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Combinatorial optimization is still one of the biggest mathematical challenges if you plan and organize the run-

ning of a business. Especially if you organize potential factors or plan the scheduling and sequencing of opera-

tions you will often be confronted with large-scaled combinatorial optimization problems. Furthermore it is very

difficult to find global optima within legitimate time limits, because the computational effort of such problems

rises exponentially with the problem size. Nowadays several approximation algorithms exist that are able to

solve this kind of problems satisfactory. These algorithms belong to a special group of solution methods which

are called local search algorithms. This article will introduce the topic of simulated annealing, one of the most

efficient local search strategies. This article summarizes main aspects of the guest lecture Combinatorial Optimi-

zation with Local Search Strategies, which was held at the University of Ioannina in Greece in June 1999.

I. Problem Structure

Combinatorial optimization problems distinguish from linear programming problems (LP-

problems) by the kind of the decision variables. Here you are confronted with discontinuous

and not with continuous decision variables. Typical examples for combinatorial optimization

problems are the facility layout planning or the sequencing of jobs on machines. To demon-

strate the complexity of such planning problems consider the following production-planning-

flow-shop-problem: If you have to sequence n jobs on m machines, there are (n!)m potential

combinations. So, if you have 10 jobs which have to be sequenced on 3 machines you have

the choice out of 4.778 · 1019 combinations. If you relax this problem in that way that the jobs

cannot overtake each other between the machines, there are still n! (here: 10! = 3,628,800)

combinations.

II. Classification of Optimization Methods

There exist a lot of mathematical proceedings for solving combinatorial optimization prob-

lems. On the first level you distinguish between exact methods and heuristics. Exact methods
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always find at least one global optimum. The most trivial way to find a global optimum is to

enumerate all possible combinations, e.g. all possible job sequences of a flow-shop-problem.

More efficient are analytical methods. They are able to identify a global optimum without

enumerating all combinations. Besides general approaches as the branch-and-bound-

algorithm [Domschke et al. 1993] there also exist more specific algorithms that can only

solve special problems. One example is the Johnson-Algorithm for the 2-machine-production-

planning-flow-shop-problem. It always finds the job sequence with the lowest processing time

[Johnson 1954].

As already mentioned the computational effort rises exponentially with the problem size. The-

refore from the economical point of view the use of exact methods only makes sense for a

small problem size. Large-scaled problems should be solved with heuristic methods. Their

objective is to find a good solution (close to an optimum) within a reasonable period of time.

Heuristics make use of special problem-specific and goal-directed rules which determine the

proceeding of finding a solution. Only parts of the solution space are now considered for find-

ing a solution. This reduces the computational effort a lot. On the other hand there is no guar-

antee to find global optima or to recognize solutions as global optima any more [Domschke

et al. 1996].

Heuristics can be differentiated into construction and iterative heuristics. Construction heuris-

tics are also called dirty or quick heuristics, because you find very fast a first feasible solution

[Potts, Wassenhove 1991]. This solution is built with the help of construction rules. The

quality of this solution is normally not very high [Reese, Urban 1999].

A solution of higher quality can be reached with iterative methods. They start with a feasible

solution and search in the neighbourhood of this solution for a configuration with a better va-

lue of the objective function. So, before you can implement an iterative method you have to

define how to generate a neighbour. The easiest way to generate a neighbour is a pairwise

exchange of two elements of the initial configuration. But the establishment of a transition

mechanism for generating the neighbourhood should be done from case to case, because the

choice of this mechanism determines the efficiency of the algorithm [Hansmann 1997].

Iterative improvement (or hill climber) methods only accept neighbours as a new solution if

the value of the objective function is better than that one of the current solution. You differen-
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tiate between first and best improvement. First improvement means that you compare the cur-

rent solution only with one neighbour at the time. If you find a better configuration it replaces

the current solution. Best improvement means that you compare a solution with all of its

neighbours [Rixen 1997]. The best neighbour has to be chosen if it is better than the current

solution. If no neighbour is found with a better function value, the algorithm ends. The prob-

lem is obvious: The algorithm can end in a local optimum. This local optimum can be far

away from the global optimum. The solution quality depends on the initial configuration

[Laarhoven, Aarts 1992].

This disadvantage of improvement methods can be solved with the help of local search algo-

rithms. They also accept temporary worsening of the solution. So local optima can be over-

come. For efficient work these algorithms need several control mechanisms, e.g. to prevent

cycling or for defining a stop criterion [Domschke et al. 1996].

For completion it has to be mentioned that also combinations of construction and iterative

heuristics or of improvement and local search algorithms are possible.

III. Simulated Annealing

The history of the local search algorithms in business administration is only about three dec-

ades old. The local search methods had proved that they lead to significant better results than

construction heuristics if they are implemented carefully. Although the computational effort is

much higher for local search algorithms than for quick heuristics, in relation to the solution

quality and the computational effort of exact methods local search proceedings are the most

efficient class of algorithms [Reese, Urban 1999].

One of the most popular and efficient representative of this class is simulated annealing.

simulated annealing. As other famous local search techniques (e.g. tabu search, genetic algo-

rithms) simulated annealing is originally developed outside of business administration. This is

also reflected by the terms of its control mechanisms. These mechanisms have to be imple-

mented very carefully to make simulated annealing as efficient as possible. In the following

section the basic idea of simulated annealing will be described. Beside this basic form several

variations and combinations with other heuristics can be found very often.
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Analogy between Physical Process and Combinatorial Optimization

Originally simulated annealing was used for simulations of cooling processes of solids in sta-

tistical mechanics. The objective was to find the configuration of molecules with the lowest

energy state, the ground state. Therefore the solid was heated up to its melting point and then

cooled very carefully. After some time the system reaches the equilibrium, i.e. the minimum

energy state, of the corresponding temperature. For reaching the equilibrium it can be neces-

sary to increase temporary the energy level of the solid. So, e.g. crystals needs for their reor-

ganization process a certain amount of energy. Therefore the temperature level should be held

for a certain time period [Kuhn 1990].

If the system is cooled too fast, defects in the molecule configuration will be frozen. The sys-

tem remains in a meta-stable state, i.e. in a local energy minimum (e.g. consider a crystal with

several defects in its structure). The physical process shows analogies with combinatorial op-

timization: The ground state can be seen as the global optimum of an objective function, e.g. a

global cost minimum. The meta-stable state complies with a local optimum, and the system

states (configuration of the molecules) with the feasible combinations [Kirkpatrick et al. 1983,

Bartholomeus, Weismantel 1989].

Physical System Combinatorial Optimization

system state configuration/combination

energy state objective function value

ground state global optimum

fast cooling iterative improvement

slow cooling simulated annealing

Fig. 1: Analogy between physical systems and combinatorial optimization problems
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Metropolis Algorithm

The probability that the system have a certain system state X with the energy state E in its

thermal equilibrium is given by:

Pr{ }
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Z (T):= regulating constant depending on the temperature T

kB := Boltzmann-Constant
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The amount of feasible system states decreases with a decreasing temperature. Approaching

the zero point the system changes over to a final state. This cooling process can be simulated

with the metropolis algorithm [Metropolis et al. 1953]: Starting with a feasible initial solution

one molecule is replaced randomly. If the energy level decreases or stays the same

(E ≤ 0), the change will be done. An increasing energy (E > 0) level means that the change

of the configuration will only be accepted with the probability Tk

ΔE

Be
⋅

−

. The probability to ac-

cept a new configuration decreases by a high increase of the energy level and/or low tempera-

tures.

Perturbation and Acceptance Probability

The metropolis algorithm is the base of simulated annealing. Instead of replacing molecules

elements, e.g. jobs of a scheduling problem, are replaced. Any feasible solution which can be

reached by one transition is a neighbour of the current solution. The probability to chose a

configuration Y from the current configuration X is called perturbation probability. Theoreti-

cally it can be proven that the basic simulated annealing algorithm converges asymptotically

to a global optimum. But a necessary condition for this convergence is a symmetric perturba-

tion probability [Laarhoven, Aarts 1992]1:

1 If the perturbation probability is not symmetric other conditions have to be held for a convergence of the algo-
rithm [Hajek, 1988].
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p X Y p Y X( , ) ( , )= . (2)

If the configuration Y is a neighbour of the current solution the perturbation probability lies

between 0 and 1, otherwise it is 0 and cannot be chosen from X:

p (X,Y) =
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The decision to accept or to refuse the chosen neighbour as the new solution is done analo-

gous to the metropolis algorithm. For a minimization problem this means if the value of the

objective function of Y is lower than that one of X (∆C = C (Y) - C (X) < 0), Y replaces X, oth-

erwise it is only accepted with a certain probability, depending on the increase ∆C and a con-

trol parameter Tk:

P (X,Y, Tk ) =
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The control parameter Tk has the same function for the procedure of the method as the tem-

perature of the metropolis algorithm, but no own economical meaning [Eglese 1990]. So it

also strictly decreases during the proceeding. Therefore the probability to accept a configura-

tion with a worse value of the objective function also decreases while running the algorithm.

The probability that a configuration Y replaces the configuration X results from the multiplica-

tion of perturbation and acceptance probability. Therefore a replacement of the current solu-

tion by a non-neighbour is excluded [Laarhoven, Aarts 1992]:
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Formulation and Implementation of the Algorithm

Two different formulations of the simulated annealing algorithm are possible: The first one is

the formulation as a homogenous algorithm. This means the control parameter is held fixed

until an equilibrium is reached. After reaching an equilibrium the control parameter is reduced

successively and the procedure is repeated for lower control parameter values as well. The

algorithm ends after reaching a stop criterion by lim
k → ∞

Tk = 0. For any fixed value of the con-

trol parameter a homogenous markov chain is generated. A markov chain is a series of con-

figurations where a configuration Y only depends on the last accepted configuration X. The

second kind of formulation of the method is that one as an inhomogenous algorithm. Then

after each step the control parameter is reduced. So the proceeding is described as an inho-

mogenous markov chain . Theoretically both formulations converge asymptotically to a

global optimum with a probability of one when certain conditions are held [Laarhoven, Aarts

1992]:

• Homogenous Algorithm: A with the problem size exponentially increasing amount of

neighbours for reaching the stationary equilibrium has to be generated, and the limiting

value of the control parameter is 0.

• Inhomogenous Algorithm: Convergence of the control parameter to the zero point may not

be faster than O ([log k]-1).

Both conditions cannot be held in a practicable implementation, because e.g. only a limited

amount of neighbours can be taken into account. Therefore in a practicable implementation

simulated annealing can only be a heuristic method. For the procedure of the algorithm a

cooling scheduled is needed. The cooling schedule regulates the initial value of the control

parameter, the stop criterion, the amount of iterations for each control parameter value and a

function for the reduction of the control parameter value. You can differentiate between sim-

ple and more elaborate cooling schedules [Laarhoven, Aarts 1992].

The parameters of a simple cooling schedule are set externally. So the running of the algo-

rithm occurs independently from the problem. The initial value of the control parameter is

chosen in such a way that almost every neighbour will be accepted at the beginning of the

proceeding, i.e. the acceptance probability P (X,Y,T0) = min {1; 0T

C

e

∆
−

} ≅ 1. One possibility to
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get an initial value of the control parameter is to chose an initial acceptance probability exter-

nally (e.g. 95 %) and calculate the average increase of the value of the objective function

∆C
( )+

for a certain amount of randomly chosen transitions:

)(ln 1

)(

0 −

+
∆

=
P

C
T (6)

The algorithm ends when the solution has not changed for a certain amount of iterations or

after running a preset amount of control parameter values [Laarhoven, Aarts 1992].

The number of iterations for each control parameter value can be described by the length of

the single markov chains. The most trivial way for setting the number of iterations at each

control parameter value is to chose an equal length of the markov chains depending (polyno-

mially) on the problem size. An alternative is to fix a minimum number of transitions which

have to be accepted for every control parameter value. By choosing this alternative a constant

which limits the maximum number of iterations at each control parameter value should be

established to prevent extremely long markov chains at low values of the control parameter

[Laarhoven, Aarts 1992].

The value of the control parameter can be reduced quite simple with a reduction function of

the following kind where the reduction factor should be close to one for guaranteeing a slow

cooling [Laarhoven, Aarts 1992]:

Tk+1 = α ⋅ Tk , k ={0; 1; 2;...; K}, 0 < α < 1. (7)

The advantage of an easy implementation of simple cooling schedules is faced with the disad-

vantage of a lower efficiency of the algorithm than using more elaborate cooling schedules.

From time to time enormous empirical studies on a problem are necessary to determine the

cooling parameters satisfactory [Kuhn 1990].

More elaborate cooling schedules run the algorithm problem-specific. The reduction of the

control parameter value and the stop criterion depends on the operation of the proceeding and

the values of the objective function. Several approaches for more elaborate cooling schedules

exist. The following approach is only one proposal:
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• Initial value of the control parameter: Standard deviation of the objective function value

by a very high temperature [White 1984, Laarhoven, Aarts 1992]

T0 ≥ σ (T→∞) = < → ∞ > − < → ∞ >C T C T
2 2( ) [ ( ) ] , (8)

< C (T→∞) > as the expected value of the objective function, < C
2
(T→∞) > as the expected square value of

the objective function and σ (T→∞) as standard deviation at a value of the control parameter of T→∞.

• Stop Criterion: The algorithm terminates when the difference between the average value

of the objective function over a number of markov chains and the optimal solution reaches

a lower limit [Laarhoven, Aarts 1992]:

)T(C K - Copt < ε. (9)

• Decrement rule for the control parameter:

T T
T

Tk k

k
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−
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σ (Tk) as standard deviation of the objective function at Tk and δ as distance parameter.

This rule guarantees a slow decrease of the parameters. So the stationary equilibrium at

(k+1) should be reached in a reasonable time [Laarhoven, Aarts 1992].

• Length of markov chains: The maximum amount of neighbours which can be reached

from the current solution [Laarhoven, Aarts 1992].

Λ = max{ }L X LX : ∈ . (11)

A modification: Threshold Accepting

A modification of simulated annealing is threshold accepting. Any randomly chosen neigh-

bour which does not worse the value of the objective function more than a set threshold value

Λ will be accepted as the new solution. Λ is a parameter which will be set to zero during the
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proceeding [Hansmann 1997]. The advantage of Threshold Accepting is that the computional

effort is much lower than by simulated annealing, because no acceptance probability has to be

calculated and no random numbers have to be generated. On the other hand it is a big dis-

advantage of this method that some configurations cannot be reached from another one, be-

cause a temporary worsening of the solution is only allowed up to the threshold value Λ.

IV. Example

An example shall demonstrate the basic procedure of the simulated annealing algorithm

[Reese, Urban 1999]. Although the application of local search strategies is only recommend-

able for large-scaled problems because of the big implementation effort, the problem size of

the example is held very small for an easier understanding.

Consider the following flow-shop-problem as shown in figure 2. The five jobs shall be sched-

uled in the same sequence on the three machines, i.e. no overtaking of the jobs is allowed.

The objective is to find the job sequence with the shortest process time.

job

machine
A B C D E

1 14 26 1 52 5

2 24 6 2 18 15

3 31 23 5 14 2

Fig. 2: Process time of the jobs on each machine

For this scheduling problem there exist two optimal solutions: A-C-D-B-E and C-A-D-B-E.

The corresponding process time for these solutions is 124 time units. The size of the solution

space covers 120 (= 5!) job sequences. 76 knots are needed for finding one of the optimal

solutions by using the constraint enumeration of Ignall and Schrage´s branch-and-bound-

algorithm [Ignall, Schrage 1965]. A suboptimal solution results by solving the scheduling

problem with the construction heuristic of Campbell, Dudek and Smith: The process time of

the solution C-A-B-D-E is 128 time units.
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Let the job sequence D-B-C-A-E be a randomly chosen initial solution, and the neighbour-

hood of the iterative search be defined as a pairwise exchange of neighbouring jobs. Then, the

job sequences B-D-C-A-E, D-C-B-A-E, D-B-A-C-E, and D-B-C-E-A are the feasible

neighbours of the initial solution. Because none of the neighbours has a shorter process time

than the initial solution, a hill climber algorithm would get stuck in this local minimum. The

simulated annealing algorithm can overcome this local minimum, and reach a better solution,

even the global optimal solution.

Fig. 3: Exemplary solution steps of a simulated annealing implementation

control

parameter

value

selected neigh-

bour

processing

time

acceptance

probability

random

number

current solution

D-B-C-A-E 150 D-B-C-A-E

T0 = 57 D-B-C-E-A 156 0,90 0,19 D-B-C-E-A

B-D-C-E-A 168 0,81 0,59 B-D-C-E-A

B-C-D-E-A 167 1,00 B-C-D-E-A

B-C-E-D-A 157 1,00 B-C-E-D-A

B-E-C-D-A 157 1,00 B-E-C-D-A

T1 = 34 E-B-C-D-A 157 1,00 E-B-C-D-A

E-B-C-A-D 130 1,00 E-B-C-A-D

E-B-A-C-D 130 1,00 E-B-A-C-D

E-B-A-D-C 134 0,89 0,17 E-B-A-D-C

E-B-D-A-C 161 0,45 0,42 E-B-A-D-C

T2 = 20 E-A-B-D-C 134 1,00 E-A-B-D-C

A-E-B-D-C 134 1,00 A-E-B-D-C

A-E-B-C-D 130 1,00 A-E-B-C-D

A-E-C-B-D 130 1,00 A-E-C-B-D

A-C-E-B-D 130 1,00 A-C-E-B-D

T3 = 12 A-C-B-E-D 130 1,00 A-C-B-E-D

A-C-B-D-E 128 1,00 A-C-B-D-E

A-C-D-B-E 124 1,00 A-C-D-B-E

A-C-D-E-B 129 0,66 0,38 A-C-D-E-B

A-D-C-E-B 130 0,92 0,93 A-C-D-E-B

T4 = 7 C-A-D-E-B 129 1,00 C-A-D-E-B

C-D-A-E-B 151 0,18 0,22 C-A-D-E-B

C-A-D-B-E 124 1,00 C-A-D-B-E

C-A-B-D-E 128 0,56 0,66 C-A-D-B-E

C-A-D-E-B 129 0,49 0,51 C-A-D-B-E

Figure 3 shows exemplary the search process for an implementation of the simulated anneal-

ing algorithm. The initial acceptance probability in the example is set to 90 %, the average

deviation of the objective function of 10 randomly chosen job sequences is 6 time units. Us-
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ing equitation (6) leads to an initial temperature T0 of 57. The number of markov chains and

the length of the markov chains are externally set, and equal to the number of jobs. Equitation

(7) is set as decrement rule of the control parameter, and  is set to 60 %. The solution of the

local search is the job sequence C-A-D-B-E. The algorithm has found one of the optimal solu-

tions.
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