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Measuring maximal strength (MSt) is a very common performance diagnoses, especially
in elite and competitive sports. The most popular procedure in test batteries is to test
the one repetition maximum (1RM). Since testing maximum dynamic strength is very
time consuming, it often suggested to use isometric testing conditions instead. This
suggestion is based on the assumption that the high Pearson correlation coefficients
of r≥0.7 between isometric and dynamic conditions indicate that both tests would
provide similar measures of MSt. However, calculating r provides information about
the relationship between two parameters, but does not provide any statement about
the agreement or concordance of two testing procedures. Hence, to assess
replaceability, the concordance correlation coefficient (ρc) and the Bland-Altman
analysis including the mean absolute error (MAE) and the mean absolute percentage
error (MAPE) seem to be more appropriate. Therefore, an exemplary model based on
r=0.55 showed ρc = 0.53, A MAE of 413.58 N and a MAPE= 23.6% with a range of
−1,000–800 N within 95% Confidence interval (95%CI), while r=0.7 and 0.92
showed ρc = 0.68 with a MAE= 304.51N/MAPE= 17.4% with a range of −750 N–
600 N within a 95% CI and ρc = 0.9 with a MAE= 139.99/MAPE = 7.1% with a range
of −200–450 N within a 95% CI, respectively. This model illustrates the limited
validity of correlation coefficients to evaluate the replaceability of two testing
procedures. Interpretation and classification of ρc, MAE and MAPE seem to depend
on expected changes of the measured parameter. A MAPE of about 17% between
two testing procedures can be assumed to be intolerably high.
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Introduction

Producing high maximal strength is of crucial importance to reach high level performance in

many sports such as American football and rugby (1–6), basketball (7–11) handball (12–14),

soccer (15–20) swimming (21–23), track and field in sprints, jumps, and throws (24–26) or

powerlifting and weightlifting (27–29). Additionally, previous research showed differences

regarding strength and speed strength capacities between elite, sub-elite, amateur, and youth

athletes (30, 31). Commonly, strength training leads to improved maximal strength and speed

strength performance (e.g., sprinting, jumping, rapidly performed directional changes) (24, 32–35).

Especially in elite sports and competitive sports, the effectiveness of training routines is

evaluated with performance testing (36) to monitor training progress (24) and, if necessary,
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adapt training routines. Various methods have been utilized to

measure maximal strength using a maximal voluntary contraction

(MVC), among which isometric (MVIC) or dynamic testing

procedures using the one repetition maximum (1RM) are most

common (24, 27, 37).

Advocates of isometric testing highlight the supposed advantages

regarding the quantification of various force-time characteristics (1,

38–40), a simple and time efficient administration (1) and a good

standardization of test conditions with high test-retest reliability

(36, 41). Furthermore, isometric strength tests are considered

highly sensitive to changes in strength while possessing minimal

coordination requirements, minimal injury risk, and being

supposedly less fatiguing than 1RM test protocols (27, 36, 42).

Additionally, measuring force-time characteristics like rate of

force development (RFD) or isometric impulse is considered to

provide information on various dynamic strength qualities (24, 43).

However, dynamic strength measurements using the one repetition

maximum (1RM) is stated as the most popular strength assessment

method, because no expensive equipment such as a force plates or

strain gauges are required (44). Since good reliability can be

assumed (Seo et al., 2012), there are a substantial number of

studies investigating the 1RM in bench press, back squat or the

clean (18, 45–61). To date, there is conflicting evidence about the

external validity of various strength testing methods (62), especially

when considering the associations between isometric and dynamic

performances (43, 63–66). Training and testing specificity (i.e.,

testing should involve tasks similar to the task or type of training)

has been a hallmark of sport and exercise science (67).

Accordingly, a potentially higher transfer of dynamic testing

measures towards speed strength performances like sprinting,

jumping, rapidly performed directional changes (e.g., agility) seems

rational (63, 64, 68). Additionally, 1RM testing provides

comparable reliability to isometric testing, with a higher validity to

estimate maximal strength capacity (36).
Problem

Still, based on the supposed advantages of isometric testing

conditions and the additional information on force-time

characteristics testing has led multiple authors to suggest

substituting 1RM testing with isometric testing to monitor athletes’

training progress (1, 24) McGuigan et al. (69) state; “Given that

the test seems to indicate to a large extent the dynamic

performance characteristics of athletes, it may not be necessary to

perform 1RM testing on a large number of exercises”. While

isometric tests appear to provide valuable information on force-

time characteristics, the replaceability of dynamic testing conditions

through isometric testing is primarily justified by “high” Pearson’s

correlation coefficients (r) or intraclass correlation coefficients

(ICC). McGuigan et al. (1) also proposed that “Strength and

conditioning coaches and other practitioners with access to a force

plate can consider using the isometric mid-thigh pull test as a

potential alternative to traditional 1RM testing. In recreationally

trained subjects, it appears to correlate extremely well with both

the 1RM squat and bench press”. Therefore, a high number of

studies were found (see Table 1) highlighting the correlation
Frontiers in Sports and Active Living 02
between isometric and dynamic testing conditions. However, to

validly claim the potential substitution of dynamic testing

conditions for isometric testing within performance diagnostic

protocols, a high concordance between methods must be assumed.

But none of the studies in the literature calculated concordance

correlation coefficients between isometric and dynamic

measurements to verify whether one measurement can actually

reproduce the results of the other. This is especially of high

importance if the replacement of 1RM bench press testing by

isometric mid-thigh pull is suggested (69), which seems to be of

questionable validity. Hence, the primary aim of this study is to

assess the validity of replacing 1RM with isometric testing by

comparing Pearson and concordance correlation coefficients.

Moreover, to provide more detailed information the mean absolute

error (MAE) and mean absolute percentage error (MAPE) will be

provided to detect differences between isometric and dynamic

testing.
Critical evaluation of commonly
performed concordance determination

Investigating the concordance between two measurement devices

is a well-known problem in medicine (85–88). In the literature, just

stating correlation coefficients seems to be insufficient, since

agreement and correlations are two different concepts (89). Since

they can be assumed to be conceptually different, using the

method to calculate correlations must be considered inappropriate

or inadequate to investigate agreement “Agreement is a concept

that is closely related to, but fundamentally different from and

often confused with correlation.” (89). To investigate the agreement

of measurements, a high reproducibility is required. The

assumption that both measurement devices measure the same

parameter needs to be validated with the deviation between the

two devices determined to estimate the concordance or lack of

concordance. Pearson correlation coefficients only describe the

relationship between two parameters but do not provide any

information about the agreement between two testing conditions

(85, 88). The concordance correlation coefficient can be used

instead, assuming a 45° line crossing the origin of the coordinative

system and determining the concordance to the regression line of

the Pearson correlation (88, 90–92). Furthermore, assuming two

testing methods would measure the same parameter, there should

be very little variance between them. To illustrate the level of

variance between two testing conditions, Bland-Altman Analysis is

recommended (85–87, 89, 90, 93). Since the Bland-Altman Plot

can be used only for qualitative and visual analysis of variance, the

MAE and MAPE are used for quantitative calculation error

between both testing conditions. The MAE is stated as a measuring

of errors between paired observations evaluating the same

parameter (94, 95), while the MAPE (96–98) can be seen as an

expression of accuracy, providing quantitative information about

the deviation between two measuring techniques. Therefore, both

parameters can be stated to investigate the difference between a

measured and predicted parameter and were further used to

validate testing batteries (99, 100). In other research fields, such as

pharmacology and medicine, using the concordance correlation
frontiersin.org
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TABLE 1 studies showing significant correlation coefficients between isometric and dynamic strength testing.

Author n Technique Technique2 1-RM 1-RMrel

Lower Body (Single Joint)

Baker (43) 22 Isometric Knee Extension (90° knee angle and
110° hip angle)

(Half) Squat Pre: 0.575*; Post: 0.57* –

Boraczynski (70) 25 Isometric Leg Extension (90° knee flexion) Half Back Squat 0.780* 0.629*

Requena (15) 21 Isometric Knee Extension (single leg; 90° knee
angle and 110° hip angle)

Half Squat 0.58* –

Lower Body (Multi Joint)

Bartolomei (71) 20 Isometric Midthigh Pull (140° knee angle and
125° hip angle); Isometric Midshin Pull
(73.2 ± 6.8 knee angle and 59.8 ± 4.8)

Deadlift Isometric Midthigh Pull: 0.55*;
Isometric Midshin Pull: 0.78*

–

Bazyler (72) 17 Isometric Squat (90° knee angle; 120° knee
angle)

Parallel Back Squat; Partial
Squat (100° knee flexion)

IPF90°vsParallel: 0.864*; IPF90°
vsPartial: 0.705*; IPF120°vsParallel:
0.597*; IPF120°vsPartial: 0.789*

–

Blazevich et al. (73) 14 Isometric Squat (90° knee angle); Isometric
Front Hack Squat (110° knee angle and 90°
hip angle)

Back Squat (90° knee angle);
Front Hack Squat (110° knee
flexion)

ISvsS: 0.77*; IFHSvsFHS: 0.76* –

De Witt et al. (74) 9 Isometric Midthigh Pull (no information on
joint angles)

Deadlift 0.88* –

Dos’Santos et al. (75) 43 Isometric Midthigh Pull (135–145° knee angle
and 140–150° hip angle)

Power Clean 0.674* –

Drake et al. (76) 42 Isometric Squat (90° knee angle) Back Squat (90° knee angle) 0.688* 0.244

Haff et al. (77) 8 Isometric Midthigh Pull (144 ± 5° knee angle
and 145 ± 3° hip angle)

Dynamic Midthigh Pull 0.80* –

Haff et al. (78) 6 Isometric Midthigh Pull (127–145° knee
angle)

Snatch; Clean and Jerk Snatch: 0.93*; Clean and Jerk: 0.64 –

Markovic & Jaric (79) 159 Isometric Squat (120° knee angle) Smith Machine Squat (80°
knee angle)

0.52 0.38

McGuigan et al. (69) 26 Isometric Midthigh Pull (no information on
joint angles)

Half Back Squat 0.97*; –

McGuigan et al. (80) 8 Isometric Midthigh Pull (130° knee angle) Parallel Back Squat; Power
Clean

Parallel Back Squat: 0.96*; Power
Clean: 0.97;

–

Miller et al. (81) 23 Isometric Midthigh Pull (142.91 ± 4.22° knee
angle and 140.13 ± 4.77° hip angle)

Hex Bar Deadlift 0.695* –

Nuzzo et al. (25) 12 Isometric Squat (140° knee angle); Isometric
Midthigh Pull (140° knee angle)

Back Squat (70° knee angle);
Power Clean

ISqt vs. Back Squat: 0.624*; IMTP vs.
Power Clean: 0.740*

ISqt vs. Back Squat:
0.080; IMTP vs.
Power Clean: 0.348

Spiteri et al. (7) 12 Isometric Midthigh Pull (140° knee angle and
140° hip angle)

Back Squat (90° knee angle) – 0.810*

Townsend et al. (82) 23 Isometric Midthigh Pull (self-selected knee
and hip angles)

Parallel Front Squat; Hang
Clean

Parallel Front Squat: 0.705*; Hang
Clean: 0.89*

–

Wang et al. (3) 15 Isometric Midthigh Pull (self-selected knee
and hip angles)

Parallel Back Squat 0.866* –

Young & Bilby (83) 18 Isometric Squat (100° knee angle) Universal Squat Machine (90°
knee angle)

0.71* 0.53*

Beckham et al. (27) 12 Isometric Midthigh Pull Snatch; Clean and jerk Snatch: 0.830*; Clean and jerk: 0.838*; Snatch: 0.808*; Clean
and jerk: 0.788*

Upper Body (Multi Joint)

Murphy et al. (66) 13 Isometric Bench Press (90° elbow angle) Bench Press 0.78* –

Murphy et al. (65) 13 Isometric Bench Press (90° and 120° elbow
angle)

Bench Press 90°: 0.78*; –

(continued)
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TABLE 1 Continued

Author n Technique Technique2 1-RM 1-RMrel

Baker et al. (43) 22 Isometric Bench Press (unilateral; initial
position of the concentric phase of the bench
press)

Bench Press Pre: 0.568*; Post: 0.614* –

Lum & Aziz (84) Prone bench pull test (90° and 120° elbow
angles)

Prone bench pull 90° r = 0.833, 120° r = 0.858 –

1RM, one repetition maximum; 1RMrel, one repetition maximum relative to body weight; ISqt, isometric squat; Sq, Squat; IPF, isometric peak force; IFHS, isometric front hack

squat; pre, correlations in pre-test; post, correlation in post-test.

*Significant correlation.

Warneke et al. 10.3389/fspor.2023.1105201
coefficient and Bland-Altman analysis is very common to evaluate

the accuracy, validity, and reliability of blood pressure or heart

rate devices (91, 92, 101). Since there are no common

classifications in high, moderate, and low concordance as found

with Pearson correlations (e.g., r = 0.2–0.5 small, r > 0.5–0.7

moderate, r > 0.7 high correlation) (102), it is suggested to

classify those effects dependent on content. Assuming moderate

increases in maximal strength of for example, 10%–12% within

six weeks of training (103), 13.3% within 10 months in elite

soccer player (U19) (35) or 12 ± 2%–19 ± 2% in elite cross-

country skiers following 12 weeks of strength training (104), the

possibility of replacing 1RM testing with isometric testing

requires a high concordance with very little variance, rived from

the MAPE. If two tests have a concordance variation of 6% but

the training-induced change was 12%–13%, there would be an

approximate 50% difference in the strength estimate between the

two measures, which would not provide acceptable sensitivity or

validity. Accordingly, Dominguez-Jiménez et al. (105) described

poor concordance in blood sample measuring devices with

concordance correlation coefficients of 0.68–0.8, suggesting that

the border for poor agreement with concordance correlation

coefficients would be <0.9 (106).

Consequently, assuming high correlation coefficient, the

calculation of the concordance correlation coefficient and Bland-

Altman analysis including MAPE, and MAE were carried out

assuming r = 0.9 and r = 0.7. Data were compiled and added

from previous investigations. The MAE was determined using,

n = number of participants, xi= the isometric strength value, and

yi= dynamic strength value

MAE ¼ 1
n
�
Xn

i¼1

xi � yij j;
TABLE 2 Correlation coefficients in combination with concordance and varianc

Figure Pearson
correlation

coefficient (r)

Intraclass
correlation

coefficient (ICC)

Concordance
correlation

coefficient (ρ

Figure 1 0.92 (0.903–0.939) 0.914 (0.892–0.932) 0.9 (0.88-9.92)

Figure 2 0.7 (0.632–0.754) 0.696 (0.630–0.753) 0.68 (0.61–0.74)

Figure 3 0.55 (0.464–0.630) 0.55 (0.461–0.630) 0.53

Frontiers in Sports and Active Living 04
and the mean absolute percentage error (MAPE) using

MAPE ¼ 100%
n

�
Xn

i¼1

xi � yi
xi

����
����:

Results of this exemplary calculation shows that correlations

stated as high (r≥ 0.7), which are partially higher than the stated

correlations in literature with r = 0.52–0.97 (7, 48, 69, 79, 80, 107)

seem not to be sufficient to evaluate the replaceability of dynamic

testing conditions with isometric testing. Expecting increases

between 10%–19% with a strength training program of 6–24 weeks,

a MAPE between isometric and dynamic testing of 7%–17% seems

to be intolerably high, considering scientific quality criteria (see

Table 2). Therefore, both measurement techniques seem to be

reliable and valid to estimate specific metrics of maximal strength

capacity, however, it must be assumed that they estimate the

maximal strength capacity in different ways, providing different

results. The rationale to replace 1RM tests with isometric testing

conditions (69, 69) must therefore be rejected. The Bland-Altman

analysis in Figure 1 showing a variation of values from −200–
450 N for r = 0.92, in Figure 2 with −750 N–600 N for r = 0.7 and

−1,000–800 N for r = 0.55 within the 95% CI, underpin the

assumption of substantially different strength value estimates by

isometric vs. dynamic testing conditions. Although Pearson

correlation coefficients and ICC values examine the relationship

between two parameters, using these common correlation

classifications to examine the replaceability of two measurements

must be described as a misinterpretation of statistics and should be

avoided. In accordance with Cohen (1988), classification of effect

sizes should be considered in the light of content. Accordingly,

stated substantial higher borders made by Cataldi et al. (106)

considering a cutoff of poor (<0.90), moderate (0.90–0.95),

substantial (0.95–0.99), and almost perfect (>0.99) seems more
e analysis including MAE, MAPE and maximal percentage error.

c)

Mean absolute
error (MAE) in

N

Mean absolute
percentage error
(MAPE) in %

Maximal
percentage

error

139.99 7.12 27.25%

304.51 17.36 57.24%

413,58 23,59 67.42%
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TABLE 3 Examples of angle specificity of squat force output

Study Example 1
deep or

parallel squat

Example 2
half squat

Example 3
quarter squat

Bazyler et al.
(107)

Parallel 148.2 ±
23.4 kg

Partial squat (100°
knee angle): 224 ±

40.1 kg

Keiner et al.
(55)

Parallel (60°knee
angle): 75.4 ±
20.8 kg (1.1 ± 0.2
relative to body
weight)

Half squat (90°
knee angle):
109.2 ± 27 kg
(1.5 ± 2.3 relative
to body weight)

Quarter squat (120°
knee angle):
155.4 ± 28.6 kg
(2.1 ± 0.3 relative to
body weight) in the

Kubo et al.
(123)

Full squat 78.8 ±
14.6 kg

Half squat 95.0 ±
16 kg

Hartmann
et al. (124)

Deep squat 1.15 ±
0.17 relative to
body weight

Quarter squat
2.96 ± 0.57 relative
to body weight.

Lum & Joseph
(125)
isometric
squat

90° knee angle
1543.9 ± 318.6 N

Isometric squat
120° knee angle
1899.0 ± 459.2 N

Bartolomei
et al. (71)

Mid-thigh pull
MVC 2725.3 ±
536.6 N

Mid-shin pull
1967.2 ± 293.3 N

Warneke et al. 10.3389/fspor.2023.1105201
appropriate because of reduced errors between the different

measurements.

There are few studies that include a concordance analysis to

investigate minimizing differences in maximal strength testing

batteries. Warneke et al. (108) examined the plantar flexors,

showing moderate to high correlation coefficients of 0.63–0.77

leading to ρc = 0.62–0.77 Accordingly, Wagner et al. (109) pointed

out that there was only little agreement between isometric and

dynamic squat, determining correlations of τ = 0.54, MAE of

2080.87 N and MAPE of 67.4%. However, correlated maximal

strength values were assessed using different joint angles, so the
FIGURE 1

An exemplary dataset to calculate the concordance correlation coefficient (C
representing magnitude of correlation usually found between dynamic and isom

Frontiers in Sports and Active Living 05
influence of contraction type could not be excluded. No further

investigations could be detected using concordance analyses to

assess the agreement between two testing conditions.

To conclude, if the expected change in maximal strength due to

the intervention is smaller than the mean (percentage) error between

two testing methods, it cannot be assumed that both testing method

measure the same parameter and a replacement of one of both testing

methods should be avoided. Therefore, the objective of an

investigation and the chosen procedure to evaluate strength

capacity should be selected carefully, as it can be assumed that

1RM and isometric testing conditions will not measure the same

parameter. There are some hypotheses explaining differences in

strength values dependent on measurement procedure.
Explanation of high variation of
correlation coefficients and limited
agreement between isometric and
dynamic testing procedure

From a physical and mechanical point of view, force is defined as

F =m * a, so force capability can be described as the ability of the

body to accelerate a mass. Maximal strength in a dynamic strength

measurement is only assumed to be maximal if the gravitational

force acting on the resistance and the force output exerted on the

resistance by the individual are equal, so no movement or

acceleration of the mass (resistance) would be present. With

isometric force measurements, Newton’s third principle [for every

action (force) in nature there is an equal and opposite reaction] is

used to measure the opposing force to an insurmountable

resistance. Since performing a one repetition maximum involves

moving a surmountable resistance through a range of motion, it is

not the same as assessing maximal strength/MVC, leading to the

assumption that the 1RM performance would be lower than

MVIC. Furthermore, when performing a 1RM, once the initial
CC) of 0.9 with n= 273 showing high Pearson correlation with r= 0.92,
etric testing.
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FIGURE 2

An exemplary dataset to calculate the concordance correlation coefficient (CCC) of 0.68 with n= 273 showing high Pearson correlation with r= 0.7,
representing magnitude of correlation usually found between dynamic and isometric testing.

FIGURE 3

An exemplary dataset to calculate the concordance correlation coefficient (CCC) of 0.53 with n= 273 showing moderate Pearson correlation with r= 0.55,
representing magnitude of correlation usually found between dynamic and isometric testing.

Warneke et al. 10.3389/fspor.2023.1105201
sticking point is surpassed, the force to move the weight decreases

due to inertia (110). In contrast, there are limitations of isometric

testing conditions, described in the following.
Angle specificity in isometric testing
conditions

In science and diagnostics, there are high demands on

standardization to ensure equal testing conditions and exclude

external factors influencing the results. Angle specificity of

maximal isometric strength produces different maximal strength

values when performed at different joint angles (44, 62, 71, 111,

112). Angle specific differences in maximal strength were reported
Frontiers in Sports and Active Living 06
for the squat (44, 113–116), bench press (65), plantar flexion (115)

and deadlift/mid-thigh pull (81). It seems that strength capacity

using isometric squat and leg press increases with increasing knee

joint (44, 113–116). Examples are stated in Table 3.

The 1RM bench press, back squat and clean are the most common

methods of assessing maximum strength in athletes (116–120). Using

dynamic testing conditions, standardization is mostly performed for

range of motion (69). The squat ROM varies between different

studies (mostly 70–110°) (Table 1), (36, 44, 73, 121, 122).

Using different joint angles to standardize movements is of

questionable validity as similar levels of flexibility and

anthropometrics would be assumed. Participants lacking flexibility

could reach maximal muscle length in a smaller joint angle

compared to flexibility trained participants. Consequently,
frontiersin.org
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assuming a muscle length-maximal strength relationship with highest

strength capacity in the “mid-range of motion” (126),

standardization in joint angles lead to differences in starting

muscle length, if participants demonstrate heterogeneity in

flexibility. Furthermore, there are angle dependent differences in

EMG- activity, contributing to differences in strength performance

(127). Obviously, joint angle dependency for MVIC values leads to

a joint angle dependency for correlations between isometric and

dynamic MVC testing. Accordingly, Bazyler et al. (107) reported

an angle specific high correlation (r = 0.79–0.86) in maximal

isometric strength with 1RM in the squat indicating that “these

findings demonstrate a degree of joint angle specificity to dynamic

tasks for rapid and peak isometric force production” (107).

However, obviously, there are numerous other factors influencing

the force output. The aforementioned difficulties with

standardization of testing range of motion and angles with

indivuduals with varying levels of flexibility would be problematic

not only for closed chain activities (e.g., squat, cleans, deadlifts)

but also open kinetic chain exercises such as found with machines

for knee extension (quadriceps) and flexion (hamstrings) or elbow

flexion (biceps brachii) and extension (triceps brachii).

Furthermore, compared to these uni-articular (e.g, knee extensions,

bicep curls and others) resistance exercises, the complexity, co-

ordination, balance, and stability associated with multi-joint

movements will influence the force production leading to higher

standardization problems.
Familiarization with testing conditions

Another possible explanation is a lack of familiarization to

isometric testing conditions (23, 76) due to structural, neural, and

biomechanical differences within isometric and dynamic testing

conditions associated with the distinct movement patterns and

contraction modes (63, 64, 128). Accordingly, Baker et al. (43)

suggested that isometric and dynamic muscle actions must be

understood as different physiological phenomenon as motor unit

recruitment and rate coding (firing frequency) may differ between

both contraction forms. Authors pointed out that three

familiarization sessions or a large number of trials (129) were

required to get a high stability and reliability for peak force

measurement. Palmer et al. (130) reported the relatively high

coefficients of variation of 6.6%–19.4% for isometric squat strength

were dependent on the knee angle. These high coefficients of

variation may be the result of learning to contract under isometric

conditions. Unfamiliar testing conditions can influence test quality

criteria, consequently, reliability of isometric testing is not always

reached (131). Since it can be assumed that most athletes are

familiar with dynamic conditions because of daily use in training

context, it can be hypothesized that for most athletes there is

habituation regarding unfamiliar testing conditions. Lum et al. (24)

point out that many studies investigating relationships between

dynamic and isometric conditions do not provide any information

about the number of familiarization sessions prior to isometric

testing. This may explain the nearly perfect correlations shown by

McGuigan et al. (1) when testing wrestlers, where a high

proportion of daily training involves isometric work. Taken
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together, the range of correlation (r = 0.35–0.99) (25, 80) can be

attributed to several limitations in standardization and

familiarization of participants. The familiarization of testing

conditions and contraction velocity specificity (67) might

influence the differences in correlations between testing

conditions in different sports such as soccer (18–20), basketball

(8, 132) and weightlifting (133–134). Therefore, it could be

hypothesized that the type of contraction used in daily training

routines would influence the force output in isometric and

dynamic testing, and therefore the resulting correlations between

both contraction types. However, the sports-dependency

regarding the force output of isometric vs. dynamic testing

conditions requires further research.
Relevance for the testing practice

Several factors influencing the estimation of maximal strength can

lead to significant errors dependent on testing conditions in cross

sectional study designs. Since high specificity in training regimes can

be assumed (67) a question arises about the impact on results of

longitudinal testing designs. Accordingly, using isometric testing

conditions, Yahata et al. (115) showed significant increases in MVIC

using an extended muscle length in response to long-term stretch

training. As it can be assumed that the training routine took place

with longer muscle length, training adaptations and strength changes

were also specific to training conditions. However, comparing

isometric and dynamic testing conditions, significant differences in

response to training stimuli would be expected. Warneke et al.,

(135) showed significant increases in strength capacity under

isometric as well as dynamic conditions using six weeks of daily

stretch training in the calf muscles. However, under isometric testing

conditions there was a significant increase of 16.8%, while 1RM

testing showed significant increases of about 25.1%. Furthermore, in

1RM testing a significant contralateral force transfer was present

(+11.4%), which was not significant under isometric conditions

(+1.4%). Wirth (136) investigated the effects of different weekly

training frequencies on maximal dynamic and isometric maximal

strength with the biceps brachii muscles. While dynamic testing

conditions showed significant increases in 5 of 6 training groups,

only one group showed significant increases in MVIC.

Consequently, if Yahata and colleagues (115) would test MVIC

exclusively using small joint angles or Wirth (136) tested only

MVIC, both studies would underestimate effects of the training

routine because of inappropriate testing conditions.

Furthermore, Warneke et al. (135) were not able to show a

significant contralateral force transfer using daily stretch

training, if following the advice to replace 1RM testing by

isometric testing. Therefore, the different tests should not be

replaceable, but supplement one testing condition with the

other. Thus, both testing conditions only estimate MSt capacity,

since in both procedures, limitations avoid a “real” maximal

force output. Therefore, it is strongly recommended to keep in

mind high specificity of testing and training conditions

considering the physiological background of each when figuring

out the research hypothesis and the following testing protocol.
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Conclusion

The use of correlation coefficients to justify the replaceability of

1RM testing with isometric testing seems invalid, since the MAPE

and MAE between both measurement procedures is intolerably

high, even when high correlation coefficients with high sample

sizes were used. Investigating the agreement between two

measurement conditions requires further analytic approaches, such

as concordance- and Bland-Altman analyses with classification of

MAPE and MAE values. Investigations considering adequate

analyses are very rare in exercise science. Results showing that both

1RM and MVIC present a different estimation of the maximal

strength capacity of the participant. Therefore, assuming there are

equivalent measures between dynamic performance and isometric

testing conditions (24, 84) should be questioned. This estimation

can be assumed to be influenced by very different factors such as

tested muscle lengths in isometric testing, complexity of the

movement in dynamic testing as well as familiarization with the

testing conditions considering the type of contractions used in

daily training practice.
Practical applications

Using maximal strength tests in practice—performance

diagnostics in sports or pre-post-test designs in scientific studies—

authors should consider limitations which should be minimized.

Since a higher transfer of 1RM to sport specific movements can be

assumed and most athletes using dynamic movements in their

daily training routines, a higher application of dynamic testing

protocols can be hypothesized in field tests (64, 109) “From this, it

could be recommended to use dynamic strength testing and avoid

isometric strength testing, if the athletes training routine includes

only low level of isometric contractions, and vice versa.” (109).

However, under laboratory conditions and dependent on the

research questions, isometric procedures can also be useful,

especially because of time-saving aspects. Whether, and to what

extent isometric testing conditions can considered safe might

depend on the tested movement. Safety benefits of the isometric

squat, pushing the spine against an unyielding resistance may be
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questionable, while in other movements such as the plantar flexion,

the isometric measurement seems to be a safe testing condition.

High test specificity (often involves dynamic testing) and relevant

physiological issues (often necessitates isometric testing) should be

included in the testing design to answer research questions

adequately. To avoid missing potential training effects, authors and

coaches should be aware of the underlying physiological

mechanisms of their training to determine target-oriented testing

programs, otherwise there are too many parameters (e.g., different

joint angles) to consider, if all possible movement executions

should be tested.
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