifluoroacetamide (BSTFA), and then analyzed with GC-MS in the selective ion mode.

At 293 K and in artificial seawater, HLC (M atm⁻¹) were found to be equal to: NP353(+), HLC= (483 ± 169) ; NP353(-), HLC=(551 ± 193); t-OP, HLC=(400 ± 140); γ -HCH, HLC=(876 ± 307). The obtained data were used to derive the following Van't Hoff expressions: ln HLC (NP353(+)) = $8.73 \pm 0.95 \times (1000/T) - 23.61 \pm 3.30$; ln HLC $(NP353(-)) = 8.61 \ (\pm 0.91) \times (1000/T) - 23.08 \ (\pm 3.18); \ \ln HLC \ (t-OP) = 9.03 \ (\pm 1.40) \times (1000/T) - 24.83 \ (\pm 4.86);$ $\ln \text{HLC}$ (γ -HCH)=6.17 (± 1.08)×(1000/T)-14.28 (± 3.75). The derived enthalpies of solvation for NP353(+), NP353(-), t-OP and γ -HCH are -72.6 ± 7.9 , -71.6 ± 7.6 , -75.1 ± 11.5 and -51.3 ± 9.0 kJ mol⁻¹, respectively.

The HLC measurements of γ -HCH, which was used as reference substance, were in good agreement with literature values and its corresponding derived enthalpy of solvation agrees well to the previous values reported in the literature.

A reassessment of the air/water gas exchange based on experimentally derived HLC was made for the nonylphenol (NP) in the Lower Hudson River estuary (New York/New Jersey, USA) that was previously reported by Van Ry. A net atmospheric deposition was calculated for the gas exchange of NP in the Lower Bay ($Ff_w = 0.13$), and it nearly reaches the condition of equilibrium in the Upper Bay ($Ff_w = 0.46$).

© 2004 Elsevier Ltd. All rights reserved.

Keywords: Henry's law constant; Air/water exchange; Nonylphenol isomers; Tertiary octylphenol; γ -hexachlorocyclohexane

E-mail address: zhiyong.xie@gkss.de (Z. Xie).

1. Introduction

For over 40 years, alkylphenol ethoxylates (APEOs), in particular nonylphenol ethoxylates (NPEOs, C₉H₁₉-C₆H₄-(OC₂H₄)_n-OH) have been applied in many

1352-2310/\$ - see front matter © 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.atmosenv.2004.05.013

^{*}Corresponding author. GKSS Research Centre, Institute for Coastal Research, Max-planck-str. 1, D-21502 Geesthacht, Germany