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Abstract
A common strategy for reducing the computational effort of descriptor-based
microstructure reconstruction in the Yeong–Torquato algorithm lies in restrict-
ing the choice of descriptors to an efficiently computable subset. As an alterna-
tive, the number of iterations can be reduced by gradient-based optimization as in
differentiable microstructure characterization and reconstruction (DMCR). This
allows for, but does not require, the use of a set of informative, high-dimensional
and computationally expensive descriptors that would be unfeasible for a high
number of iterations. For this reason, the present work investigates the role of
descriptor fidelity on microstructure reconstruction results. More precisely, spa-
tial two- and three-point correlations as well as the lineal path function are
computed on 2D planes as well as on 1D lines. These descriptors are used for
reconstruction with the Yeong–Torquato and DMCR algorithm and the results
are compared throughout various microstructures, respectively.

1 MOTIVATION

Microstructure characterization and reconstruction (MCR) is a recent and emerging field of research at the intersection
between materials engineering, computer science, and mechanics. The target is to reconstruct multiple realizations of
a random heterogeneous medium from a single example or even to generate 3D volume elements from 2D data. This
enables the use of further computational tools like numerical multiscale simulations [1–3] for computational materials
engineering [4].
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A modern and simple answer to the microstructure reconstruction problem naturally lies in image-based machine
learningmethods [5]. The central idea is to train a generativemachine learningmodel on a data set of microstructures and
then to sample new realizations of the same structure from it. Initial attempts like local neighborhood search [6] have been
inspired from the field of texture synthesis [7]. Recently, the advances in modern machine learning have been transferred
to microstructure reconstruction using various deep architectures like generative adversarial networks (GANs) [8–11] as
well as hybrid methods with autoencoders [12, 13], transformers [14], and diffusion models [15, 16]. While these methods
achieve excellent results throughout a variety of material classes, the disadvantage of data-based methods is the necessity
of a potentially large data set.
In contrast to these purely data-based techniques, classical approaches often quantify the information on the

microstructure morphology in terms of statistical descriptors and reconstruct microstructures from that. Depending on
how generic this morphology and the corresponding descriptors can be, the associated reconstruction process can either
be formulated as a highly performant, but material-specific algorithm or a more computationally expensive, generic algo-
rithm. Examples for the former are the sequential addition and migration algorithm for fiber reinforced composites [17,
18], the CMG algorithm for concrete [19],DREAM.3D, Kanapy andNeper for metallic materials [20–22], and various other
methods reviewed in Bargmann et al. [23]. The latter category contains the well-known Yeong–Torquato algorithm [24]
and derived forms of it such as differentiableMCR (DMCR) [25, 26] and the numerous approaches reviewed in Bostanabad
et al. [27].
The Yeong–Torquato algorithm directly solves an optimization problem in the space of possible microstructures, which

are represented directly in terms of pixel or voxel values. For this purpose, the loss function of a microstructure is given
by means of a descriptor that quantifies the morphology of the structure. The target descriptor can be computed from a
reference image or prescribed directly. In an iterative procedure, randommutations are applied to themicrostructure until
a convergence criterion is reached. Due to the combinatorial complexity of the microstructure representation, the search
space is restricted to structures with the correct volume fraction. Furthermore, a stochastic optimization algorithm is used
in order to avoid local minima. This gradient-free, stochastic optimization in high-dimensional spaces becomes compu-
tationally challenging at high resolutions and in 3D, where billions of iterations are required to reach convergence [28].
For this reason, the simulated annealing procedure is often adapted [27]. As an example, a different-neighbor sampling
rule increases the probability of pixels at phase boundaries to be selected. Furthermore, multigrid schemes or two-stage
methods have been introduced [29–33]. Finally, differentiable descriptors can be used in order to solve the optimization
problem using gradient-based optimizers. This is known as DMCR [25, 26], which is implemented in the MCRpy soft-
ware [34] and is validated in Seibert et al. [33]. Some recent approaches in the literature can be identified as special cases
of DMCR [35–38].
Finally, a major factor enabling the practical application of the Yeong–Torquato algorithm lies in limiting the choice

of descriptors to an efficiently computable subset. For example, the spatial correlations are commonly computed only
along certain predefined directions, for instance, in radial direction or on 1D lines along the coordinate axes, but not
for all possible 2D vectors [28, 39]. Furthermore, in order to make high iteration numbers possible, some state-of-the-art
algorithms minimize the computational cost per iteration by computing descriptor updates based on pixel swaps instead
of recomputing descriptors from scratch in every iteration [28, 40]. To the authors’ knowledge, this has been done for the
two-point correlations, but not for the three-point correlations or the lineal path function, and therefore sacrifices some of
the descriptor flexibility of the Yeong–Torquato algorithm. This motivates the presented investigation, where the choice
of descriptor as well as its fidelity (1D or 2D) is compared by means of three chosen 2D microstructure examples.

2 METHODS

2.1 Microstructure descriptors

Microstructure descriptors provide a stochastic and translation-invariant quantification of the microstructure’s mor-
phology. Similar structures, even from the same specimen, might be very different in terms of the pixel space
or any other deterministic parametrization. However, statistical descriptors make the similarity and discrepancy of
microstructures quantifiable.
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The present work is based on the spatial two- and three-point correlations1 as derived in Seibert et al. [25] and the
differentiable approximation to the lineal path function [41] as introduced in Seibert et al. [34]. Intuitively, the 𝑛-point
autocorrelation 𝑆𝑛(𝑟1, … , 𝑟𝑛−1) quantifies the probability of the vectors 𝑟1, … , 𝑟𝑛−1 starting and ending in a given phase
if they are all placed at a randomly chosen position. While the full 𝑆2 and 𝑆3 have been used for characterization and
reconstruction in the literature, higher-order correlations for 𝑛 > 3 are usually reduced to a selected subset in view of
computational resources [44]. An array containing 𝑆2(𝑟) for all 𝑟 on a pixel or voxel gridmicrostructure𝐌 can be efficiently
computed as

𝐒2 = 
−1
(
(𝐌) ⊙ ((𝐌))

∗)
, (1)

where  and 
−1 denote the forward and inverse Fourier transform, ⊙ is the Hadamard product, and (⋅)∗ denotes the

complex conjugate. As an alternative, the convolutions with a mask representing 𝑟 can be carried out explicitly in order to
obtain 𝐒2 [25]. Although this scales more unfavorably with the number of vectors and the microstructure resolution than
the Fourier approach, it can be beneficial to compute the correlations only along certain 1D lines. Furthermore, it yields
the three-point correlation 𝐒3 with very little computational overhead as outlined in Seibert et al. [25]. Both approaches
are implemented inMCRpy and the latter is used in the present work.
Similarly, the lineal path function 𝐿(𝑟) quantifies the probability that 𝑟 lies entirely within a given phase if placed

at a random position. A differentiable approximation to this function is given in Seibert et al. [34] and is used in the
present work.
Many further descriptors have been developed in the last decades. In analogy to 𝑆2(𝑟) and 𝐿(𝑟), the cluster correlation

function 𝐶(𝑟) quantifies the probability of 𝑟 starting and ending in a topologically connected region of the microstruc-
ture [45]. It has been shown to improve the performance of the Yeong–Torquato algorithm in some cases [45], but it is
not clear how to define a differentiable formulation or approximation to this descriptor, so it is not applied in the present
study. Furthermore, general but low-dimensional descriptors such asMinkowski functionals [46, 47] and entropic descrip-
tors [48] have been developed and applied successfully, but cannot trivially be differentiated. In contrast, the total variation
has been applied toDMCR especially in the context of 2D-to-3D reconstruction, where it regulates noise by quantifying the
amount of phase boundary per unit volume. As a very recent differentiable descriptor, Grammatrices of the feature maps
of pretrained convolutional neural networks have shown a wide range of applicability and high robustness [34, 35, 49, 50].
However, they are hard to interpret and the choice of unrelated training data sets like ImageNet seems arbitrary. There-
fore, a recent contribution is dedicated to developing a wavelet-based descriptor using the scattering transform. Similarly
to Gram matrices, this descriptor quantifies the structure in terms of the occurrence and relations between local features
detected by wavelets. However, the features, that is, wavelets, are not learned from data but constructed in a principled
manner by rotation and dilatation of a mother wavelet. Very good results and further details are given in Reck et al. [51].
This incomplete overview shows that the development of suitable descriptors is still a relevant and active field of

research. It is commonly accepted that there is currently no single best descriptor for all different kinds of materials,
but that different materials require different descriptors or combinations thereof [26, 34]. This motivates flexible algo-
rithms and software where descriptors can be exchanged and combined easily. However, the combinatorial complexity
of these possibilities exceeds the scope of the present work. Therefore, this work is restricted to (i) the two-point correla-
tion 𝑆2, (ii) a combination of 𝑆2 and the differentiable approximation to the lineal path function 𝐿, and (iii) the three-point
correlation 𝑆3, which are all evaluated on lines and areas, respectively.

2.2 Descriptor-based reconstruction in MCRpy

Descriptor-basedmicrostructure reconstruction is the inverse of microstructure characterization. Given a desired descrip-
tor 𝐃des or a set of 𝑛d different descriptors {𝐃des

𝑖 }
𝑛d
𝑖=1, the goal is to find a microstructure𝐌 such that the corresponding

descriptors 𝐃𝑖(𝐌) are as close as possible to the given values. Often, this is naturally formulated as an optimization
problem

𝐌rec = argmin
𝐌



({
(𝐃𝑖(𝐌), 𝐃des

𝑖 )
}𝑛d
𝑖=1

)
, (2)

1 It is known that the two-point correlations alone are not always sufficient to adequately distinguish any two microstructures [41–43].
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F IGURE 1 Original microstructures with 128 × 128 pixels that are reconstructed in this work: A single ellipsoidal inclusion (A), a
synthetic, periodic structure generated in pyMKS [52] (B), and a real carbonate sample taken from Li et al. [53] (C).

where the descriptor difference is quantified by a loss function . As an example, if only the two-point correlation 𝑆2 is
considered as a descriptor, the loss might be chosen as

(𝐌) = ||𝐒2(𝐌) − 𝐒des2 ||MSE . (3)

If further descriptors such as the lineal path function 𝐿 are added, the loss might be formulated as a weighted sum

(𝐌) = 𝜆𝑆2 ||𝐒2(𝐌) − 𝐒des2 ||MSE + 𝜆𝐿||𝐋(𝐌) − 𝐋des||MSE , (4)

where 𝜆𝑆2 and 𝜆𝐿 are scalar weights. With its flexible plugin architecture,MCRpy [34] allows to combine any descriptors
in any loss function and to solve Equation (2) using any optimization algorithm. This work, however, is restricted to two
approaches from the literature, namely thewell-knownYeong–Torquato algorithm [24] and the recently developedDMCR
method [25, 26].
Both methods are implemented inMCRpy for arbitrary combinations of descriptors for 2D and 3D reconstruction. For

reasons of computational efficiency, the present study is conducted in 2D and a multigrid scheme is used. Furthermore,
the implementation of the Yeong–Torquato algorithm features a different-neighbor sampling rule. In contrast to some
specialized algorithms in the literature [28, 40], it does not allow the computation of descriptor updates, but recomputes
the descriptor from scratch in every iteration. This has to be considered when evaluating the wallclock time, however it
does not affect the number of required iterations or the quality of the solution after a given number of iterations.

3 NUMERICAL EXPERIMENTS

Three exemplary microstructures with a resolution of 128 × 128 pixels are considered as shown in Figure 1: A single ellip-
tical inclusion, a synthetic, periodic structure from Brough et al. [52] and a real carbonate sample from Li et al. [35], which
is released under a Creative Commons license. These structures are reconstructed with the DMCR and Yeong–Torquato
algorithm in MCRpy version 0.2.0 with a maximum-fidelity resolution limit of 16 pixels2 and multigrid reconstruction
enabled3. Three different sets of descriptors are chosen, namely (i) 𝑆2, (ii) 𝑆2 and 𝐿, and (iii) 𝑆3, each of which are com-
puted on 1D lines as well as in all 2D directions. This leads to a total of 36 results, which are summarized for the DMCR
and Yeong–Torquato algorithm in Tables 1 and 2, respectively.
Exemplary convergence plots are given in Figure 2. As expected, DMCR converges at a faster rate and it can be seen that

the optimization on the coarse multigrid levels could have been aborted earlier in order to save computational effort. This
is, however, not significant compared to the high-resolution problem. It should be noted that the loss function increases

2 This means that the descriptors are computed with a full resolution up to a maximal entry of 16 pixels in the correlation vector, whereas long-range
information is computed on a downsampled version of the structure in order to save computational effort, see Seibert et al. [25].
3 As a convergence criterion, each multigrid level stops when the loss does not decrease after a given number of iterations. Furthermore, the maximum
number of iterations per multigrid level is defined as 1500 for DMCR and 15000 for the Yeong–Torquato algorithm.
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TABLE 1 Reconstruction results for the DMCR algorithm.

TABLE 2 Reconstruction results for the Yeong-Torquato algorithm.

as the structure is interpolated to a finer resolution because the increased descriptor dimensionality adds terms to the loss
function. Exemplary intermediate results are shown in Figure 3.
Table 3 provides insight into the required time per iteration for each descriptor (combination) and algorithm. Naturally,

computing descriptors on lines is significantlymore efficient than a full-field computation. This iswhy the former option is
often employed in practice in the Yeong–Torquato algorithm.However, it can be seen that regardless which reconstruction
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F IGURE 2 Exemplary convergence curves for the DMCR (A) and Yeong–Torquato (B) algorithm using 𝑆3 in 2D. Both methods
converge, however, DMCR converges faster and to a better solution. The rapid jumps in the convergence curves correspond to an increase in
resolution in the multigrid algorithm, see Figure 3. At these locations, the loss increases because the newly created, interpolated pixels
increase the dimensionality of the descriptor.

F IGURE 3 Intermediate results from the multigrid reconstruction of the inclusion in Figure 1(A) using DMCR and 𝑆3 (see Table 1). The
coarse-grid initialization on 32 × 32 pixels (A) converges to a solution (B) that is linearly interpolated to 64 × 64 pixels (C) to serve as an
initialization. The result (D) serves as an initialization to the 128 × 128 pixel scale (E), where the final result is obtained (F). The
corresponding convergence curve is given in Figure 2A.

TABLE 3 Approximate time per iteration on the finest multigrid level for the DMCR and Yeong–Torquato algorithm. The results may
vary on different computers due to hardware and caching. An NVIDIA A100 with 40-GB memory is used in the present work.

Descriptor 𝑺𝟐 𝑺𝟐 + 𝑳 𝑺𝟑
computed on Line Full Line Full Line Full

DMCR time per iteration 8 ms 128 ms 11 ms 142 ms 12 ms 144 ms
YT time per iteration 6 ms 68 ms 8 ms 73 ms 8 ms 74 ms

algorithm is chosen, the full descriptor enables strictly better reconstruction results, see Tables 1 and 2. Furthermore, it can
be seen that the Yeong–Torquato algorithm iterates faster than DMCR, because it does not require to compute gradients.
Because of the pixel selection overhead, this difference becomes less pronounced for line descriptors, however, it should
be noted that the pixel selection inMCRpy is optimized for reducing the number of iterations, not for performance as in
Adam et al. [28].

4 CONCLUSION

Thiswork presents an investigation of the influence of the descriptor fidelity on the result ofmicrostructure reconstruction
algorithms. Specifically, different descriptors are computed on 1D lines along the horizontal and vertical direction and are
compared to the full 2D descriptors in terms of performance and microstructure result. Therein, the reconstruction is
carried out with differentiable MCR (DMCR) as well as a Yeong–Torquato algorithm with a different-phase neighbor
sampling rule. A multigrid scheme is used for both algorithms.
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As expected, a richer descriptor leads to strictly better reconstruction results, regardless of the reconstruction algo-
rithm. Especially the benchmark structure with the single rotated inclusion makes it clear that with 𝑆2 and 𝐿 computed
merely on 1D lines, the missing diagonal information makes accurate reconstructions of anisotropic structures impossi-
ble. An interesting exception is 𝑆3, where diagonal information is reintroduced by the usage of two correlation vectors.
With only 8 ms per iteration on 128 × 128 pixels and potential to tune the performance further, it might be a feasible
choice for performance-critical applications. In this case, however, the reconstruction is only acceptable for the Yeong–
Torquato algorithm, not for DMCR. This is likely rooted in the different-phase neighbor sampling rule. Its influence on
the microstructure topology requires further attention.
As a final observation, it is noted that the easily observable relation between 1D and 2D descriptors might translate to

the transition from 2D to 3D. The implications of these observations on the slice-based approach to 2D-to-3D reconstruc-
tion that is often employed in descriptor-based reconstruction as well as GAN-based approaches is to be investigated in
future research.
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